

The Pragmatic Programmer

YOUR JOURNEY TO MASTERY

BY DAVE THOMAS, ANDY HUNT
Version: P1.0 (September 13, 2019)

Many of the designations used by
manufacturers and sellers to distinguish
their products are claimed as trademarks.
Where those designations appear in this
book, and the publisher was aware of a
trademark claim, the designations have
been printed with initial capital letters or
in all capitals. “The Pragmatic
Programmer” and the linking g device
are trademarks of The Pragmatic
Programmers, LLC.

The authors and publisher have taken
care in the preparation of this book, but
make no expressed or implied warranty
of any kind and assume no responsibility
for errors or omissions. No liability is
assumed for incidental or consequential
damages in connection with or arising
out of the use of the information or
programs contained herein.

For information about buying this title in
bulk quantities, or for special sales
opportunities (which may include
electronic versions; custom cover
designs; and content particular to your
business, training goals, marketing focus,
or branding interests), please contact our
corporate sales department at
corpsales@pearsoned.com or (800) 382-
3419.

For government sales inquiries, please
contact
governmentsales@pearsoned.com. For
questions about sales outside the U.S.,
please contact intlcs@pearson.com. Visit
us on the Web: informit.com/aw

mailto:corpsales@pearsoned.com
tel:+18003823419
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
https://informit.com/aw

Library of Congress Control Number:
2019944178

Copyright © 2020 Pearson Education,
Inc.
Cover images: Mihalec/Shutterstock,
Stockish/Shutterstock

All rights reserved. This publication is
protected by copyright, and permission
must be obtained from the publisher prior
to any prohibited reproduction, storage in
a retrieval system, or transmission in any
form or by any means, electronic,
mechanical, photocopying, recording, or
likewise. For information regarding
permissions, request forms and the
appro- priate contacts within the Pearson
Education Global Rights & Permissions
Department, please visit
www.pearsoned.com/permissions.

ISBN-13: 978-0-13-595705-9
ISBN-10: 0-13-595705-2

https://www.pearsoned.com/permissions/

For Juliet and Ellie,
Zachary and Elizabeth,

Henry and Stuart

Table of Contents

1. Foreword

2. Preface to the Second Edition

1. How the Book Is Organized

2. What’s in a Name?

3. Source Code and Other Resources

4. Send Us Feedback

5. Second Edition Acknowledgments

3. From the Preface to the First Edition

1. Who Should Read This Book?

2. What Makes a Pragmatic Programmer?

3. Individual Pragmatists, Large Teams

4. It’s a Continuous Process

4. 1. A Pragmatic Philosophy

1. Topic 1. It’s Your Life

2. Topic 2. The Cat Ate My Source Code

3. Topic 3. Software Entropy

4. Topic 4. Stone Soup and Boiled Frogs

5. Topic 5. Good-Enough Software

6. Topic 6. Your Knowledge Portfolio

7. Topic 7. Communicate!

5. 2. A Pragmatic Approach

1. Topic 8. The Essence of Good Design

2. Topic 9. DRY—The Evils of Duplication

3. Topic 10. Orthogonality

4. Topic 11. Reversibility

5. Topic 12. Tracer Bullets

6. Topic 13. Prototypes and Post-it Notes

7. Topic 14. Domain Languages

8. Topic 15. Estimating

6. 3. The Basic Tools

1. Topic 16. The Power of Plain Text

2. Topic 17. Shell Games

3. Topic 18. Power Editing

4. Topic 19. Version Control

5. Topic 20. Debugging

6. Topic 21. Text Manipulation

7. Topic 22. Engineering Daybooks

7. 4. Pragmatic Paranoia

1. Topic 23. Design by Contract

2. Topic 24. Dead Programs Tell No Lies

3. Topic 25. Assertive Programming

4. Topic 26. How to Balance Resources

5. Topic 27. Don’t Outrun Your Headlights

8. 5. Bend, or Break

1. Topic 28. Decoupling

2. Topic 29. Juggling the Real World

3. Topic 30. Transforming Programming

4. Topic 31. Inheritance Tax

5. Topic 32. Configuration

9. 6. Concurrency

1. Topic 33. Breaking Temporal Coupling

2. Topic 34. Shared State Is Incorrect State

3. Topic 35. Actors and Processes

4. Topic 36. Blackboards

10. 7. While You Are Coding

1. Topic 37. Listen to Your Lizard Brain

2. Topic 38. Programming by Coincidence

3. Topic 39. Algorithm Speed

4. Topic 40. Refactoring

5. Topic 41. Test to Code

6. Topic 42. Property-Based Testing

7. Topic 43. Stay Safe Out There

8. Topic 44. Naming Things

11. 8. Before the Project

1. Topic 45. The Requirements Pit

2. Topic 46. Solving Impossible Puzzles

3. Topic 47. Working Together

4. Topic 48. The Essence of Agility

12. 9. Pragmatic Projects

1. Topic 49. Pragmatic Teams

2. Topic 50. Coconuts Don’t Cut It

3. Topic 51. Pragmatic Starter Kit

4. Topic 52. Delight Your Users

5. Topic 53. Pride and Prejudice

13. 10. Postface

14. A1. Bibliography

15. A2. Possible Answers to the Exercises

Copyright © 2020 Pearson Education, Inc.

Praise for the second edition of The
Pragmatic Programmer

Some say that with The Pragmatic Programmer,
Andy and Dave captured lightning in a bottle;
that it’s unlikely anyone will soon write a book
that can move an entire industry as it did.
Sometimes, though, lightning does strike twice,
and this book is proof. The updated content
ensures that it will stay at the top of “best books
in software development” lists for another 20
years, right where it belongs.

 — VM (Vicky) Brasseur

 Director of Open Source Strategy, Juniper Networks

If you want your software to be easy to
modernize and maintain, keep a copy of The
Pragmatic Programmer close. It’s filled with
practical advice, both technical and professional,
that will serve you and your projects well for
years to come.

 — Andrea Goulet

 CEO, Corgibytes; Founder, LegacyCode.Rocks

The Pragmatic Programmer is the one book I
can point to that completely dislodged the
existing trajectory of my career in software and
pointed me in the direction of success. Reading
it opened my mind to the possibilities of being a
craftsman, not just a cog in a big machine. One
of the most significant books in my life.

 — Obie Fernandez

 Author, The Rails Way

First-time readers can look forward to an
enthralling induction into the modern world of
software practice, a world that the first edition
played a major role in shaping. Readers of the
first edition will rediscover here the insights and
practical wisdom that made the book so
significant in the first place, expertly curated
and updated, along with much that’s new.

 — David A. Black

 Author, The Well-Grounded Rubyist

I have an old paper copy of the original
Pragmatic Programmer on my bookshelf. It has
been read and re-read and a long time ago it
changed everything about how I approached my
job as a programmer. In the new edition
everything and nothing has changed: I now read
it on my iPad and the code examples use modern
programming languages—but the underlying
concepts, ideas, and attitudes are timeless and
universally applicable. Twenty years later, the
book is as relevant as ever. It makes me happy to
know that current and future developers will
have the same opportunity to learn from Andy
and Dave’s profound insights as I did back in the
day.

 — Sandy Mamoli

 Agile coach, author of How Self-Selection Lets People Excel

Twenty years ago, the first edition of The
Pragmatic Programmer completely changed the
trajectory of my career. This new edition could
do the same for yours.

 — Mike Cohn

 Author of Succeeding with Agile,
 Agile Estimating and Planning, and
 User Stories Applied

Foreword
I remember when Dave and Andy first tweeted about
the new edition of this book. It was big news. I watched
as the coding community responded with excitement.
My feed buzzed with anticipation. After twenty years,
The Pragmatic Programmer is just as relevant today as
it was back then.

It says a lot that a book with such history had such a
reaction. I had the privilege of reading an unreleased
copy to write this foreword, and I understood why it
created such a stir. While it’s a technical book, calling it
that does it a disservice. Technical books often
intimidate. They’re stuffed with big words, obscure
terms, convoluted examples that, unintentionally, make
you feel stupid. The more experienced the author, the
easier it is to forget what it’s like to learn new concepts,
to be a beginner.

Despite their decades of programming experience,
Dave and Andy have conquered the difficult challenge
of writing with the same excitement of people who’ve
just learned these lessons. They don’t talk down to you.
They don’t assume you are an expert. They don’t even
assume you’ve read the first edition. They take you as
you are—programmers who just want to be better. They
spend the pages of this book helping you get there, one
actionable step at a time.

To be fair, they’d already done this before. The original
release was full of tangible examples, new ideas, and
practical tips to build your coding muscles and develop
your coding brain that still apply today. But this
updated edition makes two improvements on the book.

The first is the obvious one: it removes some of the
older references, the out-of-date examples, and replaces
them with fresh, modern content. You won’t find
examples of loop invariants or build machines. Dave
and Andy have taken their powerful content and made
sure the lessons still come through, free of the
distractions of old examples. It dusts off old ideas like
DRY (don’t repeat yourself) and gives them a fresh
coat of paint, really making them shine.

But the second is what makes this release truly
exciting. After writing the first edition, they had the
chance to reflect on what they were trying to say, what
they wanted their readers to take away, and how it was
being received. They got feedback on those lessons.
They saw what stuck, what needed refining, what was
misunderstood. In the twenty years that this book has
made its way through the hands and hearts of
programmers all over the world, Dave and Andy have
studied this response and formulated new ideas, new
concepts.

They’ve learned the importance of agency and
recognized that developers have arguably more agency
than most other professionals. They start this book with
the simple but profound message: “it’s your life.” It
reminds us of our own power in our code base, in our
jobs, in our careers. It sets the tone for everything else
in the book—that it’s more than just another technical
book filled with code examples.

What makes it truly stand out among the shelves of
technical books is that it understands what it means to
be a programmer. Programming is about trying to make
the future less painful. It’s about making things easier
for our teammates. It’s about getting things wrong and
being able to bounce back. It’s about forming good
habits. It’s about understanding your toolset. Coding is
just part of the world of being a programmer, and this
book explores that world.

I spend a lot of time thinking about the coding journey.
I didn’t grow up coding; I didn’t study it in college. I
didn’t spend my teenage years tinkering with tech. I
entered the coding world in my mid-twenties and had to
learn what it meant to be a programmer. This
community is very different from others I’d been a part
of. There is a unique dedication to learning and
practicality that is both refreshing and intimidating.

For me, it really does feel like entering a new world. A
new town, at least. I had to get to know the neighbors,
pick my grocery store, find the best coffee shops. It
took a while to get the lay of the land, to find the most
efficient routes, to avoid the streets with the heaviest
traffic, to know when traffic was likely to hit. The
weather is different, I needed a new wardrobe.

The first few weeks, even months, in a new town can
be scary. Wouldn’t it be wonderful to have a friendly,
knowledgeable neighbor who’d been living there a
while? Who can give you a tour, show you those coffee
shops? Someone who’d been there long enough to
know the culture, understand the pulse of the town, so
you not only feel at home, but become a contributing
member as well? Dave and Andy are those neighbors.

As a relative newcomer, it’s easy to be overwhelmed
not by the act of programming but the process of
becoming a programmer. There is an entire mindset
shift that needs to happen—a change in habits,
behaviors, and expectations. The process of becoming a
better programmer doesn’t just happen because you
know how to code; it must be met with intention and
deliberate practice. This book is a guide to becoming a
better programmer efficiently.

But make no mistake—it doesn’t tell you how
programming should be. It’s not philosophical or
judgmental in that way. It tells you, plain and simple,
what a Pragmatic Programmer is—how they operate,
and how they approach code. They leave it up to you to

decide if you want to be one. If you feel it’s not for you,
they won’t hold it against you. But if you decide it is,
they’re your friendly neighbors, there to show you the
way.

 ▶

 Saron Yitbarek

Founder & CEO of CodeNewbie

 Host of Command Line Heroes

Copyright © 2020 Pearson Education, Inc.

Preface to the Second Edition
Back in the 1990s, we worked with companies whose
projects were having problems. We found ourselves
saying the same things to each: maybe you should test
that before you ship it; why does the code only build on
Mary’s machine? Why didn’t anyone ask the users?

To save time with new clients, we started jotting down
notes. And those notes became The Pragmatic
Programmer. To our surprise the book seemed to strike
a chord, and it has continued to be popular these last 20
years.

But 20 years is many lifetimes in terms of software.
Take a developer from 1999 and drop them into a team
today, and they’d struggle in this strange new world.
But the world of the 1990s is equally foreign to today’s
developer. The book’s references to things such as
CORBA, CASE tools, and indexed loops were at best
quaint and more likely confusing.

At the same time, 20 years has had no impact
whatsoever on common sense. Technology may have
changed, but people haven’t. Practices and approaches
that were a good idea then remain a good idea now.
Those aspects of the book aged well.

So when it came time to create this 20th Anniversary
Edition, we had to make a decision. We could go
through and update the technologies we reference and
call it a day. Or we could reexamine the assumptions
behind the practices we recommended in the light of an
additional two decades’ worth of experience.

In the end, we did both.

As a result, this book is something of a Ship of Theseus.
[1] Roughly one-third of the topics in the book are brand
new. Of the rest, the majority have been rewritten,
either partially or totally. Our intent was to make things
clearer, more relevant, and hopefully somewhat
timeless.

We made some difficult decisions. We dropped the
Resources appendix, both because it would be
impossible to keep up-to-date and because it’s easier to
search for what you want. We reorganized and rewrote
topics to do with concurrency, given the current
abundance of parallel hardware and the dearth of good
ways of dealing with it. We added content to reflect
changing attitudes and environments, from the agile
movement which we helped launch, to the rising
acceptance of functional programming idioms and the
growing need to consider privacy and security.

Interestingly, though, there was considerably less
debate between us on the content of this edition than
there was when we wrote the first. We both felt that the
stuff that was important was easier to identify.

Anyway, this book is the result. Please enjoy it. Maybe
adopt some new practices. Maybe decide that some of
the stuff we suggest is wrong. Get involved in your
craft. Give us feedback.

But, most important, remember to make it fun.

How the Book Is Organized
This book is written as a collection of short topics.
Each topic is self-contained, and addresses a particular
theme. You’ll find numerous cross references, which
help put each topic in context. Feel free to read the
topics in any order—this isn’t a book you need to read
front-to-back.

Occasionally you’ll come across a box labeled Tip nn
(such as Tip 1, Care About Your Craft). As well as
emphasizing points in the text, we feel the tips have a
life of their own—we live by them daily. You’ll find a
summary of all the tips on a pull-out card inside the
back cover.

We’ve included exercises and challenges where
appropriate. Exercises normally have relatively
straightforward answers, while the challenges are more
open-ended. To give you an idea of our thinking, we’ve
included our answers to the exercises in an appendix,
but very few have a single correct solution. The
challenges might form the basis of group discussions or
essay work in advanced programming courses.

There’s also a short bibliography listing the books and
articles we explicitly reference.

What’s in a Name?
Scattered throughout the book you’ll find various bits
of jargon—either

perfectly good English words that have been corrupted
to

mean something technical, or horrendous made-up
words that have been assigned meanings by computer
scientists with a grudge against the language. The first
time we use each of these jargon words, we try to
define it, or at least give a hint to its meaning.
However, we’re sure that some have fallen through the
cracks, and others, such as object and relational
database, are in common enough usage that adding a
definition would be boring. If you do come across a
term you haven’t seen before, please don’t just skip
over it. Take time to look it up, perhaps on the web, or
maybe in a

computer science textbook. And, if you get a chance,
drop us an email and complain, so we can add a
definition to the next edition.

Having said all this, we decided to get revenge against
the computer scientists. Sometimes, there are perfectly
good jargon words for concepts, words that we’ve
decided to ignore. Why? Because the existing jargon is
normally restricted to a particular problem domain, or
to a particular phase of development. However, one of
the basic

philosophies of this book is that most of the techniques
we’re recommending are universal: modularity applies
to code, designs, documentation, and team
organization, for instance. When we wanted to use the
conventional jargon word in a broader context, it got
confusing—we couldn’t seem to overcome the baggage
the original term brought with it. When this happened,

we contributed to the decline of the language by
inventing our own terms.

Source Code and Other Resources
Most of the code shown in this book is extracted from
compilable source files, available for download from
our website.[2]

There you’ll also find links to resources we find useful,
along with updates to the book and news of other
Pragmatic Programmer developments.

Send Us Feedback
We’d appreciate hearing from you. Email us at
ppbook@pragprog.com.

mailto:ppbook@pragprog.com

Second Edition Acknowledgments
We have enjoyed literally thousands of interesting
conversations about programming over the last 20
years, meeting people at conferences, at courses, and
sometimes even on the plane. Each one of these has
added to our understanding of the development process,
and has contributed to the updates in this edition.
Thank you all (and keep telling us when we’re wrong).

Thanks to the participants in the book’s beta process.
Your questions and comments helped us explain things
better.

Before we went beta, we shared the book with a few
folks for comments. Thanks to VM (Vicky) Brasseur,
Jeff Langr, and Kim Shrier for your detailed comments,
and to José Valim and Nick Cuthbert for your technical
reviews.

Thanks to Ron Jeffries for letting us use the Sudoku
example.

Much gratitude to the folks at Pearson who agreed to
let us create this book our way.

A special thanks to the indispensable Janet Furlow, who
masters whatever she takes on and keeps us in line.

And, finally, a shout out to all the Pragmatic
Programmers out there who have been making
programming better for everyone for the last twenty
years. Here’s to twenty more.

Footnotes

[1]
If, over the years, every component
of a ship is replaced as it fails, is the
resulting vessel the same ship?

[2]
https://pragprog.com/titles/tpp20

https://pragprog.com/titles/tpp20

Copyright © 2020 Pearson Education, Inc.

From the Preface to the First Edition
This book will help you become a better programmer.

You could be a lone developer, a member of a large
project team, or a consultant working with many clients
at once. It doesn’t matter; this book will help you, as an
individual, to do better work. This book isn’t theoretical
—we concentrate on practical topics, on using your
experience to make more informed decisions. The word
pragmatic comes from the Latin pragmaticus—“skilled
in business”—which in turn is derived from the Greek
πραγματικός, meaning “fit for use.”

This is a book about doing.

Programming is a craft. At its simplest, it comes down
to getting a computer to do what you want it to do (or
what your user wants it to do). As a programmer, you
are part listener, part advisor, part interpreter, and part
dictator. You try to capture elusive requirements and
find a way of expressing them so that a mere machine
can do them justice. You try to document your work so
that others can understand it, and you try to engineer
your work so that others can build on it. What’s more,
you try to do all this against the relentless ticking of the
project clock. You work small miracles every day.

It’s a difficult job.

There are many people offering you help. Tool vendors
tout the miracles their products perform. Methodology
gurus promise that their techniques guarantee results.
Everyone claims that their programming language is
the best, and every operating system is the answer to all
conceivable ills.

Of course, none of this is true. There are no easy
answers. There is no best solution, be it a tool, a
language, or an operating system. There can only be
systems that are more appropriate in a particular set of
circumstances.

This is where pragmatism comes in. You shouldn’t be
wedded to any particular technology, but have a broad
enough background and experience base to allow you
to choose good solutions in particular situations. Your
background stems from an understanding of the basic
principles of computer science, and your experience
comes from a wide range of practical projects. Theory
and practice combine to make you strong.

You adjust your approach to suit the current
circumstances and environment. You judge the relative
importance of all the factors affecting a project and use
your experience to produce appropriate solutions. And
you do this continuously as the work progresses.
Pragmatic Programmers get the job done, and do it
well.

Who Should Read This Book?
This book is aimed at people who want to become more
effective and more productive programmers. Perhaps
you feel frustrated that you don’t seem to be achieving
your potential. Perhaps you look at

colleagues who seem to be using tools to make
themselves more

productive than you. Maybe your current job uses older
technologies, and you want to know how newer ideas
can be applied to what you do.

We don’t pretend to have all (or even most) of the
answers, nor are all of our ideas applicable in all
situations. All we can say is that if you follow our
approach, you’ll gain experience rapidly, your
productivity will increase, and you’ll have a better
understanding of the entire development process. And
you’ll write better software.

What Makes a Pragmatic
Programmer?
Each developer is unique, with individual strengths and
weaknesses, preferences and dislikes. Over time, each
will craft their own personal environment. That
environment will reflect the programmer’s individuality
just as forcefully as his or her hobbies, clothing, or
haircut. However, if you’re a Pragmatic Programmer,
you’ll share many of the following characteristics:

Early adopter/fast adapter
You have an instinct for
technologies and techniques, and
you love trying things out. When
given something new, you can
grasp it quickly and integrate it
with the rest of your knowledge.
Your confidence is born of
experience.

Inquisitive
You tend to ask questions. That’s
neat—how did you do that? Did
you have problems with that
library? What’s this quantum
computing I’ve heard about? How
are symbolic links implemented?
You are a pack rat for little facts,
each of which may affect some
decision years from now.

Critical thinker
You rarely take things as given
without first getting the facts.
When colleagues say “because
that’s the way it’s done,” or a
vendor promises the solution to all

your problems, you smell a
challenge.

Realistic
You try to understand the
underlying nature of each problem
you face. This realism gives you a
good feel for how difficult things
are, and how long things will take.
Deeply understanding that a
process should be difficult or will
take a while to complete gives you
the stamina to keep at it.
Jack of all trades
You try hard to be familiar with a
broad range of technologies and
environments, and you work to
keep abreast of new
developments. Although your
current job may require you to be
a specialist, you will always be
able to move on to new areas and
new challenges.

We’ve left the most basic characteristics until last. All
Pragmatic Programmers share them. They’re basic
enough to state as tips:

Tip 1 Care About Your Craft

We feel that there is no point in developing software
unless you care about doing it well.

Tip 2 Think! About Your Work

In order to be a Pragmatic Programmer, we’re
challenging you to think about what you’re doing while
you’re doing it. This isn’t a one-time audit of current
practices—it’s an ongoing critical appraisal of every
decision you make, every day, and on every project.
Never run on auto-pilot. Constantly be thinking,
critiquing your work in real time. The old IBM
corporate motto, THINK!, is the Pragmatic
Programmer’s mantra.

If this sounds like hard work to you, then you’re
exhibiting the realistic characteristic. This is going to
take up some of your valuable time—time that is
probably already under tremendous pressure. The
reward is a more active involvement with a job you
love, a feeling of mastery over an increasing range of
subjects, and pleasure in a feeling of continuous
improvement. Over the long term, your time investment
will be repaid as you and your team become more
efficient, write code that’s easier to maintain, and spend
less time in meetings.

Individual Pragmatists, Large
Teams
Some people feel that there is no room for individuality
on large teams or complex projects. “Software is an
engineering discipline,” they say, “that breaks down if
individual team members make decisions for
themselves.”

We strongly disagree.

There should be engineering in software construction.
However, this doesn’t preclude individual
craftsmanship. Think about the large cathedrals built in
Europe during the Middle Ages. Each took thousands
of person-years of effort, spread over many decades.
Lessons learned were passed down to the next set of
builders, who advanced the state of structural
engineering with their accomplishments. But the
carpenters, stonecutters, carvers, and glass workers
were all craftspeople, interpreting the engineering
requirements to produce a whole that transcended the
purely mechanical side of the construction. It was their
belief in their individual contributions that sustained the
projects: We who cut mere stones must always be
envisioning cathedrals.

Within the overall structure of a project there is always
room for individuality and craftsmanship. This is
particularly true given the current state of software
engineering. One hundred years from now, our
engineering may seem as archaic as the techniques used
by medieval cathedral builders seem to today’s civil
engineers, while our craftsmanship will still be
honored.

It’s a Continuous Process
A tourist visiting England’s Eton College asked the
gardener how he got the lawns so perfect. “That’s
easy,” he replied, “You just brush off the dew every
morning, mow them every other day, and roll them once
a week.”

“Is that all?” asked the tourist. “Absolutely,” replied
the gardener. “Do that for 500 years and you’ll have a
nice lawn, too.”

Great lawns need small amounts of daily care, and so
do great programmers. Management consultants like to
drop the word kaizen in conversations. “Kaizen” is a
Japanese term that captures the concept of continuously
making many small improvements. It was considered to
be one of the main reasons for the dramatic gains in
productivity and quality in Japanese manufacturing and
was widely copied throughout the world. Kaizen
applies to individuals, too. Every day, work to refine
the skills you have and to add new tools to your
repertoire. Unlike the Eton lawns, you’ll start seeing
results in a matter of days. Over the years, you’ll be
amazed at how your experience has blossomed and
how your skills have grown.

Copyright © 2020 Pearson Education, Inc.

Chapter 1

A Pragmatic Philosophy

This book is about you.

Make no mistake, it is your career, and more
importantly, Topic 1, It’s Your Life. You own it. You’re
here because you know you can become a better
developer and help others become better as well. You
can become a Pragmatic Programmer.

What distinguishes Pragmatic Programmers? We feel
it’s an attitude, a style, a philosophy of approaching
problems and their solutions. They think beyond the
immediate problem, placing it in its larger context and
seeking out the bigger picture. After all, without this
larger context, how can you be pragmatic? How can
you make intelligent compromises and informed
decisions?

Another key to their success is that Pragmatic
Programmers take responsibility for everything they do,
which we discuss in Topic 2, The Cat Ate My Source
Code. Being responsible, Pragmatic Programmers
won’t sit idly by and watch their projects fall apart
through neglect. In Topic 3, Software Entropy, we tell
you how to keep your projects pristine.

Most people find change difficult, sometimes for good
reasons, sometimes because of plain old inertia. In
Topic 4, Stone Soup and Boiled Frogs, we look at a
strategy for instigating change and (in the interests of
balance) present the cautionary tale of an amphibian
that ignored the dangers of gradual change.

One of the benefits of understanding the context in
which you work is that it becomes easier to know just
how good your software has to be. Sometimes near-
perfection is the only option, but often there are trade-
offs involved. We explore this in Topic 5, Good-
Enough Software.

Of course, you need to have a broad base of knowledge
and experience to pull all of this off. Learning is a
continuous and ongoing process. In Topic 6, Your
Knowledge Portfolio, we discuss some strategies for
keeping the momentum up.

Finally, none of us works in a vacuum. We all spend a
large amount of time interacting with others. Topic 7,
Communicate! lists ways we can do this better.

Pragmatic programming stems from a philosophy of
pragmatic thinking. This chapter sets the basis for that
philosophy.

 Topic 1 It’s Your Life

I’m not in this world to live up to your expectations and
you’re not in this world to live up to mine.

 Bruce Lee
It is your life. You own it. You run it. You create it.

Many developers we talk to are frustrated. Their
concerns are varied. Some feel they’re stagnating in
their job, others that technology has passed them by.
Folks feel they are under appreciated, or underpaid, or
that their teams are toxic. Maybe they want to move to
Asia, or Europe, or work from home.

And the answer we give is always the same.

“Why can’t you change it?”

Software development must appear close to the top of
any list of careers where you have control. Our skills
are in demand, our knowledge crosses geographic
boundaries, we can work remotely. We’re paid well. We
really can do just about anything we want.

But, for some reason, developers seem to resist change.
They hunker down, and hope things will get better.
They look on, passively, as their skills become dated
and complain that their companies don’t train them.
They look at ads for exotic locations on the bus, then
step off into the chilling rain and trudge into work.

So here’s the most important tip in the book.

Tip 3 You Have Agency

Does your work environment suck? Is your job boring?
Try to fix it. But don’t try forever. As Martin Fowler
says, “you can change your organization or change
your organization.”[3]

If technology seems to be passing you by, make time
(in your own time) to study new stuff that looks
interesting. You’re investing in yourself, so doing it
while you’re off-the-clock is only reasonable.

Want to work remotely? Have you asked? If they say
no, then find someone who says yes.

This industry gives you a remarkable set of
opportunities. Be proactive, and take them.

RELATED SECTIONS INCLUDE

Topic 4, Stone Soup and Boiled Frogs

Topic 6, Your Knowledge Portfolio

 Topic 2 The Cat Ate My Source Code

The greatest of all weaknesses is the fear of appearing
weak.

 J.B. Bossuet, Politics from Holy Writ, 1709
One of the cornerstones of the pragmatic philosophy is
the idea of taking responsibility for yourself and your
actions in terms of your career advancement, your
learning and education, your project, and your day-to-
day work. Pragmatic Programmers take charge of their
own career, and aren’t afraid to admit ignorance or
error. It’s not the most pleasant aspect of programming,
to be sure, but it will happen—even on the best of
projects. Despite thorough testing, good
documentation, and solid automation, things go wrong.
Deliveries are late. Unforeseen technical problems
come up.

These things happen, and we try to deal with them as
professionally as we can. This means being honest and
direct. We can be proud of our abilities, but we must
own up to our shortcomings—our ignorance and our
mistakes.

TEAM TRUST
Above all, your team needs to be able to trust and rely
on you—and you need to be comfortable relying on
each of them as well. Trust in a team is absolutely
essential for creativity and collaboration according to
the research literature.[4] In a healthy environment
based in trust, you can safely speak your mind, present

your ideas, and rely on your team members who can in
turn rely on you. Without trust, well…

Imagine a high-tech, stealth ninja team infiltrating the
villain’s evil lair. After months of planning and delicate
execution, you’ve made it on site. Now it’s your turn to
set up the laser guidance grid: “Sorry, folks, I don’t
have the laser. The cat was playing with the red dot and
I left it at home.”

That sort of breach of trust might be hard to repair.

TAKE RESPONSIBILITY
Responsibility is something you actively agree to. You
make a commitment to ensure that something is done
right, but you don’t necessarily have direct control over
every aspect of it. In addition to doing your own
personal best, you must analyze the situation for risks
that are beyond your control. You have the right not to
take on a responsibility for an impossible situation, or
one in which the risks are too great, or the ethical
implications too sketchy. You’ll have to make the call
based on your own values and judgment.

When you do accept the responsibility for an outcome,
you should expect to be held accountable for it. When
you make a mistake (as we all do) or an error in
judgment, admit it honestly and try to offer options.

Don’t blame someone or something else, or make up an
excuse. Don’t blame all the problems on a vendor, a
programming language, management, or your
coworkers. Any and all of these may play a role, but it
is up to you to provide solutions, not excuses.

If there was a risk that the vendor wouldn’t come
through for you, then you should have had a
contingency plan. If your mass storage melts—taking
all of your source code with it—and you don’t have a
backup, it’s your fault. Telling your boss “the cat ate
my source code’’ just won’t cut it.

Tip 4 Provide Options, Don’t Make Lame Excuses

Before you approach anyone to tell them why
something can’t be done, is late, or is broken, stop and
listen to yourself. Talk to the rubber duck on your
monitor, or the cat. Does your excuse sound reasonable,
or stupid? How’s it going to sound to your boss?

Run through the conversation in your mind. What is the
other person likely to say? Will they ask, “Have you
tried this…” or “Didn’t you consider that?” How will
you respond? Before you go and tell them the bad
news, is there anything else you can try? Sometimes,
you just know what they are going to say, so save them
the trouble.

Instead of excuses, provide options. Don’t say it can’t
be done; explain what can be done to salvage the
situation. Does code have to be deleted? Tell them so,
and explain the value of refactoring (see Topic 40,
Refactoring).

Do you need to spend time prototyping to determine the
best way to proceed (see Topic 13, Prototypes and
Post-it Notes)? Do you need to introduce better testing
(see Topic 41, Test to Code, and Ruthless and
Continuous Testing) or automation to prevent it from
happening again?

Perhaps you need additional resources to complete this
task. Or maybe you need to spend more time with the
users? Or maybe it’s just you: do you need to learn
some technique or technology in greater depth? Would
a book or a course help? Don’t be afraid to ask, or to
admit that you need help.

Try to flush out the lame excuses before voicing them
aloud. If you must, tell your cat first. After all, if little
Tiddles is going to take the blame….

RELATED SECTIONS INCLUDE

Topic 49, Pragmatic Teams

CHALLENGES

How do you react when someone—
such as a bank teller, an auto mechanic,
or a clerk—comes to you with a lame
excuse? What do you think of them
and their company as a result?

When you find yourself saying, “I
don’t know,” be sure to follow it up
with “—but I’ll find out.” It’s a great
way to admit what you don’t know, but
then take responsibility like a pro.

 Topic 3 Software Entropy

While software development is immune from almost all
physical laws, the inexorable increase in entropy hits us
hard. Entropy is a term from physics that refers to the
amount of “disorder” in a system. Unfortunately, the
laws of thermodynamics guarantee that the entropy in
the universe tends toward a maximum. When disorder
increases in software, we call it “software rot.” Some
folks might call it by the more optimistic term,
“technical debt,” with the implied notion that they’ll
pay it back someday. They probably won’t.

Whatever the name, though, both debt and rot can
spread uncontrollably.

There are many factors that can contribute to software
rot. The most important one seems to be the
psychology, or culture, at work on a project. Even if
you are a team of one, your project’s psychology can be
a very delicate thing. Despite the best-laid plans and the
best people, a project can still experience ruin and
decay during its lifetime. Yet there are other projects
that, despite enormous difficulties and constant
setbacks, successfully fight nature’s tendency toward
disorder and manage to come out pretty well.

What makes the difference?

In inner cities, some buildings are beautiful and clean,
while others are rotting hulks. Why? Researchers in the
field of crime and urban decay discovered a fascinating
trigger mechanism, one that very quickly turns a clean,
intact, inhabited building into a smashed and
abandoned derelict.[5]

A broken window.

One broken window, left unrepaired for any substantial
length of time, instills in the inhabitants of the building
a sense of abandonment—a sense that the powers that
be don’t care about the building. So another window
gets broken. People start littering. Graffiti appears.
Serious structural damage begins. In a relatively short
span of time, the building becomes damaged beyond
the owner’s desire to fix it, and the sense of
abandonment becomes reality.

Why would that make a difference? Psychologists have
done studies[6] that show hopelessness can be
contagious. Think of the flu virus in close quarters.
Ignoring a clearly broken situation reinforces the ideas
that perhaps nothing can be fixed, that no one cares, all
is doomed; all negative thoughts which can spread
among team members, creating a vicious spiral.

Tip 5 Don’t Live with Broken Windows

Don’t leave “broken windows’’ (bad designs, wrong
decisions, or poor code) unrepaired. Fix each one as
soon as it is discovered. If there is insufficient time to
fix it properly, then board it up. Perhaps you can
comment out the offending code, or display a “Not
Implemented” message, or substitute dummy data
instead. Take some action to prevent further damage
and to show that you’re on top of the situation.

We’ve seen clean, functional systems deteriorate pretty
quickly once windows start breaking. There are other
factors that can contribute to software rot, and we’ll
touch on some of them elsewhere, but neglect
accelerates the rot faster than any other factor.

You may be thinking that no one has the time to go
around cleaning up all the broken glass of a project. If

so, then you’d better plan on getting a dumpster, or
moving to another neighborhood. Don’t let entropy
win.

FIRST, DO NO HARM
Andy once had an acquaintance who was obscenely
rich. His house was immaculate, loaded with priceless
antiques, objets d’art, and so on. One day, a tapestry
that was hanging a little too close to a fireplace caught
on fire. The fire department rushed in to save the day—
and his house. But before they dragged their big, dirty
hoses into the house, they stopped—with the fire raging
—to roll out a mat between the front door and the
source of the fire.

They didn’t want to mess up the carpet.

Now that sounds pretty extreme. Surely the fire
department’s first priority is to put out the fire,
collateral damage be damned. But they clearly had
assessed the situation, were confident of their ability to
manage the fire, and were careful not to inflict
unnecessary damage to the property. That’s the way it
must be with software: don’t cause collateral damage
just because there’s a crisis of some sort. One broken
window is one too many.

One broken window—a badly designed piece of code, a
poor management decision that the team must live with
for the duration of the project—is all it takes to start the
decline. If you find yourself working on a project with
quite a few broken windows, it’s all too easy to slip into
the mindset of “All the rest of this code is crap, I’ll just
follow suit.” It doesn’t matter if the project has been
fine up to this point. In the original experiment leading
to the “Broken Window Theory,” an abandoned car sat
for a week untouched. But once a single window was
broken, the car was stripped and turned upside down
within hours.

By the same token, if you find yourself on a project
where the code is pristinely beautiful—cleanly written,

well designed, and elegant—you will likely take extra
special care not to mess it up, just like the firefighters.
Even if there’s a fire raging (deadline, release date,
trade show demo, etc.), you don’t want to be the first
one to make a mess and inflict additional damage.

Just tell yourself, “No broken windows.”

RELATED SECTIONS INCLUDE

Topic 10, Orthogonality

Topic 40, Refactoring

Topic 44, Naming Things

CHALLENGES

Help strengthen your team by
surveying your project neighborhood.
Choose two or three broken windows
and discuss with your colleagues what
the problems are and what could be
done to fix them.

Can you tell when a window first gets
broken? What is your reaction? If it
was the result of someone else’s
decision, or a management edict, what
can you do about it?

 Topic 4 Stone Soup and Boiled Frogs

The three soldiers returning home from war were
hungry. When they saw the village ahead their spirits
lifted—they were sure the villagers would give them a
meal. But when they got there, they found the doors
locked and the windows closed. After many years of
war, the villagers were short of food, and hoarded what
they had.

Undeterred, the soldiers boiled a pot of water and
carefully placed three stones into it. The amazed
villagers came out to watch.

“This is stone soup,” the soldiers explained. “Is that all
you put in it?” asked the villagers. “Absolutely—
although some say it tastes even better with a few
carrots…” A villager ran off, returning in no time with
a basket of carrots from his hoard.

A couple of minutes later, the villagers again asked “Is
that it?”

“Well,” said the soldiers, “a couple of potatoes give it
body.” Off ran another villager.

Over the next hour, the soldiers listed more ingredients
that would enhance the soup: beef, leeks, salt, and
herbs. Each time a different villager would run off to
raid their personal stores.

Eventually they had produced a large pot of steaming
soup. The soldiers removed the stones, and they sat
down with the entire village to enjoy the first square
meal any of them had eaten in months.

There are a couple of morals in the stone soup story.
The villagers are tricked by the soldiers, who use the
villagers’ curiosity to get food from them. But more
importantly, the soldiers act as a catalyst, bringing the
village together so they can jointly produce something
that they couldn’t have done by themselves—a
synergistic result. Eventually everyone wins.

Every now and then, you might want to emulate the
soldiers.

You may be in a situation where you know exactly
what needs doing and how to do it. The entire system
just appears before your eyes—you know it’s right. But
ask permission to tackle the whole thing and you’ll be
met with delays and blank stares. People will form
committees, budgets will need approval, and things will
get complicated. Everyone will guard their own
resources. Sometimes this is called “start-up fatigue.’’

It’s time to bring out the stones. Work out what you can
reasonably ask for. Develop it well. Once you’ve got it,
show people, and let them marvel. Then say “of course,
it would be better if we added…’’ Pretend it’s not
important. Sit back and wait for them to start asking
you to add the functionality you originally wanted.
People find it easier to join an ongoing success. Show
them a glimpse of the future and you’ll get them to
rally around.[7]

Tip 6 Be a Catalyst for Change

THE VILLAGERS’ SIDE
On the other hand, the stone soup story is also about
gentle and gradual deception. It’s about focusing too
tightly. The villagers think about the stones and forget
about the rest of the world. We all fall for it, every day.
Things just creep up on us.

We’ve all seen the symptoms. Projects slowly and
inexorably get totally out of hand. Most software
disasters start out too small to notice, and most project
overruns happen a day at a time. Systems drift from
their specifications feature by feature, while patch after
patch gets added to a piece of code until there’s nothing
of the original left. It’s often the accumulation of small
things that breaks morale and teams.

Tip 7 Remember the Big Picture

We’ve never tried this—honest. But “they” say that if
you take a frog and drop it into boiling water, it will
jump straight back out again. However, if you place the
frog in a pan of cold water, then gradually heat it, the
frog won’t notice the slow increase in temperature and
will stay put until cooked.

Note that the frog’s problem is different from the
broken windows issue discussed in Topic 3, Software
Entropy. In the Broken Window Theory, people lose the
will to fight entropy because they perceive that no one
else cares. The frog just doesn’t notice the change.

Don’t be like the fabled frog. Keep an eye on the big
picture. Constantly review what’s happening around
you, not just what you personally are doing.

RELATED SECTIONS INCLUDE

Topic 1, It’s Your Life

Topic 38, Programming by Coincidence

CHALLENGES

While reviewing a draft of the first
edition, John Lakos raised the
following issue: The soldiers
progressively deceive the villagers, but
the change they catalyze does them all
good. However, by progressively
deceiving the frog, you’re doing it
harm. Can you determine whether
you’re making stone soup or frog soup
when you try to catalyze change? Is the
decision subjective or objective?

Quick, without looking, how many
lights are in the ceiling above you?
How many exits in the room? How
many people? Is there anything out of
context, anything that looks like it
doesn’t belong? This is an exercise in
situational awareness, a technique
practiced by folks ranging from Boy
and Girl Scouts to Navy SEALs. Get in
the habit of really looking and noticing
your surroundings. Then do the same
for your project.

 Topic 5 Good-Enough Software

Striving to better, oft we mar what’s well.

 Shakespeare, King Lear 1.4
There’s an old(ish) joke about a company that places an
order for 100,000 ICs with a Japanese manufacturer.
Part of the specification was the defect rate: one chip in
10,000. A few weeks later the order arrived: one large
box containing thousands of ICs, and a small one
containing just ten. Attached to the small box was a
label that read: “These are the faulty ones.’’

If only we really had this kind of control over quality.
But the real world just won’t let us produce much that’s
truly perfect, particularly not bug-free software. Time,
technology, and temperament all conspire against us.

However, this doesn’t have to be frustrating. As Ed
Yourdon described in an article in IEEE Software,
When good-enough software is best [You95], you can
discipline yourself to write software that’s good enough
—good enough for your users, for future maintainers,
for your own peace of mind. You’ll find that you are
more productive and your users are happier. And you
may well find that your programs are actually better for
their shorter incubation.

Before we go any further, we need to qualify what
we’re about to say. The phrase “good enough’’ does not
imply sloppy or poorly produced code. All systems
must meet their users’ requirements to be successful,
and meet basic performance, privacy, and security
standards. We are simply advocating that users be given

an opportunity to participate in the process of deciding
when what you’ve produced is good enough for their
needs.

INVOLVE YOUR USERS IN THE TRADE-OFF
Normally you’re writing software for other people.
Often you’ll remember to find out what they want.[8]
But do you ever ask them how good they want their
software to be? Sometimes there’ll be no choice. If
you’re working on pacemakers, an autopilot, or a low-
level library that will be widely disseminated, the
requirements will be more stringent and your options
more limited.

However, if you’re working on a brand-new product,
you’ll have different constraints. The marketing people
will have promises to keep, the eventual end users may
have made plans based on a delivery schedule, and
your company will certainly have cash-flow
constraints. It would be unprofessional to ignore these
users’ requirements simply to add new features to the
program, or to polish up the code just one more time.
We’re not advocating panic: it is equally unprofessional
to promise impossible time scales and to cut basic
engineering corners to meet a deadline.

The scope and quality of the system you produce
should be discussed as part of that system’s
requirements.

Tip 8 Make Quality a Requirements Issue

Often you’ll be in situations where trade-offs are
involved. Surprisingly, many users would rather use
software with some rough edges today than wait a year
for the shiny, bells-and-whistles version (and in fact
what they will need a year from now may be
completely different anyway). Many IT departments

with tight budgets would agree. Great software today is
often preferable to the fantasy of perfect software
tomorrow. If you give your users something to play
with early, their feedback will often lead you to a better
eventual solution (see Topic 12, Tracer Bullets).

KNOW WHEN TO STOP
In some ways, programming is like painting. You start
with a blank canvas and certain basic raw materials.
You use a combination of science, art, and craft to
determine what to do with them. You sketch out an
overall shape, paint the underlying environment, then
fill in the details. You constantly step back with a
critical eye to view what you’ve done. Every now and
then you’ll throw a canvas away and start again.

But artists will tell you that all the hard work is ruined
if you don’t know when to stop. If you add layer upon
layer, detail over detail, the painting becomes lost in the
paint.

Don’t spoil a perfectly good program by
overembellishment and overrefinement. Move on, and
let your code stand in its own right for a while. It may
not be perfect. Don’t worry: it could never be perfect.
(In Chapter 7, While You Are Coding, we’ll discuss
philosophies for developing code in an imperfect
world.)

RELATED SECTIONS INCLUDE

Topic 45, The Requirements Pit

Topic 46, Solving Impossible Puzzles

CHALLENGES

Look at the software tools and
operating systems that you use
regularly. Can you find any evidence
that these organizations and/or
developers are comfortable shipping
software they know is not perfect? As a
user, would you rather (1) wait for
them to get all the bugs out, (2) have
complex software and accept some
bugs, or (3) opt for simpler software
with fewer defects?

Consider the effect of modularization
on the delivery of software. Will it take
more or less time to get a tightly
coupled monolithic block of software
to the required quality compared with a
system designed as very loosely
coupled modules or microservices?
What are the advantages or
disadvantages of each approach?

Can you think of popular software that
suffers from feature bloat? That is,
software containing far more features
than you would ever use, each feature
introducing more opportunity for bugs
and security vulnerabilities, and
making the features you do use harder
to find and manage. Are you in danger
of falling into this trap yourself?

 Topic 6 Your Knowledge Portfolio

An investment in knowledge always pays the best
interest.

 Benjamin Franklin
Ah, good old Ben Franklin—never at a loss for a pithy
homily. Why, if we could just be early to bed and early
to rise, we’d be great programmers—right? The early
bird might get the worm, but what happens to the early
worm?

In this case, though, Ben really hit the nail on the head.
Your knowledge and experience are your most
important day-to-day professional assets.

Unfortunately, they’re expiring assets.[9] Your
knowledge becomes out of date as new techniques,
languages, and environments are developed. Changing
market forces may render your experience obsolete or
irrelevant. Given the ever-increasing pace of change in
our technological society, this can happen pretty
quickly.

As the value of your knowledge declines, so does your
value to your company or client. We want to prevent
this from ever happening.

Your ability to learn new things is your most important
strategic asset. But how do you learn how to learn, and
how do you know what to learn?

YOUR KNOWLEDGE PORTFOLIO
We like to think of all the facts programmers know
about computing, the application domains they work in,

and all their experience as their knowledge portfolios.
Managing a knowledge portfolio is very similar to
managing a financial portfolio:

1. Serious investors invest regularly—as a habit.

2. Diversification is the key to long-term success.

3. Smart investors balance their portfolios between conservative and high-risk,

high-reward investments.

4. Investors try to buy low and sell high for maximum return.

5. Portfolios should be reviewed and rebalanced periodically.

To be successful in your career, you must invest in your
knowledge portfolio using these same guidelines.

The good news is that managing this kind of investment
is a skill just like any other—it can be learned. The
trick is to make yourself do it initially and form a habit.
Develop a routine which you follow until your brain
internalizes it. At that point, you’ll find yourself
sucking up new knowledge automatically.

BUILDING YOUR PORTFOLIO
Invest regularly
Just as in financial investing, you
must invest in your knowledge
portfolio regularly, even if it’s just
a small amount. The habit is as
important as the sums, so plan to
use a consistent time and place,
away from interruptions. A few
sample goals are listed in the next
section.

Diversify
The more different things you
know, the more valuable you are.
As a baseline, you need to know

the ins and outs of the particular
technology you are working with
currently. But don’t stop there.
The face of computing changes
rapidly—hot technology today
may well be close to useless (or at
least not in demand) tomorrow.
The more technologies you are
comfortable with, the better you
will be able to adjust to change.
And don’t forget all the other
skills you need, including those in
non-technical areas.

Manage risk
Technology exists along a
spectrum from risky, potentially
high-reward to low-risk, low-
reward standards. It’s not a good
idea to invest all of your money in
high-risk stocks that might
collapse suddenly, nor should you
invest all of it conservatively and
miss out on possible opportunities.
Don’t put all your technical eggs
in one basket.
Buy low, sell high
Learning an emerging technology
before it becomes popular can be
just as hard as finding an
undervalued stock, but the payoff
can be just as rewarding. Learning
Java back when it was first
introduced and unknown may
have been risky at the time, but it
paid off handsomely for the early
adopters when it became an
industry mainstay later.

Review and rebalance

This is a very dynamic industry.
That hot technology you started
investigating last month might be
stone cold by now. Maybe you
need to brush up on that database
technology that you haven’t used
in a while. Or perhaps you could
be better positioned for that new
job opening if you tried out that
other language….

Of all these guidelines, the most important one is the
simplest to do:

Tip 9 Invest Regularly in Your Knowledge Portfolio

GOALS
Now that you have some guidelines on what and when
to add to your knowledge portfolio, what’s the best way
to go about acquiring intellectual capital with which to
fund your portfolio? Here are a few suggestions:

Learn at least one new language every year
Different languages solve the
same problems in different ways.
By learning several different
approaches, you can help broaden
your thinking and avoid getting
stuck in a rut. Additionally,
learning many languages is easy
thanks to the wealth of freely
available software.

Read a technical book each month
While there’s a glut of short-form
essays and occasionally reliable
answers on the web, for deep
understanding you need long-form

books. Browse the booksellers for
technical books on interesting
topics related to your current
project.[10] Once you’re in the
habit, read a book a month. After
you’ve mastered the technologies
you’re currently using, branch out
and study some that don’t relate to
your project.

Read nontechnical books, too
It is important to remember that
computers are used by people—
people whose needs you are trying
to satisfy. You work with people,
are employed by people, and get
hacked by people. Don’t forget the
human side of the equation, as that
requires an entirely different skill
set (we ironically call these soft
skills, but they are actually quite
hard to master).
Take classes
Look for interesting courses at a
local or online college or
university, or perhaps at the next
nearby trade show or conference.

Participate in local user groups and meetups
Isolation can be deadly to your
career; find out what people are
working on outside of your
company. Don’t just go and listen:
actively participate.

Experiment with different environments
If you’ve worked only in
Windows, spend some time with
Linux. If you’ve used only
makefiles and an editor, try a

sophisticated IDE with cutting-
edge features, and vice versa.

Stay current
Read news and posts online on
technology different from that of
your current project. It’s a great
way to find out what experiences
other people are having with it,
the particular jargon they use, and
so on.

It’s important to continue investing. Once you feel
comfortable with some new language or bit of
technology, move on. Learn another one.

It doesn’t matter whether you ever use any of these
technologies on a project, or even whether you put
them on your resume. The process of learning will
expand your thinking, opening you to new possibilities
and new ways of doing things. The cross-pollination of
ideas is important; try to apply the lessons you’ve
learned to your current project. Even if your project
doesn’t use that technology, perhaps you can borrow
some ideas. Get familiar with object orientation, for
instance, and you’ll write procedural programs
differently. Understand the functional programming
paradigm and you’ll write object-oriented code
differently, and so on.

OPPORTUNITIES FOR LEARNING
So you’re reading voraciously, you’re on top of all the
latest breaking developments in your field (not an easy
thing to do), and somebody asks you a question. You
don’t have the faintest idea what the answer is, and
freely admit as much.

Don’t let it stop there. Take it as a personal challenge to
find the answer. Ask around. Search the web—the
scholarly parts too, not just the consumer parts.

If you can’t find the answer yourself, find out who can.
Don’t let it rest. Talking to other people will help build
your personal network, and you may surprise yourself
by finding solutions to other, unrelated problems along
the way. And that old portfolio just keeps getting
bigger….

All of this reading and researching takes time, and time
is already in short supply. So you need to plan ahead.
Always have something to read in an otherwise dead
moment. Time spent waiting for doctors and dentists
can be a great opportunity to catch up on your reading
—but be sure to bring your own e-reader with you, or
you might find yourself thumbing through a dog-eared
1973 article about Papua New Guinea.

CRITICAL THINKING
The last important point is to think critically about what
you read and hear. You need to ensure that the
knowledge in your portfolio is accurate and unswayed
by either vendor or media hype. Beware of the zealots
who insist that their dogma provides the only answer—
it may or may not be applicable to you and your
project.

Never underestimate the power of commercialism. Just
because a web search engine lists a hit first doesn’t
mean that it’s the best match; the content provider can
pay to get top billing. Just because a bookstore features
a book prominently doesn’t mean it’s a good book, or
even popular; they may have been paid to place it there.

Tip 10 Critically Analyze What You Read and Hear

Critical thinking is an entire discipline unto itself, and
we encourage you to read and study all you can about
it. In the meantime, here’s a head start with a few
questions to ask and think about.

Ask the “Five Whys”
A favorite consulting trick: ask
“why?” at least five times. Ask a
question, and get an answer. Dig
deeper by asking “why?” Repeat
as if you were a petulant four-year
old (but a polite one). You might
be able to get closer to a root
cause this way.

Who does this benefit?
It may sound cynical, but follow
the money can be a very helpful
path to analyze. The benefits to
someone else or another
organization may be aligned with
your own, or not.
What’s the context?
Everything occurs in its own
context, which is why “one size
fits all” solutions often don’t.
Consider an article or book
touting a “best practice.” Good
questions to consider are “best for
who?” What are the prerequisites,
what are the consequences, short
and long term?

When or Where would this work?
Under what circumstances? Is it
too late? Too early? Don’t stop
with first-order thinking (what
will happen next), but use second-
order thinking: what will happen
after that?
Why is this a problem?
Is there an underlying model?
How does the underlying model
work?

Unfortunately, there are very few simple answers
anymore. But with your extensive portfolio, and by
applying some critical analysis to the torrent of
technical articles you will read, you can understand the
complex answers.

RELATED SECTIONS INCLUDE

Topic 1, It’s Your Life

Topic 22, Engineering Daybooks

CHALLENGES

Start learning a new language this
week. Always programmed in the same
old language? Try Clojure, Elixir, Elm,
F#, Go, Haskell, Python, R,
ReasonML, Ruby, Rust, Scala, Swift,
TypeScript, or anything else that
appeals and/or looks as if you might
like it.[11]

Start reading a new book (but finish
this one first!). If you are doing very
detailed implementation and coding,
read a book on design and architecture.
If you are doing high-level design, read
a book on coding techniques.

Get out and talk technology with
people who aren’t involved in your
current project, or who don’t work for
the same company. Network in your
company cafeteria, or maybe seek out
fellow enthusiasts at a local meetup.

 Topic 7 Communicate!

I believe that it is better to be looked over than it is to
be overlooked.

 Mae West, Belle of the Nineties, 1934
Maybe we can learn a lesson from Ms. West. It’s not
just what you’ve got, but also how you package it.
Having the best ideas, the finest code, or the most
pragmatic thinking is ultimately sterile unless you can
communicate with other people. A good idea is an
orphan without effective communication.

As developers, we have to communicate on many
levels. We spend hours in meetings, listening and
talking. We work with end users, trying to understand
their needs. We write code, which communicates our
intentions to a machine and documents our thinking for
future generations of developers. We write proposals
and memos requesting and justifying resources,
reporting our status, and suggesting new approaches.
And we work daily within our teams to advocate our
ideas, modify existing practices, and suggest new ones.
A large part of our day is spent communicating, so we
need to do it well.

Treat English (or whatever your native tongue may be)
as just another programming language. Write natural
language as you would write code: honor the DRY
principle, ETC, automation, and so on. (We discuss the
DRY and ETC design principles in the next chapter.)

Tip 11 English is Just Another Programming Language

We’ve put together a list of additional ideas that we
find useful.

KNOW YOUR AUDIENCE
You’re communicating only if you’re conveying what
you mean to convey—just talking isn’t enough. To do
that, you need to understand the needs, interests, and
capabilities of your audience. We’ve all sat in meetings
where a development geek glazes over the eyes of the
vice president of marketing with a long monologue on
the merits of some arcane technology. This isn’t
communicating: it’s just talking, and it’s annoying.[12]

Say you want to change your remote monitoring system
to use a third-party message broker to disseminate
status notifications. You can present this update in
many different ways, depending on your audience. End
users will appreciate that their systems can now
interoperate with other services that use the broker.
Your marketing department will be able to use this fact
to boost sales. Development and operations managers
will be happy because the care and maintenance of that
part of the system is now someone else’s problem.
Finally, developers may enjoy getting experience with
new APIs, and may even be able to find new uses for
the message broker. By making the appropriate pitch to
each group, you’ll get them all excited about your
project.

As with all forms of communication, the trick here is to
gather feedback. Don’t just wait for questions: ask for
them. Look at body language, and facial expressions.
One of the Neuro Linguistic Programming
presuppositions is “The meaning of your
communication is the response you get.” Continuously
improve your knowledge of your audience as you
communicate.

KNOW WHAT YOU WANT TO SAY
Probably the most difficult part of the more formal
styles of communication used in business is working
out exactly what it is you want to say. Fiction writers
often plot out their books in detail before they start, but
people writing technical documents are often happy to
sit down at a keyboard, enter:

1. Introduction

and start typing whatever comes into their heads next.

Plan what you want to say. Write an outline. Then ask
yourself, “Does this communicate what I want to
express to my audience in a way that works for them?”
Refine it until it does.

This approach works for more than just documents.
When you’re faced with an important meeting or a chat
with a major client, jot down the ideas you want to
communicate, and plan a couple of strategies for
getting them across.

Now that you know what your audience wants, let’s
deliver it.

CHOOSE YOUR MOMENT
It’s six o’clock on Friday afternoon, following a week
when the auditors have been in. Your boss’s youngest is
in the hospital, it’s pouring rain outside, and the
commute home is guaranteed to be a nightmare. This
probably isn’t a good time to ask her for a memory
upgrade for your laptop.

As part of understanding what your audience needs to
hear, you need to work out what their priorities are.
Catch a manager who’s just been given a hard time by
her boss because some source code got lost, and you’ll
have a more receptive listener to your ideas on source

code repositories. Make what you’re saying relevant in
time, as well as in content. Sometimes all it takes is the
simple question, “Is this a good time to talk about…?’’

CHOOSE A STYLE
Adjust the style of your delivery to suit your audience.
Some people want a formal “just the facts’’ briefing.
Others like a long, wide-ranging chat before getting
down to business. What is their skill level and
experience in this area? Are they experts? Newbies? Do
they need hand-holding or just a quick tl;dr? If in
doubt, ask.

Remember, however, that you are half of the
communication transaction. If someone says they need
a paragraph describing something and you can’t see any
way of doing it in less than several pages, tell them so.
Remember, that kind of feedback is a form of
communication, too.

MAKE IT LOOK GOOD
Your ideas are important. They deserve a good-looking
vehicle to convey them to your audience.

Too many developers (and their managers) concentrate
solely on content when producing written documents.
We think this is a mistake. Any chef (or watcher of the
Food Network) will tell you that you can slave in the
kitchen for hours only to ruin your efforts with poor
presentation.

There is no excuse today for producing poor-looking
printed documents. Modern software can produce
stunning output, regardless of whether you’re writing
using Markdown or using a word processor. You need
to learn just a few basic commands. If you’re using a
word processor, use its style sheets for consistency.
(Your company may already have defined style sheets
that you can use.) Learn how to set page headers and
footers. Look at the sample documents included with
your package to get ideas on style and layout. Check

the spelling, first automatically and then by hand. After
awl, their are spelling miss steaks that the chequer can
knot ketch.

INVOLVE YOUR AUDIENCE
We often find that the documents we produce end up
being less important than the process we go through to
produce them. If possible, involve your readers with
early drafts of your document. Get their feedback, and
pick their brains. You’ll build a good working
relationship, and you’ll probably produce a better
document in the process.

BE A LISTENER
There’s one technique that you must use if you want
people to listen to you: listen to them. Even if this is a
situation where you have all the information, even if
this is a formal meeting with you standing in front of 20
suits—if you don’t listen to them, they won’t listen to
you.

Encourage people to talk by asking questions, or ask
them to restate the discussion in their own words. Turn
the meeting into a dialog, and you’ll make your point
more effectively. Who knows, you might even learn
something.

GET BACK TO PEOPLE
If you ask someone a question, you feel they’re
impolite if they don’t respond. But how often do you
fail to get back to people when they send you an email
or a memo asking for information or requesting some
action? In the rush of everyday life, it’s easy to forget.
Always respond to emails and voicemails, even if the
response is simply “I’ll get back to you later.’’ Keeping
people informed makes them far more forgiving of the
occasional slip, and makes them feel that you haven’t
forgotten them.

Tip 12 It’s Both What You Say and the Way You Say It

Unless you work in a vacuum, you need to be able to
communicate. The more effective that communication,
the more influential you become.

DOCUMENTATION
Finally, there’s the matter of communicating via
documentation. Typically, developers don’t give much
thought to documentation. At best it is an unfortunate
necessity; at worst it is treated as a low-priority task in
the hope that management will forget about it at the end
of the project.

Pragmatic Programmers embrace documentation as an
integral part of the overall development process.
Writing documentation can be made easier by not
duplicating effort or wasting time, and by keeping
documentation close at hand—in the code itself. In fact,
we want to apply all of our pragmatic principles to
documentation as well as to code.

Tip 13 Build Documentation In, Don’t Bolt It On

It’s easy to produce good-looking documentation from
the comments in source code, and we recommend
adding comments to modules and exported functions to
give other developers a leg up when they come to use
it.

However, this doesn’t mean we agree with the folks
who say that every function, data structure, type
declaration, etc., needs its own comment. This kind of
mechanical comment writing actually makes it more
difficult to maintain code: now there are two things to
update when you make a change. So restrict your non-
API commenting to discussing why something is done,

its purpose and its goal. The code already shows how it
is done, so commenting on this is redundant—and is a
violation of the DRY principle.

Commenting source code gives you the perfect
opportunity to document those elusive bits of a project
that can’t be documented anywhere else: engineering
trade-offs, why decisions were made, what other
alternatives were discarded, and so on.

SUMMARY

Know what you want to say.

Know your audience.

Choose your moment.

Choose a style.

Make it look good.

Involve your audience.

Be a listener.

Get back to people.

Keep code and documentation together.

RELATED SECTIONS INCLUDE

Topic 15, Estimating

Topic 18, Power Editing

Topic 45, The Requirements Pit

Topic 49, Pragmatic Teams

Online Communication
Everything we’ve said about communicating in writing
applies equally to email, social media posts, blogs, and
so on. Email in particular has evolved to the point
where it is a mainstay of corporate communications;
it’s used to discuss contracts, to settle disputes, and as
evidence in court. But for some reason, people who
would never send out a shabby paper document are
happy to fling nasty-looking, incoherent emails around
the world.

Our tips are simple:

Proofread before you hit
 SEND .

Check your spelling and look
for any accidental auto-
correct mishaps.

Keep the format simple and
clear.

Keep quoting to a minimum.
No one likes to receive back
their own 100-line email with
“I agree” tacked on.

If you’re quoting other
people’s email, be sure to
attribute it, and quote it inline
(rather than as an
attachment). Same when
quoting on social media
platforms.

Don’t flame or act like a troll
unless you want it to come
back and haunt you later. If
you wouldn’t say it to
someone’s face, don’t say it
online.

Check your list of recipients
before sending. It’s become a
cliché to criticize the boss
over departmental email
without realizing that the boss
is on the cc list. Better yet,

don’t criticize the boss over
email.

As countless large corporations and politicians have
discovered, email and social media posts are forever.
Try to give the same attention and care to email as you
would to any written memo or report.

CHALLENGES

There are several good books that
contain sections on communications
within teams, including The Mythical
Man-Month: Essays on Software
Engineering [Bro96] and Peopleware:
Productive Projects and Teams
[DL13]. Make it a point to try to read
these over the next 18 months. In
addition, Dinosaur Brains: Dealing
with All Those Impossible People at
Work [BR89] discusses the emotional
baggage we all bring to the work
environment.

The next time you have to give a
presentation, or write a memo
advocating some position, try working
through the advice in this section
before you start. Explicitly identify the
audience and what you need to
communicate. If appropriate, talk to
your audience afterward and see how
accurate your assessment of their needs
was.

Footnotes

[3]
http://wiki.c2.com/?
ChangeYourOrganization

[4]
See, for example, a good meta-
analysis at Trust and team
performance: A meta-analysis of
main effects, moderators, and
covariates,

http://wiki.c2.com/?ChangeYourOrganization
http://dx.doi.org/10.1037/apl0000110

http://dx.doi.org/10.1037/apl000011
0

[5]
See The police and neighborhood
safety [WH82]

[6]
See Contagious depression:
Existence, specificity to depressed
symptoms, and the role of
reassurance seeking [Joi94]

[7]
While doing this, you may be
comforted by the line attributed to
Rear Admiral Dr. Grace Hopper:
“It’s easier to ask forgiveness than it
is to get permission.’’

[8]
That was supposed to be a joke!

[9]
An expiring asset is something
whose value diminishes over time.
Examples include a warehouse full
of bananas and a ticket to a ball
game.

[10]
We may be biased, but there’s a fine
selection available at
https://pragprog.com.

[11]
Never heard of any of these
languages? Remember, knowledge
is an expiring asset, and so is
popular technology. The list of hot
new and experimental languages
was very different for the first
edition, and is probably different
again by the time you read this. All
the more reason to keep learning.

[12]
The word annoy comes from the Old
French enui, which also means “to
bore.’’

Copyright © 2020 Pearson Education, Inc.

http://dx.doi.org/10.1037/apl0000110
https://pragprog.com/

Chapter 2

A Pragmatic Approach

There are certain tips and tricks that apply at all levels
of software development, processes that are virtually
universal, and ideas that are almost axiomatic.
However, these approaches are rarely documented as
such; you’ll mostly find them written down as odd
sentences in discussions of design, project
management, or coding. But for your convenience,
we’ll bring these ideas and processes together here.

The first and maybe most important topic gets to the
heart of software development: Topic 8, The Essence of
Good Design. Everything follows from this.

The next two sections, Topic 9, DRY—The Evils of
Duplication and Topic 10, Orthogonality, are closely
related. The first warns you not to duplicate knowledge
throughout your systems, the second not to split any
one piece of knowledge across multiple system
components.

As the pace of change increases, it becomes harder and
harder to keep our applications relevant. In Topic 11,
Reversibility, we’ll look at some techniques that help
insulate your projects from their changing environment.

The next two sections are also related. In Topic 12,
Tracer Bullets, we talk about a style of development
that allows you to gather requirements, test designs,
and implement code at the same time. It’s the only way
to keep up with the pace of modern life.

Topic 13, Prototypes and Post-it Notes shows you how
to use prototyping to test architectures, algorithms,
interfaces, and ideas. In the modern world, it’s critical
to test ideas and get feedback before you commit to
them whole-heartedly.

As computer science slowly matures, designers are
producing increasingly higher-level languages. While
the compiler that accepts “make it so” hasn’t yet been
invented, in Topic 14, Domain Languages we present
some more modest suggestions that you can implement
for yourself.

Finally, we all work in a world of limited time and
resources. You can survive these scarcities better (and
keep your bosses or clients happier) if you get good at
working out how long things will take, which we cover
in Topic 15, Estimating.

Keep these fundamental principles in mind during
development, and you’ll write code that’s better, faster,
and stronger. You can even make it look easy.

 Topic 8 The Essence of Good Design

The world is full of gurus and pundits, all eager to pass
on their hard-earned wisdom when it comes to How to
Design Software. There are acronyms, lists (which
seem to favor five entries), patterns, diagrams, videos,
talks, and (the internet being the internet) probably a
cool series on the Law of Demeter explained using
interpretive dance.

And we, your gentle authors, are guilty of this too. But
we’d like to make amends by explaining something that
only became apparent to us fairly recently. First, the
general statement:

Tip 14 Good Design Is Easier to Change Than Bad Design

A thing is well designed if it adapts to the people who
use it. For code, that means it must adapt by changing.
So we believe in the ETC principle: Easier to Change.
ETC. That’s it.

As far as we can tell, every design principle out there is
a special case of ETC.

Why is decoupling good? Because by isolating
concerns we make each easier to change. ETC.

Why is the single responsibility principle useful?
Because a change in requirements is mirrored by a
change in just one module. ETC.

Why is naming important? Because good names make
code easier to read, and you have to read it to change it.
ETC!

ETC IS A VALUE, NOT A RULE
Values are things that help you make decisions: should
I do this, or that? When it comes to thinking about
software, ETC is a guide, helping you choose between
paths. Just like all your other values, it should be
floating just behind your conscious thought, subtly
nudging you in the right direction.

But how do you make that happen? Our experience is
that it requires some initial conscious reinforcement.
You may need to spend a week or so deliberately
asking yourself “did the thing I just did make the
overall system easier or harder to change?” Do it when
you save a file. Do it when you write a test. Do it when
you fix a bug.

There’s an implicit premise in ETC. It assumes that a
person can tell which of many paths will be easier to
change in the future. Much of the time, common sense
will be correct, and you can make an educated guess.

Sometimes, though, you won’t have a clue. That’s OK.
In those cases, we think you can do two things.

First, given that you’re not sure what form change will
take, you can always fall back on the ultimate “easy to
change” path: try to make what you write replaceable.
That way, whatever happens in the future, this chunk of
code won’t be a roadblock. It seems extreme, but
actually it’s what you should be doing all the time,
anyway. It’s really just thinking about keeping code
decoupled and cohesive.

Second, treat this as a way to develop instincts. Note
the situation in your engineering day book: the choices
you have, and some guesses about change. Leave a tag
in the source. Then, later, when this code has to change,
you’ll be able to look back and give yourself feedback.

It might help the next time you reach a similar fork in
the road.

The rest of the sections in this chapter have specific
ideas on design, but all are motivated by this one
principle.

RELATED SECTIONS INCLUDE

Topic 9, DRY—The Evils of Duplication

Topic 10, Orthogonality

Topic 11, Reversibility

Topic 14, Domain Languages

Topic 28, Decoupling

Topic 30, Transforming Programming

Topic 31, Inheritance Tax

CHALLENGES

Think about a design principle you use
regularly. Is it intended to make things
easy-to-change?

Also think about languages and
programming paradigms (OO, FP,
Reactive, and so on). Do any have
either big positives or big negatives
when it comes to helping you write
ETC code? Do any have both?
When coding, what can you do to
eliminate the negatives and accentuate
the positives?[13]

Many editors have support (either built-in or via extensions) to run

commands when you save a file. Get your editor to popup an ETC? message

every time you save[14] and use it as a cue to think about the code you just

wrote. Is it easy to change?

 Topic 9 DRY—The Evils of Duplication

Giving a computer two contradictory pieces of
knowledge was Captain James T. Kirk’s preferred way
of disabling a marauding artificial

intelligence. Unfortunately, the same principle can be
effective in

bringing down your code.

As programmers, we collect, organize, maintain, and
harness knowledge.

We document knowledge in specifications, we make it
come alive in

running code, and we use it to provide the checks
needed during testing.

Unfortunately, knowledge isn’t stable. It changes—
often rapidly. Your understanding of a requirement may
change following a meeting with the client. The
government changes a regulation and some business
logic gets outdated. Tests may show that the chosen
algorithm won’t work. All this instability means that
we spend a large part of our time in maintenance mode,
reorganizing and reexpressing the knowledge in our
systems.

Most people assume that maintenance begins when an
application is released, that maintenance means fixing
bugs and enhancing features. We think these people are
wrong. Programmers are constantly in maintenance
mode. Our understanding changes day by day. New
requirements arrive and existing requirements evolve as

we’re heads-down on the project. Perhaps the
environment changes. Whatever the reason,
maintenance is not a

discrete activity, but a routine part of the entire
development process.

When we perform maintenance, we have to find and
change the representations of things—those capsules of
knowledge embedded in the application. The problem
is that it’s easy to duplicate knowledge in the
specifications, processes, and programs that we
develop, and when we do so, we invite a maintenance
nightmare—one that starts well before the application
ships.

We feel that the only way to develop software reliably,
and to make our developments easier to understand and
maintain, is to follow what we call the DRY principle:

Every piece of knowledge must have a single,
unambiguous, authoritative representation within a
system.

Why do we call it DRY?

Tip 15 DRY—Don’t Repeat Yourself

The alternative is to have the same thing expressed in
two or more places. If you change one, you have to
remember to change the

others, or, like the alien computers, your program will
be brought to its knees by a contradiction. It isn’t a
question of whether you’ll

remember: it’s a question of when you’ll forget.

You’ll find the DRY principle popping up time and
time again throughout this book, often in contexts that
have nothing to do with coding. We feel that it is one of
the most important tools in the Pragmatic

Programmer’s tool box.

In this section we’ll outline the problems of duplication
and suggest general strategies for dealing with it.

DRY IS MORE THAN CODE
Let’s get something out of the way up-front. In the first
edition of this book we did a poor job of explaining just
what we meant by Don’t Repeat Yourself. Many people
took it to refer to code only: they thought that DRY
means “don’t copy-and-paste lines of source.”

That is part of DRY, but it’s a tiny and fairly trivial part.

DRY is about the duplication of knowledge, of intent.
It’s about expressing the same thing in two different
places, possibly in two

totally different ways.

Here’s the acid test: when some single facet of the code
has to change, do you find yourself making that change
in multiple places, and in

multiple different formats? Do you have to change code
and

documentation, or a database schema and a structure
that holds it, or…? If so, your code isn’t DRY.

So let’s look at some typical examples of duplication.

DUPLICATION IN CODE
It may be trivial, but code duplication is oh, so
common. Here’s an example:

 def print_balance(account)
 printf “Debits: %10.2f\n” , account.debits
 printf “Credits: %10.2f\n” , account.credits
 if account.fees < 0
 printf “Fees: %10.2f-\n” , -account.fees
 else
 printf “Fees: %10.2f\n” , account.fees
 end
 printf ” ———-\n”
 if account.balance < 0
 printf “Balance: %10.2f-\n” , -account.balance
 else
 printf “Balance: %10.2f\n” , account.balance
 end
 end

For now ignore the implication that we’re committing
the newbie mistake of storing currencies in floats.
Instead see if you can spot duplications in this code.
(We can see at least three things, but you might see
more.) What did you find? Here’s our list.

First, there’s clearly a copy-and-paste duplication of
handling the negative numbers. We can fix that by
adding another function:

 def format_amount(value)
 result = sprintf(“%10.2f” , value.abs)
 if value < 0
 result + “-”
 else
 result + ” ”
 end
 end

 def print_balance(account)
 printf “Debits: %10.2f\n” , account.debits
 printf “Credits: %10.2f\n” , account.credits
 printf “Fees: %s\n” , format_amount(account.fees)
 printf ” ———-\n”
 printf “Balance: %s\n” , format_amount(account.balance)
 end

Another duplication is the repetition of the field width
in all the printf calls. We could fix this by introducing a
constant and passing it to each call, but why not just
use the existing function?

 def format_amount(value)
 result = sprintf(“%10.2f” , value.abs)
 if value < 0
 result + “-”
 else
 result + ” ”
 end
 end

 def print_balance(account)
 printf “Debits: %s\n” , format_amount(account.debits)
 printf “Credits: %s\n” , format_amount(account.credits)
 printf “Fees: %s\n” , format_amount(account.fees)
 printf ” ———-\n”
 printf “Balance: %s\n” , format_amount(account.balance)
 end

Anything more? Well, what if the client asks for an
extra space between the labels and the numbers? We’d
have to change five lines. Let’s remove that
duplication:

 def format_amount(value)
 result = sprintf(“%10.2f” , value.abs)
 if value < 0
 result + “-”
 else
 result + ” ”
 end
 end

 def print_line(label, value)
 printf “%-9s%s\n” , label, value
 end

 def report_line(label, amount)
 print_line(label + “:” , format_amount(amount))
 end

 def print_balance(account)
 report_line(“Debits” , account.debits)
 report_line(“Credits” , account.credits)
 report_line(“Fees” , account.fees)
 print_line(””, “———-”)
 report_line(“Balance” , account.balance)
 end

If we have to change the formatting of amounts, we
change format_amount. If we want to change the label
format, we change report_line.

There’s still an implicit DRY violation: the number of
hyphens in the separator line is related to the width of
the amount field. But it isn’t an exact match: it’s
currently one character shorter, so any trailing minus
signs extend beyond the column. This is the customer’s
intent, and it’s a different intent to the actual formatting
of amounts.
Not All Code Duplication Is Knowledge Duplication

As part of your online wine ordering application you’re
capturing and validating your user’s age, along with the
quantity they’re ordering.

According to the site owner, they should both be
numbers, and both

greater than zero. So you code up the validations:

 def validate_age(value):
 validate_type(value, :integer)
 validate_min_integer(value, 0)

 def validate_quantity(value):
 validate_type(value, :integer)
 validate_min_integer(value, 0)

During code review, the resident know-it-all bounces
this code, claiming it’s a DRY violation: both function
bodies are the same.

They are wrong. The code is the same, but the
knowledge they represent is different. The two
functions validate two separate things that just happen
to have the same rules. That’s a coincidence, not a
duplication.

DUPLICATION IN DOCUMENTATION
Somehow the myth was born that you should comment
all your functions.

Those who believe in this insanity then produce
something such as this:

 # Calculate the fees for this account.
 #
 # * Each returned check costs $20
 # * If the account is in overdraft for more than 3 days,
 # charge $10 for each day
 # * If the average account balance is greater that $2,000
 # reduce the fees by 50%

 def fees(a)
 f = 0
 if a.returned_check_count > 0
 f += 20 * a.returned_check_count
 end
 if a.overdraft_days > 3
 f += 10*a.overdraft_days
 end
 if a.average_balance > 2_000
 f /= 2
 end
 f
 end

The intent of this function is given twice: once in the
comment and again in the code. The customer changes
a fee, and we have to update both. Given time, we can
pretty much guarantee the comment and the code will
get out of step.

Ask yourself what the comment adds to the code. From
our point of view, it simply compensates for some bad
naming and layout. How about just this:

 def calculate_account_fees(account)
 fees = 20 * account.returned_check_count
 fees += 10 * account.overdraft_days if account.overdraft_days > 3

 fees /= 2 if account.average_balance > 2_000
 fees
 end

The name says what it does, and if someone needs
details, they’re laid out in the source. That’s DRY!

DRY Violations in Data

Our data structures represent knowledge, and they can
fall afoul of the DRY principle. Let’s

look at a class representing a line:

 class Line {
 Point start;
 Point end;
 double length;
 };

At first sight, this class might appear reasonable. A line
clearly has a start and end, and will always have a
length (even if it’s zero). But we have duplication. The
length is defined by the start and

end points: change one of the points and the length
changes.

It’s better to make the length a calculated field:

 class Line {
 Point start;
 Point end;
 double length() { return start.distanceTo(end); }
 };

Later on in the development process, you may choose
to violate the DRY

principle for performance reasons. Frequently this
occurs when you need to cache data to avoid repeating
expensive operations. The trick is to localize the
impact. The violation is not exposed to the outside
world: only the methods within the class have to worry
about keeping things straight:

 class Line {
 private double length;
 private Point start;
 private Point end;

 public Line(Point start, Point end) {
 this .start = start;
 this .end = end;
 calculateLength();
 }

 // public
 void setStart(Point p) { this .start = p; calculateLength(); }
 void setEnd(Point p) { this .end = p; calculateLength(); }

 Point getStart() { return start; }
 Point getEnd() { return end; }

 double getLength() { return length; }

 private void calculateLength() {
 this .length = start.distanceTo(end);
 }
 };

This example also illustrates an important issue:
whenever a module exposes a data structure, you’re
coupling all the code that uses that structure to the
implementation of that module.

Where possible, always use accessor functions to read
and write the attributes of objects. It will make it easier
to add functionality in the future.

This use of accessor functions ties in with Meyer’s

Uniform Access principle, described in Object-Oriented
Software Construction [Mey97], which states that

All services offered by a module should be

available through a uniform notation, which does not
betray

whether they are implemented through storage or
through

computation.

REPRESENTATIONAL DUPLICATION
Your code interfaces to the outside world: other
libraries via APIs, other services via remote calls, data
in external sources, and so on. And pretty much each
time you do, you introduce some kind of DRY
violation: your code has to have knowledge that is also
present in the external thing. It needs to know the API,
or the schema, or the meaning of error codes, or
whatever. The duplication here is that two things (your
code and the external entity) have to have knowledge of
the representation of their interface. Change it at one
end, and the other end breaks.

This duplication is inevitable, but can be mitigated.
Here are some strategies.
Duplication Across Internal APIs

For internal APIs, look for tools that let you specify the
API in some kind of neutral format. These tools will
typically generate documentation, mock APIs,
functional tests, and API clients, the latter in a number
of different languages. Ideally the tool will store all
your APIs in a central repository, allowing them to be
shared across teams.

Duplication Across External APIs

Increasingly, you’ll find that public APIs are
documented formally using something like OpenAPI.
[15] This allows you to import the API spec into your
local API tools and integrate more reliably with the
service.

If you can’t find such a specification, consider creating
one and publishing it. Not only will others find it
useful; you may even get help maintaining it.

Duplication with Data Sources

Many data sources allow you to introspect on their data
schema. This can be used to remove much of the
duplication between them and your code. Rather than
manually creating the code to contain this stored data,
you can generate the containers directly from the
schema. Many persistence frameworks will do this
heavy lifting for you.

There’s another option, and one we often prefer. Rather
than writing code that represents external data in a
fixed structure (an instance of a struct or class, for
example), just stick it into a key/value data structure
(your language might call it a map, hash, dictionary, or
even object).

On its own this is risky: you lose a lot of the security of
knowing just what data you’re working with. So we
recommend adding a second layer to this solution: a
simple table-driven validation suite that verifies that the
map you’ve created contains at least the data you need,
in the format you need it. Your API documentation tool
might be able to generate this.

INTERDEVELOPER DUPLICATION
Perhaps the hardest type of duplication to detect and
handle occurs between different developers on a
project. Entire sets of functionality may be
inadvertently duplicated, and that duplication could go

undetected for years, leading to maintenance problems.
We heard

firsthand of a U.S. state whose governmental computer
systems were

surveyed for Y2K compliance. The audit turned up
more than 10,000

programs that each contained a different version of
Social Security

Number validation code.

At a high level, deal with the problem by building a
strong, tight-knit team with good communications.

However, at the module level, the problem is more
insidious. Commonly needed functionality or data that
doesn’t fall into an obvious area of responsibility can
get implemented many times over.

We feel that the best way to deal with this is to
encourage active and frequent communication between
developers.

Maybe run a daily scrum standup meeting. Set up
forums (such as Slack channels) to discuss common
problems. This provides a nonintrusive way of
communicating—even across multiple sites—while
retaining a

permanent history of everything said.

Appoint a team member as the project librarian, whose
job is to facilitate the exchange of knowledge. Have a
central place in the source tree where utility routines
and scripts can be deposited. And make a point of
reading other people’s source code and documentation,
either informally or during code reviews. You’re not
snooping—you’re learning from them. And remember,
the access is reciprocal—don’t get twisted

about other people poring (pawing?) through your
code, either.

Tip 16 Make It Easy to Reuse

What you’re trying to do is foster an environment
where it’s easier to find and reuse existing stuff than to
write it yourself. If it isn’t easy, people won’t do it. And
if you fail to reuse, you risk

duplicating knowledge.

RELATED SECTIONS INCLUDE

Topic 8, The Essence of Good Design

Topic 28, Decoupling

Topic 32, Configuration

Topic 38, Programming by Coincidence

Topic 40, Refactoring

 Topic 10 Orthogonality

Orthogonality is a critical concept if you want to
produce systems that are easy to design, build, test, and
extend. However, the concept of orthogonality is rarely
taught directly. Often it is an implicit feature of various
other methods and techniques you learn. This is a
mistake. Once you learn to apply the principle of
orthogonality directly, you’ll notice an immediate
improvement in the quality of systems you produce.

WHAT IS ORTHOGONALITY?

“Orthogonality’’ is a term borrowed from geometry.
Two lines are orthogonal if they meet at right angles,
such as the axes on a graph. In vector terms, the two
lines are independent. As the number 1 on the diagram
moves north, it doesn’t change how far east or west it
is. The number 2 moves east, but not north or south.

In computing, the term has come to signify a kind of
independence or decoupling. Two or more things are
orthogonal if changes in one do not affect any of the
others. In a well-designed system, the database code
will be orthogonal to the user interface: you can change
the interface without affecting the database, and swap
databases without changing the interface.

Before we look at the benefits of orthogonal systems,
let’s first look at a system that isn’t orthogonal.

A Nonorthogonal System

You’re on a helicopter tour of the Grand Canyon when
the pilot, who made the obvious mistake of eating fish
for lunch, suddenly groans and faints. Fortunately, he
left you hovering 100 feet above the ground.

As luck would have it, you had read a Wikipedia page
about helicopters the previous night. You know that
helicopters have four basic controls. The cyclic is the
stick you hold in your right hand. Move it, and the
helicopter moves in the corresponding direction. Your
left hand holds the collective pitch lever. Pull up on this
and you increase the pitch on all the blades, generating
lift. At the end of the pitch lever is the throttle. Finally
you have two foot pedals, which vary the amount of tail
rotor thrust and so help turn the helicopter.

“Easy!,” you think. “Gently lower the collective pitch
lever and you’ll descend gracefully to the ground, a
hero.” However, when you try it, you discover that life
isn’t that simple. The helicopter’s nose drops, and you
start to spiral down to the left. Suddenly you discover
that you’re flying a system where every control input
has secondary effects. Lower the left-hand lever and
you need to add compensating backward movement to
the right-hand stick and push the right pedal. But then
each of these changes affects all of the other controls
again. Suddenly you’re juggling an unbelievably
complex system, where every change impacts all the
other inputs. Your workload is phenomenal: your hands
and feet are constantly moving, trying to balance all the
interacting forces.

Helicopter controls are decidedly not orthogonal.

BENEFITS OF ORTHOGONALITY
As the helicopter example illustrates, nonorthogonal
systems are inherently more complex to change and

control. When components of any system are highly
interdependent, there is no such thing as a local fix.

Tip 17 Eliminate Effects Between Unrelated Things

We want to design components that are self-contained:
independent, and with a single, well-defined purpose
(what Yourdon and Constantine call cohesion in
Structured Design: Fundamentals of a Discipline of
Computer Program and Systems Design [YC79]).
When components are isolated from one another, you
know that you can change one without having to worry
about the rest. As long as you don’t change that
component’s external interfaces, you can be confident
that you won’t cause problems that ripple through the
entire system.

You get two major benefits if you write orthogonal
systems: increased productivity and reduced risk.

Gain Productivity

Changes are localized, so development
time and testing time are reduced. It is
easier to write relatively small, self-
contained components than a single
large block of code. Simple
components can be designed, coded,
tested, and then forgotten—there is no
need to keep changing existing code as
you add new code.

An orthogonal approach also promotes
reuse. If components have specific,
well-defined responsibilities, they can
be combined with new components in
ways that were not envisioned by their
original implementors. The more
loosely coupled your systems, the
easier they are to reconfigure and
reengineer.

There is a fairly subtle gain in
productivity when you combine
orthogonal components. Assume that

one component does distinct

things and another does things. If
they are orthogonal and you combine

them, the result does things.
However, if the two components are
not orthogonal, there will be overlap,
and the result will do less. You get
more functionality per unit effort by
combining orthogonal components.

Reduce Risk

An orthogonal approach reduces the risks inherent in
any development.

Diseased sections of code are isolated.
If a module is sick, it is less likely to
spread the symptoms around the rest of
the system. It is also easier to slice it
out and transplant in something new
and healthy.

The resulting system is less fragile.
Make small changes and fixes to a
particular area, and any problems you
generate will be restricted to that area.

An orthogonal system will probably be
better tested, because it will be easier
to design and run tests on its
components.

You will not be as tightly tied to a
particular vendor, product, or platform,
because the interfaces to these third-
party components will be isolated to
smaller parts of the overall
development.

Let’s look at some of the ways you can apply the
principle of orthogonality to your work.

DESIGN
Most developers are familiar with the need to design
orthogonal systems, although they may use words such
as modular, component-based, and layered to describe
the process. Systems should be composed of a set of
cooperating modules, each of which implements
functionality independent of the others. Sometimes
these components are organized into layers, each
providing a level of abstraction. This layered approach
is a powerful way to design orthogonal systems.
Because each layer uses only the abstractions provided
by the layers below it, you have great flexibility in
changing underlying implementations without affecting
code. Layering also reduces the risk of runaway
dependencies between modules. You’ll often see
layering expressed in diagrams:

There is an easy test for orthogonal design. Once you
have your components mapped out, ask yourself: If I
dramatically change the requirements behind a
particular function, how many modules are affected? In
an orthogonal system, the answer should be “one.’’[16]
Moving a button on a GUI panel should not require a

change in the database schema. Adding context-
sensitive help should not change the billing subsystem.

Let’s consider a complex system for monitoring and
controlling a heating plant. The original requirement
called for a graphical user interface, but the
requirements were changed to add a mobile interface
that lets engineers monitor key values. In an
orthogonally designed system, you would need to
change only those modules associated with the user
interface to handle this: the underlying logic of
controlling the plant would remain unchanged. In fact,
if you structure your system carefully, you should be
able to support both interfaces with the same
underlying code base.

Also ask yourself how decoupled your design is from
changes in the real world. Are you using a telephone
number as a customer identifier? What happens when
the phone company reassigns area codes? Postal codes,
Social Security Numbers or government IDs, email
addresses, and domains are all external identifiers that
you have no control over, and could change at any time
for any reason. Don’t rely on the properties of things
you can’t control.

TOOLKITS AND LIBRARIES
Be careful to preserve the orthogonality of your system
as you introduce third-party toolkits and libraries.
Choose your technologies wisely.

When you bring in a toolkit (or even a library from
other members of your team), ask yourself whether it
imposes changes on your code that shouldn’t be there.
If an object persistence scheme is transparent, then it’s
orthogonal. If it requires you to create or access objects
in a special way, then it’s not. Keeping such details
isolated from your code has the added benefit of
making it easier to change vendors in the future.

The Enterprise Java Beans (EJB) system is an
interesting example of orthogonality. In most

transaction-oriented systems, the application code has
to delineate the start and end of each transaction. With
EJB, this information is expressed declaratively as
annotations, outside the methods that do the work. The
same application code can run in different EJB
transaction environments with no change.

In a way, EJB is an example of the Decorator Pattern:
adding functionality to things without changing them.
This style of programming can be used in just about
every programming language, and doesn’t necessarily
require a framework or library. It just takes a little
discipline when programming.

CODING
Every time you write code you run the risk of reducing
the orthogonality of your application. Unless you
constantly monitor not just what you are doing but also
the larger context of the application, you might
unintentionally duplicate functionality in some other
module, or express existing knowledge twice.

There are several techniques you can use to maintain
orthogonality:

Keep your code decoupled
Write shy code—modules that
don’t reveal anything unnecessary
to other modules and that don’t
rely on other modules’
implementations. Try the Law of
Demeter, which we discuss in
Topic 28, Decoupling. If you need
to change an object’s state, get the
object to do it for you. This way
your code remains isolated from
the other code’s implementation
and increases the chances that
you’ll remain orthogonal.

Avoid global data

Every time your code references
global data, it ties itself into the
other components that share that
data. Even globals that you intend
only to read can lead to trouble
(for example, if you suddenly
need to change your code to be
multithreaded). In general, your
code is easier to understand and
maintain if you explicitly pass any
required context into your
modules. In object-oriented
applications, context is often
passed as parameters to objects’
constructors. In other code, you
can create structures containing
the context and pass around
references to them.

The Singleton pattern in Design
Patterns: Elements of Reusable
Object-Oriented Software
[GHJV95] is a way of ensuring
that there is only one instance of
an object of a particular class.
Many people use these singleton
objects as a kind of global
variable (particularly in
languages, such as Java, that
otherwise do not support the
concept of globals). Be careful
with singletons—they can also
lead to unnecessary linkage.
Avoid similar functions
Often you’ll come across a set of
functions that all look similar—
maybe they share common code at
the start and end, but each has a
different central algorithm.
Duplicate code is a symptom of

structural problems. Have a look
at the Strategy pattern in Design
Patterns for a better
implementation.

Get into the habit of being constantly critical of your
code. Look for any opportunities to reorganize it to
improve its structure and orthogonality. This process is
called refactoring, and it’s so important that we’ve
dedicated a section to it (see Topic 40, Refactoring).

TESTING
An orthogonally designed and implemented system is
easier to test. Because the interactions between the
system’s components are formalized and limited, more
of the system testing can be performed at the individual
module level. This is good news, because module level
(or unit) testing is considerably easier to specify and
perform than integration testing. In fact, we suggest
that these tests be performed automatically as part of
the regular build process (see Topic 41, Test to Code).

Writing unit tests is itself an interesting test of
orthogonality. What does it take to get a unit test to
build and run? Do you have to import a large
percentage of the rest of the system’s code? If so,
you’ve found a module that is not well decoupled from
the rest of the system.

Bug fixing is also a good time to assess the
orthogonality of the system as a whole. When you
come across a problem, assess how localized the fix is.
Do you change just one module, or are the changes
scattered throughout the entire system? When you
make a change, does it fix everything, or do other
problems mysteriously arise? This is a good
opportunity to bring automation to bear. If you use a
version control system (and you will after reading
Topic 19, Version Control), tag bug fixes when you
check the code back in after testing. You can then run

monthly reports analyzing trends in the number of
source files affected by each bug fix.

DOCUMENTATION
Perhaps surprisingly, orthogonality also applies to
documentation. The axes are content and presentation.
With truly orthogonal documentation, you should be
able to change the appearance dramatically without
changing the content. Word processors provide style
sheets and macros that help. We personally prefer using
a markup system such as Markdown: when writing we
focus only on the content, and leave the presentation to
whichever tool we use to render it.[17]

LIVING WITH ORTHOGONALITY
Orthogonality is closely related to the DRY principle.
With DRY, you’re looking to minimize duplication
within a system, whereas with orthogonality you reduce
the interdependency among the system’s components. It
may be a clumsy word, but if you use the principle of
orthogonality, combined closely with the DRY
principle, you’ll find that the systems you develop are
more flexible, more understandable, and easier to
debug, test, and maintain.

If you’re brought into a project where people are
desperately struggling to make changes, and where
every change seems to cause four other things to go
wrong, remember the nightmare with the helicopter.
The project probably is not orthogonally designed and
coded. It’s time to refactor.

And, if you’re a helicopter pilot, don’t eat the fish….

RELATED SECTIONS INCLUDE

Topic 3, Software Entropy

Topic 8, The Essence of Good Design

Topic 11, Reversibility

Topic 28, Decoupling

Topic 31, Inheritance Tax

Topic 33, Breaking Temporal Coupling

Topic 34, Shared State Is Incorrect State

Topic 36, Blackboards

Challenges

Consider the difference between tools
which have a graphical user interface
and small but combinable command-
line utilities used at shell prompts.
Which set is more orthogonal, and
why? Which is easier to use for exactly
the purpose for which it was intended?
Which set is easier to combine with
other tools to meet new challenges?
Which set is easier to learn?

C++ supports multiple inheritance, and
Java allows a class to implement
multiple interfaces. Ruby has mixins.
What impact does using these facilities
have on orthogonality? Is there a
difference in impact between using
multiple inheritance and multiple
interfaces? Is there a difference
between using delegation and using
inheritance?

Exercises

Exercise 1 (possible answer)

You’re asked to read a file a line at a time. For each
line, you have to split it into fields. Which of the
following sets of pseudo class definitions is likely to be
more orthogonal?

 class Split1 {
 constructor(fileName) # opens the file for reading
 def readNextLine() # moves to the next line
 def getField(n) # returns nth field in current line
 }

or

 class Split2 {
 constructor(line) # splits a line
 def getField(n) # returns nth field in current line
 }

Exercise 2 (possible answer)

What are the differences in orthogonality between
object-oriented and functional languages? Are these
differences inherent in the languages themselves, or just
in the way people use them?

 Topic 11 Reversibility

Nothing is more dangerous than an idea if it’s the only
one you have.

 Emil-Auguste Chartier (Alain), Propos sur la religion, 1938
Engineers prefer simple, singular solutions to problems.
Math tests that allow you to proclaim with great
confidence that are much more comfortable than
fuzzy, warm essays about the myriad causes of the
French Revolution. Management tends to agree with
the engineers: singular, easy answers fit nicely on
spreadsheets and project plans.

If only the real world would cooperate! Unfortunately,
while is today, it may need to be tomorrow,
and next week. Nothing is forever—and if you rely
heavily on some fact, you can almost guarantee that it
will change.

There is always more than one way to implement
something, and there is usually more than one vendor
available to provide a third-party product. If you go
into a project hampered by the myopic notion that there
is only one way to do it, you may be in for an
unpleasant surprise. Many project teams have their eyes
forcibly opened as the future unfolds:

“But you said we’d use database XYZ! We are 85%
done coding the project, we can’t change now!” the
programmer protested. “Sorry, but our company
decided to standardize on database PDQ instead—for
all projects. It’s out of my hands. We’ll just have to

recode. All of you will be working weekends until
further notice.”

Changes don’t have to be that Draconian, or even that
immediate. But as time goes by, and your project
progresses, you may find yourself stuck in an untenable
position. With every critical decision, the project team
commits to a smaller target—a narrower version of
reality that has fewer options.

By the time many critical decisions have been made,
the target becomes so small that if it moves, or the wind
changes direction, or a butterfly in Tokyo flaps its
wings, you miss.[18] And you may miss by a huge
amount.

The problem is that critical decisions aren’t easily
reversible.

Once you decide to use this vendor’s database, or that
architectural pattern, or a certain deployment model,
you are committed to a course of action that cannot be
undone, except at great expense.

REVERSIBILITY
Many of the topics in this book are geared to producing
flexible, adaptable software. By sticking to their
recommendations—especially the DRY principle,
decoupling, and use of external configuration—we
don’t have to make as many critical, irreversible
decisions. This is a good thing, because we don’t
always make the best decisions the first time around.
We commit to a certain technology only to discover we
can’t hire enough people with the necessary skills. We
lock in a certain third-party vendor just before they get
bought out by their competitor. Requirements, users,
and hardware change faster than we can get the
software developed.

Suppose you decide, early in the project, to use a
relational database from vendor A. Much later, during
performance testing, you discover that the database is

simply too slow, but that the document database from
vendor B is faster. With most conventional projects,
you’d be out of luck. Most of the time, calls to third-
party products are entangled throughout the code. But if
you really abstracted the idea of a database out—to the
point where it simply provides persistence as a service
—then you have the flexibility to change horses in
midstream.

Similarly, suppose the project begins as a browser-
based application, but then, late in the game, marketing
decides that what they really want is a mobile app. How
hard would that be for you? In an ideal world, it
shouldn’t impact you too much, at least on the server
side. You’d be stripping out some HTML rendering and
replacing it with an API.

The mistake lies in assuming that any decision is cast in
stone—and in not preparing for the contingencies that
might arise. Instead of carving decisions in stone, think
of them more as being written in the sand at the beach.
A big wave can come along and wipe them out at any
time.

Tip 18 There Are No Final Decisions

FLEXIBLE ARCHITECTURE
While many people try to keep their code flexible, you
also need to think about maintaining flexibility in the
areas of architecture, deployment, and vendor
integration.

We’re writing this in 2019. Since the turn of the century
we’ve seen the following “best practice” server-side
architectures:

Big hunk of iron

Federations of big iron

Load-balanced clusters of commodity hardware

Cloud-based virtual machines running applications

Cloud-based virtual machines running services

Containerized versions of the above

Cloud-supported serverless applications

And, inevitably, an apparent move back to big hunks of iron for some tasks

Go ahead and add the very latest and greatest fads to
this list, and then regard it with awe: it’s a miracle that
anything ever worked.

How can you plan for this kind of architectural
volatility? You can’t.

What you can do is make it easy to change. Hide third-
party APIs behind your own abstraction layers. Break
your code into components: even if you end up
deploying them on a single massive server, this
approach is a lot easier than taking a monolithic
application and splitting it. (We have the scars to prove
it.)

And, although this isn’t particularly a reversibility
issue, one final piece of advice.

Tip 19 Forgo Following Fads

No one knows what the future may hold, especially not
us! So enable your code to rock-n-roll: to “rock on’’
when it can, to roll with the punches when it must.

RELATED SECTIONS INCLUDE

Topic 8, The Essence of Good Design

Topic 10, Orthogonality

Topic 19, Version Control

Topic 28, Decoupling

Topic 45, The Requirements Pit

Topic 51, Pragmatic Starter Kit

CHALLENGES

Time for a little quantum mechanics
with Schrödinger’s cat.
Suppose you have a cat in a closed
box, along with a radioactive particle.
The particle has exactly a 50% chance
of fissioning into two. If it does, the cat
will be killed. If it doesn’t, the cat will
be okay. So, is the cat dead or alive?
According to Schrödinger, the correct
answer is both (at least while the box
remains closed). Every time a
subnuclear reaction takes place that has
two possible outcomes, the universe is
cloned. In one, the event occurred, in
the other it didn’t. The cat’s alive in
one universe, dead in another. Only
when you open the box do you know
which universe you are in.
No wonder coding for the future is
difficult.
But think of code evolution along the
same lines as a box full of
Schrödinger’s cats: every decision
results in a different version of the
future. How many possible futures can
your code support? Which ones are
more likely? How hard will it be to
support them when the time comes?
Dare you open the box?

 Topic 12 Tracer Bullets

Ready, fire, aim…

 Anon
We often talk about hitting targets when we develop
software. We’re not actually firing anything at the
shooting range, but it’s still a useful and very visual
metaphor. In particular, it’s interesting to consider how
to hit a target in a complex and shifting world.

The answer, of course, depends on the nature of the
device you’re aiming with. With many you only get one
chance to aim, and then get to see if you hit the
bullseye or not. But there’s a better way.

You know all those movies, TV shows, and video
games where people are shooting machine guns? In
these scenes, you’ll often see the path of bullets as
bright streaks in the air. These streaks come from tracer
bullets.

Tracer bullets are loaded at intervals alongside regular
ammunition. When they’re fired, their phosphorus
ignites and leaves a pyrotechnic trail from the gun to
whatever they hit. If the tracers are hitting the target,
then so are the regular bullets. Soldiers use these tracer
rounds to refine their aim: it’s pragmatic, real-time
feedback under actual conditions.

That same principle applies to projects, particularly
when you’re building something that hasn’t been built
before. We use the term tracer bullet development to

visually illustrate the need for immediate feedback
under actual conditions with a moving goal.

Like the gunners, you’re trying to hit a target in the
dark. Because your users have never seen a system like
this before, their requirements may be vague. Because
you may be using algorithms, techniques, languages, or
libraries you aren’t familiar with, you face a large
number of unknowns. And because projects take time
to complete, you can pretty much guarantee the
environment you’re working in will change before
you’re done.

The classic response is to specify the system to death.
Produce reams of paper itemizing every requirement,
tying down every unknown, and constraining the
environment. Fire the gun using dead reckoning. One
big calculation up front, then shoot and hope.

Pragmatic Programmers, however, tend to prefer using
the software equivalent of tracer bullets.

CODE THAT GLOWS IN THE DARK
Tracer bullets work because they operate in the same
environment and under the same constraints as the real
bullets. They get to the target fast, so the gunner gets
immediate feedback. And from a practical standpoint
they’re a relatively cheap solution.

To get the same effect in code, we look for something
that gets us from a requirement to some aspect of the
final system quickly, visibly, and repeatably.

Look for the important requirements, the ones that
define the system. Look for the areas where you have
doubts, and where you see the biggest risks. Then
prioritize your development so that these are the first
areas you code.

Tip 20 Use Tracer Bullets to Find the Target

In fact, given the complexity of today’s project setup,
with swarms of external dependencies and tools, tracer
bullets become even more important. For us, the very
first tracer bullet is simply create the project, add a
“hello world!,” and make sure it compiles and runs.
Then we look for areas of uncertainty in the overall
application and add the skeleton needed to make it
work.

Have a look at the following diagram. This system has
five architectural layers. We have some concerns about
how they’d integrate, so we look for a simple feature
that lets us exercise them together. The diagonal line
shows the path that feature takes through the code. To
make it work, we just have to implement the solidly
shaded areas in each layer: the stuff with the squiggles
will be done later.

We once undertook a complex client-server database
marketing project. Part of its requirement was the
ability to specify and execute temporal queries. The

servers were a range of relational and specialized
databases. The client UI, written in random language A,
used a set of libraries written in a different language to
provide an interface to the servers. The user’s query
was stored on the server in a Lisp-like notation before
being converted to optimized SQL just prior to
execution. There were many unknowns and many
different environments, and no one was too sure how
the UI should behave.

This was a great opportunity to use tracer code. We
developed the framework for the front end, libraries for
representing the queries, and a structure for converting
a stored query into a database-specific query. Then we
put it all together and checked that it worked. For that
initial build, all we could do was submit a query that
listed all the rows in a table, but it proved that the UI
could talk to the libraries, the libraries could serialize
and unserialize a query, and the server could generate
SQL from the result. Over the following months we
gradually fleshed out this basic structure, adding new
functionality by augmenting each component of the
tracer code in parallel. When the UI added a new query
type, the library grew and the SQL generation was
made more sophisticated.

Tracer code is not disposable: you write it for keeps. It
contains all the error checking, structuring,
documentation, and self-checking that any piece of
production code has. It simply is not fully functional.
However, once you have achieved an end-to-end
connection among the components of your system, you
can check how close to the target you are, adjusting if
necessary. Once you’re on target, adding functionality
is easy.

Tracer development is consistent with the idea that a
project is never finished: there will always be changes
required and functions to add. It is an incremental
approach.

The conventional alternative is a kind of heavy
engineering approach: code is divided into modules,
which are coded in a vacuum. Modules are combined
into subassemblies, which are then further combined,
until one day you have a complete application. Only
then can the application as a whole be presented to the
user and tested.

The tracer code approach has many advantages:
Users get to see something working early
If you have successfully
communicated what you are doing
(see Topic 52, Delight Your
Users), your users will know they
are seeing something immature.
They won’t be disappointed by a
lack of functionality; they’ll be
ecstatic to see some visible
progress toward their system.
They also get to contribute as the
project progresses, increasing
their buy-in. These same users
will likely be the people who’ll
tell you how close to the target
each iteration is.

Developers build a structure to work in
The most daunting piece of paper
is the one with nothing written on
it. If you have worked out all the
end-to-end interactions of your
application, and have embodied
them in code, then your team
won’t need to pull as much out of
thin air. This makes everyone
more productive, and encourages
consistency.

You have an integration platform
As the system is connected end-
to-end, you have an environment

to which you can add new pieces
of code once they have been unit-
tested. Rather than attempting a
big-bang integration, you’ll be
integrating every day (often many
times a day). The impact of each
new change is more apparent, and
the interactions are more limited,
so debugging and testing are faster
and more accurate.

You have something to demonstrate
Project sponsors and top brass
have a tendency to want to see
demos at the most inconvenient
times. With tracer code, you’ll
always have something to show
them.
You have a better feel for progress
In a tracer code development,
developers tackle use cases one by
one. When one is done, they move
to the next. It is far easier to
measure performance and to
demonstrate progress to your user.
Because each individual
development is smaller, you avoid
creating those monolithic blocks
of code that are reported as 95%
complete week after week.

TRACER BULLETS DON’T ALWAYS HIT
THEIR TARGET
Tracer bullets show what you’re hitting. This may not
always be the target. You then adjust your aim until
they’re on target. That’s the point.

It’s the same with tracer code. You use the technique in
situations where you’re not 100% certain of where
you’re going. You shouldn’t be surprised if your first

couple of attempts miss: the user says “that’s not what I
meant,’’ or data you need isn’t available when you need
it, or performance problems seem likely. So change
what you’ve got to bring it nearer the target, and be
thankful that you’ve used a lean development
methodology; a small body of code has low inertia—it
is easy and quick to change. You’ll be able to gather
feedback on your application and generate a new, more
accurate version quickly and cheaply. And because
every major application component is represented in
your tracer code, your users can be confident that what
they’re seeing is based on reality, not just a paper
specification.

TRACER CODE VERSUS PROTOTYPING
You might think that this tracer code concept is nothing
more than prototyping under an aggressive name. There
is a difference. With a prototype, you’re aiming to
explore specific aspects of the final system. With a true
prototype, you will throw away whatever you lashed
together when trying out the concept, and recode it
properly using the lessons you’ve learned.

For example, say you’re producing an application that
helps shippers determine how to pack odd-sized boxes
into containers. Among other problems, the user
interface needs to be intuitive and the algorithms you
use to determine optimal packing are very complex.

You could prototype a user interface for your end users
in a UI tool. You code only enough to make the
interface responsive to user actions. Once they’ve
agreed to the layout, you might throw it away and
recode it, this time with the business logic behind it,
using the target language. Similarly, you might want to
prototype a number of algorithms that perform the
actual packing. You might code functional tests in a
high-level, forgiving language such as Python, and
code low-level performance tests in something closer to
the machine. In any case, once you’d made your
decision, you’d start again and code the algorithms in

their final environment, interfacing to the real world.
This is prototyping, and it is very useful.

The tracer code approach addresses a different problem.
You need to know how the application as a whole
hangs together. You want to show your users how the
interactions will work in practice, and you want to give
your developers an architectural skeleton on which to
hang code. In this case, you might construct a tracer
consisting of a trivial implementation of the container
packing algorithm (maybe something like first-come,
first-served) and a simple but working user interface.
Once you have all the components in the application
plumbed together, you have a framework to show your
users and your developers. Over time, you add to this
framework with new functionality, completing stubbed
routines. But the framework stays intact, and you know
the system will continue to behave the way it did when
your first tracer code was completed.

The distinction is important enough to warrant
repeating. Prototyping generates disposable code.
Tracer code is lean but complete, and forms part of the
skeleton of the final system. Think of prototyping as
the reconnaissance and intelligence gathering that takes
place before a single tracer bullet is fired.

RELATED SECTIONS INCLUDE

Topic 13, Prototypes and Post-it Notes

Topic 27, Don’t Outrun Your Headlights

Topic 40, Refactoring

Topic 49, Pragmatic Teams

Topic 50, Coconuts Don’t Cut It

Topic 51, Pragmatic Starter Kit

Topic 52, Delight Your Users

 Topic 13 Prototypes and Post-it Notes

Many industries use prototypes to try out specific ideas;
prototyping is much cheaper than full-scale production.
Car makers, for example, may build many different
prototypes of a new car design. Each one is designed to
test a specific aspect of the car—the aerodynamics,
styling, structural characteristics, and so on. Old school
folks might use a clay model for wind tunnel testing,
maybe a balsa wood and duct tape model will do for the
art department, and so on. The less romantic will do
their modeling on a computer screen or in virtual
reality, reducing costs even further. In this way, risky or
uncertain elements can be tried out without committing
to building the real item.

We build software prototypes in the same fashion, and
for the same reasons—to analyze and expose risk, and
to offer chances for correction at a greatly reduced cost.
Like the car makers, we can target a prototype to test
one or more specific aspects of a project.

We tend to think of prototypes as code-based, but they
don’t always have to be. Like the car makers, we can
build prototypes out of different materials. Post-it notes
are great for prototyping dynamic things such as
workflow and application logic. A user interface can be
prototyped as a drawing on a whiteboard, as a
nonfunctional mock-up drawn with a paint program, or
with an interface builder.

Prototypes are designed to answer just a few questions,
so they are much cheaper and faster to develop than
applications that go into production. The code can
ignore unimportant details—unimportant to you at the

moment, but probably very important to the user later
on. If you are prototyping a UI, for instance, you can
get away with incorrect results or data. On the other
hand, if you’re just investigating computational or
performance aspects, you can get away with a pretty
poor UI, or perhaps even no UI at all.

But if you find yourself in an environment where you
cannot give up the details, then you need to ask
yourself if you are really building a prototype at all.
Perhaps a tracer bullet style of development would be
more appropriate in this case (see Topic 12, Tracer
Bullets).

THINGS TO PROTOTYPE
What sorts of things might you choose to investigate
with a prototype? Anything that carries risk. Anything
that hasn’t been tried before, or that is absolutely
critical to the final system. Anything unproven,
experimental, or doubtful. Anything you aren’t
comfortable with. You can prototype:

Architecture

New functionality in an existing system

Structure or contents of external data

Third-party tools or components

Performance issues

User interface design

Prototyping is a learning experience. Its value lies not
in the code produced, but in the lessons learned. That’s
really the point of prototyping.

Tip 21 Prototype to Learn

HOW TO USE PROTOTYPES
When building a prototype, what details can you
ignore?

Correctness
You may be able to use dummy
data where appropriate.

Completeness
The prototype may function only
in a very limited sense, perhaps
with only one preselected piece of
input data and one menu item.
Robustness
Error checking is likely to be
incomplete or missing entirely. If
you stray from the predefined
path, the prototype may crash and
burn in a glorious display of
pyrotechnics. That’s okay.

Style
Prototype code shouldn’t have
much in the way of comments or
documentation (although you may
produce reams of documentation
as a result of your experience with
the prototype).

Prototypes gloss over details, and focus in on specific
aspects of the system being considered, so you may
want to implement them using a high-level scripting
language—higher than the rest of the project (maybe a
language such as Python or Ruby), as these languages
can get out of your way. You may choose to continue to
develop in the language used for the prototype, or you
can switch; after all, you’re going to throw the
prototype away anyway.

To prototype user interfaces, use a tool that lets you
focus on the appearance and/or interactions without
worrying about code or markup.

Scripting languages also work well as the “glue’’ to
combine low-level pieces into new combinations.
Using this approach, you can rapidly assemble existing
components into new configurations to see how things
work.

PROTOTYPING ARCHITECTURE
Many prototypes are constructed to model the entire
system under consideration. As opposed to tracer
bullets, none of the individual modules in the prototype
system need to be particularly functional. In fact, you
may not even need to code in order to prototype
architecture—you can prototype on a whiteboard, with
Post-it notes or index cards. What you are looking for is
how the system hangs together as a whole, again
deferring details. Here are some specific areas you may
want to look for in the architectural prototype:

Are the responsibilities of the major areas well defined and appropriate?

Are the collaborations between major components well defined?

Is coupling minimized?

Can you identify potential sources of duplication?

Are interface definitions and constraints acceptable?

Does every module have an access path to the data it needs during

execution? Does it have that access when it needs it?

This last item tends to generate the most surprises and
the most valuable results from the prototyping
experience.

HOW NOT TO USE PROTOTYPES

Before you embark on any code-based prototyping,
make sure that everyone understands that you are
writing disposable code. Prototypes can be deceptively
attractive to people who don’t know that they are just
prototypes. You must make it very clear that this code is
disposable, incomplete, and unable to be completed.

It’s easy to become misled by the apparent
completeness of a demonstrated prototype, and project
sponsors or management may insist on deploying the
prototype (or its progeny) if you don’t set the right
expectations. Remind them that you can build a great
prototype of a new car out of balsa wood and duct tape,
but you wouldn’t try to drive it in rush-hour traffic!

If you feel there is a strong possibility in your
environment or culture that the purpose of prototype
code may be misinterpreted, you may be better off with
the tracer bullet approach. You’ll end up with a solid
framework on which to base future development.

Properly used prototypes can save you huge amounts of
time, money, and pain by identifying and correcting
potential problem spots early in the development cycle
—the time when fixing mistakes is both cheap and
easy.

RELATED SECTIONS INCLUDE

Topic 12, Tracer Bullets

Topic 14, Domain Languages

Topic 17, Shell Games

Topic 27, Don’t Outrun Your Headlights

Topic 37, Listen to Your Lizard Brain

Topic 45, The Requirements Pit

Topic 52, Delight Your Users

EXERCISES
Exercise 3 (possible answer)

Marketing would like to sit down and brainstorm a few
web page designs with you. They are thinking of
clickable image maps to take you to other pages, and so
on. But they can’t decide on a model for the image—
maybe it’s a car, or a phone, or a house. You have a list
of target pages and content; they’d like to see a few
prototypes. Oh, by the way, you have 15 minutes. What
tools might you use?

 Topic 14 Domain Languages

The limits of language are the limits of one’s world.

 Ludwig Wittgenstein
Computer languages influence how you think about a
problem, and how you think about communicating.
Every language comes with a list of features:
buzzwords such as static versus dynamic typing, early
versus late binding, functional versus OO, inheritance
models, mixins, macros—all of which may suggest or
obscure certain solutions. Designing a solution with
C++ in mind will produce different results than a
solution based on Haskell-style thinking, and vice
versa. Conversely, and we think more importantly, the
language of the problem domain may also suggest a
programming solution.

We always try to write code using the vocabulary of the
application domain (see Maintain a Glossary). In some
cases, Pragmatic Programmers can go to the next level
and actually program using the vocabulary, syntax, and
semantics—the language—of the domain.

Tip 22 Program Close to the Problem Domain

SOME REAL-WORLD DOMAIN LANGUAGES
Let’s look at a few examples where folks have done
just that.
RSpec

RSpec[19] is a testing library for Ruby. It inspired
versions for most other modern languages. A test in
RSpec is intended to reflect the behavior you expect
from your code.

 describe BowlingScore do
 it “totals 12 if you score 3 four times” do
 score = BowlingScore.new
 4.times { score.add_pins(3) }
 expect(score.total).to eq(12)
 end
 end

Cucumber

Cucumber[20] is programming-language neutral way of
specifying tests. You run the tests using a version of
Cucumber appropriate to the language you’re using. In
order to support the natural-language like syntax, you
also have to write specific matchers that recognize
phrases and extract parameters for the tests.

 Feature : Scoring

 Background :
 Given an empty scorecard

 Scenario : bowling a lot of 3s
 Given I throw a 3
 And I throw a 3
 And I throw a 3
 And I throw a 3
 Then the score should be 12

Cucumber tests were intended to be read by the
customers of the software (although that happens fairly
rarely in practice; the following aside considers why
that might be).

Why Don’t Many Business Users Read Cucumber
Features?

One of the reasons that the classic gather requirements,
design, code, ship approach doesn’t work is that it is
anchored by the concept that we know what the
requirements are. But we rarely do. Your business users
will have a vague idea of what they want to achieve,
but they neither know nor care about the details. That’s
part of our value: we intuit intent and convert it to
code.

So when you force a business person to sign off on a
requirements document, or get them to agree to a set of
Cucumber features, you’re doing the equivalent of
getting them to check the spelling in an essay written in
Sumerian. They’ll make some random changes to save
face and sign it off to get you out of their office.

Give them code that runs, however, and they can play
with it. That’s where their real needs will surface.

Phoenix Routes

Many web frameworks have a routing facility, mapping
incoming HTTP requests onto handler functions in the
code. Here’s an example from Phoenix.[21]

 scope “/”, HelloPhoenix do
 pipe_through :browser # Use the default browser stack

 get “/”, PageController, :index
 resources “/users” , UserController
 end

This says that requests starting “/” will be run through a
series of filters appropriate for browsers. A request to
“/” itself will be handled by the index function in the
PageController module. The UsersController implements the
functions needed to manage a resource accessible via
the url /users.

Ansible

Ansible[22] is a tool that configures software, typically
on a bunch of remote servers. It does this by reading a
specification that you provide, then doing whatever is
needed on the servers to make them mirror that spec.
The specification can be written in YAML,[23] a
language that builds data structures from text
descriptions:

 –
 - name: install nginx
 apt: name=nginx state=latest

 - name: ensure nginx is running (and enable it at boot)

 service: name=nginx state=started enabled=yes

 - name: write the nginx config file
 template: src=templates/nginx.conf.j2 dest=/etc/nginx/nginx.conf
 notify:
 - restart nginx

This example ensures that the latest version of nginx is
installed on my servers, that it is started by default, and
that it uses a configuration file that you’ve provided.

CHARACTERISTICS OF DOMAIN
LANGUAGES
Let’s look at these examples more closely.

RSpec and the Phoenix router are written in their host
languages (Ruby and Elixir). They employ some fairly
devious code, including metaprogramming and macros,
but ultimately they are compiled and run as regular
code.

Cucumber tests and Ansible configurations are written
in their own languages. A Cucumber test is converted
into code to be run or into a datastructure, whereas
Ansible specs are always converted into a data structure
that is run by Ansible itself.

As a result, RSpec and the router code are embedded
into the code you run: they are true extensions to your
code’s vocabulary. Cucumber and Ansible are read by
code and converted into some form the code can use.

We call RSpec and the router examples of internal
domain languages, while Cucumber and Ansible use
external languages.

TRADE-OFFS BETWEEN INTERNAL AND
EXTERNAL LANGUAGES
In general, an internal domain language can take
advantage of the features of its host language: the
domain language you create is more powerful, and that
power comes for free. For example, you could use
some Ruby code to create a bunch of RSpec tests

automatically. In this case we can test scores where
there are no spares or strikes:

 describe BowlingScore do
 (0..4).each do |pins|
 (1..20).each do |throws|
 target = pins * throws

 it “totals #{target} if you score #{pins} #{throws} times” do
 score = BowlingScore.new
 throws.times { score.add_pins(pins) }
 expect(score.total).to eq(target)
 end
 end
 end
 end

That’s 100 tests you just wrote. Take the rest of the day
off.

The downside of internal domain languages is that
you’re bound by the syntax and semantics of that
language. Although some languages are remarkably
flexible in this regards, you’re still forced to
compromise between the language you want and the
language you can implement.

Ultimately, whatever you come up with must still be
valid syntax in your target language. Languages with
macros (such as Elixir, Clojure, and Crystal) gives you
a little more flexibility, but ultimately syntax is syntax.

External languages have no such restrictions. As long
as you can write a parser for the language, you’re good
to go. Sometimes you can use someone else’s parser (as
Ansible did by using YAML), but then you’re back to
making a compromise.

Writing a parser probably means adding new libraries
and possibly tools to your application. And writing a
good parser is not a trivial job. But, if you’re feeling
stout of heart, you could look at parser generators such
as bison or ANTLR, and parsing frameworks such as
the many PEG parsers out there.

Our suggestion is fairly simple: don’t spend more effort
than you save. Writing a domain language adds some
cost to your project, and you’ll need to be convinced
that there are offsetting savings (potentially in the long
term).

In general, use off-the-shelf external languages (such as
YAML, JSON, or CSV) if you can. If not, look at
internal languages. We’d recommend using external
languages only in cases where your language will be
written by the users of your application.

AN INTERNAL DOMAIN LANGUAGE ON THE
CHEAP
Finally, there’s a cheat for creating internal domain
languages if you don’t mind the host language syntax
leaking through. Don’t do a bunch of
metaprogramming. Instead, just write functions to do
the work. In fact, this is pretty much what RSpec does:

 describe BowlingScore do
 it “totals 12 if you score 3 four times” do
 score = BowlingScore.new
 4.times { score.add_pins(3) }
 expect(score.total).to eq(12)
 end
 end

In this code, describe, it, expect, to, and eq are just Ruby
methods. There’s a little plumbing behind the scenes in
terms of how objects are passed around, but it’s all just
code. We’ll explore that a little in the exercises.

RELATED SECTIONS INCLUDE

Topic 8, The Essence of Good Design

Topic 13, Prototypes and Post-it Notes

Topic 32, Configuration

CHALLENGES

Could some of the requirements of
your current project be expressed in a
domain-specific language? Would it be
possible to write a compiler or
translator that could generate most of
the code required?

If you decide to adopt mini-languages
as a way of programming closer to the
problem domain, you’re accepting that
some effort will be required to
implement them. Can you see ways in
which the framework you develop for
one project can be reused in others?

EXERCISES
Exercise 4 (possible answer)

We want to implement a mini-language to control a
simple turtle-graphics system. The language consists of
single-letter commands, some followed by a single
number. For example, the following input would draw a
rectangle:

 P 2 # select pen 2
 D # pen down
 W 2 # draw west 2cm
 N 1 # then north 1
 E 2 # then east 2
 S 1 # then back south
 U # pen up

Implement the code that parses this language. It should
be designed so that it is simple to add new commands.

Exercise 5 (possible answer)

In the previous exercise we implemented a parser for
the drawing language—it was an external domain
language. Now implement it again as an internal
language. Don’t do anything clever: just write a
function for each of the commands. You may have to
change the names of the commands to lower case, and
maybe to wrap them inside something to provide some
context.

Exercise 6 (possible answer)

Design a BNF grammar to parse a time specification.
All of the following examples should be accepted:

 4pm, 7:38pm, 23:42, 3:16, 3:16am

Exercise 7 (possible answer)

Implement a parser for the BNF grammar in the
previous exercise using a PEG parser generator in the
language of your choice. The output should be an
integer containing the number of minutes past
midnight.

Exercise 8 (possible answer)

Implement the time parser using a scripting language
and regular expressions.

 Topic 15 Estimating

The Library of Congress in Washington, DC, currently
has about 75 terabytes of digital information online.
Quick! How long will it take to send all that
information over a 1Gbps network? How much storage
will you need for a million names and addresses? How
long does it take to compress 100Mb of text? How
many months will it take to deliver your project?

At one level, these are all meaningless questions—they
are all missing information. And yet they can all be
answered, as long as you are comfortable estimating.
And, in the process of producing an estimate, you’ll
come to understand more about the world your
programs inhabit.

By learning to estimate, and by developing this skill to
the point where you have an intuitive feel for the
magnitudes of things, you will be able to show an
apparent magical ability to determine their feasibility.
When someone says “we’ll send the backup over a
network connection to S3,” you’ll be able to know
intuitively whether this is practical. When you’re
coding, you’ll be able to know which subsystems need
optimizing and which ones can be left alone.

Tip 23 Estimate to Avoid Surprises

As a bonus, at the end of this section we’ll reveal the
single correct answer to give whenever anyone asks
you for an estimate.

HOW ACCURATE IS ACCURATE ENOUGH?
To some extent, all answers are estimates. It’s just that
some are more accurate than others. So the first
question you have to ask yourself when someone asks
you for an estimate is the context in which your answer
will be taken. Do they need high accuracy, or are they
looking for a ballpark figure?

One of the interesting things about estimating is that the
units you use make a difference in the interpretation of
the result. If you say that something will take about 130
working days, then people will be expecting it to come
in pretty close. However, if you say “Oh, about six
months,” then they know to look for it any time
between five and seven months from now. Both
numbers represent the same duration, but “130 days”
probably implies a higher degree of accuracy than you
feel. We recommend that you scale time estimates as
follows:

Duration

Quote estimate in

1–15 days

Days

3–6 weeks

Weeks

8–20 weeks

Months

20+ weeks

Think hard before giving an estimate

So, if after doing all the necessary work, you decide
that a project will take 125 working days (25 weeks),
you might want to deliver an estimate of “about six
months.”

The same concepts apply to estimates of any quantity:
choose the units of your answer to reflect the accuracy
you intend to convey.

WHERE DO ESTIMATES COME FROM?
All estimates are based on models of the problem. But
before we get too deeply into the techniques of building
models, we have to mention a basic estimating trick
that always gives good answers: ask someone who’s
already done it. Before you get too committed to model
building, cast around for someone who’s been in a
similar situation in the past. See how their problem got
solved. It’s unlikely you’ll ever find an exact match, but
you’d be surprised how many times you can
successfully draw on others’ experiences.
Understand What’s Being Asked

The first part of any estimation exercise is building an
understanding of what’s being asked. As well as the
accuracy issues discussed above, you need to have a
grasp of the scope of the domain. Often this is implicit
in the question, but you need to make it a habit to think
about the scope before starting to guess. Often, the
scope you choose will form part of the answer you
give: “Assuming there are no traffic accidents and
there’s gas in the car, I should be there in 20 minutes.”

Build a Model of the System

This is the fun part of estimating. From your
understanding of the question being asked, build a
rough-and-ready bare-bones mental model. If you’re
estimating response times, your model may involve a
server and some kind of arriving traffic. For a project,
the model may be the steps that your organization uses
during development, along with a very rough picture of
how the system might be implemented.

Model building can be both creative and useful in the
long term. Often, the process of building the model
leads to discoveries of underlying patterns and
processes that weren’t apparent on the surface. You
may even want to reexamine the original question:
“You asked for an estimate to do X. However, it looks
like Y, a variant of X, could be done in about half the
time, and you lose only one feature.”

Building the model introduces inaccuracies into the
estimating process. This is inevitable, and also
beneficial. You are trading off model simplicity for
accuracy. Doubling the effort on the model may give
you only a slight increase in accuracy. Your experience
will tell you when to stop refining.
Break the Model into Components

Once you have a model, you can decompose it into
components. You’ll need to discover the mathematical
rules that describe how these components interact.
Sometimes a component contributes a single value that
is added into the result. Some components may supply
multiplying factors, while others may be more
complicated (such as those that simulate the arrival of
traffic at a node).

You’ll find that each component will typically have
parameters that affect how it contributes to the overall
model. At this stage, simply identify each parameter.

Give Each Parameter a Value

Once you have the parameters broken out, you can go
through and assign each one a value. You expect to
introduce some errors in this step. The trick is to work
out which parameters have the most impact on the
result, and concentrate on getting them about right.
Typically, parameters whose values are added into a
result are less significant than those that are multiplied
or divided. Doubling a line speed may double the
amount of data received in an hour, while adding a 5ms
transit delay will have no noticeable effect.

You should have a justifiable way of calculating these
critical parameters. For the queuing example, you
might want to measure the actual transaction arrival
rate of the existing system, or find a similar system to
measure. Similarly, you could measure the current time
taken to serve a request, or come up with an estimate
using the techniques described in this section. In fact,
you’ll often find yourself basing an estimate on other
subestimates. This is where your largest errors will
creep in.

Calculate the Answers

Only in the simplest of cases will an estimate have a
single answer. You might be happy to say “I can walk
five cross-town blocks in 15 minutes.” However, as the
systems get more complex, you’ll want to hedge your
answers. Run multiple calculations, varying the values
of the critical parameters, until you work out which
ones really drive the model. A spreadsheet can be a big
help. Then couch your answer in terms of these
parameters. “The response time is roughly three
quarters of a second if the system has SSDs and 32GB
of memory, and one second with 16GB memory.”
(Notice how “three quarters of a second” conveys a
different feeling of accuracy than 750ms.)

During the calculation phase, you get answers that
seem strange. Don’t be too quick to dismiss them. If
your arithmetic is correct, your understanding of the
problem or your model is probably wrong. This is
valuable information.

Keep Track of Your Estimating Prowess

We think it’s a great idea to record your estimates so
you can see how close you were. If an overall estimate
involved calculating subestimates, keep track of these
as well. Often you’ll find your estimates are pretty
good—in fact, after a while, you’ll come to expect this.

When an estimate turns out wrong, don’t just shrug and
walk away—find out why. Maybe you chose some
parameters that didn’t match the reality of the problem.

Maybe your model was wrong. Whatever the reason,
take some time to uncover what happened. If you do,
your next estimate will be better.

ESTIMATING PROJECT SCHEDULES
Normally you’ll be asked to estimate how long
something will take. If that “something” is complex,
the estimate can be very difficult to produce. In this
section, we’ll look at two techniques for reducing that
uncertainty.

Painting the Missile

“How long will it take to paint the house?”

“Well, if everything goes right, and this paint has the
coverage they claim, it might be as few as 10 hours. But
that’s unlikely: I’d guess a more realistic figure is
closer to 18 hours. And, of course, if the weather turns
bad, that could push it out to 30 or more.”

That’s how people estimate in the real world. Not with
a single number (unless you force them to give you
one) but with a range of scenarios.

When the U.S. Navy needed to plan the Polaris
submarine project, they adopted this style of estimating
with a methodology they called the Program
Evaluation Review Technique, or PERT.

Every PERT task has an optimistic, a most likely, and a
pessimistic estimate. The tasks are arranged into a
dependency network, and then you use some simple
statistics to identify likely best and worst times for the
overall project.

Using a range of values like this is a great way to avoid
one of the most common causes of estimation error:
padding a number because you’re unsure. Instead, the
statistics behind PERT spreads the uncertainty out for
you, giving you better estimations of the whole project.

However, we’re not big fans of this. People tend to
produce wall-sized charts of all the tasks in a project,
and implicitly believe that, just because they used a
formula, they have an accurate estimate. The chances
are they don’t, because they have never done this
before.

Eating the Elephant

We find that often the only way to determine the
timetable for a project is by gaining experience on that
same project. This needn’t be a paradox if you practice
incremental development, repeating the following steps
with very thin slices of functionality:

Check requirements

Analyze risk (and prioritize riskiest items earlier)

Design, implement, integrate

Validate with the users

Initially, you may have only a vague idea of how many
iterations will be required, or how long they may be.
Some methods require you to nail this down as part of
the initial plan; however, for all but the most trivial of
projects this is a mistake. Unless you are doing an
application similar to a previous one, with the same
team and the same technology, you’d just be guessing.

So you complete the coding and testing of the initial
functionality and mark this as the end of the first
iteration. Based on that experience, you can refine your
initial guess on the number of iterations and what can
be included in each. The refinement gets better and
better each time, and confidence in the schedule grows
along with it. This kind of estimating is often done
during the team’s review at the end of each iterative
cycle.

That’s also how the old joke says to eat an elephant:
one bite at a time.

Tip 24 Iterate the Schedule with the Code

This may not be popular with management, who
typically want a single, hard-and-fast number before the
project even starts. You’ll have to help them understand
that the team, their productivity, and the environment
will determine the schedule. By formalizing this, and
refining the schedule as part of each iteration, you’ll be
giving them the most accurate scheduling estimates you
can.

WHAT TO SAY WHEN ASKED FOR AN
ESTIMATE
You say “I’ll get back to you.”

You almost always get better results if you slow the
process down and spend some time going through the
steps we describe in this section. Estimates given at the
coffee machine will (like the coffee) come back to
haunt you.

RELATED SECTIONS INCLUDE

Topic 7, Communicate!

Topic 39, Algorithm Speed

CHALLENGES

Start keeping a log of your estimates. For each, track how accurate you

turned out to be. If your error was greater than 50%, try to find out where

your estimate went wrong.

EXERCISES
Exercise 9 (possible answer)

You are asked “Which has a higher bandwidth: a 1Gbps
net connection or a person walking between two
computers with a full 1TB of storage device in their
pocket?’’ What constraints will you put on your answer
to ensure that the scope of your response is correct?
(For example, you might say that the time taken to
access the storage device is ignored.)

Exercise 10 (possible answer)

So, which has the higher bandwidth?
Footnotes

[13]
To paraphrase the old Arlen/Mercer
song…

[14]
Or, perhaps, to keep your sanity,
every 10th time…

[15]
https://github.com/OAI/OpenAPI-
Specification

[16]
In reality, this is naive. Unless you
are remarkably lucky, most real-
world requirements changes will
affect multiple functions in the
system. However, if you analyze the
change in terms of functions, each
functional change should still ideally
affect just one module.

[17]
In fact, this book is written in
Markdown, and typeset directly
from the Markdown source.

[18]
Take a nonlinear, or chaotic, system
and apply a small change to one of
its inputs. You may get a large and
often unpredictable result. The

https://github.com/OAI/OpenAPI-Specification

clichéd butterfly flapping its wings
in Tokyo could be the start of a
chain of events that ends up
generating a tornado in Texas. Does
this sound like any projects you
know?

[19]
https://rspec.info

[20]
https://cucumber.io/

[21]
https://phoenixframework.org/

[22]
https://www.ansible.com/

[23]
https://yaml.org/

Copyright © 2020 Pearson Education, Inc.

https://rspec.info/
https://cucumber.io/
https://phoenixframework.org/
https://www.ansible.com/
https://yaml.org/

Chapter 3

The Basic Tools

Every maker starts their journey with a basic set of
good-quality tools. A woodworker might need rules,
gauges, a couple of saws, some good planes, fine
chisels, drills and braces, mallets, and clamps. These
tools will be lovingly chosen, will be built to last, will
perform specific jobs with little overlap with other
tools, and, perhaps most importantly, will feel right in
the budding woodworker’s hands.

Then begins a process of learning and adaptation. Each
tool will have its own personality and quirks, and will
need its own special handling. Each must be sharpened
in a unique way, or held just so. Over time, each will
wear according to use, until the grip looks like a mold
of the woodworker’s hands and the cutting surface
aligns perfectly with the angle at which the tool is held.
At this point, the tools become conduits from the
maker’s brain to the finished product—they have
become extensions of their hands. Over time, the
woodworker will add new tools, such as biscuit cutters,
laser-guided miter saws, dovetail jigs—all wonderful
pieces of technology. But you can bet that they’ll be
happiest with one of those original tools in hand,
feeling the plane sing as it slides through the wood.

Tools amplify your talent. The better your tools, and the
better you know how to use them, the more productive
you can be. Start with a basic set of generally
applicable tools. As you gain experience, and as you
come across special requirements, you’ll add to this

basic set. Like the maker, expect to add to your toolbox
regularly. Always be on the lookout for better ways of
doing things. If you come across a situation where you
feel your current tools can’t cut it, make a note to look
for something different or more powerful that would
have helped. Let need drive your acquisitions.

Many new programmers make the mistake of adopting
a single power tool, such as a particular integrated
development environment (IDE), and never leave its
cozy interface. This really is a mistake. You need to be
comfortable beyond the limits imposed by an IDE. The
only way to do this is to keep the basic tool set sharp
and ready to use.

In this chapter we’ll talk about investing in your own
basic toolbox. As with any good discussion on tools,
we’ll start (in Topic 16, The Power of Plain Text) by
looking at your raw materials, the stuff you’ll be
shaping. From there we’ll move to the workbench, or in
our case the computer. How can you use your computer
to get the most out of the tools you use? We’ll discuss
this in Topic 17, Shell Games. Now that we have
material and a bench to work on, we’ll turn to the tool
you’ll probably use more than any other, your editor. In
Topic 18, Power Editing, we’ll suggest ways of making
you more efficient.

To ensure that we never lose any of our precious work,
we should always use a Topic 19, Version Control
system—even for personal things such as recipes or
notes. And, since Murphy was really an optimist after
all, you can’t be a great programmer until you become
highly skilled at Topic 20, Debugging.

You’ll need some glue to bind much of the magic
together. We discuss some possibilities in Topic 21,
Text Manipulation.

Finally, the palest ink is still better than the best
memory. Keep track of your thoughts and your history,
as we describe in Topic 22, Engineering Daybooks.

Spend time learning to use these tools, and at some
point you’ll be surprised to discover your fingers
moving over the keyboard, manipulating text without
conscious thought. The tools will have become
extensions of your hands.

 Topic 16 The Power of Plain Text

As Pragmatic Programmers, our base material isn’t
wood or iron, it’s knowledge. We gather requirements
as knowledge, and then express that knowledge in our
designs, implementations, tests, and documents. And
we believe that the best format for storing knowledge
persistently is plain text. With plain text, we give
ourselves the ability to manipulate knowledge, both
manually and programmatically, using virtually every
tool at our disposal.

The problem with most binary formats is that the
context necessary to understand the data is separate
from the data itself. You are artificially divorcing the
data from its meaning. The data may as well be
encrypted; it is absolutely meaningless without the
application logic to parse it. With plain text, however,
you can achieve a self-describing data stream that is
independent of the application that created it.

WHAT IS PLAIN TEXT?
Plain text is made up of printable characters in a form
that conveys information. It can be as simple as a
shopping list:

 * milk
 * lettuce
 * coffee

or as complex as the source of this book (yes, it’s in
plain text, much to the chagrin of the publisher, who
wanted us to use a word processor).

The information part is important. The following is not
useful plain text:

 hlj;uijn bfjxrrctvh jkni’pio6p7gu;vh bjxrdi5rgvhj

Neither is this:

 Field19=467abe

The reader has no idea what the significance of 467abe
may be. We like our plain text to be understandable to
humans.

Tip 25 Keep Knowledge in Plain Text

THE POWER OF TEXT
Plain text doesn’t mean that the text is unstructured;
HTML, JSON, YAML, and so on are all plain text. So
are the majority of the fundamental protocols on the
net, such as HTTP, SMTP, IMAP, and so on. And that’s
for some good reasons:

Insurance against obsolescence

Leverage existing tools

Easier testing

Insurance Against Obsolescence

Human-readable forms of data, and self-describing
data, will outlive all other forms of data and the
applications that created them. Period. As long as the
data survives, you will have a chance to be able to use
it—potentially long after the original application that
wrote it is defunct.

You can parse such a file with only partial knowledge
of its format; with most binary files, you must know all
the details of the entire format in order to parse it
successfully.

Consider a data file from some legacy system that you
are given.[24] You know little about the original
application; all that’s important to you is that it
maintained a list of clients’ Social Security numbers,
which you need to find and extract. Among the data,
you see

 <FIELD10>123-45-6789</FIELD10>
 …
 <FIELD10>567-89-0123</FIELD10>
 …
 <FIELD10>901-23-4567</FIELD10>

Recognizing the format of a Social Security number,
you can quickly write a small program to extract that

data—even if you have no information on anything else
in the file.

But imagine if the file had been formatted this way
instead:

 AC27123456789B11P
 …
 XY43567890123QTYL
 …
 6T2190123456788AM

You may not have recognized the significance of the
numbers quite as easily. This is the difference between
human readable and human understandable.

While we’re at it, FIELD10 doesn’t help much either.
Something like

 <SOCIAL-SECURITY-NO>123-45-6789</SOCIAL-SECURITY-NO>

makes the exercise a no-brainer—and ensures that the
data will outlive any project that created it.

Leverage

Virtually every tool in the computing universe, from
version control systems to editors to command-line
tools, can operate on plain text.

The Unix Philosophy

Unix is famous for being designed around the
philosophy of small, sharp tools, each intended to do
one thing well. This philosophy is enabled by using a
common underlying format—the line-oriented, plain-
text file. Databases used for system administration
(users and passwords, networking configuration, and so
on) are all kept as plain-text files. (Some systems also
maintain a binary form of certain databases as a
performance optimization. The plain-text version is
kept as an interface to the binary version.)

When a system crashes, you may be faced with only a
minimal environment to restore it (you may not be able
to access graphics drivers, for instance). Situations such
as this can really make you appreciate the simplicity of
plain text.

Plain text is also easier to search. If you can’t
remember which configuration file manages your
system backups, a quick grep -r backup /etc should tell
you.

For instance, suppose you have a production
deployment of a large application with a complex site-
specific configuration file. If this file is in plain text,
you could place it under a version control system (see
Topic 19, Version Control), so that you automatically
keep a history of all changes. File comparison tools
such as diff and fc allow you to see at a glance what
changes have been made, while sum allows you to
generate a checksum to monitor the file for accidental
(or malicious) modification.

Easier Testing

If you use plain text to create synthetic data to drive
system tests, then it is a simple matter to add, update, or
modify the test data without having to create any
special tools to do so. Similarly, plain-text output from
regression tests can be trivially analyzed with shell
commands or a simple script.

LOWEST COMMON DENOMINATOR
Even in the future of blockchain-based intelligent
agents that travel the wild and dangerous internet
autonomously, negotiating data interchange among
themselves, the ubiquitous text file will still be there. In

fact, in heterogeneous environments the advantages of
plain text can outweigh all of the drawbacks. You need
to ensure that all parties can communicate using a
common standard. Plain text is that standard.

RELATED SECTIONS INCLUDE

Topic 17, Shell Games

Topic 21, Text Manipulation

Topic 32, Configuration

CHALLENGES

Design a small address book database
(name, phone number, and so on) using
a straightforward binary representation
in your language of choice. Do this
before reading the rest of this
challenge.

Translate that
format into a
plain-text
format using
XML or
JSON.

For each
version, add a
new, variable-
length field
called
directions in
which you
might enter
directions to
each person’s
house.

What issues come up regarding
versioning and extensibility? Which
form was easier to modify? What about
converting existing data?

 Topic 17 Shell Games

Every woodworker needs a good, solid, reliable
workbench, somewhere to hold work pieces at a
convenient height while they’re being shaped. The
workbench becomes the center of the woodshop, the
maker returning to it time and time again as a piece
takes shape.

For a programmer manipulating files of text, that
workbench is the command shell. From the shell
prompt, you can invoke your full repertoire of tools,
using pipes to combine them in ways never dreamt of
by their original developers. From the shell, you can
launch applications, debuggers, browsers, editors, and
utilities. You can search for files, query the status of the
system, and filter output. And by programming the
shell, you can build complex macro commands for
activities you perform often.

For programmers raised on GUI interfaces and
integrated development environments (IDEs), this
might seem an extreme position. After all, can’t you do
everything equally well by pointing and clicking?

The simple answer is “no.’’ GUI interfaces are
wonderful, and they can be faster and more convenient
for some simple operations. Moving files, reading and
writing email, and building and deploying your project
are all things that you might want to do in a graphical
environment. But if you do all your work using GUIs,
you are missing out on the full capabilities of your
environment. You won’t be able to automate common
tasks, or use the full power of the tools available to you.
And you won’t be able to combine your tools to create

customized macro tools. A benefit of GUIs is
WYSIWYG—what you see is what you get. The
disadvantage is WYSIAYG—what you see is all you
get.

GUI environments are normally limited to the
capabilities that their designers intended. If you need to
go beyond the model the designer provided, you are
usually out of luck—and more often than not, you do
need to go beyond the model. Pragmatic Programmers
don’t just cut code, or develop object models, or write
documentation, or automate the build process—we do
all of these things. The scope of any one tool is usually
limited to the tasks that the tool is expected to perform.
For instance, suppose you need to integrate a code
preprocessor (to implement design-by-contract, or
multi-processing pragmas, or some such) into your
IDE. Unless the designer of the IDE explicitly provided
hooks for this capability, you can’t do it.

Tip 26 Use the Power of Command Shells

Gain familiarity with the shell, and you’ll find your
productivity soaring. Need to create a list of all the
unique package names explicitly imported by your Java
code? The following stores it in a file called “list’’:

sh/packages.sh

 grep ‘^import ‘ * .java |
 sed -e‘s/.*import *//’ -e‘s/;.*$//’ |
 sort -u >list

http://media.pragprog.com/titles/tpp20/code/sh/packages.sh

If you haven’t spent much time exploring the
capabilities of the command shell on the systems you
use, this might appear daunting. However, invest some
energy in becoming familiar with your shell and things
will soon start falling into place. Play around with your
command shell, and you’ll be surprised at how much
more productive it makes you.

A SHELL OF YOUR OWN
In the same way that a woodworker will customize
their workspace, a developer should customize their
shell. This typically also involves changing the
configuration of the terminal program you use.

Common changes include:

Setting color themes. Many, many
hours can be spent trying out every
single theme that’s available online for
your particular shell.

Configuring a prompt. The prompt that
tells you the shell is ready for you to
type a command can be configured to
display just about any information you
might want (and a bunch of stuff you’d
never want). Personal preferences are
everything here: we tend to like simple
prompts, with a shortened current
directory name and version control
status along with the time.

Aliases and shell functions. Simplify
your workflow by turning commands
you use a lot into simple aliases.
Maybe you regularly update your
Linux box, but can never remember
whether you update and upgrade, or
upgrade and update. Create an alias:

 alias apt-up=‘sudo apt-get update && sudo apt-get upgrade’

Maybe you’ve accidentally deleted
files with the rm command just one
time too often. Write an alias so that it
will always prompt in future:

 alias rm =‘rm -iv’

Command completion. Most shells will
complete the names of commands and
files: type the first few characters, hit
tab, and it’ll fill in what it can. But you
can take this a lot further, configuring
the shell to recognize the command
you’re entering and offer context-
specific completions. Some even
customize the completion depending
on the current directory.

You’ll spend a lot of time living in one of these shells.
Be like a hermit crab and make it your own home.

RELATED SECTIONS INCLUDE

Topic 13, Prototypes and Post-it Notes

Topic 16, The Power of Plain Text

Topic 21, Text Manipulation

Topic 30, Transforming Programming

Topic 51, Pragmatic Starter Kit

CHALLENGES

Are there things that you’re currently
doing manually in a GUI? Do you ever
pass instructions to colleagues that
involve a number of individual “click

this button,” “select this item” steps?
Could these be automated?

Whenever you move to a new
environment, make a point of finding
out what shells are available. See if you
can bring your current shell with you.

Investigate alternatives to your current
shell. If you come across a problem
your shell can’t address, see if an
alternative shell would cope better.

 Topic 18 Power Editing

We’ve talked before about tools being an extension of
your hand. Well, this applies to editors more than to any
other software tool. You need to be able to manipulate
text as effortlessly as possible, because text is the basic
raw material of programming.

In the first edition of this book we recommended using
a single editor for everything: code, documentation,
memos, system administration, and so on. We’ve
softened that position a little. We’re happy for you to
use as many editors as you want. We’d just like you to
be working toward fluency in each.

Tip 27 Achieve Editor Fluency

Why is this a big deal? Are we saying you’ll save lots
of time? Actually yes: over the course of a year, you
might actually gain an additional week if you make
your editing just 4% more efficient and you edit for 20
hours a week.

But that’s not the real benefit. No, the major gain is that
by becoming fluent, you no longer have to think about
the mechanics of editing. The distance between
thinking something and having it appear in an editor
buffer drop way down. Your thoughts will flow, and
your programming will benefit. (If you’ve ever taught
someone to drive, then you’ll understand the difference
between someone who has to think about every action

they take and a more experienced driver who controls
the car instinctively.)

WHAT DOES “FLUENT” MEAN?
What counts as being fluent? Here’s the challenge list:

When editing text, move and make
selections by character, word, line, and
paragraph.

When editing code, move by various
syntactic units (matching delimiters,
functions, modules, …).

Reindent code following changes.

Comment and uncomment blocks of
code with a single command.

Undo and redo changes.

Split the editor window into multiple
panels, and navigate between them.

Navigate to a particular line number.

Sort selected lines.

Search for both strings and regular
expressions, and repeat previous
searches.

Temporarily create multiple cursors
based on a selection or on a pattern
match, and edit the text at each in
parallel.

Display compilation errors in the
current project.

Run the current project’s tests.

Can you do all this without using a mouse/trackpad?

You might say that your current editor can’t do some of
these things. Maybe it’s time to switch?

MOVING TOWARD FLUENCY
We doubt there are more than a handful of people who
know all the commands in any particular powerful
editor. We don’t expect you to, either. Instead, we
suggest a more pragmatic approach: learn the
commands that make your life easier.

The recipe for this is fairly simple.

First, look at yourself while you’re editing. Every time
you find yourself doing something repetitive, get into
the habit of thinking “there must be a better way.” Then
find it.

Once you’ve discovered a new, useful feature, you now
need to get it installed into your muscle memory, so
you can use it without thinking. The only way we know
to do that is through repetition. Consciously look for
opportunities to use your new superpower, ideally
many times a day. After a week or so, you’ll find you
use it without thinking.

Growing Your Editor

Most of the powerful code editors are built around a
basic core that is then augmented through extensions.
Many are supplied with the editor, and others can be
added later.

When you bump into some apparent limitation of the
editor you’re using, search around for an extension that
will do the job. The chances are that you are not alone
in needing that capability, and if you’re lucky someone
else will have published their solution.

Take this a step further. Dig into your editor’s extension
language. Work out how to use it to automate some of
the repetitive things you do. Often you’ll just need a
line or two of code.

Sometimes you might take it further still, and you’ll
find yourself writing a full-blown extension. If so,
publish it: if you had a need for it, other people will,
too.

RELATED SECTIONS INCLUDE

Topic 7, Communicate!

CHALLENGES

No more autorepeat.
Everyone does it: you need to delete
the last word you typed, so you press
down on backspace and wait for
autorepeat to kick in. In fact, we bet
that your brain has done this so much
that you can judge pretty much exactly
when to release the key.
So turn off autorepeat, and instead
learn the key sequences to move,
select, and delete by characters, words,
lines, and blocks.

This one is going to hurt.
Lose the mouse/trackpad. For one
whole week, edit using just the
keyboard. You’ll discover a bunch of
stuff that you can’t do without pointing
and clicking, so now’s the time to
learn. Keep notes (we recommend
going old-school and using pencil and
paper) of the key sequences you learn.
You’ll take a productivity hit for a few
days. But, as you learn to do stuff
without moving your hands away from
the home position, you’ll find that your
editing becomes faster and more fluent
than it ever was in the past.

Look for integrations. While writing
this chapter, Dave wondered if he
could preview the final layout (a PDF
file) in an editor buffer. One download
later, the layout is sitting alongside the

original text, all in the editor. Keep a
list of things you’d like to bring into
your editor, then look for them.

Somewhat more ambitiously, if you
can’t find a plugin or extension that
does what you want, write one. Andy is
fond of making custom, local file-
based Wiki plugins for his favorite
editors. If you can’t find it, build it!

 Topic 19 Version Control

Progress, far from consisting in change, depends on
retentiveness. Those who cannot remember the past are
condemned to repeat it.

 George Santayana, Life of Reason
One of the important things we look for in a user
interface is the undo key—a single button that forgives
us our mistakes. It’s even better if the environment
supports multiple levels of undo and redo, so you can
go back and recover from something that happened a
couple of minutes ago.

But what if the mistake happened last week, and you’ve
turned your computer on and off ten times since then?
Well, that’s one of the many benefits of using a version
control system (VCS): it’s a giant undo key—a project-
wide time machine that can return you to those halcyon
days of last week, when the code actually compiled and
ran.

For many folks, that’s the limit of their VCS usage.
Those folks are missing out on a whole bigger world of
collaboration, deployment pipelines, issue tracking, and
general team interaction.

So let’s take a look at VCS, first as a repository of
changes, and then as a central meeting place for your
team and their code.

Shared Directories Are NOT Version Control
We still come across the occasional team who share
their project source files across a network: either
internally or using some kind of cloud storage.

This is not viable.

Teams that do this are constantly messing up each
other’s work, losing changes, breaking builds, and
getting into fist fights in the car park. It’s like writing
concurrent code with shared data and no
synchronization mechanism. Use version control.

But there’s more! Some folks do use version control,
and keep their main repository on a network or cloud
drive. They reason that this is the best of both worlds:
their files are accessible anywhere and (in the case of
cloud storage) it’s backed up off-site.

Turns out that this is even worse, and you risk losing
everything. The version control software uses a set of
interacting files and directories. If two instances
simultaneously make changes, the overall state can
become corrupted, and there’s no telling how much
damage will be done. And no one likes seeing
developers cry.

IT STARTS AT THE SOURCE
Version control systems keep track of every change you
make in your source code and documentation. With a
properly configured source code control system, you
can always go back to a previous version of your
software.

But a version control system does far more than undo
mistakes. A good VCS will let you track changes,
answering questions such as: Who made changes in this
line of code? What’s the difference between the current
version and last week’s? How many lines of code did
we change in this release? Which files get changed
most often? This kind of information is invaluable for
bug-tracking, audit, performance, and quality purposes.

A VCS will also let you identify releases of your
software. Once identified, you will always be able to go
back and regenerate the release, independent of changes
that may have occurred later.

Version control systems may keep the files they
maintain in a central repository—a great candidate for
archiving.

Finally, version control systems allow two or more
users to be working concurrently on the same set of
files, even making concurrent changes in the same file.
The system then manages the merging of these changes
when the files are sent back to the repository. Although
seemingly risky, such systems work well in practice on
projects of all sizes.

Tip 28 Always Use Version Control

Always. Even if you are a single-person team on a one-
week project. Even if it’s a “throw-away’’ prototype.
Even if the stuff you’re working on isn’t source code.
Make sure that everything is under version control:
documentation, phone number lists, memos to vendors,
makefiles, build and release procedures, that little shell
script that tidies up log files—everything. We routinely
use version control on just about everything we type
(including the text of this book). Even if we’re not
working on a project, our day-to-day work is secured in
a repository.

BRANCHING OUT
Version control systems don’t just keep a single history
of your project. One of their most powerful and useful
features is the way they let you isolate islands of
development into things called branches. You can
create a branch at any point in your project’s history,
and any work you do in that branch will be isolated
from all other branches. At some time in the future you
can merge the branch you’re working on back into
another branch, so the target branch now contains the
changes you made in your branch. Multiple people can
even be working on a branch: in a way, branches are
like little clone projects.

One benefit of branches is the isolation they give you.
If you develop feature A in one branch, and a teammate

works on feature B in another, you’re not going to
interfere with each other.

A second benefit, which may be surprising, is that
branches are often at the heart of a team’s project
workflow.

And this is where things get a little confusing. Version
control branches and test organization have something
in common: they both have thousands of people out
there telling you how you should do it. And that advice
is largely meaningless, because what they’re really
saying is “this is what worked for me.”

So use version control in your project, and if you bump
into workflow issues, search for possible solutions. And
remember to review and adjust what you’re doing as
you gain experience.

A Thought Experiment
Spill an entire cup of tea (English breakfast, with a
little milk) onto your laptop keyboard. Take the
machine to the smart-person bar, and have them tut and
frown. Buy a new computer. Take it home.

How long would it take to get that machine back to the
same state it was in (with all the SSH keys, editor
configuration, shell setup, installed applications, and so
on) at the point where you first lifted that fateful cup?
This was an issue one of us faced recently.

Just about everything that defined the configuration and
usage of the original machine was stored in version
control, including:

All the user preferences and dotfiles

The editor configuration

The list of software installed using Homebrew

The Ansible script used to configure apps

All current projects

The machine was restored by the end of the afternoon.

VERSION CONTROL AS A PROJECT HUB
Although version control is incredibly useful on
personal projects, it really comes into its own when
working with a team. And much of this value comes
from how you host your repository.

Now, many version control systems don’t need any
hosting. They are completely decentralized, with each
developer cooperating on a peer-to-peer basis. But even
with these systems, it’s worth looking into having a
central repository, because once you do, you can take
advantage of a ton of integrations to make the project
flow easier.

Many of the repository systems are open source, so you
can install and run them in your company. But that’s
not really your line of business, so we’d recommend
most people host with a third party. Look for features
such as:

Good security and access control

Intuitive UI

The ability to do everything from the command line, too (because you may

need to automate it)

Automated builds and tests

Good support for branch merging (sometimes called pull requests)

Issue management (ideally integrated into commits and merges, so you can

keep metrics)

Good reporting (a Kanban board-like display of pending issues and tasks can

be very useful)

Good team communications: emails or other notifications on changes, a wiki,

and so on

Many teams have their VCS configured so that a push
to a particular branch will automatically build the
system, run the tests, and if successful deploy the new
code into production.

Sound scary? Not when you realize you’re using
version control. You can always roll it back.

RELATED SECTIONS INCLUDE

Topic 11, Reversibility

Topic 49, Pragmatic Teams

Topic 51, Pragmatic Starter Kit

CHALLENGES

Knowing you can roll back to any
previous state using the VCS is one
thing, but can you actually do it? Do
you know the commands to do it
properly? Learn them now, not when
disaster strikes and you’re under
pressure.

Spend some time thinking about
recovering your own laptop
environment in case of a disaster. What
would you need to recover? Many of
the things you need are just text files. If
they’re not in a VCS (hosted off your
laptop), find a way to add them. Then
think about the other stuff: installed
applications, system configuration, and
so on. How can you express all that
stuff in text files so it, too, can be
saved?

An interesting experiment, once you’ve
made some progress, is to find an old
computer you no longer use and see if
your new system can be used to set it
up.

Consciously explore the features of
your current VCS and hosting provider
that you’re not using. If your team isn’t
using feature branches, experiment
with introducing them. The same with
pull/merge requests. Continuous
integration. Build pipelines. Even
continuous deployment. Look into the
team communication tools, too: wikis,
Kanban boards, and the like.
You don’t have to use any of it. But
you do need to know what it does so
you can make that decision.

Use version control for nonproject
things, too.

 Topic 20 Debugging

It is a painful thing
To look at your own trouble and know
That you yourself and no one else has made it

 Sophocles, Ajax
The word bug has been used to describe an “object of
terror’’ ever since the fourteenth century. Rear Admiral
Dr. Grace Hopper, the inventor of COBOL, is credited
with observing the first computer bug—literally, a moth
caught in a relay in an early computer system. When
asked to explain why the machine wasn’t behaving as
intended, a technician reported that there was “a bug in
the system,” and dutifully taped it—wings and all—
into the log book.

Regrettably, we still have bugs in the system, albeit not
the flying kind. But the fourteenth century meaning—a
bogeyman—is perhaps even more applicable now than
it was then. Software defects manifest themselves in a
variety of ways, from misunderstood requirements to
coding errors. Unfortunately, modern computer systems
are still limited to doing what you tell them to do, not
necessarily what you want them to do.

No one writes perfect software, so it’s a given that
debugging will take up a major portion of your day.
Let’s look at some of the issues involved in debugging
and some general strategies for finding elusive bugs.

PSYCHOLOGY OF DEBUGGING
Debugging is a sensitive, emotional subject for many
developers. Instead of attacking it as a puzzle to be

solved, you may encounter denial, finger pointing, lame
excuses, or just plain apathy.

Embrace the fact that debugging is just problem
solving, and attack it as such.

Having found someone else’s bug, you can spend time
and energy laying blame on the filthy culprit who
created it. In some workplaces this is part of the
culture, and may be cathartic. However, in the technical
arena, you want to concentrate on fixing the problem,
not the blame.

Tip 29 Fix the Problem, Not the Blame

It doesn’t really matter whether the bug is your fault or
someone else’s. It is still your problem.

A DEBUGGING MINDSET
Before you start debugging, it’s important to adopt the
right mindset. You need to turn off many of the
defenses you use each day to protect your ego, tune out
any project pressures you may be under, and get
yourself comfortable. Above all, remember the first
rule of debugging:

Tip 30 Don’t Panic

It’s easy to get into a panic, especially if you are facing
a deadline, or have a nervous boss or client breathing
down your neck while you are trying to find the cause
of the bug. But it is very important to step back a pace,
and actually think about what could be causing the
symptoms that you believe indicate a bug.

If your first reaction on witnessing a bug or seeing a
bug report is “that’s impossible,” you are plainly
wrong. Don’t waste a single neuron on the train of
thought that begins “but that can’t happen” because
quite clearly it can, and has.

Beware of myopia when debugging. Resist the urge to
fix just the symptoms you see: it is more likely that the
actual fault may be several steps removed from what
you are observing, and may involve a number of other
related things. Always try to discover the root cause of
a problem, not just this particular appearance of it.

WHERE TO START
Before you start to look at the bug, make sure that you
are working on code that built cleanly—without
warnings. We routinely set compiler warning levels as
high as possible. It doesn’t make sense to waste time
trying to find a problem that the computer could find
for you! We need to concentrate on the harder problems
at hand.

When trying to solve any problem, you need to gather
all the relevant data. Unfortunately, bug reporting isn’t
an exact science. It’s easy to be misled by coincidences,
and you can’t afford to waste time debugging
coincidences. You first need to be accurate in your
observations.

Accuracy in bug reports is further diminished when
they come through a third party—you may actually
need to watch the user who reported the bug in action
to get a sufficient level of detail.

Andy once worked on a large graphics application.
Nearing release, the testers reported that the application
crashed every time they painted a stroke with a
particular brush. The programmer responsible argued
that there was nothing wrong with it; he had tried
painting with it, and it worked just fine. This dialog
went back and forth for several days, with tempers
rapidly rising.

Finally, we got them together in the same room. The
tester selected the brush tool and painted a stroke from
the upper right corner to the lower left corner. The
application exploded. “Oh,” said the programmer, in a
small voice, who then sheepishly admitted that he had
made test strokes only from the lower left to the upper
right, which did not expose the bug.

There are two points to this story:

You may need to interview the user
who reported the bug in order to gather
more data than you were initially
given.

Artificial tests (such as the
programmer’s single brush stroke from
bottom to top) don’t exercise enough of
an application. You must brutally test
both boundary conditions and realistic
end-user usage patterns. You need to
do this systematically (see Ruthless
and Continuous Testing).

DEBUGGING STRATEGIES
Once you think you know what is going on, it’s time to
find out what the program thinks is going on.
Reproducing Bugs

No, our bugs aren’t really multiplying (although some
of them are probably old enough to do it legally). We’re
talking about a different kind of reproduction.

The best way to start fixing a bug is to make it
reproducible. After all, if you can’t reproduce it, how
will you know if it is ever fixed?

But we want more than a bug that can be reproduced by
following some long series of steps; we want a bug that
can be reproduced with a single command. It’s a lot
harder to fix a bug if you have to go through 15 steps to
get to the point where the bug shows up.

So here’s the most important rule of debugging:

Tip 31 Failing Test Before Fixing Code

Sometimes by forcing yourself to isolate the
circumstances that display the bug, you’ll even gain an
insight on how to fix it. The act of writing the test
informs the solution.

CODER IN A STRANGE LAND
All this talk about isolating the bug is fine, when faced
with 50,000 lines of code and a ticking clock, what’s a
poor coder to do?

First, look at the problem. Is it a crash? It’s always
surprising when we teach courses that involve
programming how many developers see an exception
pop up in red and immediately tab across to the code.

Tip 32 Read the Damn Error Message

’nuf said.

Bad Results

What if it’s not a crash? What if it’s just a bad result?

Get in there with a debugger and use your failing test to
trigger the problem.

Before anything else, make sure that you’re also seeing
the incorrect value in the debugger. We’ve both wasted
hours trying to track down a bug only to discover that
this particular run of the code worked fine.

Sometimes the problem is obvious: interest_rate is 4.5 and
should be 0.045. More often you have to look deeper to
find out why the value is wrong in the first place. Make

sure you know how to move up and down the call stack
and examine the local stack environment.

We find it often helps to keep pen and paper nearby so
we can jot down notes. In particular we often come
across a clue and chase it down, only to find it didn’t
pan out. If we didn’t jot down where we were when we
started the chase, we could lose a lot of time getting
back there.

Sometimes you’re looking at a stack trace that seems to
scroll on forever. In this case, there’s often a quicker
way to find the problem than examining each and every
stack frame: use a binary chop. But before we discuss
that, let’s look at two other common bug scenarios.

Sensitivity to Input Values

You’ve been there. Your program works fine with all
the test data, and survives its first week in production
with honor. Then it suddenly crashes when fed a
particular dataset.

You can try looking at the place it crashes and work
backwards. But sometimes it’s easier to start with the
data. Get a copy of the dataset and feed it through a
locally running copy of the app, making sure it still
crashes. Then binary chop the data until you isolate
exactly which input values are leading to the crash.
Regressions Across Releases

You’re on a good team, and you release your software
into production. At some point a bug pops up in code
that worked OK a week ago. Wouldn’t it be nice if you
could identify the specific change that introduced it?
Guess what? Binary chop time.

THE BINARY CHOP
Every CS undergraduate has been forced to code a
binary chop (sometimes called a binary search). The
idea is simple. You’re looking for a particular value in a
sorted array. You could just look at each value in turn,
but you’d end up looking at roughly half the entries on

average until you either found the value you wanted, or
you found a value greater than it, which would mean
the value’s not in the array.

But it’s faster to use a divide and conquer approach.
Choose a value in the middle of the array. If it’s the one
you’re looking for, stop. Otherwise you can chop the
array in two. If the value you find is greater than the
target then you know it must be in the first half of the
array, otherwise it’s in the second half. Repeat the
procedure in the appropriate subarray, and in no time
you’ll have a result. (As we’ll see when we talk about
Big-O Notation, a linear search is , and a binary
chop is).

So, the binary chop is way, way faster on any decent
sized problem. Let’s see how to apply it to debugging.

When you’re facing a massive stacktrace and you’re
trying to find out exactly which function mangled the
value in error, you do a chop by choosing a stack frame
somewhere in the middle and seeing if the error is
manifest there. If it is, then you know to focus on the
frames before, otherwise the problem is in the frames
after. Chop again. Even if you have 64 frames in the
stacktrace, this approach will give you an answer after
at most six attempts.

If you find bugs that appear on certain datasets, you
might be able to do the same thing. Split the dataset
into two, and see if the problem occurs if you feed one
or the other through the app. Keep dividing the data
until you get a minimum set of values that exhibit the
problem.

If your team has introduced a bug during a set of
releases, you can use the same type of technique.
Create a test that causes the current release to fail. Then
choose a half-way release between now and the last
known working version. Run the test again, and decide
how to narrow your search. Being able to do this is just

one of the many benefits of having good version
control in your projects. Indeed, many version control
systems will take this further and will automate the
process, picking releases for you depending on the
result of the test.

Logging and/or Tracing

Debuggers generally focus on the state of the program
now. Sometimes you need more—you need to watch
the state of a program or a data structure over time.
Seeing a stack trace can only tell you how you got here
directly. It typically can’t tell you what you were doing
prior to this call chain, especially in event-based
systems.[25]

Tracing statements are those little diagnostic messages
you print to the screen or to a file that say things such
as “got here” and “value of x = 2.” It’s a primitive
technique compared with IDE-style debuggers, but it is
peculiarly effective at diagnosing several classes of
errors that debuggers can’t. Tracing is invaluable in any
system where time itself is a factor: concurrent
processes, real-time systems, and event-based
applications.

You can use tracing statements to drill down into the
code. That is, you can add tracing statements as you
descend the call tree.

Trace messages should be in a regular, consistent
format as you may want to parse them automatically.
For instance, if you needed to track down a resource
leak (such as unbalanced file opens/closes), you could
trace each open and each close in a log file. By processing
the log file with text processing tools or shell
commands, you can easily identify where the offending
open was occurring.
Rubber Ducking

A very simple but particularly useful technique for
finding the cause of a problem is simply to explain it to
someone else. The other person should look over your

shoulder at the screen, and nod his or her head
constantly (like a rubber duck bobbing up and down in
a bathtub). They do not need to say a word; the simple
act of explaining, step by step, what the code is
supposed to do often causes the problem to leap off the
screen and announce itself.[26]

It sounds simple, but in explaining the problem to
another person you must explicitly state things that you
may take for granted when going through the code
yourself. By having to verbalize some of these
assumptions, you may suddenly gain new insight into
the problem. And if you don’t have a person, a rubber
duck, or teddy bear, or potted plant will do.[27]

Process of Elimination

In most projects, the code you are debugging may be a
mixture of application code written by you and others
on your project team, third-party products (database,
connectivity, web framework, specialized
communications or algorithms, and so on) and the
platform environment (operating system, system
libraries, and compilers).

It is possible that a bug exists in the OS, the compiler,
or a third-party product—but this should not be your
first thought. It is much more likely that the bug exists
in the application code under development. It is
generally more profitable to assume that the application
code is incorrectly calling into a library than to assume
that the library itself is broken. Even if the problem
does lie with a third party, you’ll still have to eliminate
your code before submitting the bug report.

We worked on a project where a senior engineer was
convinced that the select system call was broken on a
Unix system. No amount of persuasion or logic could
change his mind (the fact that every other networking
application on the box worked fine was irrelevant). He
spent weeks writing workarounds, which, for some odd
reason, didn’t seem to fix the problem. When finally

forced to sit down and read the documentation on select,
he discovered the problem and corrected it in a matter
of minutes. We now use the phrase “select is broken’’
as a gentle reminder whenever one of us starts blaming
the system for a fault that is likely to be our own.

Tip 33 “select” Isn’t Broken

Remember, if you see hoof prints, think horses—not
zebras. The OS is probably not broken. And select is
probably just fine.

If you “changed only one thing’’ and the system
stopped working, that one thing was likely to be
responsible, directly or indirectly, no matter how
farfetched it seems. Sometimes the thing that changed
is outside of your control: new versions of the OS,
compiler, database, or other third-party software can
wreak havoc with previously correct code. New bugs
might show up. Bugs for which you had a workaround
get fixed, breaking the workaround. APIs change,
functionality changes; in short, it’s a whole new ball
game, and you must retest the system under these new
conditions. So keep a close eye on the schedule when
considering an upgrade; you may want to wait until
after the next release.

THE ELEMENT OF SURPRISE
When you find yourself surprised by a bug (perhaps
even muttering “that’s impossible” under your breath
where we can’t hear you), you must reevaluate truths
you hold dear. In that discount calculation algorithm—
the one you knew was bulletproof and couldn’t possibly
be the cause of this bug—did you test all the boundary
conditions? That other piece of code you’ve been using
for years—it couldn’t possibly still have a bug in it.
Could it?

Of course it can. The amount of surprise you feel when
something goes wrong is proportional to the amount of
trust and faith you have in the code being run. That’s
why, when faced with a “surprising’’ failure, you must
accept that one or more of your assumptions is wrong.
Don’t gloss over a routine or piece of code involved in
the bug because you “know” it works. Prove it. Prove it
in this context, with this data, with these boundary
conditions.

Tip 34 Don’t Assume It—Prove It

When you come across a surprise bug, beyond merely
fixing it, you need to determine why this failure wasn’t
caught earlier. Consider whether you need to amend the
unit or other tests so that they would have caught it.

Also, if the bug is the result of bad data that was
propagated through a couple of levels before causing
the explosion, see if better parameter checking in those
routines would have isolated it earlier (see the
discussions on crashing early and assertions here and
here, respectively).

While you’re at it, are there any other places in the code
that may be susceptible to this same bug? Now is the
time to find and fix them. Make sure that whatever
happened, you’ll know if it happens again.

If it took a long time to fix this bug, ask yourself why.
Is there anything you can do to make fixing this bug
easier the next time around? Perhaps you could build in
better testing hooks, or write a log file analyzer.

Finally, if the bug is the result of someone’s wrong
assumption, discuss the problem with the whole team:
if one person misunderstands, then it’s possible many
people do.

Do all this, and hopefully you won’t be surprised next
time.

DEBUGGING CHECKLIST

Is the problem being reported a direct
result of the underlying bug, or merely
a symptom?

Is the bug really in the framework
you’re using? Is it in the OS? Or is it in
your code?

If you explained this problem in detail
to a coworker, what would you say?

If the suspect code passes its unit tests,
are the tests complete enough? What
happens if you run the tests with this
data?

Do the conditions that caused this bug
exist anywhere else in the system? Are
there other bugs still in the larval stage,
just waiting to hatch?

RELATED SECTIONS INCLUDE

Topic 24, Dead Programs Tell No Lies

CHALLENGES

Debugging is challenge enough.

 Topic 21 Text Manipulation

Pragmatic Programmers manipulate text the same way
woodworkers shape wood. In previous sections we
discussed some specific tools—shells, editors,
debuggers—that we use. These are similar to a
woodworker’s chisels, saws, and planes—tools
specialized to do one or two jobs well. However, every
now and then we need to perform some transformation
not readily handled by the basic tool set. We need a
general-purpose text manipulation tool.

Text manipulation languages are to programming what
routers[28] are to woodworking. They are noisy, messy,
and somewhat brute force. Make mistakes with them,
and entire pieces can be ruined. Some people swear
they have no place in the toolbox. But in the right
hands, both routers and text manipulation languages
can be incredibly powerful and versatile. You can
quickly trim something into shape, make joints, and
carve. Used properly, these tools have surprising
finesse and subtlety. But they take time to master.

Fortunately, there are a number of great text
manipulation languages. Unix developers (and we
include macOS users here) often like to use the power
of their command shells, augmented with tools such as
awk and sed. People who prefer a more structured tool
may prefer languages such as Python or Ruby.

These languages are important enabling technologies.
Using them, you can quickly hack up utilities and
prototype ideas—jobs that might take five or ten times
as long using conventional languages. And that
multiplying factor is crucially important to the kind of

experimenting that we do. Spending 30 minutes trying
out a crazy idea is a whole lot better than spending five
hours. Spending a day automating important
components of a project is acceptable; spending a week
might not be. In their book The Practice of
Programming [KP99], Kernighan and Pike built the
same program in five different languages. The Perl
version was the shortest (17 lines, compared with C’s
150). With Perl you can manipulate text, interact with
programs, talk over networks, drive web pages,
perform arbitrary precision arithmetic, and write
programs that look like Snoopy swearing.

Tip 35 Learn a Text Manipulation Language

To show the wide-ranging applicability of text
manipulation languages, here’s a sample of some stuff
we’ve done with Ruby and Python just related to the
creation of this book:

Building the Book
The build system for the
Pragmatic Bookshelf is written in
Ruby. Authors, editors, layout
people, and support folks use
Rake tasks to coordinate the
building of PDFs and ebooks.

Code inclusion and highlighting
We think it is important that any
code presented in a book should
have been tested first. Most of the
code in this book has been.
However, using the DRY principle
(see Topic 9, DRY—The Evils of
Duplication) we didn’t want to
copy and paste lines of code from
the tested programs into the book.
That would mean we’d be

duplicating code, virtually
guaranteeing that we’d forget to
update an example when the
corresponding program was
changed. For some examples, we
also didn’t want to bore you with
all the framework code needed to
make our example compile and
run. We turned to Ruby. A
relatively simple script is invoked
when we format the book—it
extracts a named segment of a
source file, does syntax
highlighting, and converts the
result into the typesetting
language we use.

Website update
We have a simple script that does
a partial book build, extracts the
table of contents, then uploads it
to the book’s page on our website.
We also have a script that extracts
sections of a book and uploads
them as samples.
Including equations
There’s a Python script that
converts LaTeX math markup into
nicely formatted text.

Index generation
Most indexes are created as
separate documents (which makes
maintaining them difficult if a
document changes). Ours are
marked up in the text itself, and a
Ruby script collates and formats
the entries.

And so on. In a very real way, the Pragmatic Bookshelf
is built around text manipulation. And if you follow our

advice to keep things in plain text, then using these
languages to manipulate that text will bring a whole
host of benefits.

RELATED SECTIONS INCLUDE

Topic 16, The Power of Plain Text

Topic 17, Shell Games

EXERCISES
Exercise 11

You’re rewriting an application that used to use YAML
as a configuration language. Your company has now
standardized on JSON, so you have a bunch of .yaml
files that need to be turned into .json. Write a script that
takes a directory and converts each .yaml file into a
corresponding .json file (so database.yaml becomes
database.json, and the contents are valid JSON).

Exercise 12

Your team initially chose to use camelCase names for
variables, but then changed their collective mind and
switched to snake_case. Write a script that scans all the
source files for camelCase names and reports on them.

Exercise 13

Following on from the previous exercise, add the
ability to change those variable names automatically in
one or more files. Remember to keep a backup of the
originals in case something goes horribly, horribly
wrong.

 Topic 22 Engineering Daybooks

Dave once worked for a small computer manufacturer,
which meant working alongside electronic and
sometimes mechanical engineers.

Many of them walked around with a paper notebook,
normally with a pen stuffed down the spine. Every now
and then when we were talking, they’d pop the
notebook open and scribble something.

Eventually Dave asked the obvious question. It turned
out that they’d been trained to keep an engineering
daybook, a kind of journal in which they recorded what
they did, things they’d learned, sketches of ideas,
readings from meters: basically anything to do with
their work. When the notebook became full, they’d
write the date range on the spine, then stick it on the
shelf next to previous daybooks. There may have been
a gentle competition going on for whose set of books
took the most shelf space.

We use daybooks to take notes in meetings, to jot down
what we’re working on, to note variable values when
debugging, to leave reminders where we put things, to
record wild ideas, and sometimes just to doodle.[29]

The daybook has three main benefits:

It is more reliable than memory. People
might ask “What was the name of that
company you called last week about
the power supply problem?” and you
can flip back a page or so and give
them the name and number.

It gives you a place to store ideas that
aren’t immediately relevant to the task
at hand. That way you can continue to
concentrate on what you are doing,
knowing that the great idea won’t be
forgotten.

It acts as a kind of rubber duck
(described here). When you stop to
write something down, your brain may
switch gears, almost as if talking to
someone—a great chance to reflect.
You may start to make a note and then
suddenly realize that what you’d just
done, the topic of the note, is just plain
wrong.

There’s an added benefit, too. Every now and then you
can look back at what you were doing oh-so-many-
years-ago and think about the people, the projects, and
the awful clothes and hairstyles.

So, try keeping an engineering daybook. Use paper, not
a file or a wiki: there’s something special about the act
of writing compared to typing. Give it a month, and see
if you’re getting any benefits.

If nothing else, it’ll make writing your memoir easier
when you’re rich and famous.

RELATED SECTIONS INCLUDE

Topic 6, Your Knowledge Portfolio

Topic 37, Listen to Your Lizard Brain

Footnotes

[24]
All software becomes legacy
software as soon as it’s written.

[25]
Although the Elm language does
have a time-traveling debugger.

[26]
Why “rubber ducking’’? While an
undergraduate at Imperial College in
London, Dave did a lot of work with
a research assistant named Greg
Pugh, one of the best developers
Dave has known. For several
months Greg carried around a small
yellow rubber duck, which he’d
place on his terminal while coding.
It was a while before Dave had the
courage to ask….

[27]
Earlier versions of the book talked
about talking to your pot plant. It
was a typo. Honest.

[28]
Here router means the tool that spins
cutting blades very, very fast, not a
device for interconnecting networks.

[29]
There is some evidence that
doodling helps focus and improves
cognitive skills, for example, see
What does doodling do? [And10].

Copyright © 2020 Pearson Education, Inc.

Chapter 4

Pragmatic Paranoia

Tip 36 You Can’t Write Perfect Software

Did that hurt? It shouldn’t. Accept it as an axiom of
life. Embrace it. Celebrate it. Because perfect software
doesn’t exist. No one in the brief history of computing
has ever written a piece of perfect software. It’s
unlikely that you’ll be the first. And unless you accept
this as a fact, you’ll end up wasting time and energy
chasing an impossible dream.

So, given this depressing reality, how does a Pragmatic
Programmer turn it into an advantage? That’s the topic
of this chapter.

Everyone knows that they personally are the only good
driver on Earth. The rest of the world is out there to get
them, blowing through stop signs, weaving between
lanes, not indicating turns, texting on the phone, and
just generally not living up to our standards. So we
drive defensively. We look out for trouble before it
happens, anticipate the unexpected, and never put
ourselves into a position from which we can’t extricate
ourselves.

The analogy with coding is pretty obvious. We are
constantly interfacing with other people’s code—code
that might not live up to our high standards—and

dealing with inputs that may or may not be valid. So we
are taught to code defensively. If there’s any doubt, we
validate all information we’re given. We use assertions
to detect bad data, and distrust data from potential
attackers or trolls. We check for consistency, put
constraints on database columns, and generally feel
pretty good about ourselves.

But Pragmatic Programmers take this a step further.
They don’t trust themselves, either. Knowing that no
one writes perfect code, including themselves,
Pragmatic Programmers build in defenses against their
own mistakes. We describe the first defensive measure
in Topic 23, Design by Contract: clients and suppliers
must agree on rights and responsibilities.

In Topic 24, Dead Programs Tell No Lies, we want to
ensure that we do no damage while we’re working the
bugs out. So we try to check things often and terminate
the program if things go awry.

Topic 25, Assertive Programming describes an easy
method of checking along the way—write code that
actively verifies your assumptions.

As your programs get more dynamic, you’ll find
yourself juggling system resources—memory, files,
devices, and the like. In Topic 26, How to Balance
Resources, we’ll suggest ways of ensuring that you
don’t drop any of the balls.

And most importantly, we stick to small steps always,
as described in Topic 27, Don’t Outrun Your
Headlights, so we don’t fall off the edge of the cliff.

In a world of imperfect systems, ridiculous time scales,
laughable tools, and impossible requirements, let’s play
it safe. As Woody Allen said, “When everybody
actually is out to get you, paranoia is just good
thinking.”

 Topic 23 Design by Contract

Nothing astonishes men so much as common sense and
plain dealing.

 Ralph Waldo Emerson, Essays
Dealing with computer systems is hard. Dealing with
people is even harder. But as a species, we’ve had
longer to figure out issues of human interactions. Some
of the solutions we’ve come up with during the last few
millennia can be applied to writing software as well.
One of the best solutions for ensuring plain dealing is
the contract.

A contract defines your rights and responsibilities, as
well as those of the other party. In addition, there is an
agreement concerning repercussions if either party fails
to abide by the contract.

Maybe you have an employment contract that specifies
the hours you’ll work and the rules of conduct you
must follow. In return, the company pays you a salary
and other perks. Each party meets its obligations and
everyone benefits.

It’s an idea used the world over—both formally and
informally—to help humans interact. Can we use the
same concept to help software modules interact? The
answer is “yes.’’

DBC
Bertrand Meyer (Object-Oriented Software
Construction [Mey97]) developed the concept of
Design by Contract for the language Eiffel.[30] It is a

simple yet powerful technique that focuses on
documenting (and agreeing to) the rights and
responsibilities of software modules to ensure program
correctness. What is a correct program? One that does
no more and no less than it claims to do. Documenting
and verifying that claim is the heart of Design by
Contract (DBC, for short).

Every function and method in a software system does
something. Before it starts that something, the function
may have some expectation of the state of the world,
and it may be able to make a statement about the state
of the world when it concludes. Meyer describes these
expectations and claims as follows:

Preconditions
What must be true in order for the
routine to be called; the routine’s
requirements. A routine should
never get called when its
preconditions would be violated.
It is the caller’s responsibility to
pass good data (see the box here).

Postconditions
What the routine is guaranteed to
do; the state of the world when the
routine is done. The fact that the
routine has a postcondition
implies that it will conclude:
infinite loops aren’t allowed.

Class invariants
A class ensures that this condition
is always true from the
perspective of a caller. During
internal processing of a routine,
the invariant may not hold, but by
the time the routine exits and
control returns to the caller, the
invariant must be true. (Note that
a class cannot give unrestricted

write-access to any data member
that participates in the invariant.)

The contract between a routine and any potential caller
can thus be read as

If all the routine’s preconditions are met by the caller,
the routine shall guarantee that all postconditions and
invariants will be true when it completes.

If either party fails to live up to the terms of the
contract, then a remedy (which was previously agreed
to) is invoked—maybe an exception is raised, or the
program terminates. Whatever happens, make no
mistake that failure to live up to the contract is a bug. It
is not something that should ever happen, which is why
preconditions should not be used to perform things
such as user-input validation.

Some languages have better support for these concepts
than others. Clojure, for example, supports pre- and
post-conditions as well as the more comprehensive
instrumentation provided by specs. Here’s an example
of a banking function to make a deposit using simple
pre- and post-conditions:

 (defn accept-deposit [account-id amount]
 { :pre [(> amount 0.00)
 (account-open? account-id)]
 :post [(contains? (account-transactions account-id) %)] }
 “Accept a deposit and return the new transaction id”
 ;; Some other processing goes here…
 ;; Return the newly created transaction:
 (create-transaction account-id :deposit amount))

There are two preconditions for the accept-deposit
function. The first is that the amount is greater than
zero, and the second is that the account is open and
valid, as determined by some function named account-
open?. There is also a postcondition: the function
guarantees that the new transaction (the return value of
this function, represented here by ‘%’) can be found
among the transactions for this account.

If you call accept-deposit with a positive amount for the
deposit and a valid account, it will proceed to create a
transaction of the appropriate type and do whatever
other processing it does. However, if there’s a bug in
the program and you somehow passed in a negative
amount for the deposit, you’ll get a runtime exception:

 Exception in thread “main”…
 Caused by: java.lang.AssertionError: Assert failed: (> amount 0.0)

Similarly, this function requires that the specified
account is open and valid. If it’s not, you’ll see that
exception instead:

 Exception in thread “main”…
 Caused by: java.lang.AssertionError: Assert failed: (account-open? account-id)

Other languages have features that, while not DBC-
specific, can still be used to good effect. For example,
Elixir uses guard clauses to dispatch function calls
against several available bodies:

 defmodule Deposits do
 def accept_deposit(account_id, amount) when (amount > 100000) do
 # Call the manager!
 end
 def accept_deposit(account_id, amount) when (amount > 10000) do
 # Extra Federal requirements for reporting
 # Some processing…
 end
 def accept_deposit(account_id, amount) when (amount > 0) do
 # Some processing…
 end
 end

In this case, calling accept_deposit with a large enough
amount may trigger additional steps and processing.
Try to call it with an amount less than or equal to zero,
however, and you’ll get an exception informing you
that you can’t:

 ** (FunctionClauseError) no function clause matching in Deposits.accept_deposit/2

This is a better approach than simply checking your
inputs; in this case, you simply can not call this
function if your arguments are out of range.

Tip 37 Design with Contracts

In Topic 10, Orthogonality, we recommended writing
“shy” code. Here, the emphasis is on “lazy” code: be
strict in what you will accept before you begin, and
promise as little as possible in return. Remember, if
your contract indicates that you’ll accept anything and
promise the world in return, then you’ve got a lot of
code to write!

In any programming language, whether it’s functional,
object-oriented, or procedural, DBC forces you to
think.

DBC and Test-Driven Development
Is Design by Contract needed in a world where
developers practice unit testing, test-driven
development (TDD), property-based testing, or
defensive programming?

The short answer is “yes.”

DBC and testing are different approaches to the
broader topic of program correctness. They both have
value and both have uses in different situations. DBC
offers several advantages over specific testing
approaches:

DBC doesn’t require any
setup or mocking

DBC defines the parameters
for success or failure in all
cases, whereas testing can
only target one specific case
at a time

TDD and other testing
happens only at “test time”
within the build cycle. But
DBC and assertions are
forever: during design,
development, deployment,
and maintenance

TDD does not focus on
checking internal invariants
within the code under test, it’s
more black-box style to check
the public interface

DBC is more efficient (and
DRY-er) than defensive
programming, where
everyone has to validate data
in case no one else does.

TDD is a great technique, but as with many techniques,
it might invite you to concentrate on the “happy path,”
and not the real world full of bad data, bad actors, bad
versions, and bad specifications.

Class Invariants and Functional Languages

It’s a naming thing. Eiffel is an object-oriented
language, so Meyer named this idea “class invariant.”
But, really, it’s more general than that. What this idea
really refers to is state. In an object-oriented language,
the state is associated with instances of classes. But
other languages have state, too.

In a functional language, you typically pass state to
functions and receive updated state as a result. The
concepts of invariants is just as useful in these
circumstances.

IMPLEMENTING DBC
Simply enumerating what the input domain range is,
what the boundary conditions are, and what the routine
promises to deliver—or, more importantly, what it
doesn’t promise to deliver—before you write the code
is a huge leap forward in writing better software. By
not stating these things, you are back to programming
by coincidence (see the discussion here), which is
where many projects start, finish, and fail.

In languages that do not support DBC in the code, this
might be as far as you can go—and that’s not too bad.

DBC is, after all, a design technique. Even without
automatic checking, you can put the contract in the
code as comments or in the unit tests and still get a very
real benefit.

Assertions

While documenting these assumptions is a great start,
you can get much greater benefit by having the
compiler check your contract for you. You can partially
emulate this in some languages by using assertions:
runtime checks of logical conditions (see Topic 25,
Assertive Programming). Why only partially? Can’t
you use assertions to do everything DBC can do?

Unfortunately, the answer is no. To begin with, in
object-oriented languages there probably is no support
for propagating assertions down an inheritance
hierarchy. This means that if you override a base class
method that has a contract, the assertions that
implement that contract will not be called correctly
(unless you duplicate them manually in the new code).
You must remember to call the class invariant (and all
base class invariants) manually before you exit every
method. The basic problem is that the contract is not
automatically enforced.

In other environments, the exceptions generated from
DBC-style assertions might be turned off globally or
ignored in the code.

Also, there is no built-in concept of “old’’ values; that
is, values as they existed at the entry to a method. If
you’re using assertions to enforce contracts, you must
add code to the precondition to save any information
you’ll want to use in the postcondition, if the language
will even allow that. In the Eiffel language, where DBC
was born, you can just use old expression.

Finally, conventional runtime systems and libraries are
not designed to support contracts, so these calls are not
checked. This is a big loss, because it is often at the
boundary between your code and the libraries it uses

that the most problems are detected (see Topic 24,
Dead Programs Tell No Lies for a more detailed
discussion).

Who’s Responsible?
Who is responsible for checking the precondition, the
caller or the routine being called? When implemented
as part of the language, the answer is neither: the
precondition is tested behind the scenes after the caller
invokes the routine but before the routine itself is
entered. Thus if there is any explicit checking of
parameters to be done, it must be performed by the
caller, because the routine itself will never see
parameters that violate its precondition. (For languages
without built-in support, you would need to bracket the
called routine with a preamble and/or postamble that
checks these assertions.)

Consider a program that reads a number from the
console, calculates its square root (by calling sqrt), and
prints the result. The sqrt function has a precondition—
its argument must not be negative. If the user enters a
negative number at the console, it is up to the calling
code to ensure that it never gets passed to sqrt. This
calling code has many options: it could terminate, it
could issue a warning and read another number, or it
could make the number positive and append an i to the
result returned by sqrt. Whatever its choice, this is
definitely not sqrt’s problem.

By expressing the domain of the square root function in
the precondition of the sqrt routine, you shift the
burden of correctness to the caller—where it belongs.
You can then design the sqrt routine secure in the
knowledge that its input will be in range.

DBC AND CRASHING EARLY
DBC fits in nicely with our concept of crashing early
(see Topic 24, Dead Programs Tell No Lies). By using
an assert or DBC mechanism to validate the
preconditions, postconditions, and invariants, you can
crash early and report more accurate information about
the problem.

For example, suppose you have a method that
calculates square roots. It needs a DBC precondition
that restricts the domain to positive numbers. In

languages that support DBC, if you pass sqrt a negative
parameter, you’ll get an informative error such as
sqrt_arg_must_be_positive, along with a stack trace.

This is better than the alternative in other languages
such as Java, C, and C++ where passing a negative
number to sqrt returns the special value NaN (Not a
Number). It may be some time later in the program that
you attempt to do some math on NaN, with surprising
results.

It’s much easier to find and diagnose the problem by
crashing early, at the site of the problem.

SEMANTIC INVARIANTS
You can use semantic invariants to express inviolate
requirements, a kind of “philosophical contract.’’

We once wrote a debit card transaction switch. A major
requirement was that the user of a debit card should
never have the same transaction applied to their account
twice. In other words, no matter what sort of failure
mode might happen, the error should be on the side of
not processing a transaction rather than processing a
duplicate transaction.

This simple law, driven directly from the requirements,
proved to be very helpful in sorting out complex error
recovery scenarios, and guided the detailed design and
implementation in many areas.

Be sure not to confuse requirements that are fixed,
inviolate laws with those that are merely policies that
might change with a new management regime. That’s
why we use the term semantic invariants—it must be
central to the very meaning of a thing, and not subject
to the whims of policy (which is what more dynamic
business rules are for).

When you find a requirement that qualifies, make sure
it becomes a well-known part of whatever
documentation you are producing—whether it is a

bulleted list in the requirements document that gets
signed in triplicate or just a big note on the common
whiteboard that everyone sees. Try to state it clearly
and unambiguously. For example, in the debit card
example, we might write

Err in favor of the consumer.

This is a clear, concise, unambiguous statement that’s
applicable in many different areas of the system. It is
our contract with all users of the system, our guarantee
of behavior.

DYNAMIC CONTRACTS AND AGENTS
Until now, we have talked about contracts as fixed,
immutable specifications. But in the landscape of
autonomous agents, this doesn’t need to be the case. By
the definition of “autonomous,” agents are free to reject
requests that they do not want to honor. They are free to
renegotiate the contract—“I can’t provide that, but if
you give me this, then I might provide something else.”

Certainly any system that relies on agent technology
has a critical dependence on contractual arrangements
—even if they are dynamically generated.

Imagine: with enough components and agents that can
negotiate their own contracts among themselves to
achieve a goal, we might just solve the software
productivity crisis by letting software solve it for us.

But if we can’t use contracts by hand, we won’t be able
to use them automatically. So next time you design a
piece of software, design its contract as well.

RELATED SECTIONS INCLUDE

Topic 24, Dead Programs Tell No Lies

Topic 25, Assertive Programming

Topic 38, Programming by Coincidence

Topic 42, Property-Based Testing

Topic 43, Stay Safe Out There

Topic 45, The Requirements Pit

CHALLENGES

Points to ponder: If DBC is so powerful, why isn’t it used more widely? Is it

hard to come up with the contract? Does it make you think about issues

you’d rather ignore for now? Does it force you to THINK!? Clearly, this is a

dangerous tool!

EXERCISES
Exercise 14 (possible answer)

Design an interface to a kitchen blender. It will
eventually be a web-based, IoT-enabled blender, but for
now we just need the interface to control it. It has ten
speed settings (0 means off). You can’t operate it
empty, and you can change the speed only one unit at a
time (that is, from 0 to 1, and from 1 to 2, not from 0 to
2).

Here are the methods. Add appropriate pre- and
postconditions and an invariant.

 int getSpeed()

 void setSpeed(int x)
 boolean isFull()
 void fill()
 void empty()

Exercise 15 (possible answer)

How many numbers are in the series 0, 5, 10, 15, …,
100?

 Topic 24 Dead Programs Tell No Lies

Have you noticed that sometimes other people can
detect that things aren’t well with you before you’re
aware of the problem yourself? It’s the same with other
people’s code. If something is starting to go awry with
one of our programs, sometimes it is a library or
framework routine that catches it first. Maybe we’ve
passed in a nil value, or an empty list. Maybe there’s a
missing key in that hash, or the value we thought
contained a hash really contains a list instead. Maybe
there was a network error or filesystem error that we
didn’t catch, and we’ve got empty or corrupted data. A
logic error a couple of million instructions ago means
that the selector for a case statement is no longer the
expected 1, 2, or 3. We’ll hit the default case
unexpectedly. That’s also one reason why each and
every case/switch statement needs to have a default
clause: we want to know when the “impossible” has
happened.

It’s easy to fall into the “it can’t happen” mentality.

Most of us have written code that didn’t check that a
file closed successfully, or that a trace statement got
written as we expected.

And all things being equal, it’s likely that we didn’t
need to—the code in question wouldn’t fail under any
normal conditions. But we’re coding defensively. We’re
making sure that the data is what we think it is, that the
code in production is the code we think it is.

We’re checking that the correct

versions of dependencies were actually loaded.

All errors give you information. You could convince
yourself that the error can’t happen, and choose to
ignore it. Instead, Pragmatic Programmers tell
themselves that if there is an error, something very,
very bad has happened. Don’t forget to Read the Damn
Error Message (see Coder in a Strange Land).

CATCH AND RELEASE IS FOR FISH
Some developers feel that is it good style to catch or
rescue all exceptions, re-raising them after writing
some kind of message. Their code is full of things like
this (where a bare raise statement reraises the current
exception):

 try do
 add_score_to_board(score);
 rescue InvalidScore
 Logger.error(”Can’t add invalid score. Exiting”);
 raise
 rescue BoardServerDown
 Logger.error(”Can’t add score: board is down. Exiting”);
 raise
 rescue StaleTransaction
 Logger.error(”Can’t add score: stale transaction. Exiting”);
 raise
 end

Here’s how Pragmatic Programmers would write this:

 add_score_to_board(score);

We prefer it for two reasons. First, the application code
isn’t eclipsed by the error handling. Second, and
perhaps more important, the code is less coupled. In the
verbose example, we have to list every exception the
add_score_to_board method could raise. If the writer of that
method adds another exception, our code is subtly out
of date. In the more pragmatic second version, the new
exception is automatically propagated.

Tip 38 Crash Early

CRASH, DON’T TRASH
One of the benefits of detecting problems as soon as
you can is that you can crash earlier, and crashing is
often the

best thing you can do. The alternative may be to
continue, writing corrupted data to some vital database
or commanding the washing

machine into its twentieth consecutive spin cycle.

The Erlang and Elixir languages embrace this
philosophy. Joe Armstrong, inventor of Erlang and
author of Programming Erlang: Software for a Concurrent World
[Arm07], is often quoted as saying, “Defensive
programming is a waste of time. Let it crash!” In these

environments, programs are designed to fail, but that
failure is managed with supervisors. A supervisor is
responsible for running code and knows what to do in
case the code fails, which could include cleaning up
after it, restarting it, and so on. What happens when the
supervisor itself fails? Its own supervisor manages that
event, leading to a design composed of supervisor
trees. The technique is very effective and helps to
account for the use of these languages in high-
availability, fault-tolerant systems.

In other environments, it may be inappropriate simply
to exit a running program. You may have claimed
resources that might not get released, or you may need
to write log messages, tidy up open transactions, or
interact with other processes.

However, the basic principle stays

the same—when your code discovers that something
that was supposed to be impossible just happened, your
program is no longer viable.

Anything it does from this point forward becomes
suspect, so terminate it as soon as possible.

A dead program

normally does a lot less damage than a crippled one.

RELATED SECTIONS INCLUDE

Topic 20, Debugging

Topic 23, Design by Contract

Topic 25, Assertive Programming

Topic 26, How to Balance Resources

Topic 43, Stay Safe Out There

 Topic 25 Assertive Programming

There is a luxury in self-reproach. When we blame
ourselves we feel no one else has a right to blame us.

 Oscar Wilde, The Picture of Dorian Gray
It seems that there’s a mantra that every programmer
must memorize early in his or her career. It is a
fundamental tenet of computing, a core belief that we
learn to apply to requirements, designs, code,
comments, just about everything we do. It goes

This can never happen…

“This application will never be used abroad, so why
internationalize it?” “count can’t be negative.” “Logging
can’t fail.”

Let’s not practice this kind of self-deception,
particularly when coding.

Tip 39 Use Assertions to Prevent the Impossible

Whenever you find yourself thinking “but of course
that could never happen,” add code to check it. The
easiest way to do this is with assertions. In many
language implementations, you’ll find some form of
assert that checks a Boolean condition.[31] These checks
can be invaluable. If a parameter or a result should
never be null, then check for it explicitly:

 assert (result != null);

In the Java implementation, you can (and should) add a
descriptive string:

 assert result != null && result.size() > 0 : “Empty result from XYZ” ;

Assertions are also useful checks on an algorithm’s
operation. Maybe you’ve written a clever sort
algorithm, named my_sort. Check that it works:

 books = my_sort(find(“scifi”))
 assert(is_sorted?(books))

Don’t use assertions in place of real error handling.
Assertions check for things that should never happen:
you don’t want to be writing code such as the
following:

 puts(“Enter ‘Y’ or ‘N’: ”)
 ans = gets[0] # Grab first character of response
 assert((ch == ‘Y’) || (ch == ‘N’)) # Very bad idea!

And just because most assert implementations will
terminate the process when an assertion fails, there’s no
reason why versions you write should. If you need to
free resources, catch the assertion’s exception or trap
the exit, and run your own error handler. Just make sure
the code you execute in those dying milliseconds
doesn’t rely on the information that triggered the
assertion failure in the first place.

ASSERTIONS AND SIDE EFFECTS
It’s embarrassing when the code we add to detect errors
actually ends up creating new errors. This can happen
with assertions if evaluating the condition has side
effects. For example, it would be a bad idea to code
something such as

 while (iter.hasMoreElements()) {
 assert(iter.nextElement() != null);
 Object obj = iter.nextElement();
 // ….
 }

The .nextElement() call in the assertion has the side effect
of moving the iterator past the element being fetched,
and so the loop will process only half the elements in
the collection. It would be better to write

 while (iter.hasMoreElements()) {
 Object obj = iter.nextElement();
 assert(obj != null);
 // ….
 }

This problem is a kind of Heisenbug[32]—debugging
that changes the behavior of the system being
debugged.

(We also believe that nowadays, when most languages
have decent support for iterating functions over
collections, this kind of explicit loop is unnecessary and
bad form.)

LEAVE ASSERTIONS TURNED ON
There is a common misunderstanding about assertions.
It goes something like this:

Assertions add some overhead to code. Because they
check for things that should never happen, they’ll get
triggered only by a bug in the code. Once the code has
been tested and shipped, they are no longer needed, and
should be turned off to make the code run faster.
Assertions are a debugging facility.

There are two patently wrong assumptions here. First,
they assume that testing finds all the bugs. In reality, for
any complex program you are unlikely to test even a
minuscule percentage of the permutations your code
will be put through. Second, the optimists are forgetting
that your program runs in a dangerous world. During
testing, rats probably won’t gnaw through a
communications cable, someone playing a game won’t
exhaust memory, and log files won’t fill the storage
partition. These things might happen when your
program runs in a production environment. Your first
line of defense is checking for any possible error, and
your second is using assertions to try to detect those
you’ve missed.

Turning off assertions when you deliver a program to
production is like crossing a high wire without a net
because you once made it across in practice. There’s
dramatic value, but it’s hard to get life insurance.

Even if you do have performance issues, turn off only
those assertions that really hit you. The sort example
above may be a critical part of your application, and
may need to be fast. Adding the check means another
pass through the data, which might be unacceptable.
Make that particular check optional, but leave the rest
in.

Use Assertions in Production, Win Big Money
A former neighbor of Andy’s headed up a small startup
company that made network devices. One of their
secrets to success was the decision to leave assertions
in place in production releases. These assertions were
well crafted to report all the pertinent data leading to
the failure, and presented via a nice-looking UI to the
end user. This level of feedback, from real users under
actual conditions, allowed the developers to plug the
holes and fix these obscure, hard-to-reproduce bugs,
resulting in remarkably stable, bullet-proof software.

This small, unknown company had such a solid
product, it was soon acquired for hundreds of millions
of dollars.

Just sayin’.

Exercise 16 (possible answer)

A quick reality check. Which of these “impossible”
things can happen?

A month with fewer than 28 days

Error code from a system call: can’t access the current directory

In C++: a = 2; b = 3; but (a + b) does not equal 5

A triangle with an interior angle sum ≠ 180°

A minute that doesn’t have 60 seconds

(a + 1) <= a

RELATED SECTIONS INCLUDE

Topic 23, Design by Contract

Topic 24, Dead Programs Tell No Lies

Topic 42, Property-Based Testing

Topic 43, Stay Safe Out There

 Topic 26 How to Balance Resources

To light a candle is to cast a shadow…

 Ursula K. Le Guin, A Wizard of Earthsea
We all manage resources whenever we code: memory,
transactions, threads, network connections, files, timers
—all kinds of things with limited availability. Most of
the time, resource usage follows a predictable pattern:
you allocate the resource, use it, and then deallocate it.

However, many developers have no consistent plan for
dealing with resource allocation and deallocation. So
let us suggest a simple tip:

Tip 40 Finish What You Start

This tip is easy to apply in most circumstances. It
simply means that the function or object that allocates a
resource should be responsible for deallocating it. Let’s
see how it applies by looking at an example of some
bad code—part of a Ruby program that opens a file,
reads customer information from it, updates a field, and
writes the result back. We’ve eliminated error handling
to make the example clearer:

 def read_customer
 @customer_file = File.open(@name + “.rec”, “r+”)
 @balance = BigDecimal(@customer_file.gets)
 end

 def write_customer
 @customer_file.rewind
 @customer_file.puts @balance.to_s
 @customer_file.close
 end

 def update_customer(transaction_amount)
 read_customer
 @balance = @balance.add(transaction_amount,2)
 write_customer
 end

At first sight, the routine update_customer looks reasonable.
It seems to implement the logic we require—reading a
record, updating the balance, and writing the record
back out. However, this tidiness hides a major problem.
The routines read_customer and write_customer are tightly
coupled[33]—they share the instance variable
customer_file. read_customer opens the file and stores the file
reference in customer_file, and then write_customer uses that
stored reference to close the file when it finishes. This
shared variable doesn’t even appear in the update_customer
routine.

Why is this bad? Let’s consider the unfortunate
maintenance programmer who is told that the
specification has changed—the balance should be
updated only if the new value is not negative. They go
into the source and change update_customer:

 def update_customer(transaction_amount)
 read_customer
 if (transaction_amount >= 0.00)
 @balance = @balance.add(transaction_amount,2)
 write_customer
 end
 end

All seems fine during testing. However, when the code
goes into production, it collapses after several hours,
complaining of too many open files. It turns out that
write_customer is not getting called in some circumstances.
When that happens, the file is not getting closed.

A very bad solution to this problem would be to deal
with the special case in update_customer:.

 def update_customer(transaction_amount)
 read_customer
 if (transaction_amount >= 0.00)
 @balance += BigDecimal(transaction_amount, 2)
 write_customer
 else
 @customer_file.close # Bad idea!
 end

 end

This will fix the problem—the file will now get closed
regardless of the new balance—but the fix now means
that three routines are coupled through the shared
variable customer_file, and keeping track of when the file
is open or not is going to start to get messy. We’re
falling into a trap, and things are going to start going
downhill rapidly if we continue on this course. This is
not balanced!

The finish what you start tip tells us that, ideally, the
routine that allocates a resource should also free it. We
can apply it here by refactoring the code slightly:

 def read_customer(file)
 @balance=BigDecimal(file.gets)
 end

 def write_customer(file)
 file.rewind
 file.puts @balance.to_s
 end

 def update_customer(transaction_amount)
 file=File.open(@name + “.rec”, “r+”) # >—
 read_customer(file) # |
 @balance = @balance.add(transaction_amount,2) # |
 file.close # <—
 end

Instead of holding on to the file reference, we’ve
changed the code to pass it as a parameter.[34] Now all
the responsibility for the file is in the update_customer
routine. It opens the file and (finishing what it starts)
closes it before returning. The routine balances the use
of the file: the open and close are in the same place, and
it is apparent that for every open there will be a
corresponding close. The refactoring also removes an
ugly shared variable.

There’s another small but important improvement we
can make. In many modern languages, you can scope
the lifetime of a resource to an enclosed block of some
sort. In Ruby, there’s a variation of the file open that
passes in the open file reference to a block, shown here
between the do and the end:

 def update_customer(transaction_amount)
 File.open(@name + “.rec”, “r+”) do |file| # >—
 read_customer(file) # |
 @balance = @balance.add(transaction_amount,2) # |
 write_customer(file) # |
 end # <—
 end

In this case, at the end of the block the file variable goes
out of scope and the external file is closed. Period. No
need to remember to close the file and release the
source, it is guaranteed to happen for you.

When in doubt, it always pays to reduce scope.

Tip 41 Act Locally

Balancing Over Time
In this topic we’re mostly looking at ephemeral
resources used by your running process. But you might
want to consider what other messes you might be
leaving behind.

For instance, how are your logging files handled? You
are creating data and using up storage space. Is there
something in place to rotate the logs and clean them
up? How about for your unofficial debug files you’re
dropping? If you’re adding logging records in a
database, is there a similar process in place to expire
them? For anything that you create that takes up a finite
resource, consider how to balance it.

What else are you leaving behind?

NEST ALLOCATIONS
The basic pattern for resource allocation can be
extended for routines that need more than one resource
at a time. There are just two more suggestions:

Deallocate resources in the opposite
order to that in which you allocate
them. That way you won’t orphan
resources if one resource contains
references to another.

When allocating the same set of
resources in different places in your
code, always allocate them in the same
order. This will reduce the possibility
of deadlock. (If process A claims
resource1 and is about to claim
resource2, while process B has claimed
resource2 and is trying to get
resource1, the two processes will wait
forever.)

It doesn’t matter what kind of resources we’re using—
transactions, network connections, memory, files,

threads, windows—the basic pattern applies: whoever
allocates a resource should be responsible for
deallocating it. However, in some languages we can
develop the concept further.

OBJECTS AND EXCEPTIONS
The equilibrium between allocations and deallocations
is reminiscent of an object-oriented class’s constructor
and destructor. The class represents a resource, the
constructor gives you a particular object of that
resource type, and the destructor removes it from your
scope.

If you are programming in an object-oriented language,
you may find it useful to encapsulate resources in
classes. Each time you need a particular resource type,
you instantiate an object of that class. When the object
goes out of scope, or is reclaimed by the garbage
collector, the object’s destructor then deallocates the
wrapped resource.

This approach has particular benefits when you’re
working with languages where exceptions can interfere
with resource deallocation.

BALANCING AND EXCEPTIONS
Languages that support exceptions can make resource
deallocation tricky. If an exception is thrown, how do
you guarantee that everything allocated prior to the
exception is tidied up? The answer depends to some
extent on the language support. You generally have two
choices:

1. Use variable scope (for example, stack variables in C++ or Rust)

2. Use a finally clause in a try…catch block

With usual scoping rules in languages such as C++ or
Rust, the variable’s memory will be reclaimed when the

variable goes out of scope via a return, block exit, or
exception. But you can also hook in to the variable’s
destructor to cleanup any external resources. In this
example, the Rust variable named accounts will
automatically close the associated file when it goes out
of scope:

 {
 let mut accounts = File::open(“mydata.txt”)?; // >—
 // use ‘accounts’ // |
 … // |
 } // <—
 // ‘accounts’ is now out of scope, and the file is
 // automatically closed

The other option, if the language supports it, is the finally
clause. A finally clause will ensure that the specified
code will run whether or not an exception was raised in
the try…catch block:

 try
 // some dodgy stuff
 catch
 // exception was raised
 finally
 // clean up in either case

However, there is a catch.

An Exception Antipattern

We commonly see folks writing something like this:

 begin
 thing = allocate_resource()
 process(thing)
 finally
 deallocate(thing)
 end

Can you see what’s wrong?

What happens if the resource allocation fails and raises
an exception? The finally clause will catch it, and try to
deallocate a thing that was never allocated.

The correct pattern for handling resource deallocation
in an environment with exceptions is

 thing = allocate_resource()
 begin
 process(thing)
 finally
 deallocate(thing)
 end

WHEN YOU CAN’T BALANCE RESOURCES
There are times when the basic resource allocation
pattern just isn’t appropriate. Commonly this is found
in programs that use dynamic data structures. One
routine will allocate an area of memory and link it into
some larger structure, where it may stay for some time.

The trick here is to establish a semantic invariant for
memory allocation. You need to decide who is
responsible for data in an aggregate data structure.
What happens when you deallocate the top-level
structure? You have three main options:

The top-level structure is also
responsible for freeing any
substructures that it contains. These
structures then recursively delete data
they contain, and so on.

The top-level structure is simply
deallocated. Any structures that it
pointed to (that are not referenced
elsewhere) are orphaned.

The top-level structure refuses to
deallocate itself if it contains any
substructures.

The choice here depends on the circumstances of each
individual data structure. However, you need to make it
explicit for each, and implement your decision
consistently. Implementing any of these options in a
procedural language such as C can be a problem: data
structures themselves are not active. Our preference in
these circumstances is to write a module for each major
structure that provides standard allocation and
deallocation facilities for that structure. (This module
can also provide facilities such as debug printing,
serialization, deserialization, and traversal hooks.)

CHECKING THE BALANCE

Because Pragmatic Programmers trust no one,
including ourselves, we feel that it is always a good
idea to build code that actually checks that resources
are indeed freed appropriately. For most applications,
this normally means producing wrappers for each type
of resource, and using these wrappers to keep track of
all allocations and deallocations. At certain points in
your code, the program logic will dictate that the
resources will be in a certain state: use the wrappers to
check this. For example, a long-running program that
services requests will probably have a single point at
the top of its main processing loop where it waits for
the next request to arrive. This is a good place to ensure
that resource usage has not increased since the last
execution of the loop.

At a lower, but no less useful level, you can invest in
tools that (among other things) check your running
programs for memory leaks.

RELATED SECTIONS INCLUDE

Topic 24, Dead Programs Tell No Lies

Topic 30, Transforming Programming

Topic 33, Breaking Temporal Coupling

CHALLENGES

Although there are no guaranteed ways of ensuring that you always free

resources, certain design techniques, when applied consistently, will help. In

the text we discussed how establishing a semantic invariant for major data

structures could direct memory deallocation decisions. Consider how Topic

23, Design by Contract, could help refine this idea.

Exercise 17 (possible answer)

Some C and C++ developers make a point of setting a
pointer to NULL after they deallocate the memory it
references. Why is this a good idea?

Exercise 18 (possible answer)

Some Java developers make a point of setting an object
variable to NULL after they have finished using the
object. Why is this a good idea?

 Topic 27 Don’t Outrun Your Headlights

It’s tough to make predictions, especially about the
future.

 Lawrence “Yogi” Berra, after a Danish Proverb
It’s late at night, dark, pouring rain. The two-seater
whips around the tight curves of the twisty little
mountain roads, barely holding the corners. A hairpin
comes up and the car misses it, crashing though the
skimpy guardrail and soaring to a fiery crash in the
valley below. State troopers arrive on the scene, and the
senior officer sadly shakes their head. “Must have
outrun their headlights.”

Had the speeding two-seater been going faster than the
speed of light? No, that speed limit is firmly fixed.
What the officer referred to was the driver’s ability to
stop or steer in time in response to the headlight’s
illumination.

Headlights have a certain limited range, known as the
throw distance. Past that point, the light spread is too
diffuse to be effective. In addition, headlights only
project in a straight line, and won’t illuminate anything
off-axis, such as curves, hills, or dips in the road.
According to the National Highway Traffic Safety
Administration, the average distance illuminated by
low-beam headlights is about 160 feet. Unfortunately,
stopping distance at 40mph is 189 feet, and at 70mph a
whopping 464 feet.[35] So indeed, it’s actually pretty
easy to outrun your headlights.

In software development, our “headlights” are similarly
limited. We can’t see too far ahead into the future, and
the further off-axis you look, the darker it gets. So
Pragmatic Programmers have a firm rule:

Tip 42 Take Small Steps—Always

Always take small, deliberate steps, checking for
feedback and adjusting before proceeding. Consider
that the rate of feedback is your speed limit. You never
take on a step or a task that’s “too big.”

What do we mean exactly by feedback? Anything that
independently confirms or disproves your action. For
example:

Results in a REPL provide feedback on your understanding of APIs and

algorithms

Unit tests provide feedback on your last code change

User demo and conversation provide feedback on features and usability

What’s a task that’s too big? Any task that requires
“fortune telling.” Just as the car headlights have limited
throw, we can only see into the future perhaps one or
two steps, maybe a few hours or days at most. Beyond
that, you can quickly get past educated guess and into
wild speculation. You might find yourself slipping into
fortune telling when you have to:

Estimate completion dates months in the future

Plan a design for future maintenance or extendability

Guess user’s future needs

Guess future tech availability

But, we hear you cry, aren’t we supposed to design for
future maintenance? Yes, but only to a point: only as far
ahead as you can see. The more you have to predict
what the future will look like, the more risk you incur
that you’ll be wrong. Instead of wasting effort
designing for an uncertain future, you can always fall
back on designing your code to be replaceable. Make it
easy to throw out your code and replace it with
something better suited. Making code replaceable will
also help with cohesion, coupling, and DRY, leading to
a better design overall.

Even though you may feel confident of the future,
there’s always the chance of a black swan around the
corner.

BLACK SWANS
In his book, The Black Swan: The Impact of the Highly
Improbable [Tal10], Nassim Nicholas Taleb posits that
all significant events in history have come from high-
profile, hard-to-predict, and rare events that are beyond
the realm of normal expectations. These outliers, while
statistically rare, have disproportionate effects. In
addition, our own cognitive biases tend to blind us to
changes creeping up on the edges of our work (see
Topic 4, Stone Soup and Boiled Frogs).

Around the time of the first edition of The Pragmatic
Programmer, debate raged in computer magazines and
online forums over the burning question: “Who would
win the desktop GUI wars, Motif or OpenLook?”[36] It
was the wrong question. Odds are you’ve probably
never heard of these technologies as neither “won” and
the browser-centric web quickly dominated the
landscape.

Tip 43 Avoid Fortune-Telling

Much of the time, tomorrow looks a lot like today. But
don’t count on it.

RELATED SECTIONS INCLUDE

Topic 12, Tracer Bullets

Topic 13, Prototypes and Post-it Notes

Topic 40, Refactoring

Topic 41, Test to Code

Topic 48, The Essence of Agility

Topic 50, Coconuts Don’t Cut It

Footnotes

[30]
Based in part on earlier work by
Dijkstra, Floyd, Hoare, Wirth, and
others.

[31]
In C and C++ these are usually
implemented as macros. In Java,
assertions are disabled by default.
Invoke the Java VM with the –
enableassertions flag to enable them,
and leave them enabled.

[32]
http://www.eps.mcgill.ca/jargon/jarg
on.html#heisenbug

[33]
For a discussion of the dangers of
coupled code, see Topic 28,
Decoupling.

[34]
See the tip here.

http://www.eps.mcgill.ca/jargon/jargon.html#heisenbug

[35]
Per the NHTSA, Stopping Distance
= Reaction Distance + Braking
Distance, assuming an average
reaction time of 1.5s and
deceleration of 17.02ft/s².

[36]
Motif and OpenLook were GUI
standards for X-Windows based
Unix workstations.

Copyright © 2020 Pearson Education, Inc.

Chapter 5

Bend, or Break

Life doesn’t stand still. Neither can the code that we
write. In order to keep up with today’s near-frantic pace
of change, we need to make every effort to write code
that’s as loose—as flexible—as possible. Otherwise we
may find our code quickly becoming outdated, or too
brittle to fix, and may ultimately be left behind in the
mad dash toward the future.

Back in Topic 11, Reversibility we talked about the
perils of irreversible decisions. In this chapter, we’ll tell
you how to make reversible decisions, so your code can
stay flexible and adaptable in the face of an uncertain
world.

First we look at coupling—the dependencies between
bits of code. Topic 28, Decoupling shows how to keep
separate concepts separate, decreasing coupling.

Next, we’ll look at different techniques you can use
when Topic 29, Juggling the Real World. We’ll
examine four different strategies to help manage and
react to events—a critical aspect of modern software
applications.

Traditional procedural and object-oriented code might
be too tightly coupled for your purposes. In Topic 30,
Transforming Programming, we’ll take advantage of
the more flexible and clearer style offered by function
pipelines, even if your language doesn’t support them
directly.

Common object-oriented style can tempt you with
another trap. Don’t fall for it, or you’ll end up paying a
hefty Topic 31, Inheritance Tax. We’ll explore better
alternatives to keep your code flexible and easier to
change.

And of course a good way to stay flexible is to write
less code. Changing code leaves you open to the
possibility of introducing new bugs. Topic 32,
Configuration will explain how to move details out of
the code completely, where they can be changed more
safely and easily.

All these techniques will help you write code that bends
and doesn’t break.

 Topic 28 Decoupling

When we try to pick out anything by itself, we find it
hitched to everything else in the Universe.

 John Muir, My First Summer in the Sierra
In Topic 8, The Essence of Good Design we claim that
using good design principles will make the code you
write easy to change. Coupling is the enemy of change,
because it links together things that must change in
parallel. This makes change more difficult: either you
spend time tracking down all the parts that need
changing, or you spend time wondering why things
broke when you changed “just one thing” and not the
other things to which it was coupled.

When you are designing something you want to be
rigid, a bridge or a tower perhaps, you couple the
components together:

The links work together to make the structure rigid.

Compare that with something like this:

Here there’s no structural rigidity: individual links can
change and others just accommodate it.

When you’re designing bridges, you want them to hold
their shape; you need them to be rigid. But when you’re
designing software that you’ll want to change, you
want exactly the opposite: you want it to be flexible.
And to be flexible, individual components should be
coupled to as few other components as possible.

And, to make matters worse, coupling is transitive: if A
is coupled to B and C, and B is coupled to M and N,
and C to X and Y, then A is actually coupled to B, C,
M, N, X, and Y.

This means there’s a simple principle you should
follow:

Tip 44 Decoupled Code Is Easier to Change

Given that we don’t normally code using steel beams
and rivets, just what does it mean to decouple code? In
this section we’ll talk about:

Train wrecks—chains of method calls

Globalization—the dangers of static things

Inheritance—why subclassing is dangerous

To some extent this list is artificial: coupling can occur
just about any time two pieces of code share something,
so as you read what follows keep an eye out for the
underlying patterns so you can apply them to your
code. And keep a lookout for some of the symptoms of
coupling:

Wacky dependencies between
unrelated modules or libraries.

“Simple” changes to one module that
propagate through unrelated modules
in the system or break stuff elsewhere
in the system.

Developers who are afraid to change
code because they aren’t sure what
might be affected.

Meetings where everyone has to attend
because no one is sure who will be
affected by a change.

TRAIN WRECKS
We’ve all seen (and probably written) code like this:

 public void applyDiscount(customer, order_id, discount) {
 totals = customer
 .orders
 .find(order_id)
 .getTotals();
 totals.grandTotal = totals.grandTotal - discount;
 totals.discount = discount;
 }

}

We’re getting a reference to some orders from a
customer object, using that to find a particular order,
and then getting the set of totals for the order. Using
those totals, we subtract the discount from the order
grand total and also update them with that discount.

This chunk of code is traversing five levels of
abstraction, from customer to total amounts. Ultimately
our top-level code has to know that a customer object
exposes orders, that the orders have a find method that
takes an order id and returns an order, and that the order
object has a totals object which has getters and setters for
grand totals and discounts. That’s a lot of implicit
knowledge. But worse, that’s a lot of things that cannot
change in the future if this code is to continue to work.
All the cars in a train are coupled together, as are all the
methods and attributes in a train wreck.

Let’s imagine that the business decides that no order
can have a discount of more than 40%. Where would
we put the code that enforces that rule?

You might say it belongs in the applyDiscount function we
just wrote. That’s certainly part of the answer. But with
the code the way it is now, you can’t know that this is
the whole answer. Any piece of code, anywhere, could
set fields in the totals object, and if the maintainer of that
code didn’t get the memo, it wouldn’t be checking
against the new policy.

One way to look at this is to think about
responsibilities. Surely the totals object should be
responsible for managing the totals. And yet it isn’t: it’s
really just a container for a bunch of fields that anyone
can query and update.

The fix for that is to apply something we call:

Tip 45 Tell, Don’t Ask

This principle says that you shouldn’t make decisions
based on the internal state of an object and then update
that object. Doing so totally destroys the benefits of
encapsulation and, in doing so, spreads the knowledge
of the implementation throughout the code. So the first
fix for our train wreck is to delegate the discounting to
the total object:

 public void applyDiscount(customer, order_id, discount) {
 customer
 .orders
 .find(order_id)
 .getTotals()
 .applyDiscount(discount);
 }

We have the same kind of tell-don’t-ask (TDA) issue
with the customer object and its orders: we shouldn’t
fetch its list of orders and search them. We should
instead get the order we want directly from the
customer:

 public void applyDiscount(customer, order_id, discount) {
 customer
 .findOrder(order_id)
 .getTotals()
 .applyDiscount(discount);
 }

The same thing applies to our order object and its
totals. Why should the outside world have to know that
the implementation of an order uses a separate object to
store its totals?

 public void applyDiscount(customer, order_id, discount) {
 customer
 .findOrder(order_id)
 .applyDiscount(discount);
 }

And this is where we’d probably stop.

At this point you might be thinking that TDA would
make us add an applyDiscountToOrder(order_id) method to
customers. And, if followed slavishly, it would.

But TDA is not a law of nature; it’s just a pattern to
help us recognize problems. In this case, we’re
comfortable exposing the fact that a customer has
orders, and that we can find one of those orders by
asking the customer object for it. This is a pragmatic
decision.

In every application there are certain top-level concepts
that are universal. In this application, those concepts
include customers and orders. It makes no sense to hide
orders totally inside customer objects: they have an
existence of their own. So we have no problem creating
APIs that expose order objects.

The Law of Demeter

People often talk about something called the Law of
Demeter, or LoD, in relation to coupling. The LoD is a
set of guidelines[37] written in the late ’80s by Ian
Holland. He created them to help developers on the
Demeter Project keep their functions cleaner and
decoupled.

The LoD says that a method defined in a class C should
only call:

Other instance methods in C

Its parameters

Methods in objects that it creates, both on the stack and in the heap

Global variables

In the first edition of this book we spent some time
describing the LoD. In the intervening 20 years the
bloom has faded on that particular rose. We now don’t
like the “global variable” clause (for reasons we’ll go
into in the next section). We also discovered that it’s
difficult to use this in practice: it’s a little like having to
parse a legal document whenever you call a method.

However, the principle is still sound. We just
recommend a somewhat simpler way of expressing
almost the same thing:

Tip 46 Don’t Chain Method Calls

Try not to have more than one “.” when you access
something. And access something also covers cases
where you use intermediate variables, as in the
following code:

 # This is pretty poor style
 amount = customer.orders.last().totals().amount;

 # and so is this…
 orders = customer.orders;
 last = orders.last();
 totals = last.totals();
 amount = totals.amount;

There’s a big exception to the one-dot rule: the rule
doesn’t apply if the things you’re chaining are really,
really unlikely to change. In practice, anything in your
application should be considered likely to change.
Anything in a third-party library should be considered
volatile, particularly if the maintainers of that library
are known to change APIs between releases. Libraries
that come with the language, however, are probably
pretty stable, and so we’d be happy with code such as:

 people
 .sort_by {|person| person.age }
 .first(10)
 .map {| person | person.name }

That Ruby code worked when we wrote the first
edition, 20 years ago, and will likely still work when

we enter the home for old programmers (any day
now…).

Chains and Pipelines

In Topic 30, Transforming Programming we talk about
composing functions into pipelines. These pipelines
transform data, passing it from one function to the next.
This is not the same as a train wreck of method calls, as
we are not relying on hidden implementation details.

That’s not to say that pipelines don’t introduce some
coupling: they do. The format of the data returned by
one function in a pipeline must be compatible with the
format accepted by the next.

Our experience is that this form of coupling is far less a
barrier to changing the code than the form introduced
by train wrecks.

THE EVILS OF GLOBALIZATION
Globally accessible data is an insidious source of
coupling between application components. Each piece
of global data acts as if every method in your
application suddenly gained an additional parameter:
after all, that global data is available inside every
method.

Globals couple code for many reasons. The most
obvious is that a change to the implementation of the
global potentially affects all the code in the system. In
practice, of course, the impact is fairly limited; the
problem really comes down to knowing that you’ve
found every place you need to change.

Global data also creates coupling when it comes to
teasing your code apart.

Much has been made of the benefits of code reuse. Our
experience has been that reuse should probably not be a
primary concern when creating code, but the thinking
that goes into making code reusable should be part of
your coding routine. When you make code reusable,

you give it clean interfaces, decoupling it from the rest
of your code. This allows you to extract a method or
module without dragging everything else along with it.
And if your code uses global data, then it becomes
difficult to split it out from the rest.

You’ll see this problem when you’re writing unit tests
for code that uses global data. You’ll find yourself
writing a bunch of setup code to create a global
environment just to allow your test to run.

Tip 47 Avoid Global Data

Global Data Includes Singletons

In the previous section we were careful to talk about
global data and not global variables. That’s because
people often tell us “Look! No global variables. I
wrapped it all as instance data in a singleton object or
global module.”

Try again, Skippy. If all you have is a singleton with a
bunch of exported instance variables, then it’s still just
global data. It just has a longer name.

So then folks take this singleton and hide all the data
behind methods. Instead of coding Config.log_level they
now say Config.log_level() or Config.getLogLevel(). This is
better, because it means that your global data has a bit
of intelligence behind it. If you decide to change the
representation of log levels, you can maintain
compatibility by mapping between the new and old in
the Config API. But you still have only the one set of
configuration data.
Global Data Includes External Resources

Any mutable external resource is global data. If your
application uses a database, datastore, file system,
service API, and so on, it risks falling into the
globalization trap. Again, the solution is to make sure

you always wrap these resources behind code that you
control.

Tip 48 If It’s Important Enough to Be Global, Wrap It in an API

INHERITANCE ADDS COUPLING
The misuse of subclassing, where a class inherits state
and behavior from another class, is so important that
we discuss it in its own section, Topic 31, Inheritance
Tax.

AGAIN, IT’S ALL ABOUT CHANGE
Coupled code is hard to change: alterations in one place
can have secondary effects elsewhere in the code, and
often in hard-to-find places that only come to light a
month later in production.

Keeping your code shy: having it only deal with things
it directly knows about, will help keep your
applications decoupled, and that will make them more
amenable to change.

RELATED SECTIONS INCLUDE

Topic 8, The Essence of Good Design

Topic 9, DRY—The Evils of Duplication

Topic 10, Orthogonality

Topic 11, Reversibility

Topic 29, Juggling the Real World

Topic 30, Transforming Programming

Topic 31, Inheritance Tax

Topic 32, Configuration

Topic 33, Breaking Temporal Coupling

Topic 34, Shared State Is Incorrect State

Topic 35, Actors and Processes

Topic 36, Blackboards

We discuss Tell, Don’t Ask in our 2003 Software Construction article The Art

of Enbugging.[38]

 Topic 29 Juggling the Real World

Things don’t just happen; they are made to happen.

 John F. Kennedy
In the old days, when your authors still had their boyish
good looks, computers were not particularly flexible.
We’d typically organize the way we interacted with
them based on their limitations.

Today, we expect more: computers have to integrate
into our world, not the other way around. And our
world is messy: things are constantly happening, stuff
gets moved around, we change our minds, …. And the
applications we write somehow have to work out what
to do.

This section is all about writing these responsive
applications.

We’ll start off with the concept of an event.

EVENTS
An event represents the availability of information. It
might come from the outside world: a user clicking a
button, or a stock quote update. It might be internal: the
result of a calculation is ready, a search finishes. It can
even be something as trivial as fetching the next
element in a list.

Whatever the source, if we write applications that
respond to events, and adjust what they do based on
those events, those applications will work better in the
real world. Their users will find them to be more

interactive, and the applications themselves will make
better use of resources.

But how can we write these kinds of applications?
Without some kind of strategy, we’ll quickly find
ourselves confused, and our applications will be a mess
of tightly coupled code.

Let’s look at four strategies that help.

1. Finite State Machines

2. The Observer Pattern

3. Publish/Subscribe

4. Reactive Programming and Streams

FINITE STATE MACHINES
Dave finds that he writes code using a Finite State
Machine (FSM) just about every week. Quite often, the
FSM implementation will be just a couple of lines of
code, but those few lines help untangle a whole lot of
potential mess.

Using an FSM is trivially easy, and yet many
developers shy away from them. There seems to be a
belief that they are difficult, or that they only apply if
you’re working with hardware, or that you need to use
some hard-to-understand library. None of these are true.
The Anatomy of a Pragmatic FSM

A state machine is basically just a specification of how
to handle events. It consists of a set of states, one of
which is the current state. For each state, we list the
events that are significant to that state. For each of
those events, we define the new current state of the
system.

For example, we may be receiving multipart messages
from a websocket. The first message is a header. This is

followed by any number of data messages, followed by
a trailing message. This could be represented as an
FSM like this:

We start in the “Initial state.” If we receive a header
message, we transition to the “Reading message” state.
If we receive anything else while we’re in the initial
state (the line labeled with an asterisk) we transition to
the “Error” state and we’re done.

While we’re in the “Reading message” state, we can
accept either data messages, in which case we continue
reading in the same state, or we can accept a trailer
message, which transitions us to the “Done” state.
Anything else causes a transition to the error state.

The neat thing about FSMs is that we can express them
purely as data. Here’s a table representing our message
parser:

The rows in the table represent the states. To find out
what to do when an event occurs, look up the row for
the current state, scan along for the column
representing the event, the contents of that cell are the
new state.

The code that handles it is equally simple:

event/simple_fsm.rb

 1: TRANSITIONS = {
 - initial: {header: :reading },
 - reading: {data: :reading, trailer: :done },
 - }
 5:
 - state = :initial
 -
 - while state != :done && state != :error
 - msg = get_next_message()
 10: state = TRANSITIONS[state][msg.msg_type] || :error
 - end

The code that implements the transitions between states
is on line 10. It indexes the transition table using the
current state, and then indexes the transitions for that
state using the message type. If there is no matching
new state, it sets the state to :error.

Adding Actions

A pure FSM, such as the one we were just looking at, is
an event stream parser. Its only output is the final state.
We can beef it up by adding actions that are triggered
on certain transitions.

For example, we might need to extract all of the strings
in a source file. A string is text between quotes, but a
backslash in a string escapes the next character, so
“Ignore "quotes"” is a single string. Here’s an FSM that
does this:

http://media.pragprog.com/titles/tpp20/code/event/simple_fsm.rb

This time, each transition has two labels. The top one is
the event that triggers it, and the bottom one is the
action to take as we move between states.

We’ll express this in a table, as we did last time.
However, in this case each entry in the table is a two-
element list containing the next state and the name of
an action:

event/strings_fsm.rb

http://media.pragprog.com/titles/tpp20/code/event/strings_fsm.rb

 TRANSITIONS = {

 # current new state action to take
 #–––––––––––––––––––

 look_for_string: {
 ‘”’ => [:in_string, :start_new_string],
 :default => [:look_for_string, :ignore],
 },

 in_string: {
 ‘”’ => [:look_for_string, :finish_current_string],
 ‘\’ => [:copy_next_char, :add_current_to_string],
 :default => [:in_string, :add_current_to_string],
 },

 copy_next_char: {
 :default => [:in_string, :add_current_to_string],
 },
 }

We’ve also added the ability to specify a default
transition, taken if the event doesn’t match any of the
other transitions for this state.

Now let’s look at the code:

event/strings_fsm.rb

 state = :look_for_string
 result = []

 while ch = STDIN.getc
 state, action = TRANSITIONS[state][ch] || TRANSITIONS[state][:default]
 case action
 when :ignore
 when :start_new_string

http://media.pragprog.com/titles/tpp20/code/event/strings_fsm.rb

 result = []
 when :add_current_to_string
 result << ch
 when :finish_current_string
 puts result.join
 end
 end

This is similar to the previous example, in that we loop
through the events (the characters in the input),
triggering transitions. But it does more than the
previous code. The result of each transition is both a
new state and the name of an action. We use the action
name to select the code to run before we go back
around the loop.

This code is very basic, but it gets the job done. There
are many other variants: the transition table could use
anonymous functions or function pointers for the
actions, you could wrap the code that implements the
state machine in a separate class, with its own state, and
so on.

There’s nothing to say that you have to process all the
state transitions at the same time. If you’re going
through the steps to sign up a user on your app, there’s
likely to be a number of transitions as they enter their
details, validate their email, agree to the 107 different
legislated warnings that online apps must now give, and
so on. Keeping the state in external storage, and using it
to drive a state machine, is a great way to handle these
kind of workflow requirements.

State Machines Are a Start

State machines are underused by developers, and we’d
like to encourage you to look for opportunities to apply
them. But they don’t solve all the problems associated
with events. So let’s move on to some other ways of
looking at the problems of juggling events.

THE OBSERVER PATTERN
In the observer pattern we have a source of events,
called the observable and a list of clients, the observers,

who are interested in those events.

An observer registers its interest with the observable,
typically by passing a reference to a function to be
called. Subsequently, when the event occurs, the
observable iterates down its list of observers and calls
the function that each passed it. The event is given as a
parameter to that call.

Here’s a simple example in Ruby. The Terminator module
is used to terminate the application. Before it does so,
however, it notifies all its observers that the application
is going to exit.[39] They might use this notification to
tidy up temporary resources, commit data, and so on:

event/observer.rb

 module Terminator
 CALLBACKS = []

 def self.register(callback)
 CALLBACKS << callback
 end

 def self.exit(exit_status)
 CALLBACKS.each { |callback| callback.(exit_status) }
 exit!(exit_status)
 end
 end

 Terminator.register(-> (status) { puts “callback 1 sees #{status}” })

http://media.pragprog.com/titles/tpp20/code/event/observer.rb

 Terminator.register(-> (status) { puts “callback 2 sees #{status}” })

 Terminator.exit(99)

 $ ruby event/observer.rb
 callback 1 sees 99
 callback 2 sees 99

There’s not much code involved in creating an
observable: you push a function reference onto a list,
and then call those functions when the event occurs.
This is a good example of when not to use a library.

The observer/observable pattern has been used for
decades, and it has served us well. It is particularly
prevalent in user interface systems, where the callbacks
are used to inform the application that some interaction
has occurred.

But the observer pattern has a problem: because each of
the observers has to register with the observable, it
introduces coupling. In addition, because in the typical
implementation the callbacks are handled inline by the
observable, synchronously, it can introduce
performance bottlenecks.

This is solved by the next strategy, Publish/Subscribe.

PUBLISH/SUBSCRIBE
Publish/Subscribe (pubsub) generalizes the observer
pattern, at the same time solving the problems of
coupling and performance.

In the pubsub model, we have publishers and
subscribers. These are connected via channels. The
channels are implemented in a separate body of code:
sometimes a library, sometimes a process, and

sometimes a distributed infrastructure. All this
implementation detail is hidden from your code.

Every channel has a name. Subscribers register interest
in one or more of these named channels, and publishers
write events to them. Unlike the observer pattern, the
communication between the publisher and subscriber is
handled outside your code, and is potentially
asynchronous.

Although you could implement a very basic pubsub
system yourself, you probably don’t want to. Most
cloud service providers have pubsub offerings,
allowing you to connect applications around the world.
Every popular language will have at least one pubsub
library.

Pubsub is a good technology for decoupling the
handling of asynchronous events. It allows code to be
added and replaced, potentially while the application is
running, without altering existing code. The downside
is that it can be hard to see what is going on in a system
that uses pubsub heavily: you can’t look at a publisher
and immediately see which subscribers are involved
with a particular message.

Compared to the observer pattern, pubsub is a great
example of reducing coupling by abstracting up
through a shared interface (the channel). However, it is
still basically just a message passing system. Creating
systems that respond to combinations of events will
need more than this, so let’s look at ways we can add a
time dimension to event processing.

REACTIVE PROGRAMMING, STREAMS, AND
EVENTS
If you’ve ever used a spreadsheet, then you’ll be
familiar with reactive programming. If a cell contains a
formula which refers to a second cell, then updating
that second cell causes the first to update as well. The
values react as the values they use change.

There are many frameworks that can help with this kind
of data-level reactivity: in the realm of the browser
React and Vue.js are current favorites (but, this being
JavaScript, this information will be out-of-date before
this book is even printed).

It’s clear that events can also be used to trigger
reactions in code, but it isn’t necessarily easy to plumb
them in. That’s where streams come in.

Streams let us treat events as if they were a collection
of data. It’s as if we had a list of events, which got
longer when new events arrive. The beauty of that is
that we can treat streams just like any other collection:
we can manipulate, combine, filter, and do all the other
data-ish things we know so well. We can even combine
event streams and regular collections. And streams can
be asynchronous, which means your code gets the
opportunity to respond to events as they arrive.

The current de facto baseline for reactive event
handling is defined on the site http://reactivex.io, which
defines a language-agnostic set of principles and
documents some common implementations. Here we’ll
use the RxJs library for JavaScript.

Our first example takes two streams and zips them
together: the result is a new stream where each element
contains one item from the first input stream and one
item from the other. In this case, the first stream is
simply a list of five animal names. The second stream
is more interesting: it’s an interval timer which
generates an event every 500ms. Because the streams
are zipped together, a result is only generated when
data is available on both, and so our result stream only
emits a value every half second:

event/rx0/index.js

http://reactivex.io/
http://media.pragprog.com/titles/tpp20/code/event/rx0/index.js

 import * as Observable from ‘rxjs’
 import { logValues } from “../rxcommon/logger.js”

 let animals = Observable.of(“ant”, “bee”, “cat”, “dog”, “elk”)
 let ticker = Observable.interval(500)

 let combined = Observable.zip(animals, ticker)

 combined.subscribe(next => logValues(JSON.stringify(next)))

This code uses a simple logging function[40] which adds
items to a list in the browser window. Each item is
timestamped with the time in milliseconds since the
program started to run. Here’s what it shows for our
code:

Notice the timestamps: we’re getting one event from
the stream every 500ms. Each event contains a serial
number (created by the interval observable) and the name
of the next animal from the list. Watching it live in a
browser, the log lines appear at every half second.

Event streams are normally populated as events occur,
which implies that the observables that populate them
can run in parallel. Here’s an example that fetches
information about users from a remote site. For this
we’ll use https://reqres.in, a public site that provides an
open REST interface. As part of its API, we can fetch
data on a particular (fake) user by performing a GET
request to users/«id». Our code fetches the users with the
IDs 3, 2, and 1:

event/rx1/index.js

 import * as Observable from ‘rxjs’
 import { mergeMap } from ‘rxjs/operators’
 import { ajax } from ‘rxjs/ajax’
 import { logValues } from “../rxcommon/logger.js”

 let users = Observable.of (3, 2, 1)

 let result = users.pipe(
 mergeMap((user) => ajax.getJSON(`https://reqres.in/api/users/${user}`))
)

 result.subscribe(
 resp => logValues(JSON.stringify(resp.data)),
 err => console.error(JSON.stringify(err))
)

The internal details of the code are not too important.
What’s exciting is the result, shown in the following
screenshot:

https://reqres.in/
http://media.pragprog.com/titles/tpp20/code/event/rx1/index.js

Look at the timestamps: the three requests, or three
separate streams, were processed in parallel, The first to
come back, for id 2, took 82ms, and the next two came
back 50 and 51ms later.

Streams of Events Are Asynchronous Collections

In the previous example, our list of user IDs (in the
observable users) was static. But it doesn’t have to be.
Perhaps we want to collect this information when
people log in to our site. All we have to do is to
generate an observable event containing their user ID
when their session is created, and use that observable
instead of the static one. We’d then be fetching details
about the users as we received these IDs, and
presumably storing them somewhere.

This is a very powerful abstraction: we no longer need
to think about time as being something we have to
manage. Event streams unify synchronous and
asynchronous processing behind a common, convenient
API.

EVENTS ARE UBIQUITOUS
Events are everywhere. Some are obvious: a button
click, a timer expiring. Other are less so: someone
logging in, a line in a file matching a pattern. But
whatever their source, code that’s crafted around events
can be more responsive and better decoupled than its
more linear counterpart.

RELATED SECTIONS INCLUDE

Topic 28, Decoupling

Topic 36, Blackboards

EXERCISES
Exercise 19 (possible answer)

In the FSM section we mentioned that you could move
the generic state machine implementation into its own
class. That class would probably be initialized by
passing in a table of transitions and an initial state.

Try implementing the string extractor that way.

Exercise 20 (possible answer)

Which of these technologies (perhaps in combination)
would be a good fit for the following situations:

If you receive three network interface
down events within five minutes, notify
the operations staff.

If it is after sunset, and there is motion
detected at the bottom of the stairs
followed by motion detected at the top
of the stairs, turn on the upstairs lights.

You want to notify various reporting
systems that an order was completed.

In order to determine whether a
customer qualifies for a car loan, the
application needs to send requests to
three backend services and wait for the
responses.

 Topic 30 Transforming Programming

If you can’t describe what you are doing as a process,
you don’t know what you’re doing.

 W. Edwards Deming, (attr)
All programs transform data, converting an input into
an output. And yet when we think about design, we
rarely think about creating

transformations. Instead we worry about classes and
modules, data

structures and algorithms, languages and frameworks.

We think that this focus on code often misses the point:
we need to get back to thinking of programs as being
something that transforms inputs into outputs. When
we do, many of the details we previously worried

about just evaporate. The structure becomes clearer, the
error handling more consistent, and the coupling drops
way down.

To start our investigation, let’s take the time machine
back to the 1970s and ask a Unix programmer to write
us a program that lists the

five longest files in a directory tree, where longest
means “having the largest number of lines.”

You might expect them to reach for an editor and start
typing in C. But they wouldn’t, because they are
thinking about this in terms of what we have (a

directory tree) and what we want (a list of files). Then
they’d go to a terminal and type something like:

 $ find . -type f | xargs wc -l | sort -n | tail -5

This is a series of transformations:
find . -type f
Write a list of all the files (-type f)
in or below the current directory
(.) to standard output.

xargs wc -l
Read lines from standard input
and arrange for them all to be
passed as arguments to the
command wc -l. The wc program
with the -l option counts the
number of lines in each of its
arguments and writes

each

result as “count filename” to
standard output.

sort -n
Sort standard input assuming each
line starts with a number (-n),
writing the result to standard
output.

tail -5
Read standard input and write just
the last five lines to standard
output.

Run this in our book’s directory and we get

 470 ./test_to_build.pml
 487 ./dbc.pml
 719 ./domain_languages.pml
 727 ./dry.pml
 9561 total

That last line is the total number of lines in all the files
(not just those shown), because that’s what wc does. We
can strip it off by requesting one more line from tail, and
then ignoring the last line:

 $ find . -type f | xargs wc -l | sort -n | tail -6 | head -5
 470 ./debug.pml
 470 ./test_to_build.pml
 487 ./dbc.pml
 719 ./domain_languages.pml
 727 ./dry.pml

Figure 1. The find pipeline as a series of
transformations

Let’s look at this in terms of the data that flows
between the individual steps.

Our original requirement, “top 5 files in terms of lines,”
becomes a

series of transformations (also show in the figure).

directory name
→ list of files
→ list with line numbers
→ sorted list
→ highest five + total
→ highest five

It’s almost like an industrial assembly line: feed raw
data in one end and the finished product (information)
comes out the other.

And we like to think about all code this way.

Tip
49 Programming Is About Code, But Programs Are About

Data

FINDING TRANSFORMATIONS
Sometimes the easiest way to find the transformations
is to start with the requirement and determine its inputs
and outputs. Now you’ve

defined the function representing the overall program.
You can then

find steps that lead you from input to output. This is a
top-down approach.

For example, you want to create a website for folks
playing word games that finds all the words that can be
made from a set of letters.

Your input here is a set of letters, and your output is a
list of three-letter words, four-letter words, and so on:

 “lvyin” is transformed to →
3 => ivy, lin, nil, yin

4 => inly, liny, viny

5 => vinyl

(Yes, they are all words, at least according to the macOS
dictionary.) The trick behind the overall application is simple:
we have a dictionary which groups words by a signature,
chosen so that all words containing the same letters will have
the same signature. The simplest signature function is just the
sorted list of letters in the word. We can then

look up an input string by generating a signature for it, and
then

seeing which words (if any) in the dictionary have that same
signature.

Thus the anagram finder breaks down into four separate
transformations:

Step Transformation Sample data
Step 0: Initial input “ylvin”
Step 1: All combinations of three or more letters vin, viy,

vil, vny, vnl, vyl, iny, inl, iyl, nyl, viny,

vinl, viyl, vnyl, inyl, vinyl

Step 2: Signatures of the combinations inv, ivy, ilv, nvy,

lnv, lvy, iny, iln, ily, lny, invy, ilnv, ilvy,

lnvy, ilny, ilnvy

Step 3: List of all dictionary words which match any of the

signatures

ivy, yin, nil, lin, viny, liny, inly, vinyl

Step 4: Words grouped by length
3 => ivy, lin, nil, yin
4 => inly, liny, viny
5 => vinyl

Transformations All the Way Down

Let’s start by looking at step 1, which takes a word and creates
a list of all combinations of three or more letters. This step can
itself be expressed as a list of transformations:

Step Transformation Sample data
Step 1.0: Initial input “vinyl”
Step 1.1: Convert to characters v, i, n, y, l
Step 1.2: Get all subsets

[],

[v],

[i],

…

[v,i],

[v,n],

[v,y],

…

[v,i,n],

[v,i,y],

…

[v,n,y,l],

[i,n,y,l],

[v,i,n,y,l]

Step 1.3: Only those longer than three characters [v,i,n],

[v,i,y],

…

[i,n,y,l],

[v,i,n,y,l]

Step 1.4: Convert back to strings [vin,viy, … inyl,vinyl]

We’ve now reached the point where we can easily implement
each transformation in code (using Elixir in this case):
function-pipelines/anagrams/lib/anagrams.ex

defp all_subsets_longer_than_three_characters(word) do
word
|> String.codepoints()
|> Comb.subsets()
|> Stream.filter(fn subset -> length(subset) >= 3 end)
|> Stream.map(&List.to_string(&1))
end

What’s with the |> Operator?

Elixir, along with many other functional languages, has a
pipeline operator, sometimes called a forward pipe or just a
pipe.[41] All it does is take the value on its left and insert it as
the

first parameter of the function on its right, so

“vinyl” |> String.codepoints |> Comb.subsets()

is the same as writing

Comb.subsets(String.codepoints(”vinyl”))

(Other languages may inject this piped value as the last
parameter of the next function—it largely depends on the style
of the built-in

libraries.)

You might think that this is just syntactic sugar. But in a very
real way the pipeline operator is a revolutionary opportunity

http://media.pragprog.com/titles/tpp20/code/function-pipelines/anagrams/lib/anagrams.ex

to think differently. Using a pipeline means that you’re
automatically thinking in terms of transforming data; each
time you see |> you’re actually seeing a place where data is
flowing between one transformation and the next.

Many languages have something similar: Elm, F#, and Swift
have |>, Clojure has -> and ->> (which work a little
differently), R has %>%. Haskell both has pipe operators and
makes it easy to declare new ones. As we write this, there’s
talk of adding |> to JavaScript.

If your current language supports something similar, you’re in
luck. If it doesn’t, see Language X Doesn’t Have Pipelines.

Anyway, back to the code.

Keep on Transforming…

Now look at Step 2 of the main program, where we convert the
subsets into signatures. Again, it’s a simple transformation—a
list of subsets becomes a list of signatures:

Step Transformation Sample data
Step 2.0: initial input vin, viy, … inyl, vinyl
Step 2.1: convert to signatures inv, ivy … ilny, inlvy

The Elixir code in the following listing is just as simple:
function-pipelines/anagrams/lib/anagrams.ex

defp as_unique_signatures(subsets) do
subsets
|> Stream.map(&Dictionary.signature_of/1)
end

Now we transform that list of signatures: each signature gets
mapped to the list of known words with the same signature, or
nil if there are no such words. We then have to remove the nils
and flatten the nested lists into a single level:

function-pipelines/anagrams/lib/anagrams.ex

defp find_in_dictionary(signatures) do
signatures
|> Stream.map(&Dictionary.lookup_by_signature/1)
|> Stream.reject(&is_nil/1)
|> Stream.concat(&(&1))

http://media.pragprog.com/titles/tpp20/code/function-pipelines/anagrams/lib/anagrams.ex
http://media.pragprog.com/titles/tpp20/code/function-pipelines/anagrams/lib/anagrams.ex

end

Step 4, grouping the words by length, is another simple
transformation, converting our list into a map where the keys
are the lengths, and the values are all words with that length:
function-pipelines/anagrams/lib/anagrams.ex

defp group_by_length(words) do
words
|> Enum.sort()
|> Enum.group_by(&String.length/1)
end

Language X Doesn’t Have Pipelines

Pipelines have been around for a long time, but only in niche
languages. They’ve only moved into the mainstream recently,
and many popular languages still don’t support the concept.

The good news is that thinking in transformations doesn’t
require a particular language syntax: it’s more a philosophy of
design. You still construct your code as transformations, but
you write them as a series of assignments:

const content = File.read(file_name);
const lines = find_matching_lines(content, pattern)
const result = truncate_lines(lines)

It’s a little more tedious, but it gets the job done.
Putting It All Together

We’ve written each of the individual transformations. Now it’s
time to string them all together into our main function:
function-pipelines/anagrams/lib/anagrams.ex

def anagrams_in(word) do
word
|> all_subsets_longer_than_three_characters()
|> as_unique_signatures()
|> find_in_dictionary()
|> group_by_length()
end

Does it work? Let’s try it:

http://media.pragprog.com/titles/tpp20/code/function-pipelines/anagrams/lib/anagrams.ex
http://media.pragprog.com/titles/tpp20/code/function-pipelines/anagrams/lib/anagrams.ex

iex(1)> Anagrams.anagrams_in “lyvin”
%{
3 => [“ivy”, “lin”, “nil”, “yin”],
4 => [“inly”, “liny”, “viny”],
5 => [“vinyl”]
}

WHY IS THIS SO GREAT?

Let’s look at the body of the main function again:

word
|> all_subsets_longer_than_three_characters()
|> as_unique_signatures()
|> find_in_dictionary()
|> group_by_length()

It’s simply a chain of the transformations needed to meet our
requirement, each taking input from the previous
transformation and

passing output to the next. That comes about as close to
literate code as you can get.

But there’s something deeper, too. If your background is
object-oriented programming, then your reflexes demand that
you hide data, encapsulating it inside objects. These objects
then chatter back and forth, changing each other’s state. This
introduces a lot of coupling, and it is a big reason that OO
systems can be hard to change.

Tip 50 Don’t Hoard State; Pass It Around

In the transformational model, we turn that on its head. Instead
of little pools of data spread all over the system, think of data
as a mighty river, a flow. Data becomes a peer to functionality:
a pipeline is a sequence of code → data → code → data….
The data is no longer tied to a particular group of functions, as
it is in a class definition. Instead it is free to

represent the unfolding progress of our application as it
transforms

its inputs into its outputs. This means that we can greatly
reduce

coupling: a function can be used (and reused) anywhere its
parameters match the output of some other function.

Yes, there is still a degree of coupling, but in our experience
it’s more manageable than the OO-style of command and
control. And, if you’re using a language with type checking,
you’ll get compile-time warnings when you try to connect two
incompatible things.
WHAT ABOUT ERROR HANDLING?

So far our transforms have worked in a world where nothing
goes wrong.

How can we use them in the real world, though? If we can
only build

linear chains, how can we add all that conditional logic that we
need for error checking?

There are many ways of doing this, but they all rely on a basic
convention: we never pass raw values between
transformations. Instead, we wrap them in a data structure (or
type) which also tells us if the contained value is valid. In
Haskell, for example, this wrapper is

called Maybe. In F# and Scala it’s Option.

How you use this concept is language specific. In general,
though, there are two basic ways of writing the code: you can
handle checking for

errors inside your transformations or outside them.

Elixir, which we’ve used so far, doesn’t have this support built
in. For our purposes this is a good thing, as we get to show an
implementation from the ground up. Something similar should
work in most other

languages.
First, Choose a Representation

We need a representation for our wrapper (the data structure
that carries around a value or an error indication). You can use

structures for this, but Elixir already has a pretty strong
convention: functions tend to return a tuple containing either
{:ok, value} or {:error, reason}. For example, File.open
returns either :ok and an IO

process or :error and a reason code:

iex(1)> File.open(”/etc/passwd”)
{:ok, #PID<0.109.0>}
iex(2)> File.open(”/etc/wombat”)
{:error, :enoent}

We’ll use the :ok/:error tuple as our wrapper when passing
things through a pipeline.

Then Handle It Inside Each Transformation

Let’s write a function that returns all the lines in a file that
contain a given string, truncated to the first 20 characters. We
want to write it as a transformation, so the input will be a file
name and a string to match, and the output will be either an :ok
tuple with a list of lines or an :error tuple with some kind of
reason. The top-level function should look something like this:
function-pipelines/anagrams/lib/grep.ex

def find_all(file_name, pattern) do
File.read(file_name)
|> find_matching_lines(pattern)
|> truncate_lines()
end

There’s no explicit error checking here, but if any step in the
pipeline returns an error tuple then the pipeline will return that
error without executing the functions that follow.[42] We do
this using Elixir’s pattern matching:
function-pipelines/anagrams/lib/grep.ex

defp find_matching_lines({:ok, content}, pattern) do
content
|> String.split(~r/\n/)
|> Enum.filter(&String.match?(&1, pattern))
|> ok_unless_empty()
end

defp find_matching_lines(error, _), do: error

http://media.pragprog.com/titles/tpp20/code/function-pipelines/anagrams/lib/grep.ex
http://media.pragprog.com/titles/tpp20/code/function-pipelines/anagrams/lib/grep.ex

–––-

defp truncate_lines({ :ok, lines }) do
lines
|> Enum.map(&String.slice(&1, 0, 20))
|> ok()
end

defp truncate_lines(error), do: error

–––-

defp ok_unless_empty([]), do: error(”nothing found”)
defp ok_unless_empty(result), do: ok(result)

defp ok(result), do: { :ok, result }
defp error(reason), do: { :error, reason }

Have a look at the function find_matching_lines. If its first
parameter is an :ok tuple, it uses the content in that tuple to
find lines matching the pattern. However, if the first parameter
is not an :ok tuple, the second version of the function runs,
which just returns that parameter. This way the function
simply forwards an error down the pipeline. The same thing
applies to truncate_lines.

We can play with this at the console:

iex> Grep.find_all “/etc/passwd”, ~r/www/
{:ok, [“_www:*:70:70:World W”, “_wwwproxy:*:252:252:”]}
iex> Grep.find_all “/etc/passwd”, ~r/wombat/
{:error, “nothing found”}
iex> Grep.find_all “/etc/koala”, ~r/www/
{:error, :enoent}

You can see that an error anywhere in the pipeline
immediately becomes the value of the pipeline.
Or Handle It in the Pipeline

You might be looking at the find_matching_lines and
truncate_lines functions thinking that we’ve moved the burden
of error handling into

the transformations. You’d be right. In a language which uses
pattern matching in function calls, such as Elixir, the effect is
lessened, but it’s still ugly.

It would be nice if Elixir had a version of the pipeline operator
|> that knew about the :ok/:error tuples and which short-
circuited execution when an error occurred.[43] But the fact
that it doesn’t allows us to add something similar, and in a way
that is

applicable to a number of other languages.

The problem we face is that when an error occurs we don’t
want to run code further down the pipeline, and that we don’t
want that code to know that this is happening. This means that
we need to defer running

pipeline functions until we know that previous steps in the
pipeline

were successful. To do this, we’ll need to change them from
function

calls into function values that can be called later. Here’s one
implementation:
function-pipelines/anagrams/lib/grep1.ex

defmodule Grep1 do

def and_then({ :ok, value }, func), do: func.(value)
def and_then(anything_else, _func), do: anything_else

def find_all(file_name, pattern) do
File.read(file_name)
|> and_then(&find_matching_lines(&1, pattern))
|> and_then(&truncate_lines(&1))
end

defp find_matching_lines(content, pattern) do
content
|> String.split(~r/\n/)
|> Enum.filter(&String.match?(&1, pattern))
|> ok_unless_empty()
end

defp truncate_lines(lines) do
lines
|> Enum.map(&String.slice(&1, 0, 20))
|> ok()
end

defp ok_unless_empty([]), do: error(”nothing found”)

http://media.pragprog.com/titles/tpp20/code/function-pipelines/anagrams/lib/grep1.ex

defp ok_unless_empty(result), do: ok(result)

defp ok(result), do: { :ok, result }
defp error(reason), do: { :error, reason }
end

The and_then function is an example of a bind function: it
takes a value wrapped in something, then applies a function to
that value,

returning a new wrapped value. Using the and_then function in
the pipeline takes a little extra punctuation because Elixir
needs to be

told to convert function calls into function values, but that
extra

effort is offset by the fact that the transforming functions
become

simple: each just takes a value (and any extra parameters) and
returns {:ok, new_value} or {:error, reason}.
TRANSFORMATIONS TRANSFORM PROGRAMMING

Thinking of code as a series of (nested) transformations can be
a liberating approach to programming. It takes a while to get
used to, but once you’ve developed the habit you’ll find your
code becomes cleaner, your functions shorter, and your
designs flatter.

Give it a try.

RELATED SECTIONS INCLUDE

Topic 8, The Essence of Good Design

Topic 17, Shell Games

Topic 26, How to Balance Resources

Topic 28, Decoupling

Topic 35, Actors and Processes

EXERCISES

Exercise 21 (possible answer) Can you express the following
requirements as a top-level transformation? That is, for each,
identify the input and the output.

1. Shipping and sales tax are added to an order

2. Your application loads configuration information from a named

file

3. Someone logs in to a web application

Exercise 22 (possible answer) You’ve identified the need to
validate and convert an input field from a string into an integer
between 18 and 150. The overall transformation is described
by

field contents as string
→ [validate & convert]
→ {:ok, value} | {:error, reason}

Write the individual transformations that make up validate &
convert.

Exercise 23 (possible answer) In Language X Doesn’t Have Pipelines we
wrote:

const content = File.read(file_name);
const lines = find_matching_lines(content, pattern)
const result = truncate_lines(lines)

Many people write OO code by chaining together method
calls, and might be tempted to write this as something like:

const result = content_of(file_name)
.find_matching_lines(pattern)
.truncate_lines()

What’s the difference between these two pieces of code?
Which do you think we prefer?

 Topic 31 Inheritance Tax

You wanted a banana but what you got was a gorilla
holding the banana and the entire jungle.

 Joe Armstrong
Do you program in an object-oriented language? Do
you use inheritance?

If so, stop! It probably isn’t what you want to do.

Let’s see why.

SOME BACKGROUND
Inheritance first appeared in Simula 67 in 1969. It was
an elegant solution to the problem of queuing multiple
types of events on the same list. The Simula approach
was to use something called prefix classes.

You could write something like this:

 link CLASS car;
 … implementation of car

 link CLASS bicycle;
 … implementation of bicycle

The link is a prefix class that adds the functionality of
linked lists. This lets you add both cars and bicycles to
the list of things waiting at (say) a traffic light. In
current terminology, link would be a parent class.

The mental model used by Simula programmers was
that the instance data and implementation of class link
was prepended to the implementation of classes car and
bicycle. The link part was almost viewed as being a
container that carried around cars and bicycles. This
gave them a form of polymorphism: cars and bicycles
both implemented the link interface because they both
contained the link code.

After Simula came Smalltalk. Alan Kay, one of the
creators of Smalltalk, describes in a 2019 Quora

answer[44] why Smalltalk has inheritance:

So when I designed Smalltalk-72—and it was a lark for
fun while thinking about Smalltalk-71—I thought it
would be fun to use its

Lisp-like dynamics to do experiments with “differential
programming”

(meaning: various ways to accomplish “this is like that
except”).

This is subclassing purely for behavior.

These two styles of inheritance (which actually had a
fair amount in common) developed over the following
decades. The Simula approach, which suggested
inheritance was a way of combining types, continued in

languages such as C++ and Java. The Smalltalk school,
where inheritance was a dynamic organization of
behaviors, was seen in languages such as Ruby and
JavaScript.

So, now we’re faced with a generation of OO
developers who use inheritance for one of two reasons:
they don’t like typing, or

they like types.

Those who don’t like typing save their fingers by using
inheritance to add common functionality from a base
class into child classes: class User and class Product are
both subclasses of ActiveRecord::Base.

Those who like types use inheritance to express the
relationship between classes: a Car is-a-kind-of Vehicle.

Unfortunately both kinds of inheritance have problems.

PROBLEMS USING INHERITANCE TO SHARE
CODE
Inheritance is coupling. Not only is the child class
coupled to the parent, the parent’s parent, and so on, but
the code that uses the child is also coupled to all the
ancestors. Here’s an example:

 class Vehicle
 def initialize
 @speed = 0
 end
 def stop
 @speed = 0
 end
 def move_at(speed)
 @speed = speed
 end
 end

 class Car < Vehicle
 def info
 “I’m car driving at #{@speed}”
 end
 end

 # top-level code
 my_ride = Car.new
 my_ride.move_at(30)

When the top-level calls my_car.move_at, the method being
invoked is in Vehicle, the parent of Car.

Now the developer in charge of Vehicle changes the API,
so move_at becomes set_velocity, and the instance variable
@speed becomes @velocity.

An API change is expected to break clients of Vehicle
class. But the top-level is not: as far as it is concerned it
is using a Car. What the Car class does in terms of
implementation is not the concern of the top-level code,
but it still breaks.

Similarly the name of an instance variable is purely an
internal implementation detail, but when Vehicle changes
it also (silently) breaks Car.

So much coupling.

Problems Using Inheritance to Build Types

Some folks view inheritance as a way of defining new
types. Their favorite design diagram shows class
hierarchies. They view problems the way Victorian
gentleman scientists viewed nature, as something to be
broken down into categories.

Unfortunately, these diagrams soon grow into wall-
covering monstrosities, layer-upon-layer added in order
to express the smallest nuance of differentiation
between classes. This added complexity can make the

application more brittle, as changes can ripple up and
down many layers.

Even worse, though, is the multiple inheritance issue. A
Car may be a kind of Vehicle, but it can also be a kind of
Asset, InsuredItem, LoanCollateral and so on. Modeling this
correctly would need multiple inheritance.

C++ gave multiple inheritance a bad name in the 1990s
because of some questionable disambiguation
semantics. As a result, many current OO

languages don’t offer it. So, even if you’re happy with
complex type trees, you won’t be able to model your
domain accurately anyway.

Tip 51 Don’t Pay Inheritance Tax

THE ALTERNATIVES ARE BETTER
Let us suggest three techniques that mean you should
never need to use inheritance again:

Interfaces and protocols

Delegation

Mixins and traits

Interfaces and Protocols

Most OO languages allow you to specify that a class
implements one or more sets of behaviors. You could
say, for example, that a Car class implements the Drivable
behavior and the Locatable behavior.

The syntax used for doing this varies: in Java, it might
look like this:

 public class Car implements Drivable, Locatable {

 // Code for class Car. This code must include
 // the functionality of both Drivable
 // and Locatable

 }

Drivable and Locatable are what Java calls interfaces; other
languages call them protocols, and some call them
traits (although this is not what we’ll be calling a trait

later).

Interfaces are defined like this:

 public interface Drivable {
 double getSpeed();
 void stop();
 }

 public interface Locatable() {
 Coordinate getLocation();
 boolean locationIsValid();
 }

These declarations create no code: they simply say that
any class that implements Drivable must implement the
two methods getSpeed and stop, and a class that’s Locatable
must implement getLocation and locationIsValid. This means
that our previous class definition of Car will only be
valid if it includes all four of these methods.

What makes interfaces and protocols so powerful is
that we can use them as types, and any class that
implements the appropriate interface will be compatible
with that type. If Car and Phone both implement Locatable,
we could store both in a list of locatable items:

 List<Locatable> items = new ArrayList<>();

 items.add(new Car(…));
 items.add(new Phone(…));
 items.add(new Car(…));
 // …

We can then process that list, safe in the knowledge that
every item has getLocation and locationIsValid:

 void printLocation(Locatable item) {
 if (item.locationIsValid() {
 print(item.getLocation().asString());
 }

 // …

 items.forEach(printLocation);

Tip 52 Prefer Interfaces to Express Polymorphism

Interfaces and protocols give us polymorphism without
inheritance.

Delegation

Inheritance encourages developers to create classes
whose objects have large numbers of methods. If a
parent class has 20 methods, and the subclass wants to
make use of just two of them, its objects will still have
the other 18 just lying around and callable. The class
has lost control of its interface. This is a common
problem—many persistence and UI frameworks insist
that application components subclass some supplied
base class:

 class Account < PersistenceBaseClass
 end

The Account class now carries all of the persistence
class’s API around with it. Instead, imagine an
alternative using delegation, as in the following
example:

 class Account
 def initialize(…)
 @repo = Persister.for(self)
 end

 def save
 @repo.save()
 end
 end

We now expose none of the framework API to the
clients of our Account class: that decoupling is now
broken. But there’s more. Now that we’re no longer

constrained by the API of the framework we’re using,
we’re free to create the API we need. Yes, we could do
that before, but we always ran the risk that the interface
we wrote can be bypassed, and the persistence API
used instead. Now we control

everything.

Tip 53 Delegate to Services: Has-A Trumps Is-A

In fact, we can take this a step further. Why should an
Account have to know how to persist itself? Isn’t its job
to know and enforce the account business rules?

 class Account
 # nothing but account stuff
 end

 class AccountRecord
 # wraps an account with the ability
 # to be fetched and stored
 end

Now we’re really decoupled, but it has come at a cost.
We’re having to write more code, and typically some of

it will be boilerplate: it’s likely that all our record
classes will need a find method, for example.

Fortunately, that’s what mixins and traits do for us.
Mixins, Traits, Categories, Protocol Extensions, …

As an industry, we love to give things names. Quite
often we’ll give the same thing many names. More is
better, right?

That’s what we’re dealing with when we look at
mixins. The basic idea is simple: we want to be able to
extend classes and objects with new

functionality without using inheritance. So we create a
set of these functions, give that set a name, and then
somehow extend a class or object with them. At that
point, you’ve created a new class or object that
combines the capabilities of the original and all its
mixins. In most cases, you’ll be able to make this
extension even if you don’t have access to the source
code of the class you’re extending.

Now the implementation and name of this feature
varies between languages. We’ll tend to call them
mixins here, but we really want you to think of this as a
language-agnostic feature. The important thing is the
capability that all these implementations have: merging

functionality between existing things and new things.

As an example, let’s go back to our AccountRecord
example. As we left it, an AccountRecord needed to know
about both accounts and about our persistence
framework. It also needed to delegate all the methods
in the persistence layer that it wanted to expose to the
outside world.

Mixins give us an alternative. First, we could write a
mixin that implements (for example) two of three of the
standard finder methods. We could then add them into
AccountRecord as a mixin. And, as we write new classes
for persisted things, we can add the mixin to them, too:

 mixin CommonFinders {
 def find(id) { … }
 def findAll() { … }
 end

 class AccountRecord extends BasicRecord with CommonFinders
 class OrderRecord extends BasicRecord with CommonFinders

We can take this a lot further. For example, we all know
our business objects need validation code to prevent
bad data from infiltrating our calculations. But exactly
what do we mean by validation?

If we take an account, for example, there are probably
many different layers of validation that could be
applied:

Validating that a hashed password matches one entered by the user

Validating form data entered by the user when an account is created

Validating form data entered by an admin person updating the user details

Validating data added to the account by other system components

Validating data for consistency before it is persisted

A common (and we believe less-than-ideal) approach is
to bundle all the validations into a single class (the

business object/persistence object) and then add flags to
control which fire in which circumstances.

We think a better way is to use mixins to create
specialized classes for appropriate situations:

 class AccountForCustomer extends Account
 with AccountValidations,AccountCustomerValidations

 class AccountForAdmin extends Account
 with AccountValidations,AccountAdminValidations

Here, both derived classes include validations common
to all account objects. The customer variant also
includes validations appropriate for the customer-facing
APIs, while the admin variant contained (the

presumably less restrictive) admin validations.

Now, by passing instances of AccountForCustomer or
AccountForAdmin back and forth, our code automatically
ensures the correct validation is applied.

Tip 54 Use Mixins to Share Functionality

INHERITANCE IS RARELY THE ANSWER
We’ve had a quick look at three alternatives to
traditional class inheritance:

Interfaces and protocols

Delegation

Mixins and traits

Each of these methods may be better for you in
different circumstances, depending on whether your
goal is sharing type information, adding functionality,
or sharing methods. As with anything in programming,
aim to use the technique that best expresses your intent.

And try not to drag the whole jungle along for the ride.

RELATED SECTIONS INCLUDE

Topic 8, The Essence of Good Design

Topic 10, Orthogonality

Topic 28, Decoupling

CHALLENGES

The next time you find yourself subclassing, take a minute to examine the
options. Can you achieve what you want with interfaces,

delegation, and/or mixins? Can you
reduce coupling by doing so?

 Topic 32 Configuration

Let all your things have their places; let each part of
your business have its time.

 Benjamin Franklin, Thirteen Virtues, autobiography
When code relies on values that may change after the
application has gone live, keep those values external to
the app. When your application will run in different
environments, and potentially for different customers,
keep the environment- and customer-specific values
outside the app. In this way, you’re parameterizing your
application; the code adapts to the places it runs.

Tip 55 Parameterize Your App Using External Configuration

Common things you will probably want to put in
configuration data include:

Credentials for external services (database, third party APIs, and so on)

Logging levels and destinations

Port, IP address, machine, and cluster names the app uses

Environment-specific validation parameters

Externally set parameters, such as tax rates

Site-specific formatting details

License keys

Basically, look for anything that you know will have to
change that you can express outside your main body of
code, and slap it into some configuration bucket.

STATIC CONFIGURATION
Many frameworks, and quite a few custom
applications, keep configuration in either flat files or
database tables. If the information is in flat files, the
trend is to use some off-the-shelf plain-text format.
Currently YAML and JSON are popular for this.
Sometimes applications written in scripting languages
use special purpose source-code files, dedicated to
containing just configuration. If the information is
structured, and is likely to be changed by the customer
(sales tax rates, for example), it might be better to store
it in a database table. And, of course, you can use both,
splitting the configuration information according to use.

Whatever form you use, the configuration is read into
your application as a data structure, normally when the
application starts. Commonly, this data structure is
made global, the thinking being that this makes it easier
for any part of the code to get to the values it holds.

We prefer that you don’t do that. Instead, wrap the
configuration information behind a (thin) API. This
decouples your code from the details of the
representation of configuration.

CONFIGURATION-AS-A-SERVICE
While static configuration is common, we currently
favor a different approach. We still want configuration
data kept external to the application, but rather than in a
flat file or database, we’d like to see it stored behind a
service API. This has a number of benefits:

Multiple applications can share configuration information, with

authentication and access control limiting what each can see

Configuration changes can be made globally

The configuration data can be maintained via a specialized UI

The configuration data becomes dynamic

That last point, that configuration should be dynamic, is
critical as we move toward highly available
applications. The idea that we should have to stop and
restart an application to change a single parameter is
hopelessly out of touch with modern realities. Using a
configuration service, components of the application
could register for notifications of updates to parameters
they use, and the service could send them messages
containing new values if and when they are changed.

Whatever form it takes, configuration data drives the
runtime behavior of an application. When configuration
values change, there’s no need to rebuild the code.

DON’T WRITE DODO-CODE
Without external configuration, your code is not as
adaptable or flexible as it could be. Is this a bad thing?
Well, out here in the real world, species that don’t adapt
die.

The dodo didn’t adapt to the presence of humans and
their livestock on the island of Mauritius, and quickly
became extinct.[45] It was the first documented
extinction of a species at the hand of man.

Don’t let your project (or your career) go the way of the
dodo.

RELATED SECTIONS INCLUDE

Topic 9, DRY—The Evils of Duplication

Topic 14, Domain Languages

Topic 16, The Power of Plain Text

Topic 28, Decoupling

Don’t Overdo It
In the first edition of this book, we suggested using
configuration instead of code in a similar fashion, but
apparently should have been a little more specific in
our instructions. Any advice can be taken to extremes
or used inappropriately, so here are a few cautions:

Don’t overdo it. One early client of ours decided that
every single field in their application should be
configurable. As a result, it took weeks to make even
the smallest change, as you had to implement both the
field and all the admin code to save and edit it. They
had some 40,000 configuration variables and a coding
nightmare on their hands.

Don’t push decisions to configuration out of laziness. If
there’s genuine debate about whether a feature should
work this way or that, or if it should be the users’
choice, try it out one way and get feedback on whether
the decision was a good one.

Footnotes

[37]
So it’s not really a law. It’s more like
The Jolly Good Idea of Demeter.

[38]

https://media.pragprog.com/articles/j
an_03_enbug.pdf

[39]
Yes, we know that Ruby already has
this capability with its at_exit
function.

[40]
https://media.pragprog.com/titles/tp
p20/code/event/rxcommon/logger.js

[41]
It seems that the first use of the
characters |> as a pipe dates to 1994,
in a discussion about the language
Isobelle/ML, archived at
https://blogs.msdn.microsoft.com/ds
yme/2011/05/17/archeological-
semiotics-the-birth-of-the-pipeline-
symbol-1994/

[42]
We’ve taken a liberty here.
Technically we do execute the
following functions. We just don’t
execute the code in them.

[43]
In fact you could add such an
operator to Elixir using its macro
facility; an example of this is the
Monad library in hex. You could
also use Elixir’s with construct, but
then you lose much of the sense of
writing transformations that you get
with pipelines.

[44]
https://www.quora.com/What-does-
Alan-Kay-think-about-inheritance-
in-object-oriented-programming

[45]
It didn’t help that the settlers beat
the placid (read: stupid) birds to
death with clubs for sport.

Copyright © 2020 Pearson Education, Inc.

https://media.pragprog.com/articles/jan_03_enbug.pdf
https://media.pragprog.com/titles/tpp20/code/event/rxcommon/logger.js
https://blogs.msdn.microsoft.com/dsyme/2011/05/17/archeological-semiotics-the-birth-of-the-pipeline-symbol-1994/
https://www.quora.com/What-does-Alan-Kay-think-about-inheritance-in-object-oriented-programming

Chapter 6

Concurrency

Just so we’re all on the same page, let’s start with some
definitions: Concurrency is when the execution of two
or more pieces of code act as if they run at the same
time. Parallelism is when they do run at the same time.

To have concurrency, you need to run code in an
environment that can switch execution between
different parts of your code when it is running. This is
often implemented using things such as fibers, threads,
and processes.

To have parallelism, you need hardware that can do two
things at once. This might be multiple cores in a CPU,
multiple CPUs in a computer, or multiple computers
connected together.

Everything Is Concurrent
It’s almost impossible to write code in a decent-sized
system that doesn’t have concurrent aspects to it. They
may be explicit, or they may be buried inside a library.
Concurrency is a requirement if you want your
application to be able to deal with the real world, where
things are asynchronous: users are interacting, data is
being fetched, external services are being called, all at
the same time. If you force this process to be serial,
with one thing happening, then the next, and so on,
your system feels sluggish and you’re probably not
taking full advantage of the power of the hardware on
which it runs.

In this chapter we’ll look at concurrency and
parallelism.

Developers often talk about coupling between chunks
of code. They’re referring to dependencies, and how
those dependencies make things hard to change. But
there’s another form of coupling. Temporal coupling
happens when your code imposes a sequence on things
that is not required to solve the problem at hand. Do
you depend on the “tick” coming before the “tock”?
Not if you want to stay flexible. Does your code access
multiple back-end services sequentially, one after the
other? Not if you want to keep your customers. In
Topic 33, Breaking Temporal Coupling, we’ll look at
ways of identifying this kind of temporal coupling.

Why is writing concurrent and parallel code so
difficult? One reason is that we learned to program
using sequential systems, and our languages have
features that are relatively safe when used sequentially
but become a liability once two things can happen at
the same time. One of the biggest culprits here is
shared state. This doesn’t just mean global variables:
any time two or more chunks of code hold references to

the same piece of mutable data, you have shared state.
And Topic 34, Shared State Is Incorrect State. The
section describes a number of workarounds for this, but
ultimately they’re all error prone.

If that makes you feed sad, nil desperandum! There are
better ways to construct concurrent applications. One of
these is using the actor model, where independent
processes, which share no data, communicate over
channels using defined, simple, semantics. We talk
about both the theory and practice of this approach in
Topic 35, Actors and Processes.

Finally, we’ll look at Topic 36, Blackboards. These are
systems which act like a combination of an object store
and a smart publish/subscribe broker. In their original
form, they never really took off. But today we’re seeing
more and more implementations of middleware layers
with blackboard-like semantics. Used correctly, these
types of systems offer a serious amount of decoupling.

Concurrent and parallel code used to be exotic. Now it
is required.

 Topic 33 Breaking Temporal Coupling

“What is temporal coupling all about?”, you may ask.
It’s about time.

Time is an often ignored aspect of software
architectures. The only time that preoccupies us is the
time on the schedule, the time left until we ship—but
this is not what we’re talking about here. Instead, we
are talking about the role of time as a design element of
the software itself. There are two aspects of time that
are important to us: concurrency (things happening at
the same time) and ordering (the relative positions of
things in time).

We don’t usually approach programming with either of
these aspects in mind. When people first sit down to
design an architecture or write a program, things tend
to be linear. That’s the way most people think—do this
and then always do that. But thinking this way leads to
temporal coupling: coupling in time. Method A must
always be called before method B; only one report can
be run at a time; you must wait for the screen to redraw
before the button click is received. Tick must happen
before tock.

This approach is not very flexible, and not very
realistic.

We need to allow for concurrency and to think about
decoupling any time or order dependencies. In doing
so, we can gain flexibility and reduce any time-based
dependencies in many areas of development: workflow
analysis, architecture, design, and deployment. The
result will be systems that are easier to reason about,
that potentially respond faster and more reliably.

LOOKING FOR CONCURRENCY
On many projects, we need to model and analyze the
application workflows as part of the design. We’d like
to find out what can happen at the same time, and what
must happen in a strict order. One way to do this is to
capture the workflow using a notation such as the
activity diagram.[46]

Tip 56 Analyze Workflow to Improve Concurrency

An activity diagram consists of a set of actions drawn
as rounded boxes. The arrow leaving an action leads to
either another action (which can start once the first
action completes) or to a thick line called a
synchronization bar. Once all the actions leading into a
synchronization bar are complete, you can then proceed
along any arrows leaving the bar. An action with no
arrows leading into it can be started at any time.

You can use activity diagrams to maximize parallelism
by identifying activities that could be performed in
parallel, but aren’t.

For instance, we may be writing the software for a
robotic piña colada maker. We’re told that the steps are:

1. Open blender

2. Open piña colada mix

3. Put mix in blender

1. Close blender

2. Liquefy for 1 minute

3. Open blender

4. Measure 1/2 cup white rum

5. Pour in rum

6. Add 2 cups of ice

4. Get glasses

5. Get pink umbrellas

6. Serve

However, a bartender would lose their job if they
followed these steps, one by one, in order. Even though
they describe these actions serially, many of them could
be performed in parallel. We’ll use the following
activity diagram to capture and reason about potential
concurrency.

It can be eye-opening to see where the dependencies
really exist. In this instance, the top-level tasks (1, 2, 4,
10, and 11) can all happen concurrently, up front. Tasks
3, 5, and 6 can happen in parallel later. If you were in a
piña colada-making contest, these optimizations may
make all the difference.

Faster Formatting
This book is written in plain text. To build the version
to be printed, or an ebook, or whatever, that text is fed
through a pipeline of processors. Some look for
particular constructs (bibliography citations, index

entries, special markup for tips, and so on). Other
processors operate on the document as a whole.

Many of the processors in the pipeline have to access
external information (reading files, writing files, piping
through external programs). All this relatively slow
speed work gives us the opportunity to exploit
concurrency: in fact each step in the pipeline executes
concurrently, reading from the previous step and
writing to the next.

In addition, some parts of the process are relatively
processor intensive. One of these is the conversion of
mathematical formulae. For various historical reasons
each equation can take up to 500ms to convert. To
speed things up, we take advantage of parallelism.
Because each formula is independent of the others, we
convert each in its own parallel process and collect the
results back into the book as they become available.

As a result, the book builds much, much faster on
multicore machines.

(And, yes, we did indeed discover a number of
concurrency errors in our pipeline along the way….)

OPPORTUNITIES FOR CONCURRENCY
Activity diagrams show the potential areas of
concurrency, but have nothing to say about whether
these areas are worth exploiting. For example, in the
piña colada example, a bartender would need five
hands to be able to run all the potential initial tasks at
once.

And that’s where the design part comes in. When we
look at the activities, we realize that number 8, liquify,
will take a minute. During that time, our bartender can
get the glasses and umbrellas (activities 10 and 11) and
probably still have time to serve another customer.

And that’s what we’re looking for when we’re
designing for concurrency. We’re hoping to find
activities that take time, but not time in our code.
Querying a database, accessing an external service,
waiting for user input: all these things would normally
stall our program until they complete. And these are all

opportunities to do something more productive than the
CPU equivalent of twiddling one’s thumbs.

OPPORTUNITIES FOR PARALLELISM
Remember the distinction: concurrency is a software
mechanism, and parallelism is a hardware concern. If
we have multiple processors, either locally or remotely,
then if we can split work out among them we can
reduce the overall time things take.

The ideal things to split this way are pieces of work that
are relatively independent—where each can proceed
without waiting for anything from the others. A
common pattern is to take a large piece of work, split it
into independent chunks, process each in parallel, then
combine the results.

An interesting example of this in practice is the way the
compiler for the Elixir language works. When it starts,
it splits the project it is building into modules, and
compiles each in parallel. Sometimes a module depends
on another, in which case its compilation pauses until
the results of the other module’s build become
available. When the top-level module completes, it
means that all dependencies have been compiled. The
result is a speedy compilation that takes advantage of
all the cores available.

IDENTIFYING OPPORTUNITIES IS THE EASY
PART
Back to your applications. We’ve identified places
where it will benefit from concurrency and parallelism.
Now for the tricky part: how can we implement it
safely. That’s the topic of the rest of the chapter.

RELATED SECTIONS INCLUDE

Topic 10, Orthogonality

Topic 26, How to Balance Resources

Topic 28, Decoupling

Topic 36, Blackboards

CHALLENGES

How many tasks do you perform in parallel when you get ready for work in

the morning? Could you express this in a UML activity diagram? Can you

find some way to get ready more quickly by increasing concurrency?

 Topic 34 Shared State Is Incorrect State

You’re in your favorite diner. You finish your main
course, and ask your server if there’s any apple pie left.
He looks over his shoulder, sees one piece in the
display case, and says yes. You order it and sigh
contentedly.

Meanwhile, on the other side of the restaurant, another
customer asks their server the same question. She also
looks, confirms there’s a piece, and that customer
orders.

One of the customers is going to be disappointed.

Swap the display case for a joint bank account, and turn
the waitstaff into point-of-sale devices. You and your
partner both decide to buy a new phone at the same
time, but there’s only enough in the account for one.
Someone—the bank, the store, or you—is going to be
very unhappy.

Tip 57 Shared State Is Incorrect State

The problem is the shared state. Each server in the
restaurant looked into the display case without regard
for the other. Each point-of-sale device looked at an
account balance without regard for the other.

NONATOMIC UPDATES
Let’s look at our diner example as if it were code:

The two waiters operate concurrently (and, in real life,
in parallel).

Let’s look at their code:

 if display_case.pie_count > 0
 promise_pie_to_customer()
 display_case.take_pie()
 give_pie_to_customer()
 end

Waiter 1 gets the current pie count, and finds that it is
one. He promises the pie to the customer. But at that
point, waiter 2 runs. She also sees the pie count is one
and makes the same promise to her customer. One of
the two then grabs the last piece of

pie, and the other waiter enters some kind of error state
(which probably involves much grovelling).

The problem here is not that two processes can write to
the same memory. The problem is that neither process
can guarantee that its view of that memory is
consistent. Effectively, when a waiter executes
display_case.pie_count(), they copy the value from the
display case into their own memory. If the value in the
display case changes, their memory (which they are
using to make decisions) is now out of date.

This is all because the fetching and then updating the
pie count is not an atomic operation: the underlying
value can change in the middle.

So how can we make it atomic?

Semaphores and Other Forms of Mutual Exclusion

A semaphore is simply a thing that only one person can
own at a time.

You can create a semaphore and then use it to control
access to some other resource. In our example, we
could create a semaphore to control access to the pie
case, and adopt the convention that anyone who wants
to update the pie case contents can only do so if they
are holding that semaphore.

Say the diner decides to fix the pie problem with a
physical semaphore.

They place a plastic Leprechaun on the pie case. Before
any waiter can sell a pie, they have to be holding the
Leprechaun in their hand. Once their order has been
completed (which means delivering the pie to the table)
they can return the Leprechaun to its place guarding the
treasure of the pies, ready to mediate the next order.

Let’s look at this in code. Classically, the operation to
grab the semaphore was called P, and the operation to
release it was called V.[47] Today we use terms such as
lock/unlock, claim/release, and so on.

 case_semaphore.lock()

 if display_case.pie_count > 0
 promise_pie_to_customer()
 display_case.take_pie()
 give_pie_to_customer()
 end

 case_semaphore.unlock()

This code assumes that a semaphore has already been
created and stored in the variable case_semaphore.

Let’s assume both waiters execute the code at the same
time. They both try to lock the semaphore, but only one
succeeds. The one that gets the semaphore continues to
run as normal. The one that doesn’t get the semaphore
is suspended until the semaphore becomes available
(the waiter waits…). When the first waiter completes
the order they unlock the semaphore and the second
waiter continues running. They now see there’s no pie
in the case, and apologize to the customer.

There are some problems with this approach. Probably
the most significant is that it only works because
everyone who accesses the pie case agrees on the
convention of using the semaphore. If someone forgets
(that is, some developer writes code that doesn’t follow
the convention) then we’re back in chaos.

Make the Resource Transactional

The current design is poor because it delegates
responsibility for protecting access to the pie case to the
people who use it. Let’s change it to centralize that
control. To do this, we have to change the API so that
waiters can check the count and also take a slice of pie
in a single call:

 slice = display_case.get_pie_if_available()
 if slice
 give_pie_to_customer()
 end

To make this work, we need to write a method that runs
as part of the display case itself:

 def get_pie_if_available() ####
 if @slices.size > 0 #
 update_sales_data(:pie) #
 return @slices.shift #
 else # incorrect code!

 false #
 end #
 end ####

This code illustrates a common misconception. We’ve
moved the resource access into a central place, but our
method can still be called from multiple concurrent
threads, so we still need to protect it with a semaphore:

 def get_pie_if_available()
 @case_semaphore.lock()

 if @slices.size > 0
 update_sales_data(:pie)
 return @slices.shift
 else
 false
 end

 @case_semaphore.unlock()
 end

Even this code might not be correct. If update_sales_data
raises an exception, the semaphore will never get
unlocked, and all future access to the pie case will hang
indefinitely. We need to handle this:

 def get_pie_if_available()
 @case_semaphore.lock()

 try {
 if @slices.size > 0
 update_sales_data(:pie)
 return @slices.shift
 else
 false
 end
 }
 ensure {
 @case_semaphore.unlock()
 }
 end

Because this is such a common mistake, many
languages provide libraries that handle this for you:

 def get_pie_if_available()
 @case_semaphore.protect() {
 if @slices.size > 0
 update_sales_data(:pie)
 return @slices.shift
 else
 false
 end
 }
 end

MULTIPLE RESOURCE TRANSACTIONS
Our diner just installed an ice cream freezer. If a
customer orders pie à la mode, the waiter will need to
check that both pie and ice cream are available.

We could change the waiter code to something like:

 slice = display_case.get_pie_if_available()
 scoop = freezer.get_ice_cream_if_available()

 if slice && scoop
 give_order_to_customer()
 end

This won’t work, though. What happens if we claim a
slice of pie, but when we try to get a scoop of ice cream
we find out there isn’t any?

We’re now left holding some pie that we can’t do
anything with (because our customer must have ice
cream). And the fact we’re holding the pie means it
isn’t in the case, so it isn’t available to some other
customer who (being a purist) doesn’t want ice cream
with it.

We could fix this by adding a method to the case that
lets us return a slice of pie. We’ll need to add exception
handling to ensure we don’t keep resources if
something fails:

 slice = display_case.get_pie_if_available()

 if slice
 try {

 scoop = freezer.get_ice_cream_if_available()
 if scoop
 try {
 give_order_to_customer()
 }
 rescue {
 freezer.give_back(scoop)
 }
 end
 }
 rescue {
 display_case.give_back(slice)
 }
 end

Again, this is less than ideal. The code is now really
ugly: working out what it actually does is difficult: the
business logic is buried in all the housekeeping.

Previously we fixed this by moving the resource
handling code into the resource itself. Here, though, we
have two resources. Should we put the code in the
display case or the freezer?

We think the answer is “no” to both options. The
pragmatic approach would be to say that “apple pie à la
mode” is its own resource. We’d move this code into a
new module, and then the client could just say “get me
apple pie with ice cream” and it either succeeds or fails.

Of course, in the real world there are likely to be many
composite dishes like this, and you wouldn’t want to
write new modules for each.

Instead, you’d probably want some kind of menu item
which contained references to its components, and then
have a generic get_menu_item method that does the
resource dance with each.

NON-TRANSACTIONAL UPDATES
A lot of attention is given to shared memory as a source
of concurrency problems, but in fact the problems can
pop up anywhere where your application code shares
mutable resources: files, databases, external services,
and so on. Whenever two or more instances of your

code can access some resource at the same time, you’re
looking at a potential problem.

Sometimes, the resource isn’t all that obvious. While
writing this edition of the book we updated the
toolchain to do more work in parallel using threads.
This caused the build to fail, but in bizarre ways and
random places. A common thread through all the errors
was that files or directories could not be found, even
though they were really in exactly the right place.

We tracked this down to a couple of places in the code
which temporarily changed the current directory. In the
nonparallel version, the fact that this code restored the
directory back was good enough. But in the parallel
version, one thread would change the directory and
then, while in that directory, another thread would start
running. That thread would expect to be in the original
directory, but because the current directory is shared
between threads, that wasn’t the case.

The nature of this problem prompts another tip:

Tip 58 Random Failures Are Often Concurrency Issues

OTHER KINDS OF EXCLUSIVE ACCESS
Most languages have library support for some kind of
exclusive access to shared resources. They may call it
mutexes (for

mutual exclusion), monitors, or semaphores. These are
all implemented as libraries.

However, some languages have concurrency support
built into the language itself. Rust, for example,
enforces the concept of data ownership; only one
variable or parameter can hold a reference to any
particular piece of mutable data at a time.

You could also argue that functional languages, with
their tendency to make all data immutable, make
concurrency simpler. However, they still face the same
challenges, because at some point they are forced to
step into the real, mutable world.

DOCTOR, IT HURTS…
If you take nothing else away from this section, take
this: concurrency in a shared resource environment is
difficult, and managing it yourself is fraught with
challenges.

Which is why we’re recommending the punchline to
the old joke:

Doctor, it hurts when I do this.

Then don’t do that.

The next couple of sections suggest alternative ways of
getting the benefits of concurrency without the pain.

RELATED SECTIONS INCLUDE

Topic 10, Orthogonality

Topic 28, Decoupling

Topic 38, Programming by Coincidence

 Topic 35 Actors and Processes

Without writers, stories would not be written,
Without actors, stories could not be brought to life.

 Angie-Marie Delsante
Actors and processes offer interesting ways of
implementing concurrency without the burden of
synchronizing access to shared memory.

Before we get into them, however, we need to define
what we mean. And this is going to sound academic.
Never fear, we’ll be working through it all in a short
while.

An actor is an independent virtual
processor with its own local (and
private) state. Each actor has a
mailbox. When a message appears in
the mailbox and the actor is idle, it
kicks into life and processes the
message. When it finishes processing,
it processes another message in the
mailbox, or, if the mailbox is empty, it
goes back to sleep.
When processing a message, an actor
can create other actors, send messages
to other actors that it knows about, and
create a new state that will become the
current state when the next message is
processed.

A process is typically a more general-
purpose virtual processor, often
implemented by the operating system
to facilitate concurrency.

Processes can be constrained (by
convention) to behave like actors, and
that’s the type of process we mean
here.

ACTORS CAN ONLY BE CONCURRENT
There are a few things that you won’t find in the
definition of actors:

There’s no single thing that’s in
control. Nothing schedules what
happens next, or orchestrates the
transfer of information from the raw
data to the final output.

The only state in the system is held in
messages and in the local state of each
actor. Messages cannot be examined
except by being read by their recipient,
and local state is inaccessible outside
the actor.

All messages are one way—there’s no
concept of replying. If you want an
actor to return a response, you include
your own mailbox address in the
message you send it, and it will
(eventually) send the response as just
another message to that mailbox.

An actor processes each message to
completion, and only processes one
message at a time.

As a result, actors execute concurrently,
asynchronously, and share nothing. If you had enough
physical processors, you could run an actor on each. If
you have a single processor, then some runtime can
handle the switching of context between them. Either
way, the code running in the actors is the same.

Tip 59 Use Actors For Concurrency Without Shared State

A SIMPLE ACTOR
Let’s implement our diner using actors. In this case,
we’ll have three (the customer, the waiter, and the pie
case).

The overall message flow will look like this:

We (as some kind of external, God-like
being) tell the customer that they are
hungry

In response, they’ll ask the waiter for
pie

The waiter will ask the pie case to get
some pie to the customer

If the pie case has a slice available, it
will send it to the customer, and also
notify the waiter to add it to the bill

If there is no pie, the case tells the
waiter, and the waiter apologizes to the
customer

We’ve chosen to implement the code in JavaScript
using the Nact library.[48] We’ve added a little wrapper
to this that lets us write actors as simple objects, where
the keys are the message types that it receives and the
values are functions to run when that particular
message is received. (Most actor systems have a similar
kind of structure, but the details depend on the host
language.) Let’s start with the customer. The customer
can receive three messages:

You’re hungry (sent by the external context)

There’s pie on the table (sent by the pie case)

Sorry, there’s no pie (sent by the waiter)

Here’s the code:

concurrency/actors/index.js

 const customerActor = {
 ‘hungry for pie’ : (msg, ctx, state) => {
 return dispatch(state.waiter,
 { type: “order”, customer: ctx.self, wants: ‘pie’ })
 },

 ‘put on table’ : (msg, ctx, _state) =>
 console.log(`${ctx.self.name} sees “${msg.food}” appear on the table`),

 ‘no pie left’ : (_msg, ctx, _state) =>
 console.log(`${ctx.self.name} sulks…`)
 }

The interesting case is when we receive a ‘‘hungry for
pie’” message, where we then send a message off to the
waiter. (We’ll see how the customer knows about the
waiter actor shortly.)

http://media.pragprog.com/titles/tpp20/code/concurrency/actors/index.js

Here’s the waiter’s code:

concurrency/actors/index.js

 const waiterActor = {
 “order” : (msg, ctx, state) => {
 if (msg.wants == “pie”) {
 dispatch(state.pieCase,
 { type: “get slice” , customer: msg.customer, waiter: ctx.self })
 }
 else {
 console.dir(`Don’t know how to order ${msg.wants}`);
 }
 },

 “add to order” : (msg, ctx) =>
 console.log(`Waiter adds ${msg.food} to ${msg.customer.name}‘s order`),

 “error” : (msg, ctx) => {
 dispatch(msg.customer, { type: ‘no pie left’ , msg: msg.msg });
 console.log(`\nThe waiter apologizes to ${msg.customer.name}: ${msg.msg}`)
 }

http://media.pragprog.com/titles/tpp20/code/concurrency/actors/index.js

 };

When it receives the ’order’ message from the customer,
it checks to see if the request is for pie. If so, it sends a
request to the pie case, passing references both to itself
and the customer.

The pie case has state: an array of all the slices of pie it
holds.

(Again, we see how that gets set up shortly.) When it
receives a ’get slice’ message from the waiter, it sees if it
has any slices left. If it does, it passes the slice to the
customer, tells the waiter to update the order, and
finally returns an updated state, containing one less
slice. Here’s the code:

concurrency/actors/index.js

http://media.pragprog.com/titles/tpp20/code/concurrency/actors/index.js

 const pieCaseActor = {
 ‘get slice’ : (msg, context, state) => {
 if (state.slices.length == 0) {
 dispatch(msg.waiter,
 { type: ‘error’, msg: “no pie left” , customer: msg.customer })
 return state
 }
 else {
 var slice = state.slices.shift() + ” pie slice” ;
 dispatch(msg.customer,
 { type: ‘put on table’ , food: slice });
 dispatch(msg.waiter,
 { type: ‘add to order’ , food: slice, customer: msg.customer });
 return state;
 }
 }
 }

Although you’ll often find that actors are started
dynamically by other actors, in our case we’ll keep it
simple and start our actors manually.

We will also pass each some initial state:

The pie case gets the initial list of pie slices it contains

We’ll give the waiter a reference to the pie case

We’ll give the customers a reference to the waiter

concurrency/actors/index.js

http://media.pragprog.com/titles/tpp20/code/concurrency/actors/index.js

 const actorSystem = start();

 let pieCase = start_actor(
 actorSystem,
 ‘pie-case’ ,
 pieCaseActor,
 { slices: [“apple”, “peach”, “cherry”] });

 let waiter = start_actor(
 actorSystem,
 ‘waiter’ ,
 waiterActor,
 { pieCase: pieCase });

 let c1 = start_actor(actorSystem, ‘customer1’ ,
 customerActor, { waiter: waiter });
 let c2 = start_actor(actorSystem, ‘customer2’ ,
 customerActor, { waiter: waiter });

And finally we kick it off. Our customers are greedy.
Customer 1 asks for three slices of pie, and customer 2
asks for two:

concurrency/actors/index.js

http://media.pragprog.com/titles/tpp20/code/concurrency/actors/index.js

 dispatch(c1, { type: ‘hungry for pie’ , waiter: waiter });
 dispatch(c2, { type: ‘hungry for pie’ , waiter: waiter });
 dispatch(c1, { type: ‘hungry for pie’ , waiter: waiter });
 dispatch(c2, { type: ‘hungry for pie’ , waiter: waiter });
 dispatch(c1, { type: ‘hungry for pie’ , waiter: waiter });
 sleep(500)
 .then(() => {
 stop(actorSystem);
 })

When we run it, we can see the actors communicating.
[49] The order you see may well be different:

 $ node index.js
 customer1 sees “apple pie slice” appear on the table
 customer2 sees “peach pie slice” appear on the table
 Waiter adds apple pie slice to customer1’s order

 Waiter adds peach pie slice to customer2’s order
 customer1 sees “cherry pie slice” appear on the table
 Waiter adds cherry pie slice to customer1’s order

 The waiter apologizes to customer1: no pie left
 customer1 sulks…

 The waiter apologizes to customer2: no pie left
 customer2 sulks…

NO EXPLICIT CONCURRENCY
In the actor model, there’s no need to write any code to
handle concurrency, as there is no shared state. There’s
also no need to code in explicit end-to-end “do this, do
that” logic, as the actors work it out for themselves
based on the messages they receive.

There’s also no mention of the underlying architecture.
This set of components work equally well on a single
processor, on multiple cores, or on multiple networked
machines.

ERLANG SETS THE STAGE
The Erlang language and runtime are great examples of
an actor implementation (even though the inventors of
Erlang hadn’t read the original Actor’s paper). Erlang
calls actors processes, but they aren’t regular operating
system processes. Instead, just like the actors we’ve
been discussing, Erlang processes are lightweight (you
can run millions of them on a single machine), and they
communicate by sending messages. Each is isolated
from the others, so there is no sharing of state.

In addition, the Erlang runtime implements a
supervision system, which manages the lifetimes of
processes, potentially restarting a process or set of
processes in case of failure. And Erlang also offers hot-
code loading: you can replace code in a running system
without stopping that system. And the Erlang system
runs some of the world’s most reliable code, often
citing nine nines availability.

But Erlang (and it’s progeny Elixir) aren’t unique—
there are actor implementations for most languages.
Consider using them for your concurrent
implementations.

RELATED SECTIONS INCLUDE

Topic 28, Decoupling

Topic 30, Transforming Programming

Topic 36, Blackboards

CHALLENGES

Do you currently have code that uses
mutual exclusion to protect shared
data. Why not try a prototype of the
same code written using actors?

The actor code for the diner only
supports ordering slices of pie.
Extend it to let customers order pie à la
mode, with separate agents managing
the pie slices and the scoops of ice
cream. Arrange things so that it
handles the situation where one or the
other runs out.

 Topic 36 Blackboards

The writing is on the wall…

 Daniel 5 (ref)
Consider how detectives might use a blackboard to
coordinate and solve a murder investigation. The chief
inspector starts off by setting up a large blackboard in
the conference room. On it, she writes a single
question:

H. Dumpty (Male, Egg): Accident? Murder?

Did Humpty really fall, or was he pushed? Each
detective may make contributions to this potential
murder mystery by adding facts, statements from
witnesses, any forensic evidence that might arise, and
so on. As the data accumulates, a detective might notice
a connection and post that observation or speculation as
well. This process continues, across all shifts, with
many different people and agents, until the case is
closed. A sample blackboard is shown in the figure.

Figure 2. Someone found a connection
between Humpty’s gambling debts and the

phone logs. Perhaps he was getting
threatening phone calls.

Some key features of the blackboard approach are:

None of the detectives needs to know
of the existence of any other detective
—they watch the board for new
information, and add their findings.

The detectives may be trained in
different disciplines, may have
different levels of education and
expertise, and may not even work in
the same precinct. They share a desire
to solve the case, but that’s all.

Different detectives may come and go
during the course of the process, and
may work different shifts.

There are no restrictions on what may
be placed on the blackboard. It may be
pictures, sentences, physical evidence,
and so on.

This is a form of laissez faire concurrency. The
detectives are independent processes, agents, actors,
and so on. Some store facts on the blackboard. Others
take facts off the board, maybe combining or
processing them, and add more information to the
board. Gradually the board helps them come to a
conclusion.

Computer-based blackboard systems were originally
used in artificial intelligence applications where the
problems to be solved were large and complex—speech
recognition, knowledge-based reasoning systems, and
so on.

One of the first blackboard systems was David
Gelernter’s Linda. It stored facts as typed tuples.
Applications could write new tuples into Linda, and
query for existing tuples using a form of pattern
matching.

Later came distributed blackboard-like systems such as
JavaSpaces and T Spaces. With these systems, you can
store active Java objects—not just data—on the
blackboard, and retrieve them by partial matching of
fields (via templates and wildcards) or by subtypes. For
example, suppose you had a type Author, which is a
subtype of Person. You could search a blackboard
containing Person objects by using an Author template
with a lastName value of “Shakespeare.’’ You’d get Bill
Shakespeare the author, but not Fred Shakespeare the
gardener.

These systems never really took off, we believe, in part,
because the need for the kind of concurrent cooperative
processing hadn’t yet developed.

A BLACKBOARD IN ACTION
Suppose we are writing a program to accept and
process mortgage or loan applications. The laws that
govern this area are odiously complex, with federal,
state, and local governments all having their say. The
lender must prove they have disclosed certain things,
and must ask for certain information—but must not ask
certain other questions, and so on, and so on.

Beyond the miasma of applicable law, we also have the
following problems to contend with:

Responses can arrive in any order. For
instance, queries for a credit check or
title search may take a substantial
amount of time, while items such as
name and address may be available
immediately.

Data gathering may be done by
different people, distributed across
different offices, in different time
zones.

Some data gathering may be done
automatically by other systems. This
data may arrive asynchronously as
well.

Nonetheless, certain data may still be
dependent on other data. For instance,
you may not be able to start the title
search for a car until you get proof of
ownership or insurance.

The arrival of new data may raise new
questions and policies. Suppose the
credit check comes back with a less
than glowing report; now you need
these five extra forms and perhaps a
blood sample.

You can try to handle every possible combination and
circumstance using a workflow system. Many such
systems exist, but they can be complex and
programmer intensive. As regulations change, the
workflow must be reorganized: people may have to
change their procedures and hard-wired code may have
to be rewritten.

A blackboard, in combination with a rules engine that
encapsulates the legal requirements, is an elegant
solution to the difficulties found here. Order of data
arrival is irrelevant: when a fact is posted it can trigger
the appropriate rules. Feedback is easily handled as
well: the output of any set of rules can post to the
blackboard and cause the triggering of yet more
applicable rules.

Tip 60 Use Blackboards to Coordinate Workflow

MESSAGING SYSTEMS CAN BE LIKE
BLACKBOARDS
As we’re writing this second edition, many applications
are constructed using small, decoupled services, all
communicating via some form of messaging system.
These messaging systems (such as Kafka and NATS)
do far more than simply send data from A to B. In
particular, they offer persistence (in the form of an
event log) and the ability to retrieve messages through a
form of pattern matching. This means you can use them
both as a blackboard system and/or as a platform on
which you can run a bunch of actors.

BUT IT’S NOT THAT SIMPLE…
The actor and/or blackboard and/or microservice
approach to architecture removes a whole class of
potential concurrency problems from your applications.
But that benefit comes at a cost. These approaches are
harder to reason about, because a lot of the action is

indirect. You’ll find it helps to keep a central repository
of message formats and/or APIs, particularly if the
repository can generate the code and documentation for
you. You’ll also need good tooling to be able to trace
messages and facts as they progress through the system.
(A useful technique is to add a unique trace id when a
particular business function is initiated and then
propagate it to all the actors involved. You’ll then be
able to reconstruct what happens from the log files.)

Finally, these kinds of system can be more troublesome
to deploy and manage, as there are more moving parts.
To some extent this is offset by the fact that the system
is more granular, and can be updated by replacing
individual actors, and not the whole system.

RELATED SECTIONS INCLUDE

Topic 28, Decoupling

Topic 29, Juggling the Real World

Topic 33, Breaking Temporal Coupling

Topic 35, Actors and Processes

EXERCISES
Exercise 24 (possible answer)

Would a blackboard-style system be appropriate for the
following applications? Why, or why not?

Image processing. You’d like to have a number of
parallel processes grab chunks of an image, process
them, and put the completed chunk back.

Group calendaring. You’ve got people scattered across
the globe, in different time zones, and speaking
different languages, trying to schedule a meeting.

Network monitoring tool. The system gathers
performance statistics and collects trouble reports,
which agents use to look for trouble in the system.

CHALLENGES

Do you use blackboard systems in the real world—the message board by the

refrigerator, or the big whiteboard at work? What makes them effective? Are

messages ever posted with a consistent format? Does it matter?

Footnotes

[46]
Although UML has gradually faded,
many of its individual diagrams still
exist in one form or another,
including the very useful activity
diagram. For more information on
all of the UML diagram types, see
UML Distilled: A Brief Guide to the
Standard Object Modeling
Language [Fow04].

[47]
The names P and V come from the
initial letters of Dutch words.
However there is some discussion
about exactly which words. The
inventor of the technique, Edsger
Dĳkstra, has suggested both
passering and prolaag for P, and
vrijgave and possibly verhogen for
V.

[48]
https://github.com/ncthbrt/nact

[49]
In order to run this code you’ll also
need our wrapper functions, which
are not shown here. You can
download them from
https://media.pragprog.com/titles/tp
p20/code/concurrency/actors/index.j
s

Copyright © 2020 Pearson Education, Inc.

https://github.com/ncthbrt/nact
https://media.pragprog.com/titles/tpp20/code/concurrency/actors/index.js

Chapter 7

While You Are Coding

Conventional wisdom says that once a project is in the
coding phase, the work is mostly mechanical,
transcribing the design into executable statements. We
think that this attitude is the single biggest reason that
software projects fail, and many systems end up ugly,
inefficient, poorly structured, unmaintainable, or just
plain wrong.

Coding is not mechanical. If it were, all the CASE tools
that people pinned their hopes on way back in the early
1980s would have replaced programmers long ago.
There are decisions to be made every minute—
decisions that require careful thought and judgment if
the resulting program is to enjoy a long, accurate, and
productive life.

Not all decisions are even conscious. You can better
harness your instincts and nonconscious thoughts when
you Topic 37, Listen to Your Lizard Brain. We’ll see
how to listen more carefully and look at ways of
actively responding to these sometimes niggling
thoughts.

But listening to your instincts doesn’t mean you can
just fly on autopilot. Developers who don’t actively
think about their code are programming by coincidence
—the code might work, but there’s no particular reason
why. In Topic 38, Programming by Coincidence, we
advocate a more positive involvement with the coding
process.

While most of the code we write executes quickly, we
occasionally develop algorithms that have the potential
to bog down even the fastest processors. In Topic 39,
Algorithm Speed, we discuss ways to estimate the speed
of code, and we give some tips on how to spot potential
problems before they happen.

Pragmatic Programmers think critically about all code,
including our own. We constantly see room for
improvement in our programs and our designs. In Topic
40, Refactoring, we look at techniques that help us fix
up existing code continuously as we go.

Testing is not about finding bugs, it’s about getting
feedback on your code: aspects of design, the API,
coupling, and so on. That means that the major benefits
of testing happen when you think about and write the
tests, not just when you run them. We’ll explore this
idea in Topic 41, Test to Code.

But of course when you test your own code, you might
bring your own biases to the task. In Topic 42,
Property-Based Testing we’ll see how to have the
computer do some wide-ranging testing for you and
how to handle the inevitable bugs that come up.

It’s critical that you write code that is readable and easy
to reason about. It’s a harsh world out there, filled with
bad actors who are actively trying to break into your
system and cause harm. We’ll discuss some very basic
techniques and approaches to help you Topic 43, Stay
Safe Out There.

Finally, one of the hardest things in software
development is Topic 44, Naming Things. We have to
name a lot of things, and in many ways the names we
choose define the reality we create. You need to stay
aware of any potential semantic drift while you are
coding.

Most of us can drive a car largely on autopilot; we
don’t explicitly command our foot to press a pedal, or

our arm to turn the wheel—we just think “slow down
and turn right.” However, good, safe drivers are
constantly reviewing the situation, checking for
potential problems, and putting themselves into good
positions in case the unexpected happens. The same is
true of coding—it may be largely routine, but keeping
your wits about you could well prevent a disaster.

 Topic 37 Listen to Your Lizard Brain

Only human beings can look directly at something,
have all the information they need to make an accurate
prediction, perhaps even momentarily make the
accurate prediction, and then say that it isn’t so.

 Gavin de Becker, The Gift of Fear
Gavin de Becker’s life’s work is helping people to
protect themselves. His book, The Gift of Fear: And
Other Survival Signals That Protect Us from Violence
[de 98], encapsulates his message. One of the key
themes running through the book is that as
sophisticated humans we have learned to ignore our
more animal side; our instincts, our lizard brain. He
claims that most people who are attacked in the street
are aware of feeling uncomfortable or nervous before
the attack. These people just tell themselves they’re
being silly. Then the figure emerges from the dark
doorway….

Instincts are simply a response to patterns packed into
our nonconscious brain. Some are innate, others are
learned through repetition. As you gain experience as a
programmer, your brain is laying down layers of tacit
knowledge: things that work, things that don’t work,
the probable causes of a type of error, all the things you
notice throughout your days. This is the part of your
brain that hits the save file key when you stop to chat
with someone, even when you don’t realize that you’re
doing it.

Whatever their source, instincts share one thing: they
have no words. Instincts make you feel, not think. And

so when an instinct is triggered, you don’t see a
flashing lightbulb with a banner wrapped around it.
Instead, you get nervous, or queasy, or feel like this is
just too much work.

The trick is first to notice it is happening, and then to
work out why. Let’s look first at a couple of common
situations in which your inner lizard is trying to tell you
something. Then we’ll discuss how you can let that
instinctive brain out of its protective wrapper.

FEAR OF THE BLANK PAGE
Everyone fears the empty screen, the lonely blinking
cursor surrounded by a whole bunch of nothing.
Starting a new project (or even a new module in an
existing project) can be an unnerving experience. Many
of us would prefer to put off making the initial
commitment of starting.

We think that there are two problems that cause this,
and that both have the same solution.

One problem is that your lizard brain is trying to tell
you something; there’s some kind of doubt lurking just
below the surface of perception. And that’s important.

As a developer, you’ve been trying things and seeing
which worked and which didn’t. You’ve been
accumulating experience and wisdom. When you feel a
nagging doubt, or experience some reluctance when
faced with a task, it might be that experience trying to
speak to you. Heed it. You may not be able to put your
finger on exactly what’s wrong, but give it time and
your doubts will probably crystallize into something
more solid, something you can address. Let your
instincts contribute to your performance.

The other problem is a little more prosaic: you might
simply be afraid that you’ll make a mistake.

And that’s a reasonable fear. We developers put a lot of
ourselves into our code; we can take errors in that code

as reflections on our competence. Perhaps there’s an
element of imposter syndrome, too; we may think that
this project is beyond us. We can’t see our way through
to the end; we’ll get so far and then be forced to admit
that we’re lost.

FIGHTING YOURSELF
Sometimes code just flies from your brain into the
editor: ideas become bits with seemingly no effort.

Other days, coding feels like walking uphill in mud.
Taking each step requires tremendous effort, and every
three steps you slide back two.

But, being a professional, you soldier on, taking step
after muddy step: you have a job to do. Unfortunately,
that’s probably the exact opposite of what you should
do.

Your code is trying to tell you something. It’s saying
that this is harder than it should be. Maybe the structure
or design is wrong, maybe you’re solving the wrong
problem, or maybe you’re just creating an ant farm’s
worth of bugs. Whatever the reason, your lizard brain is
sensing feedback from the code, and it’s desperately
trying to get you to listen.

HOW TO TALK LIZARD
We talk a lot about listening to your instincts, to your
nonconscious, lizard brain. The techniques are always
the same.

Tip 61 Listen to Your Inner Lizard

First, stop what you’re doing. Give yourself a little time
and space to let your brain organize itself. Stop thinking
about the code, and do something that is fairly mindless
for a while, away from a keyboard. Take a walk, have
lunch, chat with someone. Maybe sleep on it. Let the

ideas percolate up through the layers of your brain on
their own: you can’t force it. Eventually they may
bubble up to the conscious level, and you have one of
those a ha! moments.

If that’s not working, try externalizing the issue. Make
doodles about the code you’re writing, or explain it to a
coworker (preferably one who isn’t a programmer), or
to your rubber duck. Expose different parts of your
brain to the issue, and see if any of them have a better
handle on the thing that’s troubling you. We’ve lost
track of the number of conversations we’ve had where
one of us was explaining a problem to the other and
suddenly went “Oh! Of course!” and broke off to fix it.

But maybe you’ve tried these things, and you’re still
stuck. It’s time for action. We need to tell your brain
that what you’re about to do doesn’t matter. And we do
that by prototyping.

IT’S PLAYTIME!
Andy and Dave have both spent hours looking at empty
editor buffers. We’ll type in some code, then look at the
ceiling, then get yet another drink, then type in some
more code, then go read a funny story about a cat with
two tails, then type some more code, then do select-
all/delete and start again. And again. And again.

And over the years we’ve found a brain hack that seems
to work. Tell yourself you need to prototype something.
If you’re facing a blank screen, then look for some
aspect of the project that you want to explore. Maybe
you’re using a new framework, and want to see how it
does data binding. Or maybe it’s a new algorithm, and
you want to explore how it works on edge cases. Or
maybe you want to try a couple of different styles of
user interaction.

If you’re working on existing code and it’s pushing
back, then stash it away somewhere and prototype up
something similar instead.

Do the following.

1. Write “I’m prototyping” on a sticky

note, and stick it on the side of your
screen.

2. Remind yourself that prototypes are
meant to fail. And remind yourself that
prototypes get thrown away, even if
they don’t fail. There is no downside to
doing this.

3. In your empty editor buffer, create a
comment describing in one sentence
what you want to learn or do.

4. Start coding.

If you start to have doubts, look at the sticky note.

If, in the middle of coding, that nagging doubt suddenly
crystallizes into a solid concern, then address it.

If you get to the end of the experiment and you still feel
uneasy, start again with the walk and the talk and the
time off.

But, in our experience, at some point during the first
prototype you will be surprised to find yourself
humming along with your music, enjoying the feeling
of creating code. The nervousness will have
evaporated, replaced by a feeling of urgency: let’s get
this done!

At this stage, you know what to do. Delete all the
prototype code, throw away the sticky note, and fill that
empty editor buffer with bright, shiny new code.

NOT JUST YOUR CODE
A large part of our job is dealing with existing code,
often written by other people. Those people will have
different instincts to you, and so the decisions they

made will be different. Not necessarily worse; just
different.

You can read their code mechanically, slogging through
it making notes on stuff that seems important. It’s a
chore, but it works.

Or you can try an experiment. When you spot things
done in a way that seems strange, jot it down. Continue
doing this, and look for patterns. If you can see what
drove them to write code that way, you may find that
the job of understanding it becomes a lot easier. You’ll
be able consciously to apply the patterns that they
applied tacitly.

And you might just learn something new along the way.

NOT JUST CODE
Learning to listen to your gut when coding is an
important skill to foster. But it applies to the bigger
picture are well. Sometimes a design just feels wrong,
or some requirement makes you feel uneasy. Stop and
analyze these feelings. If you’re in a supportive
environment, express them out loud. Explore them. The
chances are that there’s something lurking in that dark
doorway. Listen to your instincts and avoid the problem
before it jumps out at you.

RELATED SECTIONS INCLUDE

Topic 13, Prototypes and Post-it Notes

Topic 22, Engineering Daybooks

Topic 46, Solving Impossible Puzzles

CHALLENGES

Is there something you know you should do, but have put off because it feels

a little scary, or difficult? Apply the techniques in this section. Time box it to

an hour, maybe two, and promise yourself that when the bell rings you’ll

delete what you did. What did you learn?

 Topic 38 Programming by Coincidence

Do you ever watch old black-and-white war movies?
The weary soldier advances cautiously out of the brush.
There’s a clearing ahead: are there any land mines, or is
it safe to cross? There aren’t any indications that it’s a
minefield—no signs, barbed wire, or craters. The
soldier pokes the ground ahead of him with his bayonet
and winces, expecting an explosion. There isn’t one. So
he proceeds painstakingly through the field for a while,
prodding and poking as he goes. Eventually, convinced
that the field is safe, he straightens up and marches
proudly forward, only to be blown to pieces.

The soldier’s initial probes for mines revealed nothing,
but this was merely lucky. He was led to a false
conclusion—with disastrous results.

As developers, we also work in minefields. There are
hundreds of traps waiting to catch us each day.
Remembering the soldier’s tale, we should be wary of
drawing false conclusions. We should avoid
programming by coincidence—relying on luck and
accidental successes—in favor of programming
deliberately.

HOW TO PROGRAM BY COINCIDENCE
Suppose Fred is given a programming assignment. Fred
types in some code, tries it, and it seems to work. Fred
types in some more code, tries it, and it still seems to
work. After several weeks of coding this way, the
program suddenly stops working, and after hours of
trying to fix it, he still doesn’t know why. Fred may
well spend a significant amount of time chasing this
piece of code around without ever being able to fix it.

No matter what he does, it just doesn’t ever seem to
work right.

Fred doesn’t know why the code is failing because he
didn’t know why it worked in the first place. It seemed
to work, given the limited “testing’’ that Fred did, but
that was just a coincidence. Buoyed by false
confidence, Fred charged ahead into oblivion. Now,
most intelligent people may know someone like Fred,
but we know better. We don’t rely on coincidences—do
we?

Sometimes we might. Sometimes it can be pretty easy
to confuse a happy coincidence with a purposeful plan.
Let’s look at a few examples.

Accidents of Implementation

Accidents of implementation are things that happen
simply because that’s the way the code is currently
written. You end up relying on undocumented error or
boundary conditions.

Suppose you call a routine with bad data. The routine
responds in a particular way, and you code based on
that response. But the author didn’t intend for the
routine to work that way—it was never even
considered. When the routine gets “fixed,’’ your code
may break. In the most extreme case, the routine you
called may not even be designed to do what you want,
but it seems to work okay. Calling things in the wrong
order, or in the wrong context, is a related problem.

Here it looks like Fred is desperately trying to get
something out on the screen using some particular GUI
rendering framework:

 paint();
 invalidate();
 validate();
 revalidate();
 repaint();
 paintImmediately();

But these routines were never designed to be called this
way; although they seem to work, that’s really just a
coincidence.

To add insult to injury, when the scene finally does get
drawn, Fred won’t try to go back and take out the
spurious calls. “It works now, better leave well enough
alone….”

It’s easy to be fooled by this line of thought. Why
should you take the risk of messing with something
that’s working? Well, we can think of several reasons:

It may not really be working—it might
just look like it is.

The boundary condition you rely on
may be just an accident. In different
circumstances (a different screen
resolution, more CPU cores), it might
behave differently.

Undocumented behavior may change
with the next release of the library.

Additional and unnecessary calls make
your code slower.

Additional calls increase the risk of
introducing new bugs of their own.

For code you write that others will call, the basic
principles of good modularization and of hiding
implementation behind small, well-documented

interfaces can all help. A well-specified contract (see
Topic 23, Design by Contract) can help eliminate
misunderstandings.

For routines you call, rely only on documented
behavior. If you can’t, for whatever reason, then
document your assumption well.
Close Enough Isn’t

We once worked on a large project that reported on data
fed from a very large number of hardware data
collection units out in the field. These units spanned
states and time zones, and for various logistical and
historical reasons, each unit was set to local time.[50] As
a result of conflicting time zone interpretations and
inconsistencies in Daylight Savings Time policies,
results were almost always wrong, but only off by one.
The developers on the project had gotten into the habit
of just adding one or subtracting one to get the correct
answer, reasoning that it was only off by one in this one
situation. And then the next function would see the
value as off by the one the other way, and change it
back.

But the fact that it was “only” off by one some of the
time was a coincidence, masking a deeper and more
fundamental flaw. Without a proper model of time
handling, the entire large code base had devolved over
time to an untenable mass of +1 and -1 statements.
Ultimately, none of it was correct and the project was
scrapped.

Phantom Patterns

Human beings are designed to see patterns and causes,
even when it’s just a coincidence. For example, Russian
leaders always alternate between being bald and hairy:
a bald (or obviously balding) state leader of Russia has
succeeded a non-bald (“hairy”) one, and vice versa, for
nearly 200 years.[51]

But while you wouldn’t write code that depended on
the next Russian leader being bald or hairy, in some

domains we think that way all the time. Gamblers
imagine patterns in lottery numbers, dice games, or
roulette, when in fact these are statistically independent
events. In finance, stock and bond trading are similarly
rife with coincidence instead of actual, discernible
patterns.

A log file that shows an intermittent error every 1,000
requests may be a difficult-to-diagnose race condition,
or may be a plain old bug. Tests that seem to pass on
your machine but not on the server might indicate a
difference between the two environments, or maybe it’s
just a coincidence.

Don’t assume it, prove it.

Accidents of Context

You can have “accidents of context” as well. Suppose
you are writing a utility module. Just because you are
currently coding for a GUI environment, does the
module have to rely on a GUI being present? Are you
relying on English-speaking users? Literate users?
What else are you relying on that isn’t guaranteed?

Are you relying on the current directory being writable?
On certain environment variables or configuration files
being present? On the time on the server being accurate
—within what tolerance? Are you relying on network
availability and speed?

When you copied code from the first answer you found
on the net, are you sure your context is the same? Or
are you building “cargo cult” code, merely imitating
form without content?[52]

Finding an answer that happens to fit is not the same as
the right answer.

Tip 62 Don’t Program by Coincidence

Implicit Assumptions

Coincidences can mislead at all levels—from
generating requirements through to testing. Testing is
particularly fraught with false causalities and
coincidental outcomes. It’s easy to assume that X
causes Y, but as we said in Topic 20, Debugging: don’t
assume it, prove it.

At all levels, people operate with many assumptions in
mind—but these assumptions are rarely documented
and are often in conflict between different developers.
Assumptions that aren’t based on well-established facts
are the bane of all projects.

HOW TO PROGRAM DELIBERATELY
We want to spend less time churning out code, catch
and fix errors as early in the development cycle as
possible, and create fewer errors to begin with. It helps
if we can program deliberately:

Always be aware of what you are
doing. Fred let things get slowly out of
hand, until he ended up boiled, like the
frog here.

Can you explain the code, in detail, to a
more junior programmer? If not,
perhaps you are relying on
coincidences.

Don’t code in the dark. Build an
application you don’t fully grasp, or
use a technology you don’t understand,
and you’ll likely be bitten by
coincidences. If you’re not sure why it
works, you won’t know why it fails.

Proceed from a plan, whether that plan
is in your head, on the back of a
cocktail napkin, or on a whiteboard.

Rely only on reliable things. Don’t
depend on assumptions. If you can’t

tell if something is reliable, assume the
worst.

Document your assumptions. Topic 23,
Design by Contract, can help clarify
your assumptions in your own mind, as
well as help communicate them to
others.

Don’t just test your code, but test your
assumptions as well. Don’t guess;
actually try it. Write an assertion to test
your assumptions (see Topic 25,
Assertive Programming). If your
assertion is right, you have improved
the documentation in your code. If you
discover your assumption is wrong,
then count yourself lucky.

Prioritize your effort. Spend time on
the important aspects; more than likely,
these are the hard parts. If you don’t
have fundamentals or infrastructure
correct, brilliant bells and whistles will
be irrelevant.

Don’t be a slave to history. Don’t let
existing code dictate future code. All
code can be replaced if it is no longer
appropriate. Even within one program,
don’t let what you’ve already done
constrain what you do next—be ready
to refactor (see Topic 40, Refactoring).
This decision may impact the project
schedule. The assumption is that the
impact will be less than the cost of not
making the change.[53]

So next time something seems to work, but you don’t
know why, make sure it isn’t just a coincidence.

RELATED SECTIONS INCLUDE

Topic 4, Stone Soup and Boiled Frogs

Topic 9, DRY—The Evils of Duplication

Topic 23, Design by Contract

Topic 34, Shared State Is Incorrect State

Topic 43, Stay Safe Out There

EXERCISES
Exercise 25 (possible answer)

A data feed from a vendor gives you an array of tuples
representing key-value pairs. The key of DepositAccount
will hold a string of the account number in the
corresponding value:

 [
 …
 {:DepositAccount, “564-904-143-00” }
 …
]

It worked perfectly in test on the 4-core developer
laptops and on the 12-core build machine, but on the
production servers running in containers, you keep
getting the wrong account numbers. What’s going on?

Exercise 26 (possible answer)

You’re coding an autodialer for voice alerts, and have
to manage a database of contact information. The ITU
specifies that phone numbers should be no longer than
15 digits, so you store the contact’s phone number in a
numeric field guaranteed to hold at least 15 digits.
You’ve tested in thoroughly throughout North America
and everything seems fine, but suddenly you’re getting
a rash of complaints from other parts of the world.
Why?

Exercise 27 (possible answer)

You have written an app that scales up common recipes
for a cruise ship dining room that seats 5,000. But
you’re getting complaints that the conversions aren’t
precise. You check, and the code uses the conversion
formula of 16 cups to a gallon. That’s right, isn’t it?

 Topic 39 Algorithm Speed

In Topic 15, Estimating, we talked about estimating
things such as how long it takes to walk across town, or
how long a project will take to finish. However, there is
another kind of estimating that Pragmatic Programmers
use almost daily: estimating the resources that
algorithms use—time, processor, memory, and so on.

This kind of estimating is often crucial. Given a choice
between two ways of doing something, which do you
pick? You know how long your program runs with
1,000 records, but how will it scale to 1,000,000? What
parts of the code need optimizing?

It turns out that these questions can often be answered
using common sense, some analysis, and a way of
writing approximations called the Big-O notation.

WHAT DO WE MEAN BY ESTIMATING
ALGORITHMS?
Most nontrivial algorithms handle some kind of
variable input—sorting strings, inverting an
matrix, or decrypting a message with an -bit key.
Normally, the size of this input will affect the
algorithm: the larger the input, the longer the running
time or the more memory used.

If the relationship were always linear (so that the time
increased in direct proportion to the value of), this
section wouldn’t be important. However, most
significant algorithms are not linear. The good news is
that many are sublinear. A binary search, for example,
doesn’t need to look at every candidate when finding a

match. The bad news is that other algorithms are
considerably worse than linear; runtimes or memory
requirements increase far faster than . An algorithm
that takes a minute to process ten items may take a
lifetime to process 100.

We find that whenever we write anything containing
loops or recursive calls, we subconsciously check the
runtime and memory requirements. This is rarely a
formal process, but rather a quick confirmation that
what we’re doing is sensible in the circumstances.
However, we sometimes do find ourselves performing a
more detailed analysis. That’s when Big-O notation
comes in handy.

BIG-O NOTATION

The Big-O notation, written , is a mathematical way
of dealing with approximations. When we write that a

particular sort routine sorts records in time, we
are simply saying that the worst-case time taken will
vary as the square of . Double the number of
records, and the time will increase roughly fourfold.
Think of the as meaning on the order of.

The notation puts an upper bound on the value of
the thing we’re measuring (time, memory, and so on). If

we say a function takes time, then we know that
the upper bound of the time it takes will not grow faster

than . Sometimes we come up with fairly complex
 functions, but because the highest-order term will

dominate the value as increases, the convention is
to remove all low-order terms, and not to bother
showing any constant multiplying factors:

This is actually a feature of the notation—one

algorithm may be 1,000 times faster than another
algorithm, but you won’t know it from the notation.
Big-O is never going to give you actual numbers for
time or memory or whatever: it simply tells you how
these values will change as the input changes.

Figure 3, Runtimes of various algorithms shows several
common notations you’ll come across, along with a
graph comparing running times of algorithms in each
category. Clearly, things quickly start getting out of

hand once we get over .

For example, suppose you’ve got a routine that takes
one second to process 100 records. How long will it
take to process 1,000? If your code is , then it will
still take one second. If it’s , then you’ll probably be
waiting about three seconds. will show a linear
increase to ten seconds, while an will take some 33

seconds. If you’re unlucky enough to have an
routine, then sit back for 100 seconds while it does its

stuff. And if you’re using an exponential algorithm ,
you might want to make a cup of coffee—your routine

should finish in about years. Let us know how the
universe ends.

The notation doesn’t apply just to time; you can use
it to represent any other resources used by an
algorithm. For example, it is often useful to be able to
model memory consumption (see the exercises for an
example).

 Constant (access element in array, simple statements)

Logarithmic (binary search). The base of the logarithm doesn’t

matter, so this is equivalent .

 Linear (sequential search)

 Worse than linear, but not much worse. (Average runtime of quicksort, heapsort)

 Square law (selection and insertion sorts)

Cubic (multiplication of two matrices)

 Exponential (traveling salesman problem, set partitioning)

Figure 3. Runtimes of various algorithms

COMMON SENSE ESTIMATION
You can estimate the order of many basic algorithms
using common sense.

Simple loops

If a simple loop runs from to
, then the algorithm is likely to

be —time increases linearly
with . Examples include
exhaustive searches, finding the
maximum value in an array, and
generating checksums.

Nested loops
If you nest a loop inside another,
then your algorithm becomes ,
where and are the two
loops’ limits. This commonly
occurs in simple sorting
algorithms, such as bubble sort,
where the outer loop scans each
element in the array in turn, and
the inner loop works out where to
place that element in the sorted
result. Such sorting algorithms

tend to be .
Binary chop
If your algorithm halves the set of
things it considers each time
around the loop, then it is likely to
be logarithmic, . A binary
search of a sorted list, traversing a
binary tree, and finding the first
set bit in a machine word can all
be .

Divide and conquer
Algorithms that partition their
input work on the two halves
independently, and then combine
the result can be . The classic
example is quicksort, which works
by partitioning the data into two

halves and recursively sorting

each. Although technically ,
because its behavior degrades
when it is fed sorted input, the
average runtime of quicksort is

.

Combinatoric
Whenever algorithms start looking
at the permutations of things, their
running times may get out of
hand. This is because
permutations involve factorials
(there are permutations of the
digits from 1 to 5). Time a
combinatoric algorithm for five
elements: it will take six times
longer to run it for six, and 42
times longer for seven. Examples
include algorithms for many of the
acknowledged hard problems—
the traveling salesman problem,
optimally packing things into a
container, partitioning a set of
numbers so that each set has the
same total, and so on. Often,
heuristics are used to reduce the
running times of these types of
algorithms in particular problem
domains.

ALGORITHM SPEED IN PRACTICE
It’s unlikely that you’ll spend much time during your
career writing sort routines. The ones in the libraries
available to you will probably outperform anything you
may write without substantial effort. However, the
basic kinds of algorithms we’ve described earlier pop
up time and time again. Whenever you find yourself
writing a simple loop, you know that you have an

algorithm. If that loop contains an inner loop, then
you’re looking at . You should be asking yourself
how large these values can get. If the numbers are
bounded, then you’ll know how long the code will take
to run. If the numbers depend on external factors (such
as the number of records in an overnight batch run, or
the number of names in a list of people), then you
might want to stop and consider the effect that large
values may have on your running time or memory
consumption.

Tip 63 Estimate the Order of Your Algorithms

There are some approaches you can take to address

potential problems. If you have an algorithm that is
, try to find a divide-and-conquer approach that will
take you down to .

If you’re not sure how long your code will take, or how
much memory it will use, try running it, varying the
input record count or whatever is likely to impact the
runtime. Then plot the results. You should soon get a
good idea of the shape of the curve. Is it curving
upward, a straight line, or flattening off as the input size
increases? Three or four points should give you an idea.

Also consider just what you’re doing in the code itself.

A simple loop may well perform better than a
complex, one for smaller values of , particularly
if the algorithm has an expensive inner loop.

In the middle of all this theory, don’t forget that there
are practical considerations as well. Runtime may look
like it increases linearly for small input sets. But feed
the code millions of records and suddenly the time
degrades as the system starts to thrash. If you test a sort

routine with random input keys, you may be surprised
the first time it encounters ordered input. Try to cover
both the theoretical and practical bases. After all this
estimating, the only timing that counts is the speed of
your code, running in the production environment, with
real data. This leads to our next tip.

Tip 64 Test Your Estimates

If it’s tricky getting accurate timings, use code profilers
to count the number of times the different steps in your
algorithm get executed, and plot these figures against
the size of the input.
Best Isn’t Always Best

You also need to be pragmatic about choosing
appropriate algorithms—the fastest one is not always
the best for the job. Given a small input set, a
straightforward insertion sort will perform just as well
as a quicksort, and will take you less time to write and
debug. You also need to be careful if the algorithm you
choose has a high setup cost. For small input sets, this
setup may dwarf the running time and make the
algorithm inappropriate.

Also be wary of premature optimization. It’s always a
good idea to make sure an algorithm really is a
bottleneck before investing your precious time trying to
improve it.

RELATED SECTIONS INCLUDE

Topic 15, Estimating

CHALLENGES

Every developer should have a feel for
how algorithms are designed and
analyzed. Robert Sedgewick has
written a series of accessible books on
the subject (Algorithms [SW11]An
Introduction to the Analysis of
Algorithms [SF13] and others). We
recommend adding one of his books to
your collection, and making a point of
reading it.

For those who like more detail than
Sedgewick provides, read Donald
Knuth’s definitive Art of Computer
Programming books, which analyze a
wide range of algorithms.

The Art of Computer Programming, Volume 1: Fundamental

Algorithms [Knu98]

The Art of Computer Programming, Volume 2: Seminumerical

Algorithms [Knu98a]

The Art of Computer Programming, Volume 3: Sorting and Searching

[Knu98b]

The Art of Computer Programming, Volume 4A: Combinatorial

Algorithms, Part 1 [Knu11].

In the first exercise that follows we
look at sorting arrays of long integers.
What is the impact if the keys are more
complex, and the overhead of key
comparison is high? Does the key
structure affect the efficiency of the
sort algorithms, or is the fastest sort
always fastest?

EXERCISES
Exercise 28 (possible answer)

We coded a set of simple sort routines[54] in Rust. Run
them on various machines available to you. Do your
figures follow the expected curves? What can you
deduce about the relative speeds of your machines?
What are the effects of various compiler optimization
settings?

Exercise 29 (possible answer)

In Common Sense Estimation, we claimed that a binary
chop is . Can you prove this?

Exercise 30 (possible answer)

In Figure 3, Runtimes of various algorithms, we

claimed that is the same as (or indeed
logarithms to any base). Can you explain why?

 Topic 40 Refactoring

Change and decay in all around I see…

 H. F. Lyte, Abide With Me
As a program evolves, it will become necessary to
rethink earlier decisions and rework portions of the
code. This process is perfectly natural. Code needs to
evolve; it’s not a static thing.

Unfortunately, the most common metaphor for software
development is building construction. Bertrand Meyer’s
classic work Object-Oriented Software Construction
[Mey97] uses the term “Software Construction,” and
even your humble authors edited the Software
Construction column for IEEE Software in the early
2000s.[55]

But using construction as the guiding metaphor implies
the following steps:

1. An architect draws up blueprints.

2. Contractors dig the foundation, build
the superstructure, wire and plumb, and
apply finishing touches.

3. The tenants move in and live happily
ever after, calling building maintenance
to fix any problems.

Well, software doesn’t quite work that way. Rather than
construction, software is more like gardening—it is
more organic than concrete. You plant many things in a

garden according to an initial plan and conditions.
Some thrive, others are destined to end up as compost.
You may move plantings relative to each other to take
advantage of the interplay of light and shadow, wind
and rain. Overgrown plants get split or pruned, and
colors that clash may get moved to more aesthetically
pleasing locations. You pull weeds, and you fertilize
plantings that are in need of some extra help. You
constantly monitor the health of the garden, and make
adjustments (to the soil, the plants, the layout) as
needed.

Business people are comfortable with the metaphor of
building construction: it is more scientific than
gardening, it’s repeatable, there’s a rigid reporting
hierarchy for management, and so on. But we’re not
building skyscrapers—we aren’t as constrained by the
boundaries of physics and the real world.

The gardening metaphor is much closer to the realities
of software development. Perhaps a certain routine has
grown too large, or is trying to accomplish too much—
it needs to be split into two. Things that don’t work out
as planned need to be weeded or pruned.

Rewriting, reworking, and re-architecting code is
collectively known as restructuring. But there’s a
subset of that activity that has become practiced as
refactoring.

Refactoring [Fow19] is defined by Martin Fowler as a:

disciplined technique for restructuring an existing body
of code, altering its internal structure without changing
its external behavior.

The critical parts of this definition are that:

1. The activity is disciplined, not a free-

for-all

2. External behavior does not change; this
is not the time to add features

Refactoring is not intended to be a special, high-
ceremony, once-in-a-while activity, like plowing under
the whole garden in order to replant. Instead,
refactoring is a day-to-day activity, taking low-risk
small steps, more like weeding and raking. Instead of a
free-for-all, wholesale rewrite of the codebase, it’s a
targeted, precision approach to help keep the code easy
to change.

In order to guarantee that the external behavior hasn’t
changed, you need good, automated unit testing that
validates the behavior of the code.

WHEN SHOULD YOU REFACTOR?
You refactor when you’ve learned something; when
you understand something better than you did last year,
yesterday, or even just ten minutes ago.

Perhaps you’ve come across a stumbling block because
the code doesn’t quite fit anymore, or you notice two
things that should really be merged, or anything else at
all strikes you as being “wrong,” don’t hesitate to
change it. There’s no time like the present. Any number
of things may cause code to qualify for refactoring:

Duplication
You’ve discovered a violation of
the DRY principle.

Nonorthogonal design
You’ve discovered something that
could be made more orthogonal.

Outdated knowledge
Things change, requirements drift,
and your knowledge of the
problem increases. Code needs to
keep up.
Usage

As the system gets used by real
people under real circumstances,
you realize some features are now
more important than previously
thought, and “must have” features
perhaps weren’t.

Performance
You need to move functionality
from one area of the system to
another to improve performance.
The Tests Pass
Yes. Seriously. We did say that
refactoring should be a small scale
activity, backed up by good tests.
So when you’ve added a small
amount of code, and that one extra
test passes, you now have a great
opportunity to dive in and tidy up
what you just wrote.

Refactoring your code—moving functionality around
and updating earlier decisions—is really an exercise in
pain management. Let’s face it, changing source code
around can be pretty painful: it was working, maybe it’s
better to leave well enough alone. Many developers are
reluctant to go in and re-open a piece of code just
because it isn’t quite right.
Real-World Complications

So you go to your teammates or client and say, “This
code works, but I need another week to completely
refactor it.”

We can’t print their reply.

Time pressure is often used as an excuse for not
refactoring. But this excuse just doesn’t hold up: fail to
refactor now, and there’ll be a far greater time
investment to fix the problem down the road—when

there are more dependencies to reckon with. Will there
be more time available then? Nope.

You might want to explain this principle to others by
using a medical analogy: think of the code that needs
refactoring as “a growth.” Removing it requires
invasive surgery. You can go in now, and take it out
while it is still small. Or, you could wait while it grows
and spreads—but removing it then will be both more
expensive and more dangerous. Wait even longer, and
you may lose the patient entirely.

Tip 65 Refactor Early, Refactor Often

Collateral damage in code can be just as deadly over
time (see Topic 3, Software Entropy). Refactoring, as
with most things, is easier to do while the issues are
small, as an ongoing activity while coding. You
shouldn’t need “a week to refactor” a piece of code—
that’s a full-on rewrite. If that level of disruption is
necessary, then you might well not be able to do it
immediately. Instead, make sure that it gets placed on
the schedule. Make sure that users of the affected code
know that it is scheduled to be rewritten and how this
might affect them.

HOW DO YOU REFACTOR?
Refactoring started out in the Smalltalk community, and
had just started to gain a wider audience when we
wrote the first edition of this book, probably thanks to
the first major book on refactoring (Refactoring:
Improving the Design of Existing Code [Fow19], now
in its second edition).

At its heart, refactoring is redesign. Anything that you
or others on your team designed can be redesigned in
light of new facts, deeper understandings, changing
requirements, and so on. But if you proceed to rip up

vast quantities of code with wild abandon, you may
find yourself in a worse position than when you started.

Clearly, refactoring is an activity that needs to be
undertaken slowly, deliberately, and carefully. Martin
Fowler offers the following simple tips on how to
refactor without doing more harm than good:[56]

1. Don’t try to refactor and add

functionality at the same time.

2. Make sure you have good tests before
you begin refactoring. Run the tests as
often as possible. That way you will
know quickly if your changes have
broken anything.

3. Take short, deliberate steps: move a
field from one class to another, split a
method, rename a variable. Refactoring
often involves making many localized
changes that result in a larger-scale
change. If you keep your steps small,
and test after each step, you will avoid
prolonged debugging.[57]

Automatic Refactoring
Back in the first edition we noted that, “this technology
has yet to appear outside of the Smalltalk world, but
this is likely to change….” And indeed, it did, as
automatic refactoring is available in many IDEs and for
most mainstream languages.

These IDEs can rename variables and methods, split a
long routine into smaller ones, automatically
propagating the required changes, drag and drop to
assist you in moving code, and so on.

We’ll talk more about testing at this level in Topic 41,
Test to Code, and larger-scale testing in Ruthless and
Continuous Testing, but Mr. Fowler’s point of
maintaining good regression tests is the key to
refactoring safely.

If you have to go beyond refactoring and end up
changing external behavior or interfaces, then it can
help to deliberately break the build: old clients of this
code should fail to compile. That way you’ll know
what needs updating. Next time you see a piece of code
that isn’t quite as it should be, fix it. Manage the pain:
if it hurts now, but is going to hurt even more later, you
might as well get it over with. Remember the lessons of
Topic 3, Software Entropy: don’t live with broken
windows.

RELATED SECTIONS INCLUDE

Topic 3, Software Entropy

Topic 9, DRY—The Evils of Duplication

Topic 12, Tracer Bullets

Topic 27, Don’t Outrun Your Headlights

Topic 44, Naming Things

Topic 48, The Essence of Agility

 Topic 41 Test to Code

The first edition of this book was written in more
primitive times, when most developers wrote no tests—
why bother, they thought, the world was going to end in
the year 2000 anyway.

In that book, we had a section on how to build code that
was easy to test. It was a sneaky way of convincing
developers to actually write tests.

These are more enlightened times. If there are any
developers still not writing tests, they at least know that
they should be.

But there’s still a problem. When we ask developers
why they write tests, they look at us as if we just asked
if they still coded using punched cards and they’d say
“to make sure the code works,” with an unspoken “you
dummy” at the end. And we think that’s wrong.

So what do we think is important about testing? And
how do we think you should go about it?

Let’s start with the bold statement:

Tip 66 Testing Is Not About Finding Bugs

We believe that the major benefits of testing happen
when you think about and write the tests, not when you
run them.

THINKING ABOUT TESTS

It’s a Monday morning and you settle in to start work
on some new code. You have to write something that
queries the database to return a list of people who
watch more than 10 videos a week on your “world’s
funniest dishwashing videos” site.

You fire up your editor, and start by writing the
function that performs the query:

 def return_avid_viewers do
 # … hmmm …
 end

Stop! How do you know that what you’re about to do is
a good thing?

The answer is that you can’t know that. No one can.
But thinking about tests can make it more likely. Here’s
how that works.

Start by imagining that you’d finished writing the
function and now had to test it. How would you do
that? Well, you’d want to use some test data, which
probably means you want to work in a database you
control. Now some frameworks can handle that for you,
running tests against a test database, but in our case that
means we should be passing the database instance into
our function rather than using some global one, as that
allows us to change it while testing:

 def return_avid_users(db) do

Then we have to think about how we’d populate that
test data. The requirement asks for a “list of people who
watch more than 10 videos a week.” So we look at the
database schema for fields that might help. We find two
likely fields in a table of who-watched-what: opened_video
and completed_video. To write our test data, we need to
know which field to use. But we don’t know what the
requirement means, and our business contact is out.
Let’s just cheat and pass in the name of the field (which
will allow us to test what we have, and potentially
change it later):

 def return_avid_users(db, qualifying_field_name) do

We started by thinking about our tests, and without
writing a line of code, we’ve already made two
discoveries and used them to change the API of our
method.

TESTS DRIVE CODING
In the previous example, thinking about testing made us
reduce coupling in our code (by passing in a database
connection rather than using a global one) and increase
flexibility (by making the name of the field we test a
parameter). Thinking about writing a test for our
method made us look at it from the outside, as if we
were a client of the code, and not its author.

Tip 67 A Test Is the First User of Your Code

We think this is probably the biggest benefit offered by
testing: testing is vital feedback that guides your
coding.

A function or method that is tightly coupled to other
code is hard to test, because you have to set up all that
environment before you can even run your method. So
making your stuff testable also reduces its coupling.

And before you can test something, you have to
understand it. That sounds silly, but in reality we’ve all
launched into a piece of code based on a nebulous
understanding of what we had to do. We assure
ourselves that we’ll work it out as we go along. Oh, and
we’ll add all the code to support the boundary
conditions later, too. Oh, and the error handling. And
the code ends up five times longer than it should
because it’s full of conditional logic and special cases.
But shine the light of a test on that code, and things
become clearer. If you think about testing boundary
conditions and how that will work before you start
coding, you may well find the patterns in the logic
that’ll simplify the function. If you think about the error
conditions you’ll need to test, you’ll structure your
function accordingly.
Test-Driven Development

There’s a school of programming that says that, given
all the benefits of thinking about tests up front, why not
go ahead and write them up front too? They practice
something called test-driven development or TDD.
You’ll also see this called test-first development.[58]

The basic cycle of TDD is:

1. Decide on a small piece of

functionality you want to add.

2. Write a test that will pass once that
functionality is implemented.

3. Run all tests. Verify that the only
failure is the one you just wrote.

4. Write the smallest amount of code
needed to get the test to pass, and

verify that the tests now run cleanly.

5. Refactor your code: see if there is a
way to improve on what you just wrote
(the test or the function). Make sure the
tests still pass when you’re done.

The idea is that this cycle should be very short: a matter
of minutes, so that you’re constantly writing tests and
then getting them to work.

We see a major benefit in TDD for people just starting
out with testing. If you follow the TDD workflow,
you’ll guarantee that you always have tests for your
code. And that means you’ll always be thinking about
your tests.

However, we’ve also seen people become slaves to
TDD. This manifests itself in a number of ways:

They spend inordinate amounts of time
ensuring that they always have 100%
test coverage.

They have lots of redundant tests. For
example, before writing a class for the
first time, many TDD adherents will
first write a failing test that simply
references the class’s name. It fails,
then they write an empty class
definition and it passes. But now you
have a test that does absolutely
nothing; the next test you write will
also reference the class, and so it
makes the first unnecessary. There’s
more stuff to change if the class name
changes later. And this is just a trivial
example.

Their designs tend to start at the
bottom and work their way up. (See
Bottom-Up vs. Top-Down vs. The Way
You Should Do It.)

Bottom-Up vs. Top-Down vs. The Way You Should
Do It

Back when computing was young and carefree, there
were two schools of design: top-down and bottom-up.
The top-down folks said you should start with the
overall problem you’re trying to solve and break it into
a small number of pieces. Then break each of these into
smaller pieces, and so on, until you end up with pieces
small enough to express in code.

The bottom-up folks build code like you’d build a
house. They start at the bottom, producing a layer of
code that gives them some abstractions that are closer
to the problem they are trying to solve. Then they add
another layer, with higher-level abstractions. They keep
on until the final layer is an abstraction that solves the
problem. “Make it so….”

Neither school actually works, because both ignore one
of the most important aspects of software development:
we don’t know what we’re doing when we start. The
top-down folks assume they can express the whole
requirement up front: they can’t. The bottom-up folks
assume they can build a list of abstractions which will
take them eventually to a single top-level solution, but
how can they decide on the functionality of layers
when they don’t know where they are heading?

Tip 68 Build End-to-End, Not Top-Down or Bottom Up

We strongly believe that the only way to build software
is incrementally. Build small pieces of end-to-end
functionality, learning about the problem as you go.
Apply this learning as you continue to flesh out the
code, involve the customer at each step, and have them
guide the process.

By all means practice TDD. But, if you do, don’t forget
to stop every now and then and look at the big picture.
It is easy to become seduced by the green “tests passed”
message, writing lots of code that doesn’t actually get
you closer to a solution.

TDD: YOU NEED TO KNOW WHERE YOU’RE
GOING
The old joke asks “How do you eat an elephant?” The
punchline: “One bite at a time.” And this idea is often

touted as a benefit of TDD. When you can’t
comprehend the whole problem, take small steps, one
test at a time. However, this approach can mislead you,
encouraging you to focus on and endlessly polish the
easy problems while ignoring the real reason you’re
coding. An interesting example of this happened in
2006, when Ron Jeffries, a leading figure in the agility
movement, started a series of blog posts which
documented his test-driven coding of a Sudoko solver.
[59] After five posts, he’d refined the representation of
the underlying board, refactoring a number of times
until he was happy with the object model. But then he
abandoned the project. It’s interesting to read the blog
posts in order, and watch how a clever person can get
sidetracked by the minutia, reinforced by the glow of
passing tests.

As a contrast, Peter Norvig describes an alternative
approach[60] which feels very different in character:
rather than being driven by tests, he starts with a basic
understanding of how these kinds of problems are
traditionally solved (using constraint propagation), and
then focuses on refining his algorithm. He addresses
board representation in a dozen lines of code that flow
directly from his discussion of notation.

Tests can definitely help drive development. But, as
with every drive, unless you have a destination in mind,
you can end up going in circles.

BACK TO THE CODE
Component-based development has long been a lofty
goal of software development.[61] The idea is that
generic software components should be available and
combined just as easily as common integrated circuits
(ICs) are combined. But this works only if the
components you are using are known to be reliable, and
if you have common voltages, interconnect standards,
timing, and so on.

Chips are designed to be tested—not just at the factory,
not just when they are installed, but also in the field
when they are deployed. More complex chips and
systems may have a full Built-In Self Test (BIST)
feature that runs some base-level diagnostics internally,
or a Test Access Mechanism (TAM) that provides a test
harness that allows the external environment to provide
stimuli and collect responses from the chip.

We can do the same thing in software. Like our
hardware colleagues, we need to build testability into
the software from the very beginning, and test each
piece thoroughly before trying to wire them together.

UNIT TESTING
Chip-level testing for hardware is roughly equivalent to
unit testing in software—testing done on each module,
in isolation, to verify its behavior. We can get a better
feeling for how a module will react in the big wide
world once we have tested it throughly under controlled
(even contrived) conditions.

A software unit test is code that exercises a module.
Typically, the unit test will establish some kind of
artificial environment, then invoke routines in the
module being tested. It then checks the results that are
returned, either against known values or against the
results from previous runs of the same test (regression
testing).

Later, when we assemble our “software ICs” into a
complete system, we’ll have confidence that the
individual parts work as expected, and then we can use
the same unit test facilities to test the system as a
whole. We talk about this large-scale checking of the
system in Ruthless and Continuous Testing.

Before we get that far, however, we need to decide
what to test at the unit level. Historically, programmers
threw a few random bits of data at the code, looked at
the print statements, and called it tested. We can do
much better.

TESTING AGAINST CONTRACT
We like to think of unit testing as testing against
contract (see Topic 23, Design by Contract). We want
to write test cases that ensure that a given unit honors
its contract. This will tell us two things: whether the
code meets the contract, and whether the contract
means what we think it means. We want to test that the
module delivers the functionality it promises, over a
wide range of test cases and boundary conditions.

What does this mean in practice? Let’s start with a
simple, numerical example: a square root routine. Its
documented contract is simple:

 pre-conditions:
 argument >= 0;

 post-conditions:
 ((result * result) - argument).abs <= epsilon*argument;

This tells us what to test:

Pass in a negative argument and ensure
that it is rejected.

Pass in an argument of zero to ensure
that it is accepted (this is the boundary
value).

Pass in values between zero and the
maximum expressible argument and
verify that the difference between the
square of the result and the original
argument is less than some small
fraction of the argument (epsilon).

Armed with this contract, and assuming that our routine
does its own pre- and postcondition checking, we can
write a basic test script to exercise the square root
function.

Then we can call this routine to test our square root
function:

 assertWithinEpsilon(my_sqrt(0), 0)
 assertWithinEpsilon(my_sqrt(2.0), 1.4142135624)
 assertWithinEpsilon(my_sqrt(64.0), 8.0)
 assertWithinEpsilon(my_sqrt(1.0e7), 3162.2776602)
 assertRaisesException fn => my_sqrt(-4.0) end

This is a pretty simple test; in the real world, any
nontrivial module is likely to be dependent on a number
of other modules, so how do we go about testing the
combination?

Suppose we have a module A that uses a DataFeed and a
LinearRegression. In order, we would test:

1. DataFeed’s contract, in full

2. LinearRegression’s contract, in full

3. A’s contract, which relies on the other contracts but does not directly expose

them

This style of testing requires you to test subcomponents
of a module first. Once the subcomponents have been
verified, then the module itself can be tested.

If DataFeed and LinearRegression’s tests passed, but A’s test
failed, we can be pretty sure that the problem is in A, or
in A’s use of one of those subcomponents. This
technique is a great way to reduce debugging effort: we
can quickly concentrate on the likely source of the
problem within module A, and not waste time
reexamining its subcomponents.

Why do we go to all this trouble? Above all, we want to
avoid creating a “time bomb”—something that sits
around unnoticed and blows up at an awkward moment
later in the project. By emphasizing testing against
contract, we can try to avoid as many of those
downstream disasters as possible.

Tip 69 Design to Test

AD HOC TESTING
Not to be confused with “odd hack,” ad-hoc testing is
when we run poke at our code manually. This may be
as simple as a console.log(), or a piece of code entered
interactively in a debugger, IDE environment, or REPL.

At the end of the debugging session, you need to
formalize this ad hoc test. If the code broke once, it is
likely to break again. Don’t just throw away the test
you created; add it to the existing unit test arsenal.

BUILD A TEST WINDOW
Even the best sets of tests are unlikely to find all the
bugs; there’s something about the damp, warm
conditions of a production environment that seems to
bring them out of the woodwork.

This means you’ll often need to test a piece of software
once it has been deployed—with real-world data
flowing though its veins. Unlike a circuit board or chip,
we don’t have test pins in software, but we can provide

various views into the internal state of a module,
without using the debugger (which may be
inconvenient or impossible in a production application).

Log files containing trace messages are one such
mechanism. Log messages should be in a regular,
consistent format; you may want to parse them
automatically to deduce processing time or logic paths
that the program took. Poorly or inconsistently
formatted diagnostics are just so much “spew”—they
are difficult to read and impractical to parse.

Another mechanism for getting inside running code is
the ”hot-key” sequence or magic URL. When this
particular combination of keys is pressed, or the URL is
accessed, a diagnostic control window pops up with
status messages and so on. This isn’t something you
normally would reveal to end users, but it can be very
handy for the help desk.

More generally, you could use a feature switch to
enable extra diagnostics for a particular user or class of
users.

A Confession
I (Dave) have been known to tell people that I no
longer write tests. Partly I do it to shake the faith of
those who have turned testing into a religion. And
partly I say it because it is (somewhat) true.

I’ve been coding for 45 years, and writing automated
tests for more than 30 of them. Thinking about testing
is built in to the way I approach coding. It felt
comfortable. And my personality insists that when
something starts to feel comfortable I should move on
to something else.

In this case I decided to stop writing tests for a couple
of months and see what it did to my code. To my
surprise, the answer was “not a lot.” So I spent some
time working out why.

I believe the answer is that (for me) most of the benefit
of testing comes from thinking about the tests and their
impact on the code. And, after doing it for so long, I
could do that thinking without actually writing tests.
My code was still testable; it just wasn’t tested.

But that ignores the fact that tests are also a way of
communicating with other developers, so I now do
write tests on code shared with others or that relies on
the peculiarities of external dependencies.

Andy says I shouldn’t include this sidebar. He worries
it will tempt inexperienced developers not to test.
Here’s my compromise:

Should you write tests? Yes. But after you’ve been
doing it for 30 years, feel free to experiment a little to
see where the benefit lies for you.

A CULTURE OF TESTING
All software you write will be tested—if not by you and
your team, then by the eventual users—so you might as
well plan on testing it thoroughly. A little forethought
can go a long way toward minimizing maintenance
costs and help-desk calls.

You really only have a few choices:

Test First

Test During

Test Never

Test First, including Test-Driven Design, is probably
your best choice in most circumstances, as it ensures
that testing happens. But sometimes that’s not as
convenient or useful, so Test During coding can be a
good fallback, where you write some code, fiddle with
it, write the tests for it, then move on to the next bit.
The worst choice is often called “Test Later,” but who
are you kidding? “Test Later” really means “Test
Never.”

A culture of testing means all the tests pass all the time.
Ignore a spew of tests that “always fail” makes it easier

to ignore all the tests, and the vicious spiral begins (see
Topic 3, Software Entropy).

Treat test code with the same care as any production
code. Keep it decoupled, clean, and robust. Don’t rely
on unreliable things (see Topic 38, Programming by
Coincidence) like the absolute position of widgets in a
GUI system, or exact timestamps in a server log, or the
exact wording of error messages. Testing for these sorts
of things will result in fragile tests.

Tip 70 Test Your Software, or Your Users Will

Make no mistake, testing is part of programming. It’s
not something left to other departments or staff.

Testing, design, coding—it’s all programming.

RELATED SECTIONS INCLUDE

Topic 27, Don’t Outrun Your Headlights

Topic 51, Pragmatic Starter Kit

 Topic 42 Property-Based Testing

Доверяй, но проверяй

(Trust, but verify)

 Russian proverb
We recommend writing unit tests for your functions.
You do that by thinking about typical things that might
be a problem, based on your knowledge of the thing
you’re testing.

There’s a small but potentially significant problem
lurking in that paragraph, though. If you write the
original code and you write the tests, is it possible that
an incorrect assumption could be expressed in both?
The code passes the tests, because it does what it is
supposed to based on your understanding.

One way around this is to have different people write
tests and the code under test, but we don’t like this: as
we said in Topic 41, Test to Code, one of the biggest
benefits of thinking about tests is the way it informs the
code you write. You lose that when the work of testing
is split from the coding.

Instead, we favor an alternative, where the computer,
which doesn’t share your preconceptions, does some
testing for you.

CONTRACTS, INVARIANTS, AND PROPERTIES
In Topic 23, Design by Contract, we talked about the idea
that code has contracts that it meets: you meet the

conditions when you feed it input, and it will make
certain guarantees about the outputs it

produces.

There are also code invariants, things that remain true
about some piece of state when it’s passed through a
function. For example, if you sort a list, the result will
have the same number of elements as the original—the
length is invariant.

Once we work out our contracts and invariants (which
we’re going to lump together and call properties) we
can use them to automate our testing.

What we end up doing is called property-based testing.

Tip
71 Use Property-Based Tests to Validate Your

Assumptions

As an artificial example, we can build some tests for
our sorted list.

We’ve already established one property: the sorted list
is the same size as the original. We can also state that
no element in the result can be greater than the one that
follows it.

We can now express that in code. Most languages have
some kind of property-based testing framework. This
example is in Python, and uses the Hypothesis tool and
pytest, but the principles are pretty universal.

Here is the full source of the tests:

proptest/sort.py

http://media.pragprog.com/titles/tpp20/code/proptest/sort.py

 from hypothesis import given
 import hypothesis.strategies as some

 @given (some.lists(some.integers()))
 def test_list_size_is_invariant_across_sorting(a_list):
 original_length = len(a_list)
 a_list.sort()
 assert len(a_list) == original_length

 @given (some.lists(some.text()))
 def test_sorted_result_is_ordered(a_list):
 a_list.sort()
 for i in range(len(a_list) - 1):
 assert a_list[i] <= a_list[i + 1]

Here’s what happens when we run it:

 $ pytest sort.py
 ======================= test session starts ========================
 …
 plugins: hypothesis-4.14.0

 sort.py .. [100%]

 ===================== 2 passed in 0.95 seconds =====================

Not much drama there. But, behind the scenes,
Hypothesis ran both of our tests one hundred times,
passing in a different list each time. The lists will have
varying lengths, and will have different contents. It’s as
if we’d cooked up 200 individual tests with 200 random
lists.

TEST DATA GENERATION
Like most property-based testing libraries, Hypothesis
gives you a minilanguage for describing the data it
should generate. The language is based around calls to
functions in the hypothesis.strategies module, which we
aliased as some, just because it reads better.

If we wrote:

 @given (some.integers())

Our test function would run multiple times. Each time,
it would be passed a different integer. If instead we
wrote the following:

 @given(some.integers(min_value=5, max_value=10).map(lambda x: x * 2))

then we’d get the even numbers between 10 and 20.

You can also compose types, so that

 @given (some.lists(some.integers(min_value=1), max_size=100))

will be lists of natural numbers that are at most 100
elements long.

This isn’t supposed to be a tutorial on any particular
framework, so we’ll skip a bunch of cool details and
instead look at a real-world example.

FINDING BAD ASSUMPTIONS
We’re writing a simple order processing and stock
control system (because there’s always room for one
more). It models the stock levels with a Warehouse object.
We can query a warehouse to see if something is in
stock, remove things from stock, and get the current
stock levels.

Here’s the code:

proptest/stock.py

http://media.pragprog.com/titles/tpp20/code/proptest/stock.py

 class Warehouse:
 def __init__(self, stock):
 self.stock = stock

 def in_stock(self, item_name):
 return (item_name in self.stock) and (self.stock[item_name] > 0)

 def take_from_stock(self, item_name, quantity):
 if quantity <= self.stock[item_name]:
 self.stock[item_name] -= quantity
 else :
 raise Exception(“Oversold {}” .format(item_name))

 def stock_count(self, item_name):
 return self.stock[item_name]

We wrote a basic unit test, which passes:

proptest/stock.py

http://media.pragprog.com/titles/tpp20/code/proptest/stock.py

 def test_warehouse():
 wh = Warehouse({“shoes”: 10, “hats”: 2, “umbrellas” : 0})
 assert wh.in_stock(“shoes”)
 assert wh.in_stock(“hats”)
 assert not wh.in_stock(“umbrellas”)

 wh.take_from_stock(“shoes” , 2)
 assert wh.in_stock(“shoes”)

 wh.take_from_stock(“hats” , 2)
 assert not wh.in_stock(“hats”)

Then we wrote a function that processes a request to
order items from the warehouse. It returns a tuple
where the first element is either “ok” or “not available”,
followed by the item and requested quantity. We also
wrote some tests, and they pass:

proptest/stock.py

 def order(warehouse, item, quantity):
 if warehouse.in_stock(item):
 warehouse.take_from_stock(item, quantity)
 return (“ok” , item, quantity)
 else :
 return (“not available” , item, quantity)

http://media.pragprog.com/titles/tpp20/code/proptest/stock.py

proptest/stock.py

 def test_order_in_stock():
 wh = Warehouse({“shoes”: 10, “hats”: 2, “umbrellas” : 0})
 status, item, quantity = order(wh, “hats” , 1)
 assert status == “ok”
 assert item == “hats”
 assert quantity == 1
 assert wh.stock_count(“hats”) == 1

 def test_order_not_in_stock():
 wh = Warehouse({“shoes”: 10, “hats”: 2, “umbrellas” : 0})
 status, item, quantity = order(wh, “umbrellas” , 1)
 assert status == “not available”
 assert item == “umbrellas”
 assert quantity == 1
 assert wh.stock_count(“umbrellas”) == 0

 def test_order_unknown_item():
 wh = Warehouse({“shoes”: 10, “hats”: 2, “umbrellas” : 0})
 status, item, quantity = order(wh, “bagel” , 1)

http://media.pragprog.com/titles/tpp20/code/proptest/stock.py

 assert status == “not available”
 assert item == “bagel”
 assert quantity == 1

On the surface, everything looks fine. But before we
ship the code, let’s add some property tests.

One thing we know is that stock cannot appear and
disappear across our transaction. This means that if we
take some items from the warehouse, the number we
took plus the number currently in the warehouse should
be the same as the number originally in the warehouse.
In the following test, we run our test with the item
parameter chosen randomly from “hat” or “shoe” and the
quantity chosen from 1 to 4:

proptest/stock.py

 @given(item = some.sampled_from([“shoes”, “hats”]),
 quantity = some.integers(min_value=1, max_value=4))

 def test_stock_level_plus_quantity_equals_original_stock_level(item, quantity):
 wh = Warehouse({“shoes”: 10, “hats”: 2, “umbrellas” : 0})
 initial_stock_level = wh.stock_count(item)
 (status, item, quantity) = order(wh, item, quantity)
 if status == “ok” :
 assert wh.stock_count(item) + quantity == initial_stock_level

http://media.pragprog.com/titles/tpp20/code/proptest/stock.py

Let’s run it:

 $ pytest stock.py
 …
 stock.py:72:
 _
 stock.py:76: in test_stock_level_plus_quantity_equals_original_stock_level
 (status, item, quantity) = order(wh, item, quantity)
 stock.py:40: in order
 warehouse.take_from_stock(item, quantity)
 _

 self = <stock.Warehouse object at 0x10cf97cf8>, item_name = ‘hats’
 quantity = 3

 def take_from_stock(self, item_name, quantity):

 if quantity <= self.stock[item_name]:
 self.stock[item_name] -= quantity
 else:
 > raise Exception(“Oversold {}”.format(item_name))
 E Exception: Oversold hats

 stock.py:16: Exception
 –––––––––- Hypothesis –––––––––-
 Falsifying example:
 test_stock_level_plus_quantity_equals_original_stock_level(
 item=‘hats’, quantity=3)

It blew up in warehouse.take_from_stock: we tried to remove
three hats from the warehouse, but it only has two in
stock.

Our property testing found a faulty assumption: our
in_stock function only checks that there’s at least one of
the given item in stock.

Instead we need to make sure we have enough to fill
the order:

proptest/stock1.py

 def in_stock(self, item_name, quantity):
 » return (item_name in self.stock) and (self.stock[item_name] >= quantity)

And we change the order function, too: proptest/stock1.py

def order(warehouse, item, quantity):
» if warehouse.in_stock(item, quantity):

warehouse.take_from_stock(item, quantity)

http://media.pragprog.com/titles/tpp20/code/proptest/stock1.py
http://media.pragprog.com/titles/tpp20/code/proptest/stock1.py

return (“ok”, item, quantity)
else:
return (“not available”, item, quantity)

And now our property test passes.

PROPERTY-BASED TESTS OFTEN SURPRISE YOU

In the previous example, we used a property-based test to
check that stock levels were adjusted properly. The test found
a bug, but it wasn’t to do with stock level adjustment. Instead,
it found a bug in our in_stock function.

This is both the power and the frustration of property-based
testing.

It’s powerful because you set up some rules for generating
inputs, set up some assertions for validating output, and then
just let it rip. You never quite know what will happen. The test
may pass. An assertion may fail. Or the code may fail totally
because it couldn’t handle the inputs it was given.

The frustration is that it can be tricky to pin down what failed.

Our suggestion is that when a property-based test fails, find
out what parameters it was passing to the test function, and
then use those values to create a separate, regular, unit test.
That unit test does two things for you. First, it lets you focus in
on the problem without all the additional calls being made into
your code by the property-based testing framework. Second,
that unit test acts as a regression test.

Because property-based tests generate random values that get
passed to your test, there’s no guarantee that the same values
will be used the next time you run tests. Having a unit test that
forces those values to be used ensures that this bug won’t slip
through.
PROPERTY-BASED TESTS ALSO HELP YOUR DESIGN

When we talked about unit testing, we said that one of the
major benefits was the way it made you think about your code:
a unit test is the first client of your API.

The same is true of property-based tests, but in a slightly
different way. They make you think about your code in terms
of invariants and contracts; you think about what must not
change, and what must be true.

This extra insight has a magical effect on your code, removing
edge cases and highlighting functions that leave data in an
inconsistent state.

We believe that property-based testing is complementary to
unit testing: they address different concerns, and each brings
its own benefits. If you’re not currently using them, give them
a go.
RELATED SECTIONS INCLUDE

Topic 23, Design by Contract

Topic 25, Assertive Programming

Topic 45, The Requirements Pit

EXERCISES

Exercise 31 (possible answer) Look back at the warehouse
example. Are there any other properties that you can test?

Exercise 32 (possible answer) Your company ships machinery.
Each machine comes in a crate, and each crate is rectangular.
The crates vary in size. Your job is to write some code to pack
as many crates as possible in a single layer that fits in the
delivery truck. The output of your code is a list of all the
crates.

For each crate, the list gives the location in the truck, along
with the width and height. What properties of the output could
be tested?

CHALLENGES

Think about the code you’re currently working on. What are
the properties: the contracts and invariants? Can you use
property-based testing framework to verify these
automatically?

 Topic 43 Stay Safe Out There

Good fences make good neighbors.

 Robert Frost, Mending Wall
In the first edition’s discussion of code coupling we
made a bold and naive statement: “we don’t need to be
as paranoid as spies or dissidents.” We were wrong. In
fact, you do need to be that paranoid, every day.

As we write this, the daily news is filled with stories of
devastating data breaches, hijacked systems, and
cyberfraud. Hundreds of millions of records stolen at
once, billions and billions of dollars in losses and
remediation—and these numbers are growing rapidly
each year. In the vast majority of cases, it’s not because
the attackers were terribly clever, or even vaguely
competent.

It’s because the developers were careless.

THE OTHER 90%
When coding, you may go through several cycles of “it
works!” and “why isn’t that working?” with the
occasional “there’s no way that could have
happened…”[62] After several hills and bumps on this
uphill climb, it’s easy to say to yourself, “phew, it all
works!” and proclaim the code done. Of course, it’s not
done yet. You’re 90% done, but now you have the other
90% to consider.

The next thing you have to do is analyze the code for
ways it can go wrong and add those to your test suite.
You’ll consider things such as passing in bad

parameters, leaking or unavailable resources; that sort
of thing.

In the good old days, this evaluation of internal errors
may have been sufficient. But today that’s only the
beginning, because in addition to errors from internal
causes, you need to consider how an external actor
could deliberately screw up the system. But perhaps
you protest, “Oh, no one will care about this code, it’s
not important, no one even knows about this server…”
It’s a big world out there, and most of it is connected.
Whether it’s a bored kid on the other side of the planet,
state-sponsored terrorism, criminal gangs, corporate
espionage, or even a vengeful ex, they are out there and
aiming for you. The survival time of an unpatched,
outdated system on the open net is measured in minutes
—or even less.

Security through obscurity just doesn’t work.

SECURITY BASIC PRINCIPLES
Pragmatic Programmers have a healthy amount of
paranoia. We know we have faults and limitations, and
that external attackers will seize on any opening we
leave to compromise our systems. Your particular
development and deployment environments will have
their own security-centric needs, but there are a handful
of basic principles that you should always bear in mind:

1. Minimize Attack Surface Area

2. Principle of Least Privilege

3. Secure Defaults

4. Encrypt Sensitive Data

5. Maintain Security Updates

Let’s take a look at each of these.
Minimize Attack Surface Area

The attack surface area of a system is the sum of all
access points where an attacker can enter data, extract
data, or invoke execution of a service. Here are a few
examples:

Code complexity leads to attack vectors
Code complexity makes the attack
surface larger, with more
opportunities for unanticipated
side effects. Think of complex
code as making the surface area
more porous and open to
infection. Once again, simple,
smaller code is better. Less code
means fewer bugs, fewer
opportunities for a crippling
security hole. Simpler, tighter, less
complex code is easier to reason
about, easier to spot potential
weaknesses.

Input data is an attack vector
Never trust data from an external
entity, always sanitize it before
passing it on to a database, view
rendering, or other processing.[63]
Some languages can help with
this. In Ruby, for example,
variables holding external input
are tainted, which limits what
operations can be performed on
them. For example, this code
apparently uses the wc utility to
report on the number of characters
in a file whose name is supplied at
runtime:

safety/taint.rb

http://media.pragprog.com/titles/tpp20/code/safety/taint.rb

 puts “Enter a file name to count: ”
 name = gets
 system(“wc -c #{name}”)

A nefarious user could do damage
like this:

 Enter a file name to count:
 test.dat; rm -rf /

However, setting the SAFE level
to 1 will taint external data, which
means it can’t be used in
dangerous contexts:

safety/taint.rb

 » $SAFE = 1

 puts “Enter a file name to count: ”
 name = gets
 system(“wc -c #{name}”)

~~~ session $ ruby taint.rb Enter a
file name to count: test.dat; rm -rf
/

http://media.pragprog.com/titles/tpp20/code/safety/taint.rb


code/safety/taint.rb:5:in system’: Insecure operation - system
(SecurityError) from code/safety/taint.rb:5:in main’ ~~~

Unauthenticated services are an attack vector
By their very nature, any user
anywhere in the world can call
unauthenticated services, so
barring any other handling or
limiting you’ve immediately
created an opportunity for a
denial-of-service attack at the very
least. Quite a few of highly public
data breaches recently were
caused by developers accidentally
putting data in unauthenticated,
publicly readable data stores in the
cloud.
Authenticated services are an attack vector
Keep the number of authorized
users at an absolute minimum.
Cull unused, old, or outdated users
and services. Many net-enabled
devices have been found to
contain simple default passwords
or unused, unprotected
administrative accounts. If an
account with deployment
credentials is compromised, your
entire product is compromised.

Output data is an attack vector
There’s a (possibly apocryphal)
story about a system that dutifully
reported the error message Password
is used by another user. Don’t give
away information. Make sure that
the data you report is appropriate
for the authorization of that user.
Truncate or obfuscate potentially
risky information such as Social



Security or other government ID
numbers.

Debugging info is an attack vector
There’s nothing as heartwarming
as seeing a full stack trace with
data on your local ATM machine,
an airport kiosk, or crashing web
page. Information designed to
make debugging easier can make
breaking in easier as well. Make
sure any “test window” (discussed
here) and runtime exception
reporting is protected from spying
eyes.[64]

 

Tip 72    Keep It Simple and Minimize Attack Surfaces  

Principle of Least Privilege

Another key principle is to use the least amount of
privilege for the shortest time you can get away with.
In other words, don’t automatically grab the highest
permission level, such as root or Administrator. If that high
level is needed, take it, do the minimum amount of
work, and relinquish your permission quickly to reduce
the risk. This principle dates back to the early 1970s:

Every program and every privileged user of the system
should operate using the least amount of privilege
necessary to complete the job.— Jerome Saltzer,
Communications of the ACM, 1974.

Take the login program on Unix-derived systems. It
initially executes with root privileges. As soon as it
finishes authenticating the correct user, though, it drops
the high level privilege to that of the user.

This doesn’t just apply to operating system privilege
levels. Does your application implement different



levels of access? Is it a blunt tool, such as
“administrator” vs. “user?” If so, consider something
more finely grained, where your sensitive resources are
partitioned into different categories, and individual
users have permissions for only certain of those
categories.

This technique follows the same sort of idea as
minimizing surface area—reducing the scope of attack
vectors, both by time and by privilege level. In this
case, less is indeed more.
Secure Defaults

The default settings on your app, or for your users on
your site, should be the most secure values. These
might not be the most user-friendly or convenient
values, but it’s better to let each individual decide for
themselves the trade-offs between security and
convenience.

For example, the default for password entry might be to
hide the password as entered, replacing each character
with an asterisk. If you’re entering a password in a
crowded public place, or projected before a large
audience, that’s a sensible default. But some users
might want to see the password spelled out, perhaps for
accessibility. If there’s little risk someone is looking
over their shoulder, that’s a reasonable choice for them.

Encrypt Sensitive Data

Don’t leave personally identifiable information,
financial data, passwords, or other credentials in plain
text, whether in a database or some other external file.
If the data gets exposed, encryption offers an additional
level of safety.

In Topic 19, Version Control we strongly recommend
putting everything needed for the project under version
control. Well, almost everything. Here’s one major
exception to that rule:



Don’t check in secrets, API keys, SSH keys, encryption
passwords or other credentials alongside your source
code in version control.

Keys and secrets need to be managed separately,
generally via config files or environment variables as
part of build and deployment.

Password Antipatterns
One of the fundamental problems with security is that
oftentimes good security runs counter to common sense
or common practice. For example, you might think that
strict password requirements would increase security
for your application or site. You’d be wrong.

Strict password policies will actually lower your
security. Here’s a short list of very bad ideas, along
with some recommendations from the NIST:[65]

 
Do not restrict password
length to less than 64
characters. NIST
recommends 256 as a good
maximum length.

Do not truncate the user’s
chosen password.

Do not restrict special
characters such as []();&%$#
or /. See the note about
Bobby Tables earlier in this
section. If special characters
in your password will
compromise your system, you
have bigger problems. The
NIST says to accept all
printing ASCII characters,
space, and Unicode.

Do not provide password
hints to unauthenticated users,
or prompt for specific types
of information (e.g., “what
was the name of your first
pet?”).



Do not disable the paste
function in the browser.
Crippling the functionality of
the browser and password
managers does not make your
system more secure, in fact it
drives users to create simpler,
shorter passwords that are
much easier to compromise.
Both the NIST in the US and
the National Cyber Security
Centre in the UK specifically
require verifiers to allow
paste functionality for this
reason.

Do not impose other
composition rules. For
example, do not mandate any
particular mix of upper and
lower case, numerics, or
special characters, or prohibit
repeating characters, and so
on.

Do not arbitrarily require
users to change their
passwords after some length
of time. Only do this for a
valid reason (e.g., if there has
been a breach).

You want to encourage long, random passwords with a
high degree of entropy. Putting artificial constraints
limits entropy and encourages bad password habits,
leaving your user’s accounts vulnerable to takeover.

Maintain Security Updates

Updating computer systems can be a huge pain. You
need that security patch, but as a side effect it breaks
some portion of your application. You could decide to
wait, and defer the update until later. That’s a terrible
idea, because now your system is vulnerable to a
known exploit.

 



Tip 73    Apply Security Patches Quickly  

This tip affects every net-connected device, including
phones, cars, appliances, personal laptops, developer
machines, build machines, production servers, and
cloud images. Everything. And if you think that this
doesn’t really matter, just remember that the largest
data breaches in history (so far) were caused by
systems that were behind on their updates.

Don’t let it happen to you.

COMMON SENSE VS. CRYPTO
It’s important to keep in mind that common sense may
fail you when it comes to matters of cryptography. The
first and most important rule when it comes to crypto is
never do it yourself.[66] Even for something as simple
as passwords, common practices are wrongheaded (see
the sidebar Password Antipatterns). Once you get into
the world of crypto, even the tiniest, most insignificant-
looking error can compromise everything: your clever
new, home-made encryption algorithm can probably be
broken by an expert in minutes. You don’t want to do
encryption yourself.

As we’ve said elsewhere, rely only on reliable things:
well-vetted, thoroughly examined, well-maintained,
frequently updated, preferably open source libraries and
frameworks.

Beyond simple encryption tasks, take a hard look at
other security-related features of your site or
application. Take authentication, for instance.

In order to implement your own login with password or
biometric authentication, you need to understand how
hashes and salts work, how crackers use things like
Rainbow tables, why you shouldn’t use MD5 or SHA1,
and a host of other concerns. And even if you get all
that right, at the end of the day you’re still responsible
for holding onto the data and keeping it secure, subject



to whatever new legislation and legal obligations come
up.

Or, you could take the Pragmatic approach and let
someone else worry about it and use a third-party
authentication provider. This may be an off-the-shelf
service you run in-house, or it could be a third party in
the cloud. Authentication services are often available
from email, phone, or social media providers, which
may or may not be appropriate for your application. In
any case, these folks spend all their days keeping their
systems secure, and they’re better at it than you are.

Stay safe out there.

RELATED SECTIONS INCLUDE

 
Topic 23, Design by Contract

Topic 24, Dead Programs Tell No Lies

Topic 25, Assertive Programming

Topic 38, Programming by Coincidence

Topic 45, The Requirements Pit



 

   Topic 44    Naming Things  

  

The beginning of wisdom is to call things by their
proper name.

        Confucius
What’s in a name? When we’re programming, the
answer is “everything!”

We create names for applications, subsystems,
modules, functions, variables—we’re constantly
creating new things and bestowing names on them. And
those names are very, very important, because they
reveal a lot about your intent and belief.

We believe that things should be named according to
the role they play in your code. This means that,
whenever you create something, you need to pause and
think “what is my motivation to create this?”

This is a powerful question, because it takes you out of
the immediate problem-solving mindset and makes you
look at the bigger picture. When you consider the role
of a variable or function, you’re thinking about what is
special about it, about what it can do, and what it
interacts with. Often, we find ourselves realizing that
what we were about to do made no sense, all because
we couldn’t come up with an appropriate name.

There’s some science behind the idea that names are
deeply meaningful. It turns out that the brain can read
and understand words really fast: faster than many
other activities. This means that words have a certain



priority when we try to make sense of something. This
can be demonstrated using the Stroop effect.[67]

Look at the following panel. It has a list of color names
or shades, and each is shown in a color or shade. But
the names and colors don’t necessarily match. Here’s
part one of the challenge—say aloud the name of each
color as written:[68]

Now repeat this, but instead say aloud the color used to
draw the word. Harder, eh? It’s easy to be fluent when
reading, but way harder when trying to recognize
colors.

Your brain treats written words as something to be
respected. We need to make sure the names we use live
up to this.

Let’s look at a couple of examples:

 
We’re authenticating people who
access our site that sells jewelry made
from old graphics cards:

         let user = authenticate(credentials)   

The variable is user because it’s always
user. But why? It means nothing. How



about customer, or buyer? That way we
get constant reminders as we code of
what this person is trying to do, and
what that means to us.

We have an instance method that
discounts an order:

         public void deductPercent(double    amount)
             // …   

Two things here. First, deductPercent is
what it does and not why it does it.
Then the name of the parameter
amount is at best misleading: is it an
absolute amount, a percentage?
Perhaps this would be better:

         public void    applyDiscount(Percentage discount)
           // …   

The method name now makes its intent
clear. We’ve also changed the
parameter from a double to a
Percentage, a type we’ve defined. We
don’t know about you, but when
dealing with percentages we never
know if the value is supposed to be
between 0 and 100 or 0.0 and 1.0.
Using a type documents what the
function expects.

We have a module that does interesting
things with Fibonacci numbers. One of

those things is to calculate the 
number in the sequence. Stop and think
what you’d call this function.
Most people we ask would call it fib.
Seems reasonable, but remember it will
normally be called in the context of its
module, so the call would be Fib.fib(n).
How about calling it of or nth instead:



         Fib.of(0)    # => 0   
         Fib.nth(20)  # => 4181   

When naming things, you’re constantly looking for
ways of clarifying what you mean, and that act of
clarification will lead you to a better understanding of
your code as you write it.

However, not all names have to be candidates for a
literary prize.

The Exception That Proves the Rule
While we strive for clarity in code, branding is a
different matter entirely.

There’s a well-established tradition that projects and
project teams should have obscure, “clever” names.
Names of Pokémon, Marvel superheroes, cute
mammals, Lord of the Rings characters, you name it.

Literally.

HONOR THE CULTURE
Most introductory computer texts will admonish you
never to use single letter variables such as i, j, or k.[69]

We think they’re wrong. Sort of.

In fact, it depends on the culture of that particular
programming language or environment. In the C
programming language, i, j, and k are traditionally used
as loop increment variables, s is used for a character
string, and so on. If you program in that environment,
that’s what you are used to seeing and it would be
jarring (and hence wrong) to violate that norm. On the
other hand, using that convention in a different
environment where it’s not expected is just as wrong.
You’d never do something heinous like this Clojure
example which assigns a string to variable i:



 
 

         (let [i “Hello World”   ]
                 (println i))   

Some language communities prefer camelCase, with
embedded capital letters, while others prefer snake_case
with embedded underscores to separate words. The
languages themselves will of course accept either, but
that doesn’t make it right. Honor the local culture.

Some languages allow a subset of Unicode in names.
Get a sense of what the community expects before
going all cute with names like ɹǝsn or εξέρχεται.

CONSISTENCY
Emerson is famous for writing “A foolish consistency
is the hobgoblin of little minds…,” but Emerson wasn’t
on a team of programmers.

Every project has its own vocabulary: jargon words that
have a special meaning to the team. “Order” means one
thing to a team creating an online store, and something
very different to a team whose app charts the lineage of
religious groups. It’s important that everyone on the
team knows what these words mean, and that they use
them consistently.

One way is to encourage a lot of communication. If
everyone pair programs, and pairs switch frequently,
then jargon will spread osmotically.

Another way is to have a project glossary, listing the
terms that have special meaning to the team. This is an
informal document, possibly maintained on a wiki,
possibly just index cards on a wall somewhere.



After a while, the project jargon will take on a life of its
own. As everyone gets comfortable with the
vocabulary, you’ll be able to use the jargon as a
shorthand, expressing a lot of meaning accurately and
concisely. (This is exactly what a pattern language is.)

RENAMING IS EVEN HARDER
No matter how much effort you put in up front, things
change. Code is refactored, usage shifts, meaning
becomes subtly altered. If you aren’t vigilant about
updating names as you go, you can quickly descend
into a nightmare much worse than meaningless names:
misleading names. Have you ever had someone explain
inconsistencies in code such as, “The routine called
getData really writes data to an archive file”?

As we discuss in Topic 3, Software Entropy, when you
spot a problem, fix it—right here and now. When you
see a name that no longer expresses the intent, or is
misleading or confusing, fix it. You’ve got full
regression tests, so you’ll spot any instances you may
have missed.

 

Tip 74    Name Well; Rename When Needed  

If for some reason you can’t change the now-wrong
name, then you’ve got a bigger problem: an ETC
violation (see Topic 8, The Essence of Good Design).
Fix that first, then change the offending name. Make
renaming easy, and do it often.

Otherwise you’ll have to explain to the new folks on
the team that getData really writes data to a file, and
you’ll have to do it with a straight face.

RELATED SECTIONS INCLUDE

 



Topic 3, Software Entropy

Topic 40, Refactoring

Topic 45, The Requirements Pit

CHALLENGES

 
When you find a function or method
with an overly generic name, try and
rename it to express all the things it
really does. Now it’s an easier target
for refactoring.

In our examples, we suggested using
more specific names such as buyer
instead of the more traditional and
generic user. What other names do you
habitually use that could be better?

Are the names in your system
congruent with user terms from the
domain? If not, why? Does this cause a
Stroop-effect style cognitive
dissonance for the team?

Are names in your system hard to
change? What can you do to fix that
particular broken window?

Footnotes

[50]
Note from the battle-scarred: UTC is
there for a reason. Use it.

[51]
https://en.wikipedia.org/wiki/Correl
ation_does_not_imply_causation

[52]
See Topic 50, Coconuts Don’t Cut It.

[53]
You can also go too far here. We
once knew a developer who rewrote
all source he was given because he
had his own naming conventions.

https://en.wikipedia.org/wiki/Correlation_does_not_imply_causation


[54]
https://media-
origin.pragprog.com/titles/tpp20/cod
e/algorithm_speed/sort/src/main.rs

[55]
And yes, we did voice our concerns
over the title.

[56]
Originally spotted in UML Distilled:
A Brief Guide to the Standard
Object Modeling Language
[Fow00].

[57]
This is excellent advice in general
(see Topic 27, Don’t Outrun Your
Headlights).

[58]
Some folks argue that test-first and
test-driven development are two
different things, saying that the
intents of the two are different.
However, historically, test-first
(which comes from eXtreme
Programming) was identical to what
people now call TDD.

[59]
https://ronjeffries.com/categories/su
doku. A big “thank you” to Ron for
letting us use this story.

[60]
http://norvig.com/sudoku.html

[61]
We’ve been trying since at least
1986, when Cox and Novobilski
coined the term “software IC” in
their Objective-C book Object-
Oriented Programming Object-
Oriented Programming: An
Evolutionary Approach [CN91].

[62]
See Topic 20, Debugging.

[63]
Remember our good friend, little
Bobby Tables
(https://xkcd.com/327)? While
you’re reminiscing have a look at
https://bobby-tables.com, which lists
ways of sanitizing data passed to
database queries.

https://media-origin.pragprog.com/titles/tpp20/code/algorithm_speed/sort/src/main.rs
https://ronjeffries.com/categories/sudoku
http://norvig.com/sudoku.html
https://xkcd.com/327
https://bobby-tables.com/


[64]
This technique has proven to be
successful at the CPU chip level,
where well-known exploits target
debugging and administrative
facilities. Once cracked, the entire
machine is left exposed.

[65]
NIST Special Publication 800-63B:
Digital Identity Guidelines:
Authentication and Lifecycle
Management, available free online
at
https://doi.org/10.6028/NIST.SP.800
-63b

[66]
Unless you have a PhD in
cryptography, and even then only
with major peer review, extensive
field trials with a bug bounty, and
budget for long-term maintenance.

[67]
Studies of Interference in Serial
Verbal Reactions [Str35]

[68]
We have two versions of this panel.
One uses different colors, and the
other uses shades of gray. If you’re
seeing this in black and white and
want the color version, or if you’re
having trouble distinguishing colors
and want to try the grayscale
version, pop over to
https://pragprog.com/the-pragmatic-
programmer/stroop-effect.

[69]
Do you know why i is commonly
used as a loop variable? The answer
comes from over 60 years ago, when
variables starting with I through N
were integers in the original
FORTRAN. And FORTRAN was in
turn influenced by algebra.

Copyright © 2020 Pearson Education, Inc.

https://doi.org/10.6028/NIST.SP.800-63b
https://pragprog.com/the-pragmatic-programmer/stroop-effect


Chapter 8

 
Before the Project

At the very beginning of a project, you and the team
need to learn the requirements. Simply being told what
to do or listening to users is not enough: read Topic 45,
The Requirements Pit and learn how to avoid the
common traps and pitfalls.

Conventional wisdom and constraint management are
the topics of Topic 46, Solving Impossible Puzzles.
Whether you are performing requirements, analysis,
coding, or testing, difficult problems will crop up. Most
of the time, they won’t be as difficult as they first
appear to be.

And when that impossible project comes up, we like to
turn to our secret weapon: Topic 47, Working Together.
And by “working together” we don’t mean sharing a
massive requirements document, flinging heavily cc’d
emails or enduring endless meetings. We mean solving
problems together while coding. We’ll show you who
you need and how to start.

Even though the Agile Manifesto begins with
“Individuals and interactions over processes and tools,”
virtually all “agile” projects begin with an ironic
discussion of which process and which tools they’ll
use. But no matter how well thought out it is, and
regardless of which “best practices” it includes, no
method can replace thinking. You don’t need any
particular process or tool, what you do need is the
Topic 48, The Essence of Agility.



With these critical issues sorted out before the project
gets under way, you can be better positioned to avoid
“analysis paralysis” and actually begin—and complete
—your successful project.



 

   Topic 45    The Requirements Pit  

  

Perfection is achieved, not when there is nothing left to
add
but when there is nothing left to take away…

        Antoine de St. Exupery, Wind, Sand, and Stars, 1939
Many books and tutorials refer to requirements
gathering as an early phase of the project. The word
“gathering” seems to imply a tribe of happy analysts,
foraging for nuggets of wisdom that are lying on the
ground all around them while the Pastoral Symphony
plays gently in the background. “Gathering” implies
that the requirements are already there—you need
merely find them, place them in your basket, and be
merrily on your way.

It doesn’t quite work that way. Requirements rarely lie
on the surface. Normally, they’re buried deep beneath
layers of assumptions, misconceptions, and politics.
Even worse, often they don’t really exist at all.

 

Tip 75    No One Knows Exactly What They Want  

THE REQUIREMENTS MYTH
In the early days of software, computers were more
valuable (in terms of amortized cost per hour) than the
people who worked with them. We saved money by
trying to get things correct the first time. Part of that
process was trying to specify exactly what we were
going to get the machine to do. We’d start by getting a



specification of the requirements, parlay that into a
design document, then into flowcharts and pseudo
code, and finally into code. Before feeding it into a
computer, though, we’d spend time desk checking it.

It cost a lot of money. And that cost meant that people
only tried to automate something when they knew
exactly what they wanted. As early machines were
fairly limited, the scope of problems they solved was
constrained: it was actually possible to understand the
whole problem before you started.

But that is not the real world. The real world is messy,
conflicted, and unknown. In that world, exact
specifications of anything are rare, if not downright
impossible.

That’s where we programmers come in. Our job is to
help people understand what they want. In fact, that’s
probably our most valuable attribute. And it’s worth
repeating:

 

Tip 76    Programmers Help People Understand What They Want  

PROGRAMMING AS THERAPY
Let’s call the people who ask us to write software our
clients.

The typical client comes to us with a need. The need
may be strategic, but it is just as likely to be a tactical
issue: a response to a current problem. The need may
be for a change to an existing system or it may ask for
something new. The need will sometimes be expressed
in business terms, and sometimes in technical ones.

The mistake new developers often make is to take this
statement of need and implement a solution for it.



In our experience, this initial statement of need is not
an absolute requirement. The client may not realize
this, but it is really an invitation to explore.

Let’s take a simple example.

You work for a publisher of paper and electronic books.
You’re given a new requirement:

Shipping should be free on all orders costing $50 or
more.

Stop for a second and imagine yourself in that position.
What’s the first thing that comes to mind?

The chances are very good that you had questions:

 
Does the $50 include tax?

Does the $50 include current shipping charges?

Does the $50 have to be for paper books, or can the order also include

ebooks?

What kind of shipping is offered? Priority? Ground?

What about international orders?

How often will the $50 limit change in the future?

That’s what we do. When given something that seems
simple, we annoy people by looking for edge cases and
asking about them.

The chances are the client will have already thought of
some of these, and just assumed that the
implementation would work that way. Asking the
question just flushes that information out.

But other questions will likely be things that the client
hadn’t previously considered. That’s where things get



interesting, and where a good developer learns to be
diplomatic.

You:
We were wondering about the $50
total. Does that include what we’d
normally charge for shipping?
Client:
Of course. It’s the total they’d pay
us.

You:
That’s nice and simple for our
customers to understand: I can see
the attraction. But I can see some
less scrupulous customers trying
to game that system.

Client:
How so?
You:
Well, let’s say they buy a book for
$25, and then select overnight
shipping, the most expensive
option. That’ll likely be about
$30, making the whole order $55.
We’d then make the shipping free,
and they’d get overnight shipping
on a $25 book for just $25.

(At this point the experienced
developer stops. Deliver facts, and
let the client make the decisions,)

Client:
Ouch. That certainly wasn’t what I
intended; we’d lose money on
those orders. What are the
options?

And this starts an exploration. Your role in this is to
interpret what the client says and to feed back to them



the implications. This is both an intellectual process
and a creative one: you’re thinking on your feet and
you’re contributing to a solution that is likely to be
better than one that either you or the client would have
produced alone.

REQUIREMENTS ARE A PROCESS
In the previous example, the developer took the
requirements and fed-back a consequence to the client.
This initiated the exploration. During that exploration,
you are likely to come up with more feedback as the
client plays with different solutions. This is the reality
of all requirements gathering:

 

Tip 77    Requirements Are Learned in a Feedback Loop  

Your job is to help the client understand the
consequences of their stated requirements. You do that
by generating feedback, and letting them use that
feedback to refine their thinking.

In the previous example, the feedback was easy to
express in words. Sometimes that’s not the case. And
sometimes you honestly won’t know enough about the
domain to be as specific as that.

In those cases, Pragmatic Programmers rely on the “is
this what you meant?” school of feedback. We produce
mockups and prototypes, and let the client play with
them. Ideally the things we produce are flexible enough
that we can change them during our discussions with
the client, letting us respond to “that isn’t what I
meant” with “so more like this?”

Sometimes these mockups can be thrown together in an
hour or so. They are obviously just hacks to get an idea
across.



But the reality is that all of the work we do is actually
some form of mockup. Even at the end of a project
we’re still interpreting what our client wants. In fact, by
that point we’re likely to have more clients: the QA
people, operations, marketing, and maybe even test
groups of customers.

So the Pragmatic Programmer looks at all of the project
as a requirements gathering exercise. That’s why we
prefer short iterations; ones that end with direct client
feedback. This keeps us on track, and makes sure that if
we do go in the wrong direction, the amount of time
lost is minimized.

WALK IN YOUR CLIENT’S SHOES
There’s a simple technique for getting inside your
clients’ heads that isn’t used often enough: become a
client. Are you writing a system for the help desk?
Spend a couple of days monitoring the phones with an
experienced support person. Are you automating a
manual stock control system? Work in the warehouse
for a week.[70]

As well as giving you insight into how the system will
really be used, you’d be amazed at how the request
“May I sit in for a week while you do your job?’’ helps
build trust and establishes a basis for communication
with your clients. Just remember not to get in the way!

 

Tip 78    Work with a User to Think Like a User  

Gathering feedback is also the time to start to build a
rapport with your client base, learning their
expectations and hopes for the system you are building.
See Topic 52, Delight Your Users, for more.

REQUIREMENTS VS. POLICY



Let’s imagine that while discussing a Human Resources
system, a client says “Only an employee’s supervisors
and the personnel department may view that
employee’s records.” Is this statement truly a
requirement? Perhaps today, but it embeds business
policy in an absolute statement.

Business policy? Requirement? It’s a relatively subtle
distinction, but it’s one that will have profound
implications for the developers. If the requirement is
stated as “Only supervisors and personnel can view an
employee record,” the developer may end up coding an
explicit test every time the application accesses this
data. However, if the statement is “Only authorized
users may access an employee record,” the developer
will probably design and implement some kind of
access control system. When policy changes (and it
will), only the metadata for that system will need to be
updated. In fact, gathering requirements in this way
naturally leads you to a system that is well factored to
support metadata.

In fact, there’s a general rule here:

 

Tip 79    Policy Is Metadata  

Implement the general case, with the policy
information as an example of the type of thing the
system needs to support.

REQUIREMENTS VS. REALITY
In a January 1999 Wired magazine article,[71] producer
and musician Brian Eno described an incredible piece
of technology—the ultimate mixing board. It does
anything to sound that can be done. And yet, instead of
letting musicians make better music, or produce a
recording faster or less expensively, it gets in the way;
it disrupts the creative process.



To see why, you have to look at how recording
engineers work. They balance sounds intuitively. Over
the years, they develop an innate feedback loop
between their ears and their fingertips—sliding faders,
rotating knobs, and so on. However, the interface to the
new mixer didn’t leverage off those abilities. Instead, it
forced its users to type on a keyboard or click a mouse.
The functions it provided were comprehensive, but they
were packaged in unfamiliar and exotic ways. The
functions the engineers needed were sometimes hidden
behind obscure names, or were achieved with
nonintuitive combinations of basic facilities.

This example also illustrates our belief that successful
tools adapt to the hands that use them. Successful
requirements gathering takes this into account. And this
is why early feedback, with prototypes or tracer bullets,
will let your clients say “yes, it does what I want, but
not how I want.”

DOCUMENTING REQUIREMENTS
We believe that the best requirements documentation,
perhaps the only requirements documentation, is
working code.

But that doesn’t mean that you can get away without
documenting your understanding of what the client
wants. It just means that those documents are not a
deliverable: they are not something that you give to a
client to sign off on. Instead, they are simply mileposts
to help guide the implementation process.

Requirements Documents Are Not for Clients

In the past, both Andy and Dave have been on projects
that produced incredibly detailed requirements. These
substantial documents expanded on the client’s initial
two-minute explanation of what was wanted, producing
inch-thick masterpieces full of diagrams and tables.
Things were specified to the point where there was
almost no room for ambiguity in the implementation.



Given sufficiently powerful tools, the document could
actually be the final program.

Creating these documents was a mistake for two
reasons. First, as we’ve discussed, the client doesn’t
really know what they want up front. So when we take
what they say and expand it into what is almost a legal
document, we are building an incredibly complex castle
on quicksand.

You might say “but then we take the document to the
client and they sign off on it. We’re getting feedback.”
And that leads us to the second problem with these
requirement specifications: the client never reads them.

The client uses programmers because, while the client
is motivated by solving a high-level and somewhat
nebulous problem, programmers are interested in all the
details and nuances. The requirements document is
written for developers, and contains information and
subtleties that are sometimes incomprehensible and
frequently boring to the client.

Submit a 200-page requirements document, and the
client will likely heft it to decide if it weighs enough to
be important, they may read the first couple of
paragraphs (which is why the first two paragraphs are
always titled Management Summary), and they may
flick through the rest, sometimes stopping when there’s
a neat diagram.

This isn’t putting the client down. But giving them a
large technical document is like giving the average
developer a copy of the Iliad in Homeric Greek and
asking them to code the video game from it.

Requirements Documents Are for Planning

So we don’t believe in the monolithic, heavy-enough-
to-stun-an-ox, requirements document. We do,
however, know that requirements have to be written
down, simply because developers on a team need to
know what they’ll be doing.



What form does this take? We favor something that can
fit on a real (or virtual) index card. These short
descriptions are often called user stories. They describe
what a small portion of the application should do from
the perspective of a user of that functionality.

When written this way, the requirements can be placed
on a board and moved around to show both status and
priority.

You might think that a single index card can’t hold the
information needed to implement a component of the
application. You’d be right. And that’s part of the point.
By keeping this statement of requirements short, you’re
encouraging developers to ask clarifying questions.
You’re enhancing the feedback process between clients
and coders before and during the creation of each piece
of code.

OVERSPECIFICATION
Another big danger in producing a requirements
document is being too specific. Good requirements are
abstract. Where requirements are concerned, the
simplest statement that accurately reflects the business
need is best. This doesn’t mean you can be vague—you
must capture the underlying semantic invariants as
requirements, and document the specific or current
work practices as policy.

Requirements are not architecture. Requirements are
not design, nor are they the user interface.
Requirements are need.

JUST ONE MORE WAFER-THIN MINT…
Many project failures are blamed on an increase in
scope—also known as feature bloat, creeping
featurism, or requirements creep. This is an aspect of
the boiled-frog syndrome from Topic 4, Stone Soup and
Boiled Frogs. What can we do to prevent requirements
from creeping up on us?



The answer (again) is feedback. If you’re working with
the client in iterations with constant feedback, then the
client will experience first-hand the impact of “just one
more feature.” They’ll see another story card go up on
the board, and they’ll get to help choose another card to
move into the next iteration to make room. Feedback
works both ways.

MAINTAIN A GLOSSARY
As soon as you start discussing requirements, users and
domain experts will use certain terms that have specific
meaning to them. They may differentiate between a
“client” and a “customer,” for example. It would then
be inappropriate to use either word casually in the
system.

Create and maintain a project glossary—one place that
defines all the specific terms and vocabulary used in a
project. All participants in the project, from end users
to support staff, should use the glossary to ensure
consistency. This implies that the glossary needs to be
widely accessible—a good argument for online
documentation.

 

Tip 80    Use a Project Glossary  

It’s hard to succeed on a project if users and developers
call the same thing by different names or, even worse,
refer to different things by the same name.

RELATED SECTIONS INCLUDE

 
Topic 5, Good-Enough Software

Topic 7, Communicate!

Topic 11, Reversibility



Topic 13, Prototypes and Post-it Notes

Topic 23, Design by Contract

Topic 43, Stay Safe Out There

Topic 44, Naming Things

Topic 46, Solving Impossible Puzzles

Topic 52, Delight Your Users

EXERCISES
Exercise 33 (possible answer)

Which of the following are probably genuine
requirements? Restate those that are not to make them
more useful (if possible).

 
1. The response time must be less than ~500ms.

2. Modal windows will have a gray background.

3. The application will be organized as a number of front-end processes and a

back-end server.

4. If a user enters non-numeric characters in a numeric field, the system will

flash the field background and not accept them.

5. The code and data for this embedded application must fit within 32Mb.

CHALLENGES

 
Can you use the software you are
writing? Is it possible to have a good
feel for requirements without being
able to use the software yourself?

Pick a non-computer-related problem
you currently need to solve. Generate



requirements for a noncomputer
solution.



 

   Topic 46    Solving Impossible Puzzles  

  

Gordius, the King of Phrygia, once tied a knot that no
one could untie. It was said that whoever solved the
riddle of the Gordian Knot would rule all of Asia. So
along comes Alexander the Great, who chops the knot
to bits with his sword. Just a little different
interpretation of the requirements, that’s all…. And he
did end up ruling most of Asia.

        
Every now and again, you will find yourself embroiled
in the middle of a project when a really tough puzzle
comes up: some piece of engineering that you just can’t
get a handle on, or perhaps some bit of code that is
turning out to be much harder to write than you
thought. Maybe it looks impossible. But is it really as
hard as it seems?

Consider real-world puzzles—those devious little bits
of wood, wrought iron, or plastic that seem to turn up
as Christmas presents or at garage sales. All you have
to do is remove the ring, or fit the T-shaped pieces in
the box, or whatever.

So you pull on the ring, or try to put the Ts in the box,
and quickly discover that the obvious solutions just
don’t work. The puzzle can’t be solved that way. But
even though it’s obvious, that doesn’t stop people from
trying the same thing—over and over—thinking there
must be a way.

Of course, there isn’t. The solution lies elsewhere. The
secret to solving the puzzle is to identify the real (not



imagined) constraints, and find a solution therein. Some
constraints are absolute; others are merely
preconceived notions. Absolute constraints must be
honored, however distasteful or stupid they may appear
to be.

On the other hand, as Alexander proved, some apparent
constraints may not be real constraints at all. Many
software problems can be just as sneaky.

DEGREES OF FREEDOM
The popular buzz-phrase “thinking outside the box”
encourages us to recognize constraints that might not
be applicable and to ignore them. But this phrase isn’t
entirely accurate. If the “box” is the boundary of
constraints and conditions, then the trick is to find the
box, which may be considerably larger than you think.

The key to solving puzzles is both to recognize the
constraints placed on you and to recognize the degrees
of freedom you do have, for in those you’ll find your
solution. This is why some puzzles are so effective; you
may dismiss potential solutions too readily.

For example, can you connect all of the dots in the
following puzzle and return to the starting point with
just three straight lines—without lifting your pen from
the paper or retracing your steps (Math Puzzles &
Games [Hol92])?

You must challenge any preconceived notions and
evaluate whether or not they are real, hard-and-fast
constraints.



It’s not whether you think inside the box or outside the
box. The problem lies in finding the box—identifying
the real constraints.

 

Tip 81    Don’t Think Outside the Box—Find   the Box

When faced with an intractable problem, enumerate all
the possible avenues you have before you. Don’t
dismiss anything, no matter how unusable or stupid it
sounds. Now go through the list and explain why a
certain path cannot be taken. Are you sure? Can you
prove it?

Consider the Trojan horse—a novel solution to an
intractable problem. How do you get troops into a
walled city without being discovered? You can bet that
“through the front door” was initially dismissed as
suicide.

Categorize and prioritize your constraints. When
woodworkers begin a project, they cut the longest
pieces first, then cut the smaller pieces out of the
remaining wood. In the same manner, we want to
identify the most restrictive constraints first, and fit the
remaining constraints within them.

By the way, a solution to the Four Posts puzzle is
shown at the end of the book.

GET OUT OF YOUR OWN WAY!
Sometimes you will find yourself working on a
problem that seems much harder than you thought it
should be. Maybe it feels like you’re going down the
wrong path—that there must be an easier way than this!
Perhaps you are running late on the schedule now, or
even despair of ever getting the system to work because
this particular problem is “impossible.”



This is an ideal time to do something else for a while.
Work on something different. Go walk the dog. Sleep
on it.

Your conscious brain is aware of the problem, but your
conscious brain is really pretty dumb (no offense). So
it’s time to give your real brain, that amazing
associative neural net that lurks below your
consciousness, some space. You’ll be amazed how
often the answer will just pop into your head when you
deliberately distract yourself.

If that sounds too mystical for you, it isn’t. Psychology
Today[72] reports:

To put it plainly—people who were distracted did better
on a complex problem-solving task than people who
put in conscious effort.

If you’re still not willing to drop the problem for a
while, the next best thing is probably finding someone
to explain it to. Often, the distraction of simply talking
about it will lead you to enlightenment.

Have them ask you questions such as:

 
Why are you solving this problem?

What’s the benefit of solving it?

Are the problems you’re having related
to edge cases? Can you eliminate
them?

Is there a simpler, related problem you
can solve?

This is another example of Rubber Ducking in practice.

FORTUNE FAVORS THE PREPARED MIND
Louis Pasteur is reported to have said:



Dans les champs de l’observation le hasard ne favorise
que les esprits préparés.
(When it comes to observation, fortune favors the
prepared mind.)

That is true for problem solving, too. In order to have
those eureka! moments, your nonconscious brain needs
to have plenty of raw material; prior experiences that
can contribute to an answer.

A great way to feed your brain is to give it feedback on
what works and what doesn’t work as you do your daily
job. And we describe a great way to do that using an
Engineering Daybook (Topic 22, Engineering
Daybooks).

And always remember the advice on the cover of The
Hitchhiker’s Guide to the Galaxy: DON’T PANIC.

RELATED SECTIONS INCLUDE

 
Topic 5, Good-Enough Software

Topic 37, Listen to Your Lizard Brain

Topic 45, The Requirements Pit

Andy wrote an entire book about this kind of thing: Pragmatic Thinking and

Learning: Refactor Your Wetware [Hun08].

CHALLENGES

 
Take a hard look at whatever difficult
problem you are embroiled in today.
Can you cut the Gordian knot? Do you
have to do it this way? Do you have to
do it at all?

Were you handed a set of constraints
when you signed on to your current



project? Are they all still applicable,
and is the interpretation of them still
valid?



 

   Topic 47    Working Together  

  

I’ve never met a human being who would want to read
17,000 pages of documentation, and if there was, I’d
kill him to get him out of the gene pool.

        Joseph Costello, President of Cadence
It was one of those “impossible” projects, the kind you
hear about that sounds both exhilarating and terrifying
at the same time. An ancient system was approaching
end-of-life, the hardware was physically going away,
and a brand-new system had to be crafted that would
match the (often undocumented) behavior exactly.
Many hundreds of millions of dollars of other people’s
money would pass through this system, and the
deadline from inception to deployment was on the
order of months.

And that is where Andy and Dave first met. An
impossible project with a ridiculous deadline. There
was only one thing that made the project a roaring
success. The expert who had managed this system for
years was sitting right there in her office, just across the
hall from our broom closet–sized development room.
Continuously available for questions, clarifications,
decisions, and demos.

Throughout this book we recommend working closely
with users; they are part of your team. On that first
project together, we practiced what now might be called
pair programming or mob programming: one person
typing code while one or more other team members
comment, ponder, and solve problems together. It’s a
powerful way of working together that transcends



endless meetings, memos, and overstuffed legalistic
documentation prized for weight over usefulness.

And that’s what we really mean by “working with”: not
just asking questions, having discussions, and taking
notes, but asking questions and having discussions
while you’re actually coding.

Conway’s Law
In 1967, Melvin Conway introduced an idea in How do
Committees Invent? [Con68] which would become
known as Conway’s Law:

Organizations which design systems are constrained to
produce designs which are copies of the
communication structures of these organizations.

That is, the social structures and communication
pathways of the team and the organization will be
mirrored in the application, website, or product being
developed. Various studies have shown strong support
for this idea. We’ve witnessed it first-hand countless
times—for example, in teams where no one talks to
each other at all, resulting in siloed, “stove-pipe”
systems. Or teams that were split into two, resulting in
a client/server or frontend/backend division.

Studies also offer support for the reverse principle: you
can deliberately structure your team the way you want
your code to look. For example, geographically
distributed teams are shown to tend toward more
modular, distributed software.

But most importantly, development teams that include
users will produce software that clearly reflects that
involvement, and teams that don’t bother will reflect
that, too.

PAIR PROGRAMMING
Pair programming is one of the practices of eXtreme
Programming that has become popular outside of XP
itself. In pair programming, one developer operates the
keyboard, and the other does not. Both work on the
problem together, and can switch typing duties as
needed.



There are many benefits to pair programming. Different
people bring different backgrounds and experience,
different problem-solving techniques and approaches,
and differing levels of focus and attention to any given
problem. The developer acting as typist must focus on
the low-level details of syntax and coding style, while
the other developer is free to consider higher-level
issues and scope. While that might sound like a small
distinction, remember that we humans have only so
much brain bandwidth. Fiddling around with typing
esoteric words and symbols that the compiler will
grudgingly accept takes a fair bit of our own processing
power. Having a second developer’s full brain available
during the task brings a lot more mental power to bear.

The inherent peer-pressure of a second person helps
against moments of weakness and bad habits of naming
variables foo and such. You’re less inclined to take a
potentially embarrassing shortcut when someone is
actively watching, which also results in higher-quality
software.

MOB PROGRAMMING
And if two heads are better than one, what about having
a dozen diverse people all working on the same
problem at the same time, with one typist?

Mob programming, despite the name, does not involve
torches or pitchforks. It’s an extension of pair
programming that involves more than just two
developers. Proponents report great results using mobs
to solve hard problems. Mobs can easily include people
not usually considered part of the development team,
including users, project sponsors, and testers. In fact, in
our first “impossible” project together, it was a
common sight for one of us to be typing while the other
discussed the issue with our business expert. It was a
small mob of three.

You might think of mob programming as tight
collaboration with live coding.



WHAT SHOULD I DO?
If you’re currently only programming solo, maybe try
pair programming. Give it a minimum of two weeks,
only a few hours at a time, as it will feel strange at first.
To brainstorm new ideas or diagnose thorny issues,
perhaps try a mob programming session.

If you are already pairing or mobbing, who’s included?
Is it just developers, or do you allow members of your
extended team to participate: users, testers, sponsors…?

And as with all collaboration, you need to manage the
human aspects of it as well as the technical. Here are
just a few tips to get started:

 
Build the code, not your ego. It’s not about who’s brightest; we all have our

moments, good and bad.

Start small. Mob with only 4-5 people, or start with just a few pairs, in short

sessions.

Criticize the code, not the person. “Let’s look at this block” sounds much

better than “you’re wrong.”

Listen and try to understand others’ viewpoints. Different isn’t wrong.

Conduct frequent retrospectives to try and improve for next time.

Coding in the same office or remote, alone, in pairs, or
in mobs, are all effective ways of working together to
solve problems. If you and your team have only ever
done it one way, you might want to experiment with a
different style. But don’t just jump in with a naive
approach: there are rules, suggestions, and guidelines
for each of these development styles. For instance, with
mob programming you swap out the typist every 5-10
minutes.



Do some reading and research, from both textbook and
experience reports, and get a feel for the advantages
and pitfalls you may encounter. You might want to start
by coding a simple exercise, and not just jump straight
into your toughest production code.

But however you go about it, let us suggest one final
piece of advice:

 

Tip 82    Don’t Go into the Code Alone  



 

   Topic 48    The Essence of Agility  

  

You keep using that word, I do not think it means
what you think it means.

        Inigo Montoya, The Princess Bride
Agile is an adjective: it’s how you do something. You
can be an agile developer. You can be on a team that
adopts agile practices, a team that responds to change
and setbacks with agility. Agility is your style, not you.

 

Tip 83    Agile Is Not a Noun; Agile Is How You Do Things  

As we write this, almost 20 years after the inception of
the Manifesto for Agile Software Development,[73] we
see many, many developers successfully applying its
values. We see many fantastic teams who find ways to
take these values and use them to guide what they do,
and how they change what they do.

But we also see another side of agility. We see teams
and companies eager for off-the-shelf solutions: Agile-
in-a-Box. And we see many consultants and companies
all too happy to sell them what they want. We see
companies adopting more layers of management, more
formal reporting, more specialized developers, and
more fancy job titles which just mean “someone with a
clipboard and a stopwatch.”[74]

We feel that many people have lost sight of the true
meaning of agility, and we’d like to see folks return to



the basics.

Remember the values from the manifesto:

We are uncovering better ways of developing software
by doing it and helping others do it. Through this work
we have come to value:

 
Individuals and interactions over
processes and tools

Working software over
comprehensive documentation

Customer collaboration over contract
negotiation

Responding to change over following
a plan

That is, while there is value in the items on the right,
we value the items on the left more.

Anyone selling you something that increases the
importance on things on the right over things on the left
clearly doesn’t value the same things that we and the
other manifesto writers did.

And anyone selling you a solution-in-a-box hasn’t read
the introductory statement. The values are motivated
and informed by the continuous act of uncovering
better ways to produce software. This is not a static
document. It’s suggestions for a generative process.

THERE CAN NEVER BE AN AGILE PROCESS
In fact, whenever someone says “do this, and you’ll be
agile,” they are wrong. By definition.

Because agility, both in the physical world and in
software development, is all about responding to
change, responding to the unknowns you encounter
after you set out. A running gazelle doesn’t go in a



straight line. A gymnast makes hundreds of corrections
a second as they respond to changes in their
environment and minor errors in their foot placement.

So it is with teams and individual developers. There is
no single plan you can follow when you develop
software. Three of the four values tell you that. They’re
all about gathering and responding to feedback.

The values don’t tell you what to do. They tell you
what to look for when you decide for yourself what to
do.

These decisions are always contextual: they depend on
who you are, the nature of your team, your application,
your tooling, your company, your customer, the outside
world; an incredibly large number of factors, some
major and some trivial. No fixed, static plan can
survive this uncertainty.

SO WHAT DO WE DO?
No one can tell you what to do. But we think we can
tell you something about the spirit with which you do
it. It all boils down to how you deal with uncertainty.
The manifesto suggests that you do this by gathering
and acting on feedback. So here’s our recipe for
working in an agile way:

 

  
   

  
1. Work out where you are.  

  
   



  
2. Make the smallest meaningful step towards where you want to be.  

  
   

  
3. Evaluate where you end up, and fix anything you broke.  

  
   

Repeat these steps until you’re done. And use them
recursively, at every level of everything you do.

Sometimes even the most trivial-seeming decision
becomes important when you gather feedback.

“Now my code needs to get the account owner.

 
 

         let    user = accountOwner(accountID);

Hmmm… user is a useless name. I’ll make it owner.

 
 

         let    owner = accountOwner(accountID);

But now that feels a little redundant. What am I
actually trying to do here? The story says that I’m



sending this person an email, so I need to find their
email address. Maybe I don’t need the whole account
owner at all.

 
 

         let    email = emailOfAccountOwner(accountID);

By applying the feedback loop at a really low level (the
naming of a variable) we’ve actually improved the
design of the overall system, reducing the coupling
between this code and the code that deals with
accounts.

The feedback loop also applies at the highest level of a
project. Some of our most successful work has
happened when we started working on a client’s
requirements, took a single step, and realized that what
we were about to do wasn’t necessary, that the best
solution didn’t even involve software.

This loop applies outside the scope of a single project.
Teams should apply it to review their process and how
well it worked. A team that doesn’t continuously
experiment with their process is not an agile team.

AND THIS DRIVES DESIGN
In Topic 8, The Essence of Good Design we assert that
the measure of design is how easy the result of that
design is to change: a good design produces something
that’s easier to change than a bad design.

And this discussion about agility explains why that’s
the case.

You make a change, and discover you don’t like it. Step
3 in our list says we have to be able to fix what we
break. To make our feedback loop efficient, this fix has
to be as painless as possible. If it isn’t, we’ll be tempted



to shrug it off and leave it unfixed. We talk about this
effect in Topic 3, Software Entropy. To make this whole
agile thing work, we need to practice good design,
because good design makes things easy to change. And
if it’s easy to change, we can adjust, at every level,
without any hesitation.

That is agility.

RELATED SECTIONS INCLUDE

 
Topic 27, Don’t Outrun Your Headlights

Topic 40, Refactoring

Topic 50, Coconuts Don’t Cut It

CHALLENGES
The simple feedback loop isn’t just for software. Think
of other decisions you’ve made recently. Could any of
them have been improved by thinking about how you
might be able to undo them if things didn’t take you in
the direction you were going? Can you think of ways
you can improve what you do by gathering and acting
on feedback?

Footnotes

[70]
Does a week sound like a long time?
It really isn’t, particularly when
you’re looking at processes in which
management and workers occupy
different worlds. Management will
give you one view of how things
operate, but when you get down on
the floor, you’ll find a very different
reality—one that will take time to
assimilate.

[71]
https://www.wired.com/1999/01/eno
/

[72]

https://www.wired.com/1999/01/eno/


https://www.psychologytoday.com/u
s/blog/your-brain-
work/201209/stop-trying-solve-
problems

[73]
https://agilemanifesto.org

[74]
For more on just how bad that
approach can be, see The Tyranny of
Metrics [Mul18].

Copyright © 2020 Pearson Education, Inc.

https://www.psychologytoday.com/us/blog/your-brain-work/201209/stop-trying-solve-problems
https://agilemanifesto.org/


Chapter 9

 
Pragmatic Projects

As your project gets under way, we need to move away
from issues of individual philosophy and coding to talk
about larger, project-sized issues. We aren’t going to go
into specifics of project management, but we will talk
about a handful of critical areas that can make or break
any project.

As soon as you have more than one person working on
a project, you need to establish some ground rules and
delegate parts of the project accordingly. In Topic 49,
Pragmatic Teams, we’ll show how to do this while
honoring the Pragmatic philosophy.

The purpose of a software development method is to
help people work together. Are you and your team
doing what works well for you, or are you only
investing in the trivial surface artifacts, and not getting
the real benefits you deserve? We’ll see why Topic 50,
Coconuts Don’t Cut It and offer the true secret to
success.

And of course none of that matters if you can’t deliver
software consistently and reliably. That’s the basis of
the magic trio of version control, testing, and
automation: the Topic 51, Pragmatic Starter Kit.

Ultimately, though, success is in the eye of the beholder
—the sponsor of the project. The perception of success
is what counts, and in Topic 52, Delight Your Users
we’ll show you how to delight every project’s sponsor.



The last tip in the book is a direct consequence of all
the rest. In Topic 53, Pride and Prejudice, we ask you
to sign your work, and to take pride in what you do.



 

   Topic 49    Pragmatic Teams  

  

At Group L, Stoffel oversees six first-rate programmers,
a managerial challenge roughly comparable to herding
cats.

        The Washington Post Magazine, June 9, 1985
Even in 1985, the joke about herding cats was getting
old. By the time of the first edition at the turn of the
century, it was positively ancient. Yet it persists,
because it has a ring of truth to it. Programmers are a
bit like cats: intelligent, strong willed, opinionated,
independent, and often worshiped by the net.

So far in this book we’ve looked at pragmatic
techniques that help an individual be a better
programmer. Can these methods work for teams as
well, even for teams of strong-willed, independent
people? The answer is a resounding “yes!’’ There are
advantages to being a pragmatic individual, but these
advantages are multiplied manyfold if the individual is
working on a pragmatic team.

A team, in our view, is a small, mostly stable entity of
its own. Fifty people aren’t a team, they’re a horde.[75]
Teams where members are constantly being pulled onto
other assignments and no one knows each other aren’t a
team either, they are merely strangers temporarily
sharing a bus stop in the rain.

A pragmatic team is small, under 10-12 or so members.
Members come and go rarely. Everyone knows
everyone well, trusts each other, and depends on each
other.



 

Tip 84    Maintain Small, Stable Teams  

In this section we’ll look briefly at how pragmatic
techniques can be applied to teams as a whole. These
notes are only a start. Once you’ve got a group of
pragmatic developers working in an enabling
environment, they’ll quickly develop and refine their
own team dynamics that work for them.

Let’s recast some of the previous sections in terms of
teams.

NO BROKEN WINDOWS
Quality is a team issue. The most diligent developer
placed on a team that just doesn’t care will find it
difficult to maintain the enthusiasm needed to fix
niggling problems. The problem is further exacerbated
if the team actively discourages the developer from
spending time on these fixes.

Teams as a whole should not tolerate broken windows
—those small imperfections that no one fixes. The team
must take responsibility for the quality of the product,
supporting developers who understand the no broken
windows philosophy we describe in Topic 3, Software
Entropy, and encouraging those who haven’t yet
discovered it.

Some team methodologies have a “quality officer”—
someone to whom the team delegates the responsibility
for the quality of the deliverable. This is clearly
ridiculous: quality can come only from the individual
contributions of all team members. Quality is built in,
not bolted on.

BOILED FROGS
Remember the apocryphal frog in the pan of water,
back in Topic 4, Stone Soup and Boiled Frogs? It



doesn’t notice the gradual change in its environment,
and ends up cooked. The same can happen to
individuals who aren’t vigilant. It can be difficult to
keep an eye on your overall environment in the heat of
project development.

It’s even easier for teams as a whole to get boiled.
People assume that someone else is handling an issue,
or that the team leader must have OK’d a change that
your user is requesting. Even the best-intentioned teams
can be oblivious to significant changes in their projects.

Fight this. Encourage everyone to actively monitor the
environment for changes. Stay awake and aware for
increased scope, decreased time scales, additional
features, new environments—anything that wasn’t in
the original understanding. Keep metrics on new
requirements.[76] The team needn’t reject changes out
of hand—you simply need to be aware that they’re
happening. Otherwise, it’ll be you in the hot water.

SCHEDULE YOUR KNOWLEDGE PORTFOLIO
In Topic 6, Your Knowledge Portfolio we looked at
ways you should invest in your personal Knowledge
Portfolio on your own time. Teams that want to succeed
need to consider their knowledge and skill investments
as well.

If your team is serious about improvement and
innovation, you need to schedule it. Trying to get things
done “whenever there’s a free moment” means they will
never happen. Whatever sort of backlog or task list or
flow you’re working with, don’t reserve it for only
feature development. The team works on more than just
new features. Some possible examples include:

Old Systems Maintenance
While we love working on the
shiny new system, there’s likely
maintenance work that needs to be
done on the old system. We’ve
met teams who try and shove this



work in the corner. If the team is
charged with doing these tasks,
then do them—for real.

Process Reflection and Refinement
Continuous improvement can only
happen when you take the time to
look around, figure out what’s
working and not, and then make
changes (see Topic 48, The
Essence of Agility). Too many
teams are so busy bailing out
water that they don’t have time to
fix the leak. Schedule it. Fix it.
New tech experiments
Don’t adopt new tech,
frameworks, or libraries just
because “everyone is doing it,” or
based on something you saw at a
conference or read online.
Deliberately vet candidate
technologies with prototypes. Put
tasks on the schedule to try the
new things and analyze results.

Learning and skill improvements
Personal learning and
improvements are a great start, but
many skills are more effective
when spread team-wide. Plan to
do it, whether it’s the informal
brown-bag lunch or more formal
training sessions.

 

Tip 85    Schedule It to Make It Happen  

COMMUNICATE TEAM PRESENCE



It’s obvious that developers in a team must talk to each
other. We gave some suggestions to facilitate this in
Topic 7, Communicate!. However, it’s easy to forget
that the team itself has a presence within the
organization. The team as an entity needs to
communicate clearly with the rest of the world.

To outsiders, the worst project teams are those that
appear sullen and reticent. They hold meetings with no
structure, where no one wants to talk. Their emails and
project documents are a mess: no two look the same,
and each uses different terminology.

Great project teams have a distinct personality. People
look forward to meetings with them, because they
know that they’ll see a well-prepared performance that
makes everyone feel good. The documentation they
produce is crisp, accurate, and consistent. The team
speaks with one voice.[77] They may even have a sense
of humor.

There is a simple marketing trick that helps teams
communicate as one: generate a brand. When you start
a project, come up with a name for it, ideally something
off-the-wall. (In the past, we’ve named projects after
things such as killer parrots that prey on sheep, optical
illusions, gerbils, cartoon characters, and mythical
cities.) Spend 30 minutes coming up with a zany logo,
and use it. Use your team’s name liberally when talking
with people. It sounds silly, but it gives your team an
identity to build on, and the world something
memorable to associate with your work.

DON’T REPEAT YOURSELVES
In Topic 9, DRY—The Evils of Duplication, we talked
about the difficulties of eliminating duplicated work
between members of a team. This duplication leads to
wasted effort, and can result in a maintenance
nightmare. “Stovepipe” or “siloed” systems are
common in these teams, with little sharing and a lot of
duplicated functionality.



Good communication is key to avoiding these
problems. And by “good” we mean instant and
frictionless.

You should be able to ask a question of team members
and get a more-or-less instant reply. If the team is co-
located, this might be as simple as poking your head
over the cube wall or down the hall. For remote teams,
you may have to rely on a messaging app or other
electronic means.

If you have to wait a week for the team meeting to ask
your question or share your status, that’s an awful lot of
friction.[78] Frictionless means it’s easy and low-
ceremony to ask questions, share your progress, your
problems, your insights and learnings, and to stay
aware of what your teammates are doing.

Maintain awareness to stay DRY.

TEAM TRACER BULLETS
A project team has to accomplish many different tasks
in different areas of the project, touching a lot of
different technologies. Understanding requirements,
designing architecture, coding for frontend and server,
testing, all have to happen. But it’s a common
misconception that these activities and tasks can
happen separately, in isolation. They can’t.

Some methodologies advocate all sort of different roles
and titles within the team, or create separate specialized
teams entirely. But the problem with that approach is
that it introduces gates and handoffs. Now instead of a
smooth flow from the team to deployment, you have
artificial gates where the work stops. Handoffs that
have to wait to be accepted. Approvals. Paperwork. The
Lean folks call this waste, and strive to actively
eliminate it.

All of these different roles and activities are actually
different views of the same problem, and artificially
separating them can cause a boatload of trouble. For



example, programmers who are two or three levels
removed from the actual users of their code are unlikely
to be aware of the context in which their work is used.
They will not be able to make informed decisions.

With Topic 12, Tracer Bullets, we recommend
developing individual features, however small and
limited initially, that go end-to-end through the entire
system. That means that you need all the skills to do
that within the team: frontend, UI/UX, server, DBA,
QA, etc., all comfortable and accustomed to working
with each other. With a tracer bullet approach, you can
implement very small bits of functionality very quickly,
and get immediate feedback on how well your team
communicates and delivers. That creates an
environment where you can make changes and tune
your team and process quickly and easily.

 

Tip 86    Organize Fully Functional Teams  

Build teams so you can build code end-to-end,
incrementally and iteratively.

AUTOMATION
A great way to ensure both consistency and accuracy is
to automate everything the team does. Why struggle
with code formatting standards when your editor or
IDE can do it for you automatically? Why do manual
testing when the continuous build can run tests
automatically? Why deploy by hand when automation
can do it the same way every time, repeatably and
reliably?

Automation is an essential component of every project
team. Make sure the team has skills at tool building to
construct and deploy the tools that automate the project
development and production deployment.

KNOW WHEN TO STOP ADDING PAINT



Remember that teams are made up of individuals. Give
each member the ability to shine in their own way. Give
them just enough structure to support them and to
ensure that the project delivers value. Then, like the
painter in Topic 5, Good-Enough Software, resist the
temptation to add more paint.

RELATED SECTIONS INCLUDE

 
Topic 2, The Cat Ate My Source Code

Topic 7, Communicate!

Topic 12, Tracer Bullets

Topic 19, Version Control

Topic 50, Coconuts Don’t Cut It

Topic 51, Pragmatic Starter Kit

CHALLENGES

 
Look around for successful teams
outside the area of software
development. What makes them
successful? Do they use any of the
processes discussed in this section?

Next time you start a project, try
convincing people to brand it. Give
your organization time to become used
to the idea, and then do a quick audit to
see what difference it made, both
within the team and externally.

You were probably once given
problems such as “If it takes 4 workers
6 hours to dig a ditch, how long would
it take 8 workers?” In real life,
however, what factors affect the answer
if the workers were writing code



instead? In how many scenarios is the
time actually reduced?

Read The Mythical Man Month
[Bro96] by Frederick Brooks. For extra
credit, buy two copies so you can read
it twice as fast.



 

   Topic 50    Coconuts Don’t Cut It  

The native islanders had never seen an airplane before,
or met people such as these strangers. In return for use
of their land, the strangers provided mechanical birds
that flew in and out all day long on a “runway,”
bringing incredible material wealth to their island
home. The strangers mentioned something about war
and fighting. One day it was over and they all left,
taking their strange riches with them.

The islanders were desperate to restore their good
fortunes, and re-built a facsimile of the airport, control
tower, and equipment using local materials: vines,
coconut shells, palm fronds, and such. But for some
reason, even though they had everything in place, the
planes didn’t come. They had imitated the form, but not
the content. Anthropologists call this a cargo cult.

All too often, we are the islanders.

It’s easy and tempting to fall into the cargo cult trap: by
investing in and building up the easily-visible artifacts,
you hope to attract the underlying, working magic. But
as with the original cargo cults of Melanesia,[79] a fake
airport made out of coconut shells is no substitute for
the real thing.

For example, we have personally seen teams that claim
to be using Scrum. But, upon closer examination, it
turned out they were doing a daily stand up meeting
once a week, with four-week iterations that often turned
into six- or eight-week iterations. They felt that this
was okay because they were using a popular “agile”
scheduling tool. They were only investing in the
superficial artifacts—and even then, often in name



only, as if “stand up” or “iteration” were some sort of
incantation for the superstitious. Unsurprisingly, they,
too, failed to attract the real magic.

CONTEXT MATTERS
Have you or your team fallen in this trap? Ask yourself,
why are you even using that particular development
method? Or that framework? Or that testing technique?
Is it actually well-suited for the job at hand? Does it
work well for you? Or was it adopted just because it
was being used by the latest internet-fueled success
story?

There’s a current trend to adopt the policies and
processes of successful companies such as Spotify,
Netflix, Stripe, GitLab, and others. Each have their own
unique take on software development and management.
But consider the context: are you in the same market,
with the same constraints and opportunities, similar
expertise and organization size, similar management,
and similar culture? Similar user base and
requirements?

Don’t fall for it. Particular artifacts, superficial
structures, policies, processes, and methods are not
enough.

 

Tip 87    Do What Works, Not What’s Fashionable  

How do you know “what works”? You rely on that
most fundamental of Pragmatic techniques:

Try it.

Pilot the idea with a small team or set of teams. Keep
the good bits that seem to work well, and discard
anything else as waste or overhead. No one will
downgrade your organization because it operates
differently from Spotify or Netflix, because even they



didn’t follow their current processes while they were
growing. And years from now, as those companies
mature and pivot and continue to thrive, they’ll be
doing something different yet again.

That’s the actual secret to their success.

ONE SIZE FITS NO ONE WELL
The purpose of a software development methodology is
to help people work together. As we discuss in Topic
48, The Essence of Agility, there is no single plan you
can follow when you develop software, especially not a
plan that someone else came up with at another
company.

Many certification programs are actually even worse
than that: they are predicated on the student being able
to memorize and follow the rules. But that’s not what
you want. You need the ability to see beyond the
existing rules and exploit possibilities for advantage.
That’s a very different mindset from “but
Scrum/Lean/Kanban/XP/agile does it this way…” and
so on.

Instead, you want to take the best pieces from any
particular methodology and adapt them for use. No one
size fits all, and current methods are far from complete,
so you’ll need to look at more than just one popular
method.

For example, Scrum defines some project management
practices, but Scrum by itself doesn’t provide enough
guidance at the technical level for teams or at the
portfolio/governance level for leadership. So where do
you start?

Be Like Them!
We frequently hear software development leaders tell
their staff, “We should operate like Netflix” (or one of
these other leading companies). Of course you could do
that.



First, get yourself a few hundred thousand servers and
tens of millions of users…

THE REAL GOAL
The goal of course isn’t to “do Scrum,” “do agile,” “do
Lean,” or what-have-you. The goal is to be in a position
to deliver working software that gives the users some
new capability at a moment’s notice. Not weeks,
months, or years from now, but now. For many teams
and organizations, continuous delivery feels like a lofty,
unattainable goal, especially if you’re saddled with a
process that restricts delivery to months, or even weeks.
But as with any goal, the key is to keep aiming in the
right direction.

If you’re delivering in years, try and shorten the cycle
to months. From months, cut it down to weeks. From a
four-week sprint, try two. From a two week sprint, try
one. Then daily. Then, finally, on demand. Note that
being able to deliver on demand does not mean you are
forced to deliver every minute of every day. You
deliver when the users need it, when it makes business
sense to do so.



 

Tip 88    Deliver When Users Need It  

In order to move to this style of continuous
development, you need a rock-solid infrastructure,
which we discuss in the next topic, Topic 51,
Pragmatic Starter Kit. You do development in the main
trunk of your version control system, not in branches,
and use techniques such as feature switches to roll out
test features to users selectively.

Once your infrastructure is in order, you need to decide
how to organize the work. Beginners might want to
start with Scrum for project management, plus the
technical practices from eXtreme Programming (XP).
More disciplined and experienced teams might look to
Kanban and Lean techniques, both for the team and
perhaps for larger governance issues.

But don’t take our word for it, investigate and try these
approaches for yourself. Be careful, though, in
overdoing it. Overly investing in any particular
methodology can leave you blind to alternatives. You
get used to it. Soon it becomes hard to see any other
way. You’ve become calcified, and now you can’t adapt
quickly anymore.

Might as well be using coconuts.

RELATED SECTIONS INCLUDE

 
Topic 12, Tracer Bullets

Topic 27, Don’t Outrun Your Headlights

Topic 48, The Essence of Agility

Topic 49, Pragmatic Teams



Topic 51, Pragmatic Starter Kit



 

   Topic 51    Pragmatic Starter Kit  

  

Civilization advances by extending the number of
important
operations we can perform without thinking.

        Alfred North Whitehead
Back when cars were a novelty, the instructions for
starting a Model-T Ford were more than two pages
long. With modern cars, you just push a button—the
starting procedure is automatic and foolproof. A person
following a list of instructions might flood the engine,
but the automatic starter won’t.

Although software development is still an industry at
the Model-T stage, we can’t afford to go through two
pages of instructions again and again for some common
operation. Whether it is the build and release procedure,
testing, project paperwork, or any other recurring task
on the project, it has to be automatic and repeatable on
any capable machine.

In addition, we want to ensure consistency and
repeatability on the project. Manual procedures leave
consistency up to chance; repeatability isn’t guaranteed,
especially if aspects of the procedure are open to
interpretation by different people.

After we wrote the first edition of The Pragmatic
Programmer, we wanted to create more books to help
teams develop software. We figured we should start at
the beginning: what are the most basic, most important
elements that every team needs regardless of
methodology, language, or technology stack. And so



the idea of the Pragmatic Starter Kit was born,
covering these three critical and interrelated topics:

 
Version Control

Regression Testing

Full Automation

These are the three legs that support every project.
Here’s how.

DRIVE WITH VERSION CONTROL
As we said in Topic 19, Version Control, you want to
keep everything needed to build your project under
version control. That idea becomes even more
important in the context of the project itself.

First, it allows build machines to be ephemeral. Instead
of one hallowed, creaky machine in the corner of the
office that everyone is afraid to touch,[80] build
machines and/or clusters are created on demand as spot
instances in the cloud. Deployment configuration is
under version control as well, so releasing to
production can be handled automatically.

And that’s the important part: at the project level,
version control drives the build and release process.

 

Tip 89    Use Version Control to Drive Builds, Tests, and Releases  

That is, build, test, and deployment are triggered via
commits or pushes to version control, and built in a
container in the cloud. Release to staging or production
is specified by using a tag in your version control
system. Releases then become a much more low-
ceremony part of every day life—true continuous



delivery, not tied to any one build machine or
developer’s machine.

RUTHLESS AND CONTINUOUS TESTING
Many developers test gently, subconsciously knowing
where the code will break and avoiding the weak spots.
Pragmatic Programmers are different. We are driven to
find our bugs now, so we don’t have to endure the
shame of others finding our bugs later.

Finding bugs is somewhat like fishing with a net. We
use fine, small nets (unit tests) to catch the minnows,
and big, coarse nets (integration tests) to catch the killer
sharks. Sometimes the fish manage to escape, so we
patch any holes that we find, in hopes of catching more
and more slippery defects that are swimming about in
our project pool.

 

Tip 90    Test Early, Test Often, Test Automatically  

We want to start testing as soon as we have code. Those
tiny minnows have a nasty habit of becoming giant,
man-eating sharks pretty fast, and catching a shark is
quite a bit harder. So we write unit tests. A lot of unit
tests.

In fact, a good project may well have more test code
than production code. The time it takes to produce this
test code is worth the effort. It ends up being much
cheaper in the long run, and you actually stand a chance
of producing a product with close to zero defects.

Additionally, knowing that you’ve passed the test gives
you a high degree of confidence that a piece of code is
“done.’’

 



Tip 91    Coding Ain’t Done ’Til All the Tests Run  

The automatic build runs all available tests. It’s
important to aim to “test for real,” in other words, the
test environment should match the production
environment closely. Any gaps are where bugs breed.

The build may cover several major types of software
testing: unit testing; integration testing; validation and
verification; and performance testing.

This list is by no means complete, and some specialized
projects will require various other types of testing as
well. But it gives us a good starting point.
Unit Testing

A unit test is code that exercises a module. We covered
this in Topic 41, Test to Code. Unit testing is the
foundation of all the other forms of testing that we’ll
discuss in this section. If the parts don’t work by
themselves, they probably won’t work well together.
All of the modules you are using must pass their own
unit tests before you can proceed.

Once all of the pertinent modules have passed their
individual tests, you’re ready for the next stage. You
need to test how all the modules use and interact with
each other throughout the system.

Integration Testing

Integration testing shows that the major subsystems
that make up the project work and play well with each
other. With good contracts in place and well tested, any
integration issues can be detected easily. Otherwise,
integration becomes a fertile breeding ground for bugs.
In fact, it is often the single largest source of bugs in
the system.

Integration testing is really just an extension of the unit
testing we’ve described—you’re just testing how entire
subsystems honor their contracts.

Validation and Verification



As soon as you have an executable user interface or
prototype, you need to answer an all-important
question: the users told you what they wanted, but is it
what they need?

Does it meet the functional requirements of the system?
This, too, needs to be tested. A bug-free system that
answers the wrong question isn’t very useful. Be
conscious of end-user access patterns and how they
differ from developer test data (for an example, see the
story about brush strokes here).
Performance Testing

Performance or stress testing may be important aspects
of the project as well.

Ask yourself if the software meets the performance
requirements under real-world conditions—with the
expected number of users, or connections, or
transactions per second. Is it scalable?

For some applications, you may need specialized
testing hardware or software to simulate the load
realistically.
Testing the Tests

Because we can’t write perfect software, it follows that
we can’t write perfect test software either. We need to
test the tests.

Think of our set of test suites as an elaborate security
system, designed to sound the alarm when a bug shows
up. How better to test a security system than to try to
break in?

After you have written a test to detect a particular bug,
cause the bug deliberately and make sure the test
complains. This ensures that the test will catch the bug
if it happens for real.

 



Tip 92    Use Saboteurs to Test Your Testing  

If you are really serious about testing, take a separate
branch of the source tree, introduce bugs on purpose,
and verify that the tests will catch them. At a higher
level, you can use something like Netflix’s Chaos
Monkey[81] to disrupt (i.e., “kill”) services and test your
application’s resilience.

When writing tests, make sure that alarms sound when
they should.

Testing Thoroughly

Once you are confident that your tests are correct, and
are finding bugs you create, how do you know if you
have tested the code base thoroughly enough?

The short answer is “you don’t,’’ and you never will.
You might look to try coverage analysis tools that
watch your code during testing and keep track of which
lines of code have been executed and which haven’t.
These tools help give you a general feel for how
comprehensive your testing is, but don’t expect to see
100% coverage.[82]

Even if you do happen to hit every line of code, that’s
not the whole picture. What is important is the number
of states that your program may have. States are not
equivalent to lines of code. For instance, suppose you
have a function that takes two integers, each of which
can be a number from 0 to 999:

 
 

         int test(int a, int    b) {
           return    a / (a + b);
         }   



In theory, this three-line function has 1,000,000 logical
states, 999,999 of which will work correctly and one
that will not (when a + b equals zero). Simply knowing
that you executed this line of code doesn’t tell you that
—you would need to identify all possible states of the
program. Unfortunately, in general this is a really hard
problem. Hard as in, “The sun will be a cold hard lump
before you can solve it.”

 

Tip 93    Test State Coverage, Not Code Coverage  

Property-Based Testing

A great way to explore how your code handles
unexpected states is to have a computer generate those
states.

Use property-based testing techniques to generate test
data according to the contracts and invariants of the
code under test. We cover this topic in detail in Topic
42, Property-Based Testing.

TIGHTENING THE NET
Finally, we’d like to reveal the single most important
concept in testing. It is an obvious one, and virtually
every textbook says to do it this way. But for some
reason, most projects still do not.

If a bug slips through the net of existing tests, you need
to add a new test to trap it next time.

 

Tip 94    Find Bugs Once  

Once a human tester finds a bug, it should be the last
time a human tester finds that bug. The automated tests
should be modified to check for that particular bug
from then on, every time, with no exceptions, no matter



how trivial, and no matter how much the developer
complains and says, “Oh, that will never happen
again.”

Because it will happen again. And we just don’t have
the time to go chasing after bugs that the automated
tests could have found for us. We have to spend our
time writing new code—and new bugs.

FULL AUTOMATION
As we said at the beginning of this section, modern
development relies on scripted, automatic procedures.
Whether you use something as simple as shell scripts
with rsync and ssh, or full-featured solutions such as
Ansible, Puppet, Chef, or Salt, just don’t rely on any
manual intervention.

Once upon a time, we were at a client site where all the
developers were using the same IDE. Their system
administrator gave each developer a set of instructions
on installing add-on packages to the IDE. These
instructions filled many pages—pages full of click
here, scroll there, drag this, double-click that, and do it
again.

Not surprisingly, every developer’s machine was
loaded slightly differently. Subtle differences in the
application’s behavior occurred when different
developers ran the same code. Bugs would appear on
one machine but not on others. Tracking down version
differences of any one component usually revealed a
surprise.

 

Tip 95    Don’t Use Manual Procedures  

People just aren’t as repeatable as computers are. Nor
should we expect them to be. A shell script or program
will execute the same instructions, in the same order,
time after time. It is under version control itself, so you



can examine changes to the build/release procedures
over time as well (“but it used to work…”).

Everything depends on automation. You can’t build the
project on an anonymous cloud server unless the build
is fully automatic. You can’t deploy automatically if
there are manual steps involved. And once you
introduce manual steps (“just for this one part…”)
you’ve broken a very large window.[83]

With these three legs of version control, ruthless
testing, and full automation, your project will have the
firm foundation you need so you can concentrate on the
hard part: delighting users.

RELATED SECTIONS INCLUDE

 
Topic 11, Reversibility

Topic 12, Tracer Bullets

Topic 17, Shell Games

Topic 19, Version Control

Topic 41, Test to Code

Topic 49, Pragmatic Teams

Topic 50, Coconuts Don’t Cut It

CHALLENGES

 
Are your nightly or continuous builds
automatic, but deploying to production
isn’t? Why? What’s special about that
server?

Can you automatically test your project
completely? Many teams are forced to
answer “no.” Why? Is it too hard to



define the acceptable results? Won’t
this make it hard to prove to the
sponsors that the project is “done”?

Is it too hard to test the application
logic independent of the GUI? What
does this say about the GUI? About
coupling?



 

   Topic 52    Delight Your Users  

  

When you enchant people, your goal is not to make
money
from them or to get them to do what you want, but 
to fill them with great delight.

        Guy Kawasaki
Our goal as developers is to delight users. That’s why
we’re here. Not to mine them for their data, or count
their eyeballs or empty their wallets. Nefarious goals
aside, even delivering working software in a timely
manner isn’t enough. That alone won’t delight them.

Your users are not particularly motivated by code.
Instead, they have a business problem that needs
solving within the context of their objectives and
budget. Their belief is that by working with your team
they’ll be able to do this.

Their expectations are not software related. They aren’t
even implicit in any specification they give you
(because that specification will be incomplete until
your team has iterated through it with them several
times).

How do you unearth their expectations, then? Ask a
simple question:

How will you know that we’ve all been successful a
month (or a year, or whatever) after this project is
done?

You may well be surprised by the answer. A project to
improve product recommendations might actually be



judged in terms of customer retention; a project to
consolidate two databases might be judged in terms of
data quality, or it might be about cost savings. But it’s
these expectations of business value that really count—
not just the software project itself. The software is only
a means to these ends.

And now that you’ve surfaced some of the underlying
expectations of value behind the project, you can start
thinking about how you can deliver against them:

 
Make sure everyone on the team is
totally clear about these expectations.

When making decisions, think about
which path forward moves closer to
those expectations.

Critically analyze the user
requirements in light of the
expectations. On many projects we’ve
discovered that the stated
“requirement” was in fact just a guess
at what could be done by technology: it
was actually an amateur
implementation plan dressed up as a
requirements document. Don’t be
afraid to make suggestions that change
the requirement if you can demonstrate
that they will move the project closer
to the objective.

Continue to think about these
expectations as you progress through
the project.

We’ve found that as our knowledge of the domain
increases, we’re better able to make suggestions on
other things that could be done to address the
underlying business issues. We strongly believe that
developers, who are exposed to many different aspects
of an organization, can often see ways of weaving
different parts of the business together that aren’t
always obvious to individual departments.



 

Tip 96    Delight Users, Don’t Just Deliver Code  

If you want to delight your client, forge a relationship
with them where you can actively help solve their
problems. Even though your title might be some
variation of “Software Developer” or “Software
Engineer,” in truth it should be “Problem Solver.”
That’s what we do, and that’s the essence of a
Pragmatic Programmer.

We solve problems.

RELATED SECTIONS INCLUDE

 
Topic 12, Tracer Bullets

Topic 13, Prototypes and Post-it Notes

Topic 45, The Requirements Pit



 

   Topic 53    Pride and Prejudice  

  

You have delighted us long enough.

        Jane Austen, Pride and Prejudice
Pragmatic Programmers don’t shirk from responsibility.
Instead, we rejoice in accepting challenges and in
making our expertise well known. If we are responsible
for a design, or a piece of code, we do a job we can be
proud of.

 

Tip 97    Sign Your Work  

Artisans of an earlier age were proud to sign their work.
You should be, too.

Project teams are still made up of people, however, and
this rule can cause trouble. On some projects, the idea
of code ownership can cause cooperation problems.
People may become territorial, or unwilling to work on
common foundation elements. The project may end up
like a bunch of insular little fiefdoms. You become
prejudiced in favor of your code and against your
coworkers.

That’s not what we want. You shouldn’t jealously
defend your code against interlopers; by the same
token, you should treat other people’s code with
respect. The Golden Rule (“Do unto others as you
would have them do unto you’’) and a foundation of



mutual respect among the developers is critical to make
this tip work.

Anonymity, especially on large projects, can provide a
breeding ground for sloppiness, mistakes, sloth, and
bad code. It becomes too easy to see yourself as just a
cog in the wheel, producing lame excuses in endless
status reports instead of good code.

While code must be owned, it doesn’t have to be owned
by an individual. In fact, Kent Beck’s eXtreme
Programming[84] recommends communal ownership of
code (but this also requires additional practices, such as
pair programming, to guard against the dangers of
anonymity).

We want to see pride of ownership. “I wrote this, and I
stand behind my work.” Your signature should come to
be recognized as an indicator of quality. People should
see your name on a piece of code and expect it to be
solid, well written, tested, and documented. A really
professional job. Written by a professional.

A Pragmatic Programmer.

 

Thank you.

Footnotes

[75]
As team size grows, communication

paths grow at the rate of ,

where  is the number of team



members. On larger teams,
communication begins to break
down and becomes ineffective.

[76]
A burnup chart is better for this than
the more usual burndown chart.
With a burnup chart, you can clearly
see how the additional features
move the goalposts.

[77]
The team speaks with one voice—
externally. Internally, we strongly
encourage lively, robust debate.
Good developers tend to be
passionate about their work.

[78]
Andy has met teams who conduct
their daily Scrum standups on
Fridays.

[79]
See
https://en.wikipedia.org/wiki/Cargo_
cult.

[80]
We’ve seen this first-hand more
times than you’d think.

[81]
https://netflix.github.io/chaosmonke
y

[82]
For an interesting study of the
correlation between test coverage
and defects, see Mythical Unit Test
Coverage [ADSS18].

[83]
Always remember Topic 3, Software
Entropy. Always.

[84]
http://www.extremeprogramming.or
g

Copyright © 2020 Pearson Education, Inc.
  

In the long run, we shape our lives, and we shape
ourselves. The process never ends until we die. And the
choices we make are ultimately our own responsibility.

https://en.wikipedia.org/wiki/Cargo_cult
https://netflix.github.io/chaosmonkey
http://www.extremeprogramming.org/


        Eleanor Roosevelt



Chapter 10

 
Postface

In the twenty years leading up to the first edition, we
were part of the evolution of the computer from a
peripheral curiosity to a modern imperative for
businesses. In the twenty years since then, software has
grown beyond mere business machines and has truly
taken over the world. But what does that really mean
for us?

In The Mythical Man-Month: Essays on Software
Engineering [Bro96], Fred Brooks said “The
programmer, like the poet, works only slightly removed
from pure thought-stuff. He builds his castles in the air,
from air, creating by exertion of the imagination.” We
start with a blank page, and we can create pretty much
anything we can imagine. And the things we create can
change the world.

From Twitter helping people plan revolutions, to the
processor in your car working to stop you skidding, to
the smartphone which means we no longer have to
remember pesky daily details, our programs are
everywhere. Our imagination is everywhere.

We developers are incredibly privileged. We are truly
building the future. It’s an extraordinary amount of
power. And with that power comes an extraordinary
responsibility.

How often do we stop to think about that? How often
do we discuss, both among ourselves and with a more
general audience, what this means?



Embedded devices use an order of magnitude more
computers than those used in laptops, desktops, and
data centers. These embedded computers often control
life-critical systems, from power plants to cars to
medical equipment. Even a simple central heating
control system or home appliance can kill someone if it
is poorly designed or implemented. When you develop
for these devices, you take on a staggering
responsibility.

Many nonembedded systems can also do both great
good and great harm. Social media can promote
peaceful revolution or foment ugly hate. Big data can
make shopping easier, and it can destroy any vestige of
privacy you might think you have. Banking systems
make loan decisions that change people’s lives. And
just about any system can be used to snoop on its users.

We’ve seen hints of the possibilities of a utopian future,
and examples of unintended consequences leading to
nightmare dystopias. The difference between the two
outcomes might be more subtle than you think. And it’s
all in your hands.



The Moral Compass
The price of this unexpected power is vigilance. Our
actions directly affect people. No longer the hobby
program on the 8-bit CPU in the garage, the isolated
batch business process on the mainframe in the data
center, or even just the desktop PC; our software
weaves the very fabric of daily modern life.

We have a duty to ask ourselves two questions about
every piece of code we deliver:

 
1. Have I protected the user?

2. Would I use this myself?

First, you should ask “Have I done my best to protect
the users of this code from harm?” Have I made
provisions to apply ongoing security patches to that
simple baby monitor? Have I ensured that however the
automatic central heating thermostat fails the customer
will still have manual control? Am I storing only the
data I need, and encrypting anything personal?

No one is perfect; everyone misses things now and
then. But if you can’t truthfully say that you tried to list
all the consequences, and made sure to protect the users
from them, then you bear some responsibility when
things go bad.

 

Tip 98    First, Do No Harm  

Second, there’s a judgment related to the Golden Rule:
would I be happy to be a user of this software? Do I



want my details shared? Do I want my movements to
be given to retail outlets? Would I be happy to be
driven by this autonomous vehicle? Am I comfortable
doing this?

Some inventive ideas begin to skirt the bounds of
ethical behavior, and if you’re involved in that project,
you are just as responsible as the sponsors. No matter
how many degrees of separation you might rationalize,
one rule remains true:

 

Tip 99    Don’t Enable Scumbags  



Imagine the Future you Want
It’s up to you. It’s your imagination, your hopes, your
concerns that provide the pure thought-stuff that builds
the next twenty years and beyond.

You are building the future, for yourselves and for your
descendants. Your duty is to make it a future that we’d
all want to inhabit. Recognize when you’re doing
something against this ideal, and have the courage to
say “no!” Envision the future we could have, and have
the courage to create it. Build castles in the air every
day.

We all have an amazing life.

 

Tip 100    It’s Your Life. 
Share it. Celebrate it. Build it.
   AND HAVE FUN!

 

Copyright © 2020 Pearson Education, Inc.



Appendix 1

 
Bibliography

[ADSS18]
Vard Antinyan, Jesper
Derehag, Anna Sandberg,
and Miroslaw Staron.
Mythical Unit Test
Coverage. IEEE Software.
35:73-79, 2018.

[And10]
Jackie Andrade. What does
doodling do? Applied
Cognitive Psychology.
24(1):100-106, 2010,
January.

[Arm07]
Joe Armstrong.
Programming Erlang:
Software for a Concurrent
World. The Pragmatic
Bookshelf, Raleigh, NC,
2007.

[BR89]
Albert J. Bernstein and
Sydney Craft Rozen.
Dinosaur Brains: Dealing
with All Those Impossible
People at Work. John
Wiley & Sons, New York,
NY, 1989.

[Bro96]
Frederick P. Brooks, Jr.
The Mythical Man-
Month: Essays on
Software Engineering.
Addison-Wesley, Reading,
MA, Anniversary, 1996.

[CN91]



Brad J. Cox and Andrew J.
Novobilski. Object-
Oriented Programming:
An Evolutionary
Approach. Addison-
Wesley, Reading, MA,
Second, 1991.

[Con68]
Melvin E. Conway. How
do Committees Invent?
Datamation. 14(5):28-31,
1968, April.

[de 98]
Gavin de Becker. The Gift
of Fear: And Other
Survival Signals That
Protect Us from Violence.
Dell Publishing, New York
City, 1998.

[DL13]
Tom DeMacro and Tim
Lister. Peopleware:
Productive Projects and
Teams. Addison-Wesley,
Boston, MA, Third, 2013.

[Fow00]
Martin Fowler. UML
Distilled: A Brief Guide to
the Standard Object
Modeling Language.
Addison-Wesley, Boston,
MA, Second, 2000.

[Fow04]
Martin Fowler. UML
Distilled: A Brief Guide to
the Standard Object
Modeling Language.
Addison-Wesley, Boston,
MA, Third, 2004.

[Fow19]
Martin Fowler.
Refactoring: Improving
the Design of Existing
Code. Addison-Wesley,
Boston, MA, Second,
2019.

[GHJV95]
Erich Gamma, Richard
Helm, Ralph Johnson, and
John Vlissides. Design
Patterns: Elements of



Reusable Object-Oriented
Software. Addison-Wesley,
Reading, MA, 1995.

[Hol92]
Michael Holt. Math
Puzzles & Games. Dorset
House, New York, NY,
1992.

[Hun08]
Andy Hunt. Pragmatic
Thinking and Learning:
Refactor Your Wetware.
The Pragmatic Bookshelf,
Raleigh, NC, 2008.

[Joi94]
T.E. Joiner. Contagious
depression: Existence,
specificity to depressed
symptoms, and the role of
reassurance seeking.
Journal of Personality
and Social Psychology.
67(2):287—296, 1994,
August.

[Knu11]
Donald E. Knuth. The Art
of Computer
Programming, Volume
4A: Combinatorial
Algorithms, Part 1.
Addison-Wesley, Boston,
MA, 2011.

[Knu98]
Donald E. Knuth. The Art
of Computer
Programming, Volume 1:
Fundamental Algorithms.
Addison-Wesley, Reading,
MA, Third, 1998.

[Knu98a]
Donald E. Knuth. The Art
of Computer
Programming, Volume 2:
Seminumerical
Algorithms. Addison-
Wesley, Reading, MA,
Third, 1998.

[Knu98b]
Donald E. Knuth. The Art
of Computer
Programming, Volume 3:



Sorting and Searching.
Addison-Wesley, Reading,
MA, Second, 1998.

[KP99]
Brian W. Kernighan and
Rob Pike. The Practice of
Programming. Addison-
Wesley, Reading, MA,
1999.

[Mey97]
Bertrand Meyer. Object-
Oriented Software
Construction. Prentice
Hall, Upper Saddle River,
NJ, Second, 1997.

[Mul18]
Jerry Z. Muller. The
Tyranny of Metrics.
Princeton University Press,
Princeton NJ, 2018.

[SF13]
Robert Sedgewick and
Phillipe Flajolet. An
Introduction to the
Analysis of Algorithms.
Addison-Wesley, Boston,
MA, Second, 2013.

[Str35]
James Ridley Stroop.
Studies of Interference in
Serial Verbal Reactions.
Journal of Experimental
Psychology. 18:643—662,
1935.

[SW11]
Robert Sedgewick and
Kevin Wayne. Algorithms.
Addison-Wesley, Boston,
MA, Fourth, 2011.

[Tal10]
Nassim Nicholas Taleb.
The Black Swan: Second
Edition: The Impact of the
Highly Improbable.
Random House, New
York, NY, Second, 2010.

[WH82]
James Q. Wilson and
George Helling. The police
and neighborhood safety.



The Atlantic Monthly.
249[3]:29—38, 1982,
March.

[YC79]
Edward Yourdon and Larry
L. Constantine. Structured
Design: Fundamentals of
a Discipline of Computer
Program and Systems
Design. Prentice Hall,
Englewood Cliffs, NJ,
1979.

[You95]
Edward Yourdon. When
good-enough software is
best. IEEE Software.
1995, May.

Copyright © 2020 Pearson Education, Inc.
  

I would rather have questions that can’t be answered
than answers that can’t be questioned.

        Richard Feynman

Appendix 2

 
Possible Answers to the Exercises

Answer 1 (from exercise 1)

To our way of thinking, class Split2 is more orthogonal.
It concentrates on its own task, splitting lines, and
ignores details such as where the lines are coming
from. Not only does this make the code easier to
develop, but it also makes it more flexible. Split2 can
split lines read from a file, generated by another
routine, or passed in via the environment.

Answer 2 (from exercise 2)



Let’s start with an assertion: you can write good,
orthogonal code in just about any language. At the
same time, every language has temptations: features
that can lead to increased coupling and decreased
orthogonality.

In OO languages, features such as multiple inheritance,
exceptions, operator overloading, and parent-method
overriding (via subclassing) provide ample opportunity
to increase coupling in nonobvious ways. There is also
a kind of coupling because a class couples code to data.
This is normally a good thing (when coupling is good,
we call it cohesion). But if you don’t make your classes
focused enough, it can lead to some pretty ugly
interfaces.

In functional languages, you’re encouraged to write lots
of small, decoupled functions, and to combine them in
different ways to solve your problem. In theory this
sounds good. In practice it often is. But there’s a form
of coupling that can happen here, too. These functions
typically transform data, which means the result of one
function can become the input to another. If you’re not
careful, making a change to the data format a function
generates can result in a failure somewhere down the
transformational stream. Languages with good type
systems can help mitigate this.

Answer 3 (from exercise 3)

Low-tech to the rescue! Draw a few cartoons with
markers on a whiteboard—a car, a phone, and a house.
It doesn’t have to be great art; stick-figure outlines are
fine. Put Post-it notes that describe the contents of
target pages on the clickable areas. As the meeting
progresses, you can refine the drawings and placements
of the Post-it notes.

Answer 4 (from exercise 4)

Because we want to make the language extendable,
we’ll make the parser table driven. Each entry in the



table contains the command letter, a flag to say whether
an argument is required, and the name of the routine to
call to handle that particular command.

lang/turtle.c

 

         typedef struct    {
           char  cmd;              /* the command letter */   
           int hasArg;             /* does it take an argument */   
           void (*func)(int, int); /* routine to call */   
         } Command;   
            
         static    Command cmds[] = {
           { ‘P’   ,  ARG,     doSelectPen },
           { ‘U’   ,  NO_ARG,  doPenUp },
           { ‘D’   ,  NO_ARG,  doPenDown },
           { ‘N’   ,  ARG,     doPenDir },
           { ‘E’   ,  ARG,     doPenDir },
           { ‘S’   ,  ARG,     doPenDir },
           { ‘W’   ,  ARG,     doPenDir }
         };   

The main program is pretty simple: read a line, look up
the command, get the argument if required, then call
the handler function.

lang/turtle.c

 

http://media.pragprog.com/titles/tpp20/code/lang/turtle.c
http://media.pragprog.com/titles/tpp20/code/lang/turtle.c


         while (fgets(buff, sizeof   (buff), stdin)) {
            
           Command *cmd = findCommand(*buff);   
            
           if    (cmd) {
             int      arg = 0;
            
             if    (cmd->hasArg && !getArg(buff+1, &arg)) {
               fprintf(stderr, ”’%c’ needs an argument\n”   , *buff);
               continue   ;
             }   
            
             cmd->func(*buff, arg);   
           }   
         }   

The function that looks up a command performs a
linear search of the table, returning either the matching
entry or NULL.

lang/turtle.c

 

         Command *findCommand(int    cmd) {
           int    i;
            
           for    (i = 0; i < ARRAY_SIZE(cmds); i++) {
             if    (cmds[i].cmd == cmd)

http://media.pragprog.com/titles/tpp20/code/lang/turtle.c


               return    cmds + i;
           }   
            
           fprintf(stderr, “Unknown command ‘%c’\n”   , cmd);
           return    0;
         }   

Finally, reading the numeric argument is pretty simple
using sscanf.

lang/turtle.c

 

         int getArg(const char *buff, int    *result) {
           return sscanf(buff, “%d”   , result) == 1;
         }   

Answer 5 (from exercise 5)

Actually, you’ve already solved this problem in the
previous exercise, where you wrote an interpreter for
the external language, will contain the internal
interpreter. In the case of our sample code, this is the
doXxx functions.

Answer 6 (from exercise 6)

Using BNF, a time specification could be

 
 

      

http://media.pragprog.com/titles/tpp20/code/lang/turtle.c


  time ::=    hour ampm |  hour : minute ampm |    hour :
minute

  
   

  
   

  
   

  
  ampm

  
::=  

  
  am | pm

  
   

  
   

  
   

  
  hour

  
::=  

  
  digit | digit digit

  
   

  
   

  
   

  
  minute

  
::=  

  
  digit digit

  
   

  
   

  
   

  
  digit

  
::=  

  
  0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

A better definition of hour and minute would take into
account that an hours can only be from 00 to 23, and a
minute from 00 to 59:

 
 

  
  hour

  
::=  

  
  h-tens digit  | digit

      



  minute ::=    m-tens digit

  
  h-tens

  
::=  

  
  0 | 1

  
  m-tens

  
::=  

  
  0 | 1 | 2 | 3 | 4 | 5

  
  digit

  
::=  

  
  0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Answer 7 (from exercise 7)

Here’s the parser written using the Pegjs JavaScript
library:

lang/peg_parser/time_parser.pegjs

 

         time   
           = h:hour offset:ampm              { return h + offset }   
           / h:hour “:” m:minute offset:ampm { return h + m + offset }   
           / h:hour “:” m:minute             { return h + m }   

http://media.pragprog.com/titles/tpp20/code/lang/peg_parser/time_parser.pegjs


            
         ampm   
           = “am” { return 0 }   
           / “pm” { return 12*60 }   
            
         hour   
           = h:two_hour_digits { return h*60 }   
           / h:digit           { return h*60 }   
            
         minute   
           = d1:[0-5] d2:[0-9] { return parseInt(d1+d2, 10); }   
            
         digit   
           = digit:[0-9] { return parseInt(digit, 10); }   
            
         two_hour_digits   
           = d1:[01] d2:[0-9 ] { return parseInt(d1+d2, 10); }   
           / d1:[2]  d2:[0-3]  { return parseInt(d1+d2, 10); }   

The tests show it in use:

lang/peg_parser/test_time_parser.js

 

http://media.pragprog.com/titles/tpp20/code/lang/peg_parser/test_time_parser.js


         let test = require(‘tape’   );
         let time_parser = require(‘./time_parser.js’   );
            
         // time    ::= hour ampm            |   
         //             hour : minute ampm   |   
         //             hour : minute   
         //   
         //  ampm   ::= am | pm   
         //   
         //  hour   ::= digit | digit digit   
         //   
         //  minute ::= digit digit   
         //   
         //  digit  ::= 0 |1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9   
            
            
         const    h  = (val) => val*60;
         const    m  = (val) => val;
         const    am = (val) => val;
         const    pm = (val) => val + h(12);
            
         let    tests = {
            
           “1am”   : h(1),
           “1pm”   : pm(h(1)),
            
           “2:30”   : h(2) + m(30),
           “14:30”   : pm(h(2)) + m(30),
           “2:30pm”   : pm(h(2)) + m(30),
            
         }   
            
         test(‘time parsing’, function    (t) {
             for (const string in    tests) {
               let    result = time_parser.parse(string)
               t.equal(result, tests[string], string);   
             }   
             t.end()   
         });   

Answer 8 (from exercise 8)

Here’s a possible solution in Ruby:

lang/re_parser/time_parser.rb

http://media.pragprog.com/titles/tpp20/code/lang/re_parser/time_parser.rb


 

         TIME_RE = %r{   
         (?<digit>[0-9]){0}   
         (?<h_ten>[0-1]){0}   
         (?<m_ten>[0-6]){0}   
         (?<ampm> am | pm){0}   
         (?<hour>   (\g<h_ten> \g<digit>) | \g<digit>){0}   
         (?<minute> \g<m_ten>  \g<digit>){0}   
            
         \A(   
             ( \g<hour> \g<ampm> )   
           | ( \g<hour> : \g<minute> \g<ampm> )   
           | ( \g<hour> : \g<minute> )   
         )\Z   
            
         }x   
            
         def    parse_time(string)
           result = TIME_RE.match(string)   
           if    result
             result[:hour   ].to_i * 60 +
             (result[:minute] || “0”   ).to_i +
             (result[:ampm] == “pm”    ? 12*60 : 0)
           end   
         end   

(This code uses the trick of defining named patterns at
the start of the regular expression, and then referencing
them as subpatterns in the actual match.)



Answer 9 (from exercise 9)

Our answer must be couched in several assumptions:

 
The storage device contains the information we need to be transferred.

We know the speed at which the person walks.

We know the distance between the machines.

We are not accounting for the time it takes to transfer information to and

from the storage device.

The overhead of storing data is roughly equal to the overhead of sending it

over a communications line.

Answer 10 (from exercise 10)

Subject to the caveats in the previous answer: A 1TGB
tape contains 8×240, or 243 bits, so a 1Gbps line would
have to pump data for about 9,000 seconds, or roughly
2½ hours, to transfer the equivalent amount of
information. If the person is walking at a constant 3½
mph, then our two machines would need to be almost 9
miles apart for the communications line to outperform
our courier. Otherwise, the person wins.

Answer 14 (from exercise 14)

We’ll show the function signatures in Java, with the
pre- and postconditions in comments.

First, the invariant for the class:

 
 



         /**   
           * @invariant getSpeed() > 0   
           *        implies isFull()              // Don’t run empty   
           *   
           * @invariant getSpeed() >= 0 &&   
           *        getSpeed() < 10               // Range check   
           */   

Next, the pre- and postconditions:

 
 

         /**   
           * @pre Math.abs(getSpeed() - x) <= 1 // Only change by one   
           * @pre x >= 0 && x < 10              // Range check   
           * @post getSpeed() == x              // Honor requested speed   
           */   
         public void setSpeed(final int    x)
            
         /**   
           * @pre !isFull()                     // Don’t fill it twice   
           * @post isFull()                     // Ensure it was done   
           */   
         void    fill()
            
         /**   
           * @pre isFull()                      // Don’t empty it twice   
           * @post !isFull()                    // Ensure it was done   
           */   
         void    empty()



Answer 15 (from exercise 15)

There are 21 terms in the series. If you said 20, you just
experienced a fencepost error (not knowing whether to
count the fenceposts or the spaces between them).

Answer 16 (from exercise 16)

 
September, 1752 had only 19 days.
This was done to synchronize
calendars as part of the Gregorian
Reformation.

The directory could have been removed
by another process, you might not have
permission to read it, the drive might
not be mounted, …; you get the
picture.

We sneakily didn’t specify the types of
a and b. Operator overloading might
have defined +, =, or != to have
unexpected behavior. Also, a and b
may be aliases for the same variable, so
the second assignment will overwrite
the value stored in the first. Also, if the
program is concurrent and badly
written, a might have been updated by
the time the addition takes place.

In non-Euclidean geometry, the sum of
the angles of a triangle will not add up
to 180°. Think of a triangle mapped on
the surface of a sphere.

Leap minutes may have 61 or 62
seconds.

Depending on the language, numeric
overflow may leave the result of a+1
negative.

Answer 17 (from exercise 17)

In most C and C++ implementations, there is no way of
checking that a pointer actually points to valid memory.



A common mistake is to deallocate a block of memory
and reference that memory later in the program. By
then, the memory pointed to may well have been
reallocated to some other purpose. By setting the
pointer to NULL, the programmers hope to prevent these
rogue references—in most cases, dereferencing a NULL
pointer will generate a runtime error.

Answer 18 (from exercise 18)

By setting the reference to NULL, you reduce the
number of pointers to the referenced object by one.
Once this count reaches zero, the object is eligible for
garbage collection. Setting the references to NULL can
be significant for long-running programs, where the
programmers need to ensure that memory utilization
doesn’t increase over time.

Answer 19 (from exercise 19)

A simple implementation could be:

event/strings_ex_1.rb

 

         class    FSM
           def    initialize(transitions, initial_state)
             @transitions = transitions   
             @state       = initial_state   
           end   
           def    accept(event)
             @state, action = TRANSITIONS[@state][event] || TRANSITIONS[@state][:default   ]
           end   
         end   

http://media.pragprog.com/titles/tpp20/code/event/strings_ex_1.rb


(Download this file to get the updated code that uses
this new FSM class.)

Answer 20 (from exercise 20)

 
…three network interface down events
within five minutes
This could be implemented using a
state machine, but it would be trickier
than it might first appear: if you get
events at minutes 1, 4, 7, and 8, then
you should trigger the warning on the
fourth event, which means the state
machine needs to be able to handle
reseting itself.
For this reason, event streams would
seem to be the technology of choice.
There’s a reactive function named
buffer with size and offset parameters
that would let you return each group of
three incoming events. You could then
look at the timestamps of the first and
last event in a group to determine if the
alarm should be triggered.

…after sunset, and there is motion
detected at the bottom of the stairs
followed by motion detected at the top
of the stairs…
This could probably be implemented
using a combination of pubsub and
state machines. You could use pubsub
to disseminate events to any number of
state machines, and then have the state
machines determine what to do.

…notify various reporting systems that
an order was completed.
This is probably best handled using
pubsub. You might want to use
streams, but that would require that the
systems being notified were also
stream based.

…three backend services and wait for
the responses.
This is similar to our example that used
streams to fetch user data.



Answer 21 (from exercise 21)

 
1. Shipping and sales tax are added to an

order:

         basic order → finalized order   

In conventional code, it’s likely you’d
have a function that calculated
shipping costs and another that
calculated tax. But we’re thinking
about transformations here, so we
transform an order with just items into
a new kind of thing: an order that can
be shipped.

2. Your application loads configuration
information from a named file:

         file name → configuration structure   

3. Someone logs in to a web application:

         user credentials → session   

Answer 22 (from exercise 22)

The high-level transformation:

 
 



         field contents as string   
             → [validate & convert]   
                 → {:ok, value} | {:error, reason}   

could be broken down into:

 
 

         field contents as string   
             → [convert string to integer]   
             → [check value >= 18]   
             → [check value <= 150]   
                 → {:ok, value} | {:error, reason}   

This assumes that you have an error-handling pipeline.

Answer 23 (from exercise 23)

Let’s answer the second part first: we prefer the first
piece of code.

In the second chunk of code, each step returns an object
that implements the next function we call: the object
returned by content_of must implement find_matching_lines,
and so on.

This means that the object returned by content_of is
coupled to our code. Imagine the requirement changed,
and we have to ignore lines starting with a # character.
In the transformation style, that would be easy:

 
 



         const    content     = File.read(file_name);
         const    no_comments = remove_comments(content)
         const    lines       = find_matching_lines(no_comments, pattern)
         const    result      = truncate_lines(lines)

We could event swap the order of remove_comments and
find_matching_lines and it would still work.

But in the chained style, this would be more difficult.
Where should our remove_comments method live: in the
object returned by content_of or the object returned by
find_matching_lines? And what other code will we break if
we change that object? This coupling is why the
method chaining style is sometimes called a train
wreck.

Answer 24 (from exercise 24)
Image processing.
For simple scheduling of a
workload among the parallel
processes, a shared work queue
may be more than adequate. You
might want to consider a
blackboard system if there is
feedback involved—that is, if the
results of one processed chunk
affect other chunks, as in machine
vision applications, or complex
3D image-warp transforms.

Group calendaring
This might be a good fit. You can
post scheduled meetings and
availability to the blackboard. You
have entities functioning
autonomously, feedback from
decisions is important, and
participants may come and go.

You might want to consider
partitioning this kind of
blackboard system depending on



who is searching: junior staff may
care about only the immediate
office, human resources may want
only English-speaking offices
worldwide, and the CEO may
want the whole enchilada.

There is also some flexibility on
data formats: we are free to ignore
formats or languages we don’t
understand. We have to
understand different formats only
for those offices that have
meetings with each other, and we
do not need to expose all
participants to a full transitive
closure of all possible formats.
This reduces coupling to where it
is necessary, and does not
constrain us artificially.
Network monitoring tool
This is very similar to the
mortgage/loan application
program. You’ve got trouble
reports sent in by users and
statistics reported automatically,
all posting to the blackboard. A
human or software agent can
analyze the blackboard to
diagnose network failures: two
errors on a line might just be
cosmic rays, but 20,000 errors and
you’ve got a hardware problem.
Just as the detectives solve the
murder mystery, you can have
multiple entities analyzing and
contributing ideas to solve the
network problems.

Answer 25 (from exercise 25)



The assumption with a list of key-value pairs is
generally that the key is unique, and hash libraries
typically enforce that either by the behavior of the hash
itself or with explicit error messages for duplicated
keys. However, an array typically does not have those
constraints, and will happily store duplicate keys unless
you code it specifically not to. So in this case, the first
key found that matches DepositAccount wins, and any
remaining matching entries are ignored. The order of
entries is not guaranteed, so sometimes it works and
sometimes it doesn’t.

And what about the difference in machines from
development and production? It’s just a coincidence.

Answer 26 (from exercise 26)

The fact that a purely numeric field works in the US,
Canada, and the Caribbean is a coincidence. Per the
ITU spec, international call format starts with a literal +
sign. The * character is also used in some locales, and
more commonly, leading zeros can be a part of the
number. Never store a phone number in a numeric field.

Answer 27 (from exercise 27)

Depends on where you are. In the US, volume
measures are based on the gallon, which is the volume
of a cylinder 6 inches high and 7 inches in diameter,
rounded to the nearest cubic inch.

In Canada, “one cup” in a recipe could mean any of

 
1/5 of an imperial quart, or 227ml

1/4 of a US quart, or 236ml

16 metric tablespoons, or 240ml

1/4 of a liter, or 250ml



Unless you’re talking about a rice cooker, in which case
“one cup” is 180ml. That derives from the koku, which
was the estimated volume of dry rice required to feed
one person for one year: apparently, around 180L. Rice
cooker cups are 1 gō, which is 1/1000 of a koku. So,
roughly the amount of rice a person would eat at a
single meal.[85]

Answer 28 (from exercise 28)

Clearly, we can’t give any absolute answers to this
exercise. However, we can give you a couple of
pointers.

If you find that your results don’t follow a smooth
curve, you might want to check to see if some other
activity is using some of your processor’s power. You
probably won’t get good figures if background
processes periodically take cycles away from your
programs. You might also want to check memory: if the
application starts using swap space, performance will
nose dive.

Here’s a graph of the results of running the code on one
of our machines:





Answer 29 (from exercise 29)

There are a couple of ways of getting there. One is to
turn the problem on its head. If the array has just one
element, we don’t iterate around the loop. Each
additional iteration doubles the size of the array we can
search. The general formula for the array size is

therefore , where  is the number of iterations. If

you take logs to the base 2 of each side, you get ,
which by the definition of logs becomes .

Answer 30 (from exercise 30)

This is probably too much of a flashback to secondary
school math, but the formula for converting a logarithm
in base  to one in base  is:

Because  is a constant, then we can ignore it inside
a Big-O result.

Answer 31 (from exercise 31)

One property we can test is that an order succeeds if the
warehouse has enough items on hand. We can generate
orders for random quantities of items, and verify that an
“OK” tuple is returned if the warehouse had stock.

Answer 32 (from exercise 32)

This is a good use of property-based testing. The unit
tests can focus on individual cases where you’ve
worked out the result by some other means, and the
property tests can focus on things like:

 
Do any two crates overlap?

Does any part of any crate exceed the width or length of the truck?



Is the packing density (area used by crates divided by the area of the truck

bed) less than or equal to 1?

If it’s part of the requirement, does the packing density exceed the minimum

acceptable density?

Answer 33 (from exercise 33)

 
1. This statement sounds like a real

requirement: there may be constraints
placed on the application by its
environment.

2. On its own, this statement isn’t really a
requirement. But to find out what’s
really required, you have to ask the
magic question, “Why?”
It may be that this is a corporate
standard, in which case the actual
requirement should be something like
“all UI elements must conform to the
MegaCorp User Interface Standards,
V12.76.”
It may be that this is a color that the
design team happen to like. In that
case, you should think about the way
the design team also likes to change
their minds, and phrase the requirement
as “the background color of all modal
windows must be configurable. As
shipped, the color will be gray.” Even
better would be the broader statement
“All visual elements of the application
(colors, fonts, and languages) must be
configurable.”
Or it may simply mean that the user
needs to be able to distinguish modal
and nonmodal windows. If that’s the
case, some more discussions are
needed.

3. This statement is not a requirement, it’s
architecture. When faced with
something like this, you have to dig
deep to find out what the user is
thinking. Is this a scaling issue? Or



performance? Cost? Security? The
answers will inform your design.

4. The underlying requirement is
probably something closer to “The
system will prevent the user from
making invalid entries in fields, and
will warn the user when these entries
are made.’’

5. This statement is probably a hard
requirement, based on some hardware
limitation.

And here’s a solution to the four-dots problem:

Footnotes

[85]
Thanks for this bit of trivia goes to
Avi Bryant (@avibryant)

Copyright © 2020 Pearson Education, Inc.



Table of Contents

&#160;Foreword

&#160;Preface to the Second Edition

How the Book Is Organized
What’s in a Name?
Source Code and Other Resources
Send Us Feedback
Second Edition
Acknowledgments

&#160;From the Preface to the First Edition

Who Should Read This Book?
What Makes a Pragmatic
Programmer?
Individual Pragmatists, Large
Teams
It’s a Continuous Process

1. A Pragmatic Philosophy

Topic 1. It&#8217;s Your LifeIt’s
Your Life
Topic 2. The Cat Ate My Source
Code
Topic 3. Software Entropy
Topic 4. Stone Soup and Boiled
Frogs



Topic 5. Good-Enough Software
Topic 6. Your Knowledge
Portfolio
Topic 7. Communicate!

2. A Pragmatic Approach

Topic 8. The Essence of Good
Design
Topic 9. DRY&#8212;The Evils
of DuplicationDRY—The Evils of
Duplication
Topic 10. Orthogonality
Topic 11. Reversibility
Topic 12. Tracer Bullets
Topic 13. Prototypes and Post-it
Notes
Topic 14. Domain Languages
Topic 15. Estimating

3. The Basic Tools

Topic 16. The Power of Plain Text
Topic 17. Shell Games
Topic 18. Power Editing
Topic 19. Version Control
Topic 20. Debugging
Topic 21. Text Manipulation
Topic 22. Engineering Daybooks

4. Pragmatic Paranoia



Topic 23. Design by Contract
Topic 24. Dead Programs Tell No
Lies
Topic 25. Assertive Programming
Topic 26. How to Balance
Resources
Topic 27. Don&#8217;t Outrun
Your HeadlightsDon’t Outrun
Your Headlights

5. Bend, or Break

Topic 28. Decoupling
Topic 29. Juggling the Real World
Topic 30. Transforming
Programming
Topic 31. Inheritance Tax
Topic 32. Configuration

6. Concurrency

Topic 33. Breaking Temporal
Coupling
Topic 34. Shared State Is
Incorrect State
Topic 35. Actors and Processes
Topic 36. Blackboards

7. While You Are Coding



Topic 37. Listen to Your Lizard
Brain
Topic 38. Programming by
Coincidence
Topic 39. Algorithm Speed
Topic 40. Refactoring
Topic 41. Test to Code
Topic 42. Property-Based Testing
Topic 43. Stay Safe Out There
Topic 44. Naming Things

8. Before the Project

Topic 45. The Requirements Pit
Topic 46. Solving Impossible
Puzzles
Topic 47. Working Together
Topic 48. The Essence of Agility

9. Pragmatic Projects

Topic 49. Pragmatic Teams
Topic 50. Coconuts Don&#8217;t
Cut ItCoconuts Don’t Cut It
Topic 51. Pragmatic Starter Kit
Topic 52. Delight Your Users
Topic 53. Pride and Prejudice

10. Postface

A1. Bibliography



A2. Possible Answers to the Exercises


	Foreword
	Preface to the Second Edition
	How the Book Is Organized
	What’s in a Name?
	Source Code and Other Resources
	Send Us Feedback
	Second Edition Acknowledgments

	From the Preface to the First Edition
	Who Should Read This Book?
	What Makes a Pragmatic Programmer?
	Individual Pragmatists, Large Teams
	It’s a Continuous Process

	1. A Pragmatic Philosophy
	Topic 1. It’s Your LifeIt’s Your Life
	Topic 2. The Cat Ate My Source Code
	Topic 3. Software Entropy
	Topic 4. Stone Soup and Boiled Frogs
	Topic 5. Good-Enough Software
	Topic 6. Your Knowledge Portfolio
	Topic 7. Communicate!

	2. A Pragmatic Approach
	Topic 8. The Essence of Good Design
	Topic 9. DRY—The Evils of DuplicationDRY—The Evils of Duplication
	Topic 10. Orthogonality
	Topic 11. Reversibility
	Topic 12. Tracer Bullets
	Topic 13. Prototypes and Post-it Notes
	Topic 14. Domain Languages
	Topic 15. Estimating

	3. The Basic Tools
	Topic 16. The Power of Plain Text
	Topic 17. Shell Games
	Topic 18. Power Editing
	Topic 19. Version Control
	Topic 20. Debugging
	Topic 21. Text Manipulation
	Topic 22. Engineering Daybooks

	4. Pragmatic Paranoia
	Topic 23. Design by Contract
	Topic 24. Dead Programs Tell No Lies
	Topic 25. Assertive Programming
	Topic 26. How to Balance Resources
	Topic 27. Don’t Outrun Your HeadlightsDon’t Outrun Your Headlights

	5. Bend, or Break
	Topic 28. Decoupling
	Topic 29. Juggling the Real World
	Topic 30. Transforming Programming
	Topic 31. Inheritance Tax
	Topic 32. Configuration

	6. Concurrency
	Topic 33. Breaking Temporal Coupling
	Topic 34. Shared State Is Incorrect State
	Topic 35. Actors and Processes
	Topic 36. Blackboards

	7. While You Are Coding
	Topic 37. Listen to Your Lizard Brain
	Topic 38. Programming by Coincidence
	Topic 39. Algorithm Speed
	Topic 40. Refactoring
	Topic 41. Test to Code
	Topic 42. Property-Based Testing
	Topic 43. Stay Safe Out There
	Topic 44. Naming Things

	8. Before the Project
	Topic 45. The Requirements Pit
	Topic 46. Solving Impossible Puzzles
	Topic 47. Working Together
	Topic 48. The Essence of Agility

	9. Pragmatic Projects
	Topic 49. Pragmatic Teams
	Topic 50. Coconuts Don’t Cut ItCoconuts Don’t Cut It
	Topic 51. Pragmatic Starter Kit
	Topic 52. Delight Your Users
	Topic 53. Pride and Prejudice

	10. Postface
	A1. Bibliography
	A2. Possible Answers to the Exercises

