




The Rules of Contagion



First published in Great Britain in 2020 by
Profile Books Ltd

29 Cloth Fair
London

EC1A 7JQ
www.profilebooks.com

Copyright © Adam Kucharski, 2020
The moral right of the author has been asserted.

All rights reserved. Without limiting the rights under copyright reserved above, no
part of this publication may be reproduced, stored or introduced into a retrieval
system, or transmitted, in any form or by any means (electronic, mechanical,

photocopying, recording or otherwise), without the prior written permission of both
the copyright owner and the publisher of this book.

A CIP catalogue record for this book is available from the British Library.

ISBN 9781788160193
eISBN 9781782834304

http://www.profilebooks.com/


Adam Kucharski is an associate professor at the
London School of Hygiene & Tropical Medicine. A
mathematician by training, his work on global outbreaks
such as the Ebola epidemic and the Zika virus has taken
him from villages in the Pacific Islands to hospitals in
Latin America. He is a TED fellow and winner of the
2016 Rosalind Franklin Award Lecture and the 2012
Wellcome Trust Science Writing Prize. The author of
The Perfect Bet, his writing has appeared in the
Observer, Financial Times, Scientific American and
New Statesman.

Also by Adam Kucharski
The Perfect Bet



For Emily



The Rules of Contagion

Why Things Spread — and Why They Stop

Adam Kucharski



Introduction

A FEW YEARS AGO, I accidentally caused a small outbreak of
misinformation. On my commute to work, a friend who works
in tech had sent me a stock photo of a group hunched over a
table wearing balaclavas. We had a running joke about how
news articles on computer hacking would often include staged
pictures of people looking sinister. But this photo, below a
headline about illicit online markets, had taken things much
further: as well as balaclavas, there was a pile of drugs, and a
man who apparently wasn’t wearing any trousers. It seemed so
surreal, so inexplicable.

I decided to tweet it. ‘This stock photo is fascinating in so
many ways,’ I wrote,[1] pointing out all the quirks in the
image. Twitter users seemed to agree, and within minutes
dozens of people had shared and liked my post, including
several journalists. Then, just as I was starting to wonder how
far it might spread, some users pointed out that I’d made a
mistake. It wasn’t a stock photo at all; it was a still image from
a documentary about drug dealing on social media. Which, in
retrospect, made a lot more sense (apart from the lack of
trousers).

Somewhat embarrassed, I posted a correction, and interest
soon faded. But even in that short space of time, almost fifty
thousand people had seen my tweet. Given that my job
involves analysing disease outbreaks, I was curious about what
had just happened. Why did my tweet spread so quickly at
first? Did that correction really slow it down? What if people
had taken longer to spot the mistake?

Questions like these crop up in a whole range of fields.
When we think of contagion, we tend to think about things
like infectious diseases or viral online content. But outbreaks
can come in many forms. They might involve things that bring
harm – like malware, violence or financial crises – or benefits,
like innovations and culture. Some will start with tangible
infections such as biological pathogens and computer viruses,
others with abstract ideas and beliefs. Outbreaks will



sometimes rise quickly; on other occasions they will take a
while to grow. Some will create unexpected patterns and, as
we wait to see what happens next, these patterns will fuel
excitement, curiosity, or even fear. So why do outbreaks take
off – and decline – in the way they do?

THREE AND A HALF YEARS into the First World War, a new threat
to life appeared. While the German army was launching its
Spring Offensive in France, across the Atlantic people had
started dying at Camp Funston, a busy military base in Kansas.
The cause was a new type of influenza virus, which had
potentially jumped from animals into humans at a nearby
farm. During 1918 and 1919, the infection would become a
global epidemic – otherwise known as a pandemic – and
would kill over fifty million people. The final death toll was
twice as many as the entire First World War.[2]

Over the following century, there would be four more flu
pandemics. This raises the obvious question: what will the
next one look like? Unfortunately it’s difficult to say, because
previous flu pandemics were all slightly different. There were
different strains of the virus, and outbreaks hit some places
harder than others. In fact, there’s a saying in my field: ‘if
you’ve seen one pandemic, you’ve seen … one pandemic.’[3]

We face the same problem whether we’re studying the
spread of a disease, an online trend, or something else; one
outbreak won’t necessarily look like another. What we need is
a way to separate features that are specific to a particular
outbreak from the underlying principles that drive contagion.
A way to look beyond simplistic explanations, and uncover
what is really behind the outbreak patterns we observe.

That’s the aim of this book. By exploring contagion across
different areas of life, we’ll find out what makes things spread
and why outbreaks look like they do. Along the way, we’ll see
the connections that are emerging between seemingly
unrelated problems: from banking crises, gun violence and
fake news to disease evolution, opioid addiction and social
inequality. As well as covering the ideas that can help us to
tackle outbreaks, we’ll look at the unusual situations that are



changing how we think about patterns of infections, beliefs,
and behaviour.

Let’s start with the shape of an outbreak. When disease
researchers hear about a new threat, one of the first things we
do is draw what we call an outbreak curve – a graph showing
how many cases have appeared over time. Although the shape
can vary a lot, it will typically include four main stages: the
spark, growth, peak, and decline. In some cases, these stages
will appear multiple times; when the ‘swine flu’ pandemic
arrived in the UK in April 2009, it grew rapidly during early
summer, peaking in July, then grew and peaked again in late
October (we’ll find out why later in the book).

Influenza pandemic in the UK, 2009

Data from Public Health England[4]

Despite the different stages of an outbreak, the focus will
often fall on the spark. People want to know why it took off,
how it started, and who was responsible. In hindsight, it’s
tempting to conjure up explanations and narratives, as if the
outbreak was inevitable and could happen the same way again.
But if we simply list the characteristics of successful infections
or trends, we end up with an incomplete picture of how
outbreaks actually work. Most things don’t spark: for every
influenza virus that jumps from animals to humans and
spreads worldwide as a pandemic, there are millions that fail
to infect any people at all. For every tweet that goes viral,
there are many more that don’t.



Even if an outbreak does spark, it’s only the start. Try and
picture the shape of a particular outbreak. It might be a disease
epidemic, or the spread of a new idea. How quickly does it
grow? Why does it grow that quickly? When does it peak? Is
there only one peak? How long does the decline phase last?

Rather than just viewing outbreaks in terms of whether they
take off or not, we need to think about how to measure them
and how to predict them. Take the Ebola epidemic in West
Africa back in 2014. After spreading to Sierra Leone and
Liberia from Guinea, cases began to rise sharply. Our team’s
early analysis suggested that the epidemic was doubling every
two weeks in the worst affected areas.[5] It meant that if there
were currently 100 cases, there could be 200 more in a
fortnight and another 400 after a month. Health agencies
therefore needed to respond quickly: the longer it took them to
tackle the epidemic, the larger their control efforts would need
to be. In essence, opening one new treatment centre
immediately was equivalent to opening four in a month’s time.

Some outbreaks grow on even faster timescales. In May
2017, the WannaCry computer virus hit machines around the
world, including crucial NHS systems. In its early stages, the
attack was doubling in size almost every hour, eventually
affecting more than 200,000 computers in 150 countries.[6]
Other types of technology have taken much longer to spread.
When VCRs became popular in the early 1980s, the number of
owners was doubling only every 480 days or so.[7]

As well as speed, there’s also the question of size:
contagion that spreads quickly won’t necessarily cause a larger
overall outbreak. So what causes an outbreak to peak? And
what happens after the peak? It’s an issue that’s relevant to
many industries, from finance and politics to technology and
health. However, not everyone has the same attitude to
outbreaks. My wife works in advertising; while my research
aims to stop disease transmission, she wants ideas and
messages to spread. Although these outlooks seem very
different, it’s increasingly possible to measure and compare
contagion across industries, using ideas from one area of life
to help us understand another. Over the coming chapters, we
will see why financial crises are similar to sexually transmitted



infections, why disease researchers found it so easy to predict
games like the ice bucket challenge, and how ideas used to
eradicate smallpox are helping to stop gun violence. We will
also look at the techniques we can use to slow down
transmission or – in the case of marketing – keep it going.

Our understanding of contagion has advanced dramatically
in recent years, and not just in my field of disease research.
With detailed data on social interactions, researchers are
discovering how information can evolve to become more
persuasive and shareable, why some outbreaks keep peaking –
like the 2009 flu pandemic did – and how ‘small-world’
connections between distant friends can help certain ideas
spread widely (and yet hinder others). At the same time, we’re
learning more about how rumours emerge and spread, why
some outbreaks are harder to explain than others, and how
online algorithms are influencing our lives and infringing on
our privacy.

As a result, ideas from outbreak science are now helping to
tackle threats in other fields. Central banks are using these
methods to prevent future financial crises, while technology
firms are building new defences against harmful software. In
the process, researchers are challenging long-held ideas about
how outbreaks work. When it comes to contagion, history has
shown that ideas about how things spread don’t always match
reality. Medieval communities, for example, blamed the
sporadic nature of outbreaks on astrological influences;
influenza means ‘influence’ in Italian.[8]

Popular explanations for outbreaks continue to be
overturned by scientific discoveries. This research is
unravelling the mysteries of contagion, showing us how to
avoid simplistic anecdotes and ineffective solutions. But
despite this progress, coverage of outbreaks still tends to be
vague: we simply hear that something is contagious or that it’s
gone viral. We rarely learn why it grew so quickly (or slowly),
what made it peak, or what we should expect next time.
Whether we’re interested in spreading ideas and innovations,
or stopping viruses and violence, we need to identify what’s
really driving contagion. And sometimes, that means
rethinking everything we thought we knew about an infection.



1
A theory of happenings

WHEN I WAS THREE YEARS OLD, I lost the ability to walk. It
happened gradually at first: a struggle to stand up here, a lack
of balance there. But things soon deteriorated. Short distances
became tricky, while slopes and stairs were near impossible.
One Friday afternoon in April 1990, my parents took me and
my failing legs to the Royal United Hospital in Bath. By the
next morning I was seeing a neurological specialist. The initial
suspect was a spinal tumour. Several days of tests followed;
there were X-rays, blood samples, nerve stimulation, and a
lumbar puncture to extract spinal fluid. As the results came in,
the diagnosis shifted towards a rare condition known as
Guillain-Barré syndrome (GBS). Named after French
neurologists Georges Guillain and Jean Alexandre Barré, GBS

is the result of a malfunctioning immune system. Rather than
protecting my body, it had started attacking nerves, spreading
paralysis.

Sometimes the sum of human wisdom is to be found, as
writer Alexandre Dumas put it, within the words ‘wait and
hope’.[1] And that was to be my treatment, to wait and to
hope. My parents were given a multicoloured party horn to
check the strength of my breathing (there was no home
equipment small enough for a toddler). If the horn failed to
unroll when I blew, it meant the paralysis had reached the
muscles that pumped air into my lungs.

There is a photo of me sitting on my grandfather’s lap
around this time. He is in a wheelchair. He’d caught polio in
India aged twenty-five, and had been unable to walk since. I’d
only ever known him like that, his strong arms wheeling
uncooperative legs. In a way, it brought familiarity to this
unfamiliar situation. Yet what linked us was also what
separated us. We shared a symptom, but the mark of his polio
was permanent; GBS, for all its misery, was usually a temporary
condition.



So we waited and we hoped. The party horn never failed to
unroll, and a lengthy recovery began. My parents told me GBS

stood for ‘Getting Better Slowly’. It was twelve months before
I could walk, and another twelve before I could manage
anything resembling a run. My balance would suffer for years
to come.

As my symptoms faded, so did my memories. Events
became distant, left behind to another life. I can no longer
remember my parents giving me chocolate buttons before the
needles. Or how I subsequently refused to eat them – even on
a normal day – fearing what would come next. The memories
of games of tag at primary school have faded too, with me
spending all of lunchtime as ‘it’, my legs still too weak to
catch the others. For the twenty-five years that followed my
illness, I never really spoke about GBS. I left school, went to
university, completed a PhD. GBS seemed too rare, too
meaningless to bring up. Guillain-what? Barré who? The story,
which I never told anyway, was over for me.

Except it wasn’t quite. In 2015, I was in the Fijian capital
Suva when I encountered GBS again, this time professionally.
I’d been in the city to help investigate a recent dengue fever
epidemic.[2] Transmitted by mosquitoes, the dengue virus
causes sporadic outbreaks on islands like Fiji. Although
symptoms are often mild, dengue can come with a severe
fever, potentially leading to hospitalisation. During the first
few months of 2014, over 25,000 people showed up at health
centres in Fiji with a suspected dengue infection, putting a
huge burden on the health system.

If you’re imagining an office perched on a sunny beach,
you’re not picturing Suva. Unlike Fiji’s resort-laden Western
division, the capital is a port city in the southeast of the main
island, Viti Levu. The two main roads of the city loop down
into a peninsula, forming the horseshoe shape of a magnet,
with the area in the middle attracting plenty of rain. Locals
who were familiar with British weather told me that I’d feel
right at home.

Another, much older, reminder of home was to follow soon
after. During an introductory meeting, a colleague at the World



Health Organization (WHO) mentioned that clusters of GBS had
been appearing on Pacific Islands. Unusual clusters. The
annual par for the disease was 1 or 2 cases per 100,000 people,
but in some places they’d seen double figures.[3]

Nobody ever worked out why I got GBS. Sometimes it
follows an infection – GBS has been linked to flu and
pneumonia, as well as other diseases[4] – but sometimes
there’s no clear trigger. In my case, the syndrome was just
noise, a random blip in the grand scheme of human health. But
in the Pacific during 2014/15, GBS represented a signal, just
like birth defects would soon do in Latin America.

Behind these new signals lay the Zika virus, named after
the Zika Forest in southern Uganda. A close relative of the
dengue virus, Zika was first identified in the forest’s
mosquitoes in 1947. In the local language, Zika means
‘overgrown’[5] and grow it would, from Uganda to Tahiti to
Rio de Janeiro and beyond. Those signals in the Pacific and
Latin America in 2014 and 2015 would gradually become
clearer. Researchers found increasing evidence of a link
between Zika infection and neurological conditions: as well as
GBS, Zika seemed to lead to pregnancy complications. The
main concern was microcephaly, where babies develop a
smaller brain than usual, resulting in a smaller skull.[6] This
can cause a host of serious health issues, including seizures
and intellectual disabilities.

In February 2016, triggered by the possibility that Zika was
causing microcephaly,[7] WHO announced that the infection
was a Public Health Emergency of International Concern, or
PHEIC (pronounced ‘fake’). Early studies had suggested that for
every 100 Zika infections during pregnancy, there could be
between 1 and 20 babies with microcephaly.[8] Although
microcephaly would become the primary concern about Zika,
it was GBS that first brought the infection into health agencies’
focus, as well as into mine. Sitting in my temporary office in
Suva in 2015, I realised that this syndrome, which had shaped
so much of my childhood, was one I knew almost nothing
about. My ignorance was mostly self-inflicted, with some
(entirely understandable) assistance from my parents: it was
years before they told me GBS could be fatal.



At the same time, the health world was facing a much
deeper ignorance. Zika was generating a huge volume of
questions, few of which could yet be answered. ‘Rarely have
scientists engaged with a new research agenda with such a
sense of urgency and from such a small knowledge base,’
wrote epidemiologist Laura Rodrigues in early 2016.[9] For
me, the first challenge was to understand the dynamics of
these Zika outbreaks. How easily did the infection spread?
Were the outbreaks similar to dengue ones? How many cases
should we expect?

To answer these questions, our research group started to
develop mathematical models of the outbreaks. Such
approaches are now commonly used in public health, as well
as appearing in several other fields of research. But where do
these models originally come from? And how do they actually
work? It’s a story that starts in 1883 with a young army
surgeon, a water tank and an angry staff officer.

RONALD ROSS HAD WANTED to be a writer, but his father pushed
him into medical school. His studies at St Bartholomew’s in
London struggled to compete with his poems, plays and music,
and when Ross took his two qualifying exams in 1879, he
passed only the surgery one. This meant he could not join the
colonial Indian Medical Service, his father’s preferred career
path.[10]

Unable to practice general medicine, Ross spent the next
year sailing the Atlantic as a ship’s surgeon. Eventually he
passed his remaining medical exam and scraped into the
Indian Medical Service in 1881. After two years in Madras,
Ross moved to Bangalore to take up a post as Garrison
Surgeon in September 1883. From his comfortable colonial
viewpoint, he claimed it was a ‘picture of pleasure’, a city of
sun, gardens and pillared villas. The only problem, as he saw
it, was the mosquitoes. His new bungalow seemed to attract
far more than the other army rooms. He suspected it was
something to do with the water barrel sitting outside his
window, which was surrounded by the insects.

Ross’s solution was to tip over the tank, destroying the
mosquitoes’ breeding ground. It seemed to work: without the



stagnant water, the insects left him alone. Spurred on by his
successful experiment, he asked his staff officer if they could
remove the other water tanks too. And while they were at it,
why not also get rid of the vases and tins that lay scattered
around the mess? If the mosquitoes had nowhere to breed, they
would have little option but to move on. The officer wasn’t
interested. ‘He was very scornful and refused to allow men to
deal with them,’ Ross later wrote, ‘for he said it would be
upsetting to the order of nature, and as mosquitoes were
created for some purpose it was our duty to bear with them.’

The experiment would turn out to be the first in a lifelong
analysis of mosquitoes. The second study would come over a
decade later, inspired by a conversation in London. In 1894,
Ross had travelled back to England for a one-year sabbatical.
The city had changed a lot since his last visit: Tower Bridge
had been completed, Prime Minister William Gladstone had
just resigned, and the country was about to get its first film
parlour.[11] When Ross arrived, though, his mind was focused
elsewhere. He wanted to catch up on the latest malaria
research. In India, people regularly fell ill with the disease,
which could lead to fever, vomiting, and sometimes death.

Malaria is one of the oldest diseases known to humanity. In
fact, it may have been with us for our entire history as a
species.[12] However, its name comes from Medieval Italy.
Those who caught a fever would often blame ‘mala aria’: bad
air.[13] The name stuck, as did the blame. Although the
disease was eventually traced to a parasite called Plasmodium,
when Ross arrived back in England the cause of its spread was
still a mystery.

In London, Ross called on biologist Alfredo Kanthack at St
Bartholomew’s, hoping to learn about developments he may
have missed while in India. Kanthack said that if Ross wanted
to know more about parasites like malaria, he should go and
speak to a doctor called Patrick Manson. For several years,
Manson had researched parasites in southeastern China. While
there, he had discovered how people get infected with a
particularly nasty family of microscopic worms called filariae.
These parasites were small enough to get into a person’s
bloodstream and infect their lymph nodes, causing fluid to



accumulate within the body. In severe cases, a person’s limbs
could swell to many times their natural size, a condition
known as elephantiasis. As well as identifying how the filariae
caused disease, Manson had shown that when mosquitoes fed
on infected humans, they could also suck up the worms.[14]

Manson invited Ross into his lab, teaching him how to find
parasites like malaria in infected patients. He also pointed
Ross to recent academic papers he’d missed while out in India.
‘I visited him often and learnt all he had to tell me,’ Ross later
recalled. One winter afternoon, they were walking down
Oxford Street, when Manson made a comment that would
transform Ross’s career. ‘Do you know,’ he said, ‘I have
formed the theory that mosquitoes carry malaria just as they
carry filariae.’

Other cultures had long speculated about a potential link
between mosquitoes and malaria. British geographer Richard
Burton noted that in Somalia, it was often said that mosquito
bites brought on deadly fevers, though Burton himself
dismissed the idea. ‘The superstition probably arises from the
fact that mosquitoes and fevers become formidable about the
same time,’ he wrote in 1856.[15] Some people had even
developed treatments for malaria, despite not knowing what
caused the disease. In the fourth century, Chinese scholar Ge
Hong described how the qinghao plant could reduce fevers.
Extracts of this plant now form the basis for modern malaria
treatments.[16] (Other attempts were less successful: the word
‘abracadabra’ originated as a Roman spell to ward off the
disease.[17])

Ross had heard the speculation linking mosquitoes and
malaria, but Manson’s argument was the first to really
convince him. Just as mosquitoes ingested those tiny worms
when they fed on human blood, Manson reckoned that they
could also pick up malaria parasites. These parasites then
reproduced within the mosquito before somehow making their
way back into humans. Manson suggested that drinking water
might be the source of infection. When Ross returned to India,
he set out to test the idea, with an experiment that would be
unlikely to pass a modern ethics board.[18] He got mosquitoes
to feed on an infected patient then lay eggs in a bottle of water;



once the eggs had hatched, he paid three people to drink the
water. To his disappointment, none of them got malaria. So
how did the parasites get into people?

Ross eventually wrote to Manson with a new theory,
suggesting that the infection might spread through mosquito
bites. The mosquitoes injected some saliva with each bite:
maybe this was enough to let the parasites in? Unable to
recruit enough human volunteers for another study, Ross
experimented with birds. First, he collected some mosquitoes
and got them to feed on the blood of an infected bird. Then he
let these mosquitoes bite healthy birds, which soon came down
with the disease as well. Finally, he dissected the saliva glands
of the infected mosquitoes, where he found malaria parasites.
Having discovered the true route of transmission, he realised
just how absurd their previous theories had been. ‘Men and
birds don’t go about eating dead mosquitoes,’ he told Manson.

In 1902, Ross received the second ever Nobel Prize for
medicine for his work on malaria. Despite contributing to the
discovery, Manson did not share the award. He only found out
that Ross had won when he saw it in a newspaper.[19] The
once close friendship between mentor and student gradually
splintered into a sharp animosity. Though he was a brilliant
scientist, Ross could be a divisive colleague. He got into a
series of disputes with his rivals, often involving legal action.
In 1912, he even threatened to sue Manson for libel.[20] The
offence? Manson had written a complimentary reference letter
for another researcher, who was taking up a professorship that
Ross had recently vacated. Manson did not rise to the
argument, choosing to apologise instead. ‘It takes two fools to
make a quarrel,’ as he later put it.[21]

Ross would continue to work on malaria without Manson.
In the process, he’d find a new outlet for his single-minded
stubbornness, and a new set of opponents. Having discovered
how malaria spread, he wanted to demonstrate that it could be
stopped.

MALARIA ONCE HAD A MUCH BROADER reach than it does today.
For centuries, the disease stretched across Europe and North
America, from Oslo to Ontario. Even as temperatures dropped



during the so-called Little Ice Age in the seventeenth and
eighteenth centuries, the biting cold of winter would still be
followed by the biting mosquitoes of summer.[22] Malaria was
endemic in many temperate countries, with ongoing
transmission and a regular stream of new cases from one year
to the next. Eight of Shakespeare’s plays include mentions of
‘ague’, a medieval term for malarial fever. The salt marshes of
Essex, northeast of London, had been a notorious source of
disease for centuries; when Ronald Ross was a student, he’d
treated a woman who picked up malaria there.

Having made the link between insects and infections, Ross
argued that removing mosquitoes was the key to controlling
malaria. His experiences in India – like the experiment with
the water tank in Bangalore – had persuaded him that
mosquito numbers could be reduced. But the idea went against
popular wisdom. It was impossible to get rid of every last
mosquito, went the argument, which meant there would
always be some insects left, and hence potential for malaria to
spread. Ross acknowledged that some mosquitoes would
remain, but he believed that malaria transmission could still be
stopped. From Freetown to Calcutta, his suggestions were at
best ignored and at worst derided. ‘Everywhere, my proposal
to reduce mosquitoes in towns was treated only with ridicule,’
he later recalled.

In 1901, Ross had led a team to Sierra Leone to try and put
his mosquito control ideas into practice. They cleared away
cartloads of tins and bottles. They poisoned the standing water
mosquitoes loved to breed in. And they filled potholes so
‘death-dealing street-puddles’, as Ross called them, couldn’t
form on the roads. The results were promising: when Ross
visited again a year later, there were far fewer mosquitoes.
However, he had warned health authorities the effect would
only last if the control measures continued. Funding for the
clean up had come from a wealthy Glaswegian donor. When
the money ran out, enthusiasm waned, and mosquito numbers
increased once again.

Ross had more success advising the Suez Canal Company
the following year. They’d been seeing around 2,000 malaria
cases a year in the Egyptian city of Ismailia. After intensive



mosquito reduction efforts, this number fell below a hundred.
Mosquito control was also proving effective elsewhere. When
the French had attempted to build a canal in Panama during
the 1880s, thousands of workers had died from malaria, as
well as yellow fever, another mosquito-borne infection. In
1905, with the Americans now leading the Panama project, US
Army Colonel William Gorgas oversaw an intensive mosquito
control campaign, making it possible to complete the canal.
[23] Meanwhile further south, physicians Oswaldo Cruz and
Carlos Chagas were spearheading anti-malaria programmes in
Brazil, helping to reduce cases among construction workers.
[24]

Despite these projects, many remained sceptical about
mosquito control. Ross would need a stronger argument to
persuade his peers. To make his point, he would eventually
turn to mathematics. During those early years in the Indian
Medical Service, he’d taught himself the subject to a fairly
advanced level. The artist in him admired its elegance. ‘A
proved proposition was like a perfectly balanced picture,’ he
later suggested. ‘An infinite series died away into the future
like the long-drawn variations of a sonata.’ Realising how
much he liked the subject, he regretted not studying it properly
at school. He was now too far into his career to change
direction; what use was mathematics to someone working in
medicine? ‘It was the unfortunate passion of a married man for
some beautiful but inaccessible lady,’ as he put it.

Ross put the intellectual affair behind him for a while, but
returned to the subject after his mosquito discovery. This time,
he found a way to make his mathematical hobby useful to his
professional work. There was a vital question he needed to
answer: was it really possible to control malaria without
removing every mosquito? To find out, he developed a simple
conceptual model of malaria transmission. He started by calc- 
ulating how many new human malaria infections there might
be each month, on average, in a given geographic area. This
meant breaking down the process of transmission into its basic
components. For transmission to occur, he reasoned, there first
needs to be at least one human in the area who is infectious
with malaria. As an example, he picked a scenario where there



was one infectious person in a village of 1,000. For the
infection to pass to another human, an Anopheles mosquito
would have to bite this infectious human. Ross reckoned only
1 in 4 mosquitoes would manage to bite someone. So if there
were 48,000 mosquitoes in an area, he’d expect only 12,000 to
bite a person. And because only 1 person in 1,000 was initially
infectious, on average only 12 of those 12,000 mosquitoes
would bite that one infectious person and pick up the parasite.

It takes some time for the malaria parasite to reproduce
within a mosquito, so these insects would also have to survive
long enough to become infectious. Ross assumed only 1 in
every 3 mosquitoes would make it this far, which meant that of
the 12 mosquitoes with the parasite, only 4 would eventually
become infectious. Finally, these mosquitoes would need to
bite another human to pass on the infection. If, again, only 1 in
4 of them successfully fed off a human, this would leave a
single infectious mosquito to transmit the virus. Ross’s
calculation showed that even if there were 48,000 mosquitoes
in the area, on average they would generate only one new
human infection.

If there were more mosquitoes, or more infected humans,
by the above logic we’d expect more new infections per
month. However, there is a second process that counteracts
this effect: Ross estimated that around 20 per cent of humans
infected with malaria would recover each month. For malaria
to remain endemic in the population, these two processes –
infection and recovery – would need to balance each other out.
If the recoveries outpaced the rate of new infections, the level
of disease eventually would decline to zero.

This was his crucial insight. It wasn’t necessary to get rid of
every last mosquito to control malaria: there was a critical
mosquito density, and once the mosquito population fell below
this level, the disease would fade away by itself. As Ross put
it, ‘malaria cannot persist in a community unless the
Anophelines are so numerous that the number of new
infections compensates for the number of recoveries.’



Ross calculated that even if there were 48,000 mosquitoes in a
village that contained someone infected with malaria, it might

only result in one additional human case

When he wrote up the analysis in his 1910 book The
Prevention of Malaria, Ross acknowledged that his readers
might not follow all of his calculations. Still, he believed that
they would be able to appreciate the implications. ‘The reader
should make a careful study of those ideas,’ he wrote, ‘and
will, I think, have little difficulty in understanding them,
though he may have forgotten most of his mathematics’.
Keeping with the mathematical theme, he called his discovery
the ‘mosquito theorem’.

The analysis showed how malaria could be controlled, but
it also included a much deeper insight, which would
revolutionise how we look at contagion. As Ross saw it, there
were two ways to approach disease analysis. Let’s call them
‘descriptive’ and ‘mechanistic’ methods. In Ross’s era, most
studies used descriptive reasoning. This involved starting with
real-life data and working backwards to identify predictable
patterns. Take William Farr’s analysis of a London smallpox
outbreak in the late 1830s. A government statistician, Farr had
noticed that the epidemic grew rapidly at first, but eventually
this growth slowed until the outbreak peaked, then started to
decline. This decline was almost a mirror image of the growth
phase. Farr plotted a curve through case data to capture the
general shape; when another outbreak started in 1840, he
found it followed much the same path.[25] In his analysis, Farr
didn’t account for the mechanics of disease transmission.
There were no rates of infection or rates of recovery. This isn’t



that surprising: at the time nobody knew that smallpox was a
virus. Farr’s method therefore focused on what shape
epidemics take, not why they take that shape.[26]

In contrast, Ross adopted a mechanistic approach. Rather
than taking data and finding patterns that could describe the
observed trends, he started by outlining the main processes
that influenced transmission. Using his knowledge of malaria,
he specified how people became infected, how they infected
others, and how quickly they recovered. He summarised this
conceptual model of transmission using mathematical
equations, which he then analysed to make conclusions about
likely outbreak patterns.

Because his analysis included specific assumptions about
the transmission process, Ross could tweak these assumptions
to see what might happen if the situation changed. What effect
might mosquito reduction have? How quickly would the
disease disappear if transmission declined? Ross’s approach
meant he could look forward and ask ‘what if?’, rather than
just searching for patterns in existing data. Although other
researchers had made rough attempts at this type of analysis
before, Ross brought the ideas together into a clear,
comprehensive theory.[27] He showed how to examine
epidemics in a dynamic way, treating them as a series of
interacting processes rather than a set of static patterns.

Descriptive and mechanistic methods – one looking back
and the other forward – should in theory converge to the same
answer. Take the descriptive approach. With enough real-life
data, it would be possible to estimate the effect of mosquito
control: tip over a water tank, or remove mosquitoes in some
other way, and we can observe what happens. Conversely, the
predicted effect of mosquito control in Ross’s mathematical
analysis should ideally match the real impact of such
measures. If a control strategy genuinely works, both methods
should tell us that it does. The difference is that with Ross’s
mechanistic approach, we don’t need to knock over water
tanks to estimate what effect it might have.

Mathematical models like Ross’s often have a reputation
for being opaque or complicated. But in essence, a model is



just a simplification of the world, designed to help us
understand what might happen in a given situation.
Mechanistic models are particularly useful for questions that
we can’t answer with experiments. If a health agency wants to
know how effective their disease control strategy was, they
can’t go back and rerun the same epidemic without it.
Likewise, if we want to know what a future pandemic might
look like, we can’t deliberately release a new virus and see
how it spreads. Models give us the ability to examine
outbreaks without interfering with reality. We can explore how
things like transmission and recovery affect the spread of
infection. We can introduce different control measures – from
mosquito removal to vaccination – and see how effective they
might be in different situations.

In the early twentieth century, this approach was exactly
what Ross needed. When he announced that Anopheles
mosquitoes spread malaria, many of his peers were
unconvinced that mosquito control would reduce the disease.
This made descriptive analysis problematic: it’s tricky to
assess a control measure if it’s not being used. Thanks to his
new model, however, Ross had convinced himself that long-
term mosquito reduction would work. The next challenge was
convincing everyone else.

From a modern viewpoint, it might seem strange that there
was so much opposition to Ross’s ideas. Although the science
of epidemiology was expanding, creating new ways to analyse
disease patterns, the medical community didn’t view malaria
in the same way that Ross did. Fundamentally, it was a clash
of philosophies. Most physicians thought about malaria in
terms of descriptions: when looking at outbreaks, they dealt in
classifications rather than calculus. But Ross was adamant that
the processes behind disease epidemics needed to be
quantified. ‘Epidemiology is in fact a mathematical subject,’
he wrote in 1911, ‘and fewer absurd mistakes would be made
regarding it (for example, those regarding malaria) if more
attention were given to the mathematical study of it.’[28]

It would take many more years for mosquito control to be
widely adopted. Ross would not live to see the most dramatic
reductions in malaria cases: the disease remained in England



until the 1950s, and was only eliminated from continental
Europe in 1975.[29] Although his ideas eventually started to
catch on, he lamented the delay. ‘The world requires at least
ten years to understand a new idea,’ he once wrote, ‘however
important or simple it may be.’

It wasn’t just Ross’s practical efforts that would spread over
time. One of the team on that 1901 expedition to Sierra Leone
had been Anderson McKendrick, a newly qualified doctor
from Glasgow. McKendrick had top-scored in the Indian
Medical Service exams and was scheduled to start his new job
in India after the Sierra Leone trip.[30] On the ship back to
Britain,  McKendrick and Ross talked at length about the
mathematics of disease. The pair continued to exchange ideas
over the following years. Eventually, McKendrick would pick
up enough maths to try and build on Ross’s analysis. ‘I have
read your work in your capital book,’ he told Ross in August
1911. ‘I am trying to reach the same conclusions from
differential equations, but it is a very elusive business, and I
am having to extend mathematics in new directions. I doubt
whether I shall be able to get what I want, but “a man’s reach
must exceed his grasp”.’[31]

McKendrick would develop a scathing view of statisticians
like Karl Pearson, who relied heavily on descriptive analysis
rather than adopting Ross’s mechanistic methods. ‘The
Pearsonians have as usual made a frightful hash of the whole
business,’ he told Ross after reading a flawed analysis of
malaria infections. ‘I have no sympathy with them, or their
methods.’[32] Traditional descriptive approaches were an
important part of medicine – and still are – but they have
limitations when it comes to understanding the process of
transmission. McKendrick believed the future of outbreak
analysis lay with a more dynamic way of thinking. Ross
shared this view. ‘We shall end by establishing a new science,’
he once told McKendrick. ‘But first let you and me unlock the
door and then anybody can go in who likes.’[33]

ONE SUMMER EVENING IN 1924, William Kermack’s experiment
exploded, spraying corrosive alkali solution into his eyes. A
chemist by training, Kermack had been investigating the
methods commonly used to study spinal fluids. He was



working alone in Edinburgh’s Royal College of Physicians
Laboratory that evening, and would eventually spend two
months in hospital with his injuries. The accident left the 26-
year-old Kermack completely blind.[34]

During his stay in hospital, Kermack asked friends and
nurses to read mathematics to him. Knowing that he could no
longer see, he wanted to practise getting information another
way. He had an exceptional memory and would work through
mathematical problems in his head. ‘It was incredible to find
how much he could do without being able to put anything
down on paper,’ remarked William McCrea, one of his
colleagues.

After leaving hospital, Kermack continued to work in
science but shifted his focus to other topics. He left his
chemical experiments behind, and began to develop new
projects. In particular, he started to work on mathematical
questions with Anderson McKendrick, who had risen to
become head of the Edinburgh laboratory. Having served in
India for almost two decades, McKendrick had left the Indian
Medical Service in 1920 and moved to Scotland with his
family.

Together, the pair extended Ross’s ideas to look at
epidemics in general. They focused their attention on one of
the most important questions in infectious disease research:
what causes epidemics to end? The pair noted that there were
two popular explanations at the time. Either transmission
ceased because there were no susceptible people left to infect,
or because the pathogen itself became less infectious as the
epidemic progressed. It would turn out that, in most situations,
neither explanation was correct.[35]

Like Ross, Kermack and McKendrick started by developing
a mathematical model of disease transmission. For simplicity,
they assumed the population mixed randomly in their model.
Like marbles being shaken in a jar, everyone in the population
has an equal chance of meeting everyone else. In the model,
the epidemic sparks with a certain number of infectious
people, and everyone else susceptible to infection. Once
someone has recovered from infection, they are immune to the



disease. We can therefore put the population into one of three
groups, based on their disease status:

Given the names of the three groups, this is commonly
known as the ‘SIR model’. Say a single influenza case arrives
in a population of 10,000 people. If we simulate a flu-like
epidemic using the SIR model, we get the following pattern:

Simulated influenza outbreak using the SIR model

The simulated epidemic takes a while to grow because only
one person is infectious at the start, but it still peaks within
fifty days. And by eighty days, it’s all but over. Notice that at
the end of the epidemic, there are still some susceptible people
left. If everyone had been infected, then all 10,000 people
would have eventually ended up in the ‘recovered’ group.
Kermack and McKendick’s model suggests that this doesn’t
happen: outbreaks can end before everyone picks up the
infection. ‘An epidemic, in general, comes to an end before the
susceptible population has been exhausted,’ as they put it.

Why doesn’t everyone get infected? It’s because of a
transition that happens mid-outbreak. In the early stages of an
epidemic, there are lots of susceptible people. As a result, the
number of people who become infected each day is larger than
the number who recover, and the epidemic grows. Over time,



however, the pool of susceptible people shrinks. When this
pool gets small enough, the situation flips around: there are
more recoveries than new infections each day, so the epidemic
begins to decline. There are still susceptible people out there
who could be infected, but there are so few left that an
infectious person is more likely to recover than meet one.

To illustrate the effect, Kermack and McKendrick showed
how the SIR model could reproduce the dynamics of a 1906
outbreak of plague in Bombay (now Mumbai). In the model,
the pathogen remains equally infectious over time; it is the
shifting numbers of susceptible and infectious people that lead
to the rise and fall.

The 1906 plague outbreak in Bombay, with SIR model shown
alongside real data

The crucial change happens at the peak of the epidemic. At
this point, there are so many immune people – and so few
susceptible – that the epidemic cannot continue to grow. The
epidemic will therefore turn over and start its decline.

When there are enough immune people to prevent
transmission, we say that the population has acquired ‘herd
immunity’. The phrase was originally coined by statistician
Major Greenwood in the early twentieth century (Major was
his first name, his army rank was actually captain).[36]
Psychologists had previously used ‘herd instinct’ to describe
groups that acted as a collective rather than as individuals.[37]
Likewise, herd immunity meant that the population as a whole



could block transmission, even if some individuals were still
susceptible.

The concept of herd immunity would find popularity
several decades later, when people realised it could be a
powerful tool for disease control. During an epidemic, people
naturally move out of the susceptible group as they become
infected. But for many infections, health agencies can move
people out of this group deliberately, by vaccinating them. Just
as Ross suggested malaria could be controlled without
removing every last mosquito, herd immunity makes it
possible to control infections without vaccinating the entire
population. There are often people who cannot be vaccinated –
such as newborn babies or those with compromised immune
systems – but herd immunity allows vaccinated people to
protect these vulnerable unvaccinated groups as well as
themselves.[38] And if diseases can be controlled through
vaccination, they can potentially be eliminated from a
population. This is why herd immunity has found its way into
the heart of epidemic theory. ‘The concept has a special aura,’
as epidemiologist Paul Fine once put it.[39]

As well as looking at why epidemics end, Kermack and
McKendrick were also interested in the apparently random
occurrence of outbreaks. Analysing their model, they found
that transmission was highly sensitive to small differences in
the characteristics of the pathogen or human population. This
explains why large outbreaks can seemingly appear from
nowhere. According to the SIR model, outbreaks need three
things to take off: a sufficiently infectious pathogen, plenty of
interactions between different people, and enough of the
population who are susceptible. Near the critical herd
immunity threshold, a small change in one of these factors can
be the difference between a handful of cases and a major
epidemic.



Zika and Guillain-Barré syndrome cases in French Polynesia,
2013/14

Data: French Polynesia Ministry of Health[40]

THE FIRST REPORTED OUTBREAK of Zika began on the
Micronesian island of Yap in early 2007. Before then, only
fourteen human cases of Zika had ever been spotted, scattered
across Uganda, Nigeria, and Senegal. But the Yap outbreak
was different. It was explosive, with most of the island getting
infected, and completely unexpected. The little-known virus
from the overgrown forest was apparently entering a new era.
‘Public health officials should be aware of the risk of further
expansion of Zika virus transmission,’ concluded
epidemiologist Mark Duffy and his colleagues in their
outbreak report.[41]

In Yap, Zika had been a curiosity rather than a major threat.
Despite lots of people getting a fever or rash, nobody ended up
in hospital. That changed when the virus arrived on the much
larger islands of French Polynesia in late 2013. During the
resulting outbreak, forty-two people with Guillain-Barré
Syndrome arrived at the main city hospital in Papeete, on the
northern coast of Tahiti. The GBS cases cropped up slightly
later than the main Zika outbreak, which is what we’d expect
for a syndrome that takes a couple of weeks to appear after an
infection. Speculation about a possible link was confirmed
when local scientist Van-Mai Cao-Lormeau and her colleagues
discovered that almost all the GBS cases had recently been
infected with Zika.[42]



As in Yap, the French Polynesia outbreak had been huge,
with the majority of the population infected. And like Yap, the
outbreak had been very brief, with the bulk of cases appearing
over a few weeks. Given that our team had spent 2014–15
developing mathematical models to analyse dengue in the
Pacific, we decided to turn our attention to Zika as well.
Unlike the plain-coloured Anophelines that can fly miles to
spread malaria, dengue and Zika are both spread by Aedes
mosquitoes, best known for being stripey and lazy (‘aedes’
means ‘house’ in Latin). As a result, the infection generally
spreads when humans move from one place to another.[43]

When we tried to get our model simulations to reproduce
the dynamics of Zika in French Polynesia, we realised there
must have been a large, dengue-like rate of spread to generate
such an explosive outbreak.[44] The short span of the outbreak
stood out even more when we considered the delays involved
in the infection process. During each cycle of transmission, the
virus has to get from a human into a mosquito then back into
another human.

While analysing transmission rates in French Polynesia, we
also estimated how many people were already infected when
the first cases were reported in October 2013. Our model
suggested there had been several hundred infections by this
point, meaning the virus probably arrived in the country weeks
if not months earlier. This result would link into another
mystery: how did the Zika virus reach Latin America? After
the first cases were reported in Brazil during May 2015, there
was a lot of speculation about when the infection had been
introduced to the continent, and by whom. One early
hypothesis pointed to the FIFA World Cup, held in Brazil
during June/July 2014, which had attracted over three million
football fans from around the globe. Another candidate was
the Va’a sprint canoe championship, held in Rio de Janeiro
during August 2014. Unlike the World Cup, this smaller event
had included a team from French Polynesia. So which
explanation was most plausible?

According to evolutionary biologist Nuno Faria and his
colleagues, neither theory was particularly good.[45] Based on
the genetic diversity of Zika viruses circulating in Latin



America by 2016, they reckoned that the infection was
introduced much earlier than previously thought. The virus
probably hit the continent in mid-to-late 2013. Although too
early for the canoe championship or World Cup, the time
range coincided with the Confederations Cup, a regional
football tournament held in June 2013. What’s more, French
Polynesia was one of the countries competing.

There was just one gap in the theory: the Confederations
Cup occurred five months before the first Zika cases were
reported in French Polynesia. But if the outbreak in French
Polynesia had in reality started earlier than October 2013 – as
our analysis suggested – it was just about plausible that it
could have spread to Latin America during that summer. (Of
course, we should be cautious about trying too hard to find a
sport-shaped prologue for the Zika story: there’s always a
chance that it was just a random person in the Pacific taking a
random flight to Brazil sometime in 2013.)

As well as analysing past outbreaks, we can use
mathematical models to look at what might happen in future.
This can be particularly useful for health agencies faced with
difficult decisions during an outbreak. One such difficulty
came in December 2015, when Zika reached the Caribbean
island of Martinique. A big concern was the island’s ability to
handle GBS cases: if patients’ lungs failed, they would need to
be put on ventilators. At the time, Martinique only had eight
ventilators for a population of 380,000. Would it be enough?

To find out, researchers at Institut Pasteur in Paris
developed a model of Zika transmission on the island.[46] The
crucial thing they wanted to know was the overall shape of the
outbreak. GBS cases who required a ventilator typically stayed
on it for several weeks, so a short outbreak with a large peak
could overwhelm the health system, while a longer, flatter
outbreak would not. At the very start of the Martinique
outbreak, there hadn’t been many cases, so the team used data
from French Polynesia as a starting point. Of the forty-two GBS

cases reported there in 2013/14, twelve had required
ventilators. According to the Pasteur model, this meant they
could have a big problem. If the outbreak in Martinique
followed the same pattern as French Polynesia, the island



would probably need nine ventilators, one more than they had
available.

Fortunately, the Martinique outbreak wouldn’t be the same.
As new data came in, it became clear that the virus wasn’t
spreading as quickly as it had in French Polynesia. At the peak
of the outbreak, the researchers expected there would be
around three GBS cases needing ventilators. Even in the worst-
case scenario, they estimated that seven ventilators would be
enough. Their conclusion about this upper limit turned out to
be correct: at the peak of the outbreak, there were five GBS

cases on ventilators. Overall, there were thirty cases of GBS

during the outbreak, with two deaths. Without adequate
medical facilities, the outcome could have been much worse.
[47]

These Zika studies are just a few illustrations of how Ross’s
methods have influenced our understanding of infectious
diseases. From predicting the shape of an outbreak to
evaluating control measures, mechanistic models have become
a fundamental part of how we study contagion today.
Researchers are using models to help health agencies respond
to a whole host of outbreaks, from malaria and Zika to HIV and
Ebola, in locations ranging from remote islands to conflict
zones.

Ross would no doubt be glad to see how influential his
ideas have been. Despite winning a Nobel Prize for his
discovery that mosquitoes transmit malaria, he did not view
this as his biggest achievement. ‘In my own opinion my
principal work has been to establish the general laws of
epidemics,’ he once wrote.[48] And he didn’t just mean
disease epidemics.

ALTHOUGH KERMACK AND MCKENDRICK would later extend Ross’s
mosquito theorem to other types of infections, Ross had wider
ambitions. ‘As infection is only one of many kinds of events
which may happen to such organisms, we shall deal with
“happenings” in general,’ he wrote in the second edition of
The Prevention of Malaria. Ross proposed a ‘Theory of
Happenings’ to describe how the number of people affected by



something – whether a disease or another event – might
change over time.

Ross suggested that there are two main types of happening.
The first type affects people independently: if it happens to
you, it generally won’t increase or decrease the chances of it
happening to someone else afterwards. According to Ross, this
could include things like non-infectious diseases, accidents or
divorce.[49] For example, suppose there is a new condition
that can randomly affect anyone, but at first nobody in the
population has it. If each person has a certain chance of
becoming affected every year – and remains affected from that
point onwards – we’d expect to see a rising pattern over time.

Growth of an independent happening over time. Example
shows what would happen if everyone had a 5 per cent or 10

per cent chance of being affected per year

The curve gradually flattens off, though, because the size of
the unaffected group shrinks over time. Each year, a
proportion of people who were previously unaffected get the
condition, but because there are fewer and fewer of such
people over time, the overall total doesn’t grow so much later
on. If the chance of being affected each year is lower, the
curve will grow more slowly initially, but still eventually
plateau. In reality, the curve won’t necessarily level off at 100
per cent: the final amount of people affected will depend on
who is initially ‘susceptible’ to the happening.

As an illustration, consider home ownership in the UK. Of
people who were born in 1960, very few were homeowners by



the age of twenty, but the majority had owned a house by the
time they were thirty years old. In contrast, people who were
born in 1980 or 1990 had a much lower chance of becoming a
homeowner during each year of their twenties. If we plot the
proportion of people who become homeowners over time, we
can see how quickly ownership grows in different age groups.

Percentage of people who were homeowners by a given age,
based on year of birth

Data: Council of Mortgage Lenders[50]

Of course, home ownership isn’t completely random –
factors such as inheritance influence people’s chance of
buying – but the overall pattern lines up with Ross’s concept
of an independent happening. On average, one twenty-year-old
becoming a homeowner won’t have much effect on whether
another gets on the housing ladder. As long as events occur
independently of one another at a fairly consistent rate, this
overall pattern won’t vary much. Whether we plot the amount
of people who are on the housing ladder by a certain age, or
the chance your bus has arrived after a certain time waiting,
we’ll get a similar picture.

Independent happenings are a natural starting point, but
things get more interesting when events are contagious. Ross
called these types of events ‘dependent happenings’, because
what happens to one person depends on how many others are
currently affected. The simplest type of outbreak is one where
affected people pass the condition on to others, and once



affected, people remain so. In this situation, the happening will
gradually permeate through the population. Ross noted that
such epidemics would follow the shape of a ‘long-drawn-out
letter S’. The number of people affected grows exponentially
at first, with the number of new cases rising faster and faster
over time. Eventually, this growth slows down and levels off.

Illustrative example of the S-shaped growth of a dependent
happening, based on Ross’s model. The plot shows the growth

of a more contagious and less contagious happening

The assumption that people remain affected indefinitely
doesn’t usually apply to infectious diseases, because people
may recover, receive treatment, or die from the infection. But
it can capture other kinds of spread. The S-shaped curve would
later become popular in sociology, after Everett Rogers
featured it in his 1962 book Diffusion of Innovations.[51] He
noted that the initial adoption of new ideas and products
generally followed this shape. In the mid twentieth century, the
diffusion of products, like radios and refrigerators, all traced
out an S-curve; later on, televisions, microwave ovens and
mobile phones would do so as well.

According to Rogers, four different types of people are
responsible for the growth of a product: initial uptake comes
from ‘innovators’, followed by ‘early adopters’, then the
majority of the population, and finally ‘laggards’. His research
into innovations mostly followed this descriptive approach,
starting with the S-curve and trying to find possible
explanations.



Ross had worked in the opposite direction. He’d used his
mechanistic reasoning to derive the curve from scratch,
showing that the spread of such happenings would inevitably
lead to this pattern. Ross’s model also gives us an explanation
for why the adoption of new ideas gradually slows down. As
more people adopt, it becomes harder and harder to meet
someone who has not yet heard about the idea. Although the
overall number of adopters continues to grow, there are fewer
and fewer people adopting it at each point in time. The number
of new adoptions therefore begins to decline.

VCR ownership over time in the United States

Data: Consumer Electronics Association

In the 1960s, marketing researcher Frank Bass developed
what was essentially an extended version of Ross’s model.[52]
Unlike Rogers’s descriptive analysis, Bass used his model to
look at the timescale of adoption as well as the overall shape.
By thinking about the way people might adopt innovations,
Bass was able to make predictions about the uptake of new
technology. In Rogers’s curve, innovators are responsible for
the first 2.5 per cent of adoptions, with everyone else in the
remaining 97.5 per cent. These values are somewhat arbitrary:
because Rogers relied on a descriptive method, he needed to
know the full shape of the S-curve; it was only possible to
categorise people once an idea had been fully adopted. In
contrast, Bass could use the early shape of the adoption curve
to estimate the relative roles of innovators and everyone else,
who he called ‘imitators’. In a 1966 working paper, he
predicted that new colour television sales – then still rising –



would peak in 1968. ‘Industry forecasts were much more
optimistic than mine,’ Bass later noted,[53] ‘and it was
perhaps to be expected that my forecast would not be well
received.’ Bass’ prediction wasn’t popular, but it ended up
being much closer to reality. New sales indeed slowed then
peaked, just as the model suggested they would.

As well as looking at how interest plateaus, we can also
examine the early stages of adoption. When Everett Rogers
published the S-curve in the early 1960s, he suggested that a
new idea had ‘taken off’ once 20–25 per cent of people had
adopted it. ‘After that point, it is probably impossible to stop
the further diffusion of a new idea,’ he argued, ‘even if one
wishes to do so’. Based on outbreak dynamics, we can come
up with a more precise definition for this take-off point.
Specifically, we can work out when the number of new
adoptions is growing fastest. After this point, a lack of
susceptible people will start to slow the spread, causing the
outbreak to eventually plateau. In Ross’s simple model, the
fastest growth occurs when just over 21 per cent of the
potential audience have adopted the idea. Remarkably, this is
the case regardless of how easily the innovation spreads.[54]

Ross’s mechanistic approach is useful because it shows us
what different types of happenings might look like in real life.
Think about how the VCR adoption curve compares with the
home ownership one: both eventually plateau, but the VCR
curve grows exponentially at first. Simple models of contagion
will usually predict this kind of growth, because each new
adoption creates even more adoptions, whereas models of
independent happenings will not. It doesn’t mean that
exponential growth is always a sign that something is
contagious – there might be other reasons why people
increasingly adopt a technology – but it does show how
different infection processes can affect the shape of an
outbreak.

If we think about the dynamics of an outbreak, we can also
identify shapes that would be very unlikely in reality. Imagine
a disease epidemic that increases exponentially until all of the
population is affected. What would be required to generate this
shape?



In large epidemics, transmission generally slows down
because there aren’t many susceptible people left to infect. For
the epidemic to keep increasing faster and faster, infectious
people would have to actively start seeking out the remaining
susceptibles in the later stages of the epidemic. It’s the
equivalent of you catching a cold, finding all your friends who
hadn’t got it yet and deliberately coughing on them until they
got infected. The most familiar scenario that would create this
outbreak shape is therefore a fictional one: a group of zombies
hunting down the last few surviving humans.

Illustration of an outbreak curve that grows exponentially
until everyone is affected

Back in real life, there are a few infections that affect their
hosts in a way that increases transmission. Animals infected
with rabies are often more aggressive, which helps the virus to
spread through bites,[55] and people who have malaria can
give off an odour that makes them more attractive to
mosquitoes.[56] But such effects generally aren’t large enough
to overcome declining numbers of susceptibles in the later
stages of an epidemic. What’s more, many infections have the
opposite effect on behaviour, causing lethargy or inactivity,
which reduces the potential for transmission.[57] From
innovations to infections, epidemics almost inevitably slow
down as susceptibles become harder to find.

RONALD ROSS HAD PLANNED to study a whole range of outbreaks,
but as his models became more complicated, the mathematics
became trickier. He could outline the transmission processes,
but he couldn’t analyse the resulting dynamics. That’s when he



turned to Hilda Hudson, a lecturer at London’s West Ham
Technical Institute.[58] The daughter of a mathematician,
Hudson had published her first piece of research in the journal
Nature when she was ten years old.[59] She later studied at the
University of Cambridge, where she was the only woman in
her year to get first class marks in mathematics. Although she
matched the results of the male student who ranked seventh,
her performance wasn’t included in the official listing (it
wasn’t until 1948 that women were allowed to receive
Cambridge degrees[60]).

Hudson’s expertise made it possible to expand the Theory
of Happenings, visualising the patterns the different models
could produce. Some happenings simmered away over time,
gradually affecting everyone. Others rose sharply then fell.
Some caused large outbreaks then settled down to a lower
endemic level. There were outbreaks that came in steady
waves, rising and falling with the seasons, and outbreaks that
recurred sporadically. Ross and Hudson argued that the
methods would cover most real-life situations. ‘The rise and
fall of epidemics as far as we can see at present can be
explained by the general laws of happenings,’ they suggested.
[61]

Unfortunately, Hudson and Ross’s work on the Theory of
Happenings would be limited to three papers. One barrier was
the First World War. In 1916, Hudson was called away to help
design aircraft as part of the British war effort, work for which
she would later get an OBE.[62] After the war, they faced
another hurdle, with the papers ignored by their target
audience. ‘So little interest was taken in them by the “health
authorities,” that I have thought it useless to continue,’ Ross
later wrote.

When Ross first started working on the Theory of
Happenings, he’d hoped it could eventually tackle ‘questions
connected with statistics, demography, public health, the
theory of evolution, and even commerce, politics and
statesmanship’.[63] It was a grand vision, and one that would
eventually transform how we think about contagion. Yet even
in the field of infectious disease research, several decades
would pass before the methods became popular. And it would



take even longer for the ideas to make their way into other
areas of life.



2
Panics and pandemics

‘I CAN CALCULATE THE MOTION of heavenly bodies but not the
madness of people.’ According to legend, Isaac Newton said
this after losing a fortune investing in the South Sea Company.
He’d bought shares in late 1719 and initially seen his
investment rise, which persuaded him to cash in. However, the
share price continued to climb and Newton – regretting his
hasty sale – reinvested. When the bubble burst a few months
later, he lost £20,000, equivalent to around £20 million in
today’s money.[1]

Great academic minds have a mixed record when it comes
to financial markets. Some, like mathematicians Edward
Thorp and James Simons, have set up successful investment
funds, bringing in huge profits. Others have succeeded in
sending money the opposite way. Take the hedge fund Long
Term Capital Management (LTCM), which suffered massive
losses following the Asian and Russian Financial Crises in
1997 and 1998. With two Nobel Prize-winning economists on
its board and healthy initial profits, the firm had been the envy
of Wall Street. Investment banks had lent them increasingly
large sums of money to pursue increasingly ambitious trading
strategies, to the point that when the fund went under in 1998,
they had liabilities of over $100 billion.[2]

During the mid-1990s, a new phrase had become popular
among bankers. ‘Financial contagion’ described the spread of
economic problems from one country to another. The Asian
Financial Crisis was a prime example.[3] It wasn’t the crisis
itself that hit funds like LTCM; it was the indirect shockwaves
that propagated through other markets. And because they’d
lent so much to LTCM, banks also found themselves at risk.
When some of Wall Street’s most powerful bankers gathered
on the tenth floor of the Federal Reserve Bank of New York on
23 September 1998, it was this fear of contagion that brought
them there. To avoid LTCM’s woes spreading to other



institutions, they agreed a $3.6bn bailout. It was an expensive
lesson, but unfortunately not one that was learned. Almost
exactly ten years later, the same banks would be having the
same conversations about financial contagion. This time it
would be much worse.

I SPENT THE SUMMER of 2008 thinking about how to buy and sell
the statistical concept of correlation. I’d just finished my
penultimate year of university, and was interning with an
investment bank in London’s Canary Wharf. The basic idea
was simple enough. Correlation measures how much things
move in line with each other: if a stock market is highly
correlated, stocks will tend to rise or fall together; if it’s
uncorrelated, some stocks might go up while others go down.
If you think stocks are going to behave similarly in future,
you’d ideally want a trading strategy that profited from this
correlation. My job was to help develop such a strategy.

Correlation isn’t just some niche topic to keep a
mathematically minded intern occupied. It turns out to be
crucial for understanding why 2008 would end with a full-
blown financial crisis. It can also help explain how contagion
spreads more generally, from social behaviour to sexually
transmitted infections. As we’ll see, it’s a link that would
eventually pull outbreak analysis into the heart of modern
finance.

Each morning that summer, I took the Docklands Light
Railway to work. Just before it reached my stop at Canary
Wharf, the train would pass the skyscraper at 25 Bank Street.
The building was home to Lehman Brothers. When I’d applied
for internships in late 2007, Lehman had been one of the
coveted destinations for many applicants. It was part of the
elite ‘bulge bracket’ group of banks, which also included firms
like Goldman Sachs, JP Morgan, and Merrill Lynch. Bear
Stearns had been part of the club too, until its collapse in
March 2008.

Bear, as the bankers called it, had gone under because of
failed investments in the mortgage market. Soon after, JP
Morgan bought the carcass for less than a tenth of its earlier
value. By the summer, everyone in the industry was



speculating on which firm would go under next. Lehman
seemed to be top of the list.

For mathematics students, an internship in finance was the
brightly lit path that distracted from all others. Everyone I
knew on my degree course, regardless of their eventual career,
signed up for one. I was about a month or so into my
internship when I changed my mind, and decided to pursue a
PhD instead of a job offer. A major factor was the course in
epidemiology I’d taken earlier that year. I’d become fascinated
by the idea that disease outbreaks didn’t have to be this
mysterious, unpredictable occurrence. With the right methods,
we could pick them apart, uncover what was really going on,
and hopefully do something about it.

But first, there was the question of what was going on
around me in Canary Wharf. Despite having settled on another
career path, I still wanted to understand what was happening to
the banking industry. Why had rows of trading desks recently
been emptied of their employees? Why were celebrated
financial ideas suddenly crumbling? And how bad could it
get?

I was based in equities, analysing company share prices,
but in the preceding years the real money had been in credit-
based investments. One investment stood out in particular:
banks had increasingly bunched together mortgages and other
loans into ‘collateralized debt obligations’ (CDOs). These
products let investors take on some of the mortgage lender’s
risk and earn money in return.[4] Such approaches could be
extremely lucrative. Sajid Javid, who in 2019 was appointed
the UK’s Chancellor of the Exchequer, reportedly earned
around £3m a year trading various credit products before he
left banking in 2009.[5]

CDOs were based on an idea borrowed from the life
insurance industry. Insurers had noticed that people were more
likely to die following the death of a spouse, a social effect
known as ‘broken heart syndrome’. In the mid-1990s, they
developed a way to account for this effect when calculating
insurance costs. It didn’t take long for bankers to borrow the
idea and find a new use for it. Rather than looking at deaths,



banks were interested in what happened when someone
defaulted on a mortgage. Would other households follow?
Such borrowing of mathematical models is common in
finance, as well as in other fields. ‘Human beings have limited
foresight and great imagination,’ financial mathematician
Emanuel Derman once noted, ‘so that, inevitably, a model will
be used in ways its creator never intended.’[6]

Unfortunately, the mortgage models had some major flaws.
Perhaps the biggest problem was that they were based on
historical house prices, which had risen for the best part of two
decades. This period of history suggested that the mortgage
market wasn’t particularly correlated: if someone in Florida
missed a payment, for example, it didn’t mean someone in
California would too. Although some had speculated that
housing was a bubble set to burst, many remained optimistic.
In July 2005, CNBC interviewed Ben Bernanke, who chaired
President Bush’s Council of Economic Advisers and would
shortly become Chairman of the US Federal Reserve. What
did Bernanke think the worst-case scenario was? What would
happen if house prices dropped across the country? ‘It’s a
pretty unlikely possibility,’ Bernanke said.[7] ‘We’ve never
had a decline in house prices on a nationwide basis.’

In February 2007, a year before Bear Stearns collapsed,
credit specialist Janet Tavakoli wrote about the rise of
investment products like CDOs. She was particularly
unimpressed with the models used to estimate correlations
between mortgages. By making assumptions that were so far
removed from reality, these models had in effect created a
mathematical illusion, a way of making high-risk loans look
like low-risk investments.[8] ‘Correlation trading has spread
through the psyche of the financial markets like a highly
infectious thought virus,’ Tavakoli noted. ‘So far, there have
been few fatalities, but several victims have fallen ill, and the
disease is rapidly spreading.’[9] Others shared her skepticism,
viewing popular correlation methods as an overly simplistic
way of analysing mortgage products. One leading hedge fund
reportedly kept an abacus in one of its conference rooms; there
was a label next to it that read ‘correlation model’.[10]



Despite the problems with these models, mortgage products
remained popular. Then reality caught up, as house prices
started to fall. During that 2008 summer, I came to the opinion
that many had been aware of the potential implications. The
investments were tumbling in value by the day, but it didn’t
seem to matter as long as there were still naïve investors out
there to sell them on to. It was like carrying a sack of money
that you know has a massive hole in the bottom, but not caring
because you’re stuffing so much more in the top.

As a strategy it was, well, full of holes. By August 2008,
speculation was rife about just how empty the money bags
were. Across the city, banks were looking for injections of
funding, competing to court sovereign wealth funds in the
Middle East. I remember equity traders grabbing passing
interns to point out the latest drop in Lehman’s share price. I’d
walk past empty desks, where once profitable CDO teams had
been let go. Some of my colleagues would glance up
nervously whenever security walked by, wondering if they’d
be next. The fear was spreading. Then came the crash.

THE RISE OF COMPLEX FINANCIAL PRODUCTS – and fall of funds
like Long Term Capital Management – had persuaded central
banks that they needed to understand the tangled web of
financial trading. In May 2006 the Federal Reserve Bank of
New York organised a conference to discuss ‘systemic risk’.
They wanted to identify factors that might affect the stability
of the financial network.[11]

The conference attendees came from a range of scientific
fields. One was ecologist George Sugihara. His lab in San
Diego focused on marine conservation, using models to
understand the dynamics of fish populations. Sugihara was
also familiar with the world of finance, having spent four years
working for Deutsche Bank in the late 1990s. During that
period, banks had rapidly expanded their quantitative teams,
seeking out people with experience of mathematical models.
In an attempt to recruit Sugihara, Deutsche Bank had taken
him on a luxury trip to a British country estate. The story goes
that during dinner, a senior banker wrote a huge salary offer on
a napkin. An astonished Sugihara didn’t know what to say.
Mistaking Sugihara’s silence for disdain, the banker withdrew



the napkin and proceeded to write an even bigger number.
There was another pause, followed by another number. This
time, Sugihara took the offer.[12]

Those years with Deutsche Bank would be highly profitable
for both parties. Although the data involved financial stocks
rather than fish stocks, Sugihara’s experience with predictive
models successfully transferred across to his new field.
‘Basically, I modelled the fear and greed of mobs that trade,’
he later told Nature.[13]

Another person to join the Federal Reserve discussions was
Robert May, who had previously supervised Sugihara’s PhD.
An ecologist by training, May had worked extensively on
analysis of infectious diseases. Although May was drawn into
financial research largely by accident, he would go on to
publish several studies looking at contagion in financial
markets. In a 2013 piece for The Lancet medical journal, he
noted the apparent similarity between disease outbreaks and
financial bubbles. ‘The recent rise in financial assets and the
subsequent crash have rather precisely the same shape as the
typical rise and fall of cases in an outbreak of measles or other
infection,’ he wrote. May pointed out that when an infectious
disease epidemic rises it’s bad news, and when it falls, it’s
good news. In contrast, it’s generally seen as positive when
financial prices rise and bad when they fall. But he argued that
this is a false distinction: rising prices are not always a good
sign. ‘When something is going up without a convincing
explanation about why it’s going up, that really is an
illustration of the foolishness of the people,’ as he put it.[14]

One of the best-known historical bubbles is ‘tulip mania’,
which gripped the Netherlands in the 1630s. In popular
culture, it’s a classic story of financial madness. Rich and poor
alike poured more and more money into the flowers, to the
point where tulip bulbs were going for the price of houses.
One sailor who mistook a bulb for a tasty onion ended up in
jail. Legend has it that when the market crashed in 1637, the
economy suffered and some people drowned themselves in
canals.[15] Yet according to Anne Goldgar at Kings College
London, there wasn’t really that much of a bulb bubble. She
couldn’t find a record of anybody who was ruined by the



crash. Only a handful of wealthy people splashed out for the
most expensive tulips. The economy was unharmed. Nobody
drowned.[16]

Other bubbles have had a much larger impact. The first
time that people used the word ‘bubble’ to describe
overinflated investments was during the South Sea Bubble.
[17] Founded in 1711, the British South Sea Company
controlled several trading and slavery contracts in the
Americas. In 1719, they secured a lucrative financial deal with
the British government. The following year, the company’s
share price surged, rising four-fold in a matter of weeks,
before falling just as sharply a couple of months later.[19]

Price of South Sea Company shares, 1720

Data from Frehen et al., 2013[18]

Isaac Newton had sold most of his shares during the spring
of 1720, only to invest again during the summer peak.
According to mathematician Andrew Odlyzko, ‘Newton did
not just taste of the Bubble’s madness, but drank deeply of it.’
Some people timed their investments better. Bookseller
Thomas Guy, an early investor, got out before the peak and
used the profits to establish Guy’s Hospital in London.[20]

There have been many other bubbles since, from Britain’s
Railway Mania in the 1840s to the US dot-com bubble in the
late 1990s. Bubbles generally involve a situation where
investors pile in, leading to a rapid rise in price, followed by a
crash when the bubble bursts. Odlyzko calls them ‘beautiful
illusions’, luring investors away from reality. During a bubble,



prices can climb far above values that can be logically
justified. Sometimes people invest simply on the assumption
that more will join afterwards, driving up the value of their
investment.[21] This can lead to what is known as the ‘greater
fool theory’: people may know it’s foolish to buy something
expensive, but believe there is a greater fool out there, who
will later buy it off them at a higher price.[22]

One of the most extreme examples of the greater fool
theory is a pyramid scheme. Such schemes come in a variety
of forms, but all have the same basic premise. Recruiters
encourage people to invest in the scheme, with the promise
that they’ll get a share of the total pot if they can recruit
enough other people. Because pyramid schemes follow a rigid
format, they are relatively easy to analyse. Suppose a scheme
starts with ten people paying in, and each of these people has
to recruit ten others to get their payout. If they all manage to
pull in another ten, it will mean 100 new people. Each of the
new recruits will need to persuade another ten, which would
grow the scheme by another 1,000 people. Expanding another
step would require 10,000 extra people, then 100,000, then a
million. It doesn’t take long to spot that in the later stages of
the scheme, there simply aren’t enough people out there to
persuade: the bubble will probably burst after a few rounds of
recruitment. If we know how many people are susceptible to
the idea, and might plausibly sign up, we can therefore predict
how quickly the scheme will fail.

Given their unsustainable nature, pyramid schemes are
generally illegal. But the potential for rapid growth, and the
money it brings for the people at the top, means that they
remain a popular option for scammers, particularly if there is a
large pool of potential participants. In China, some pyramid
schemes – or ‘business cults’ as the authorities call them –
have reached a huge scale. Since 2010, several schemes have
managed to recruit over a million investors each.[23]



The four phases of a bubble

Adapted from original graphic by Jean-Paul Rodrigue

Unlike pyramid schemes, which follow a rigid structure,
financial bubbles can be harder to analyse. However,
economist Jean-Paul Rodrigue suggests we can still divide a
bubble into four main stages. First, there is a stealth phase,
where specialist investors put money into a new idea. Next
comes the awareness phase, with a wider range of investors
getting involved. There may be an initial sell-off during this
period as early investors cash in, like Newton did in the early
stages of the South Sea Bubble. As the idea becomes more
popular, the media and public join in, sending prices higher
and higher in a mania. Eventually the bubble peaks and starts
its decline during a ‘blow off’ phase, perhaps with some small
secondary peaks as optimistic investors hope for another rise.
These bubble stages are analogous to the four stages of an
outbreak: spark, growth, peak, decline.[24]

One signature feature of a bubble is that it grows rapidly,
with the rate of buying activity increasing over time. Bubbles
often feature what’s known as ‘super-exponential’ growth;[25]
not only does the buying activity accelerate, the acceleration
itself accelerates. With every increase in price, even more
investors join in, driving the price higher. And like an



infection, the faster a bubble grows, the faster it will burn
through the population of susceptible people.

Unfortunately, it can be difficult to know how many people
out there are still susceptible. This is a common problem when
analysing an outbreak: during the initial growth phase, it’s
hard to work out how far through we are. For infectious
disease outbreaks, a lot depends on how many infections show
up as cases. Suppose most infections go unreported. This
means that for every case we see, there will be a lot of other
new infections out there, reducing the number of people who
are still susceptible. In contrast, if the majority of infections
are reported, there could still be a lot of people at risk of
infection. One way around this problem is to collect and test
blood samples from a population. If most people have already
been infected and developed immunity to the disease, it’s
unlikely the outbreak can continue for much longer. Of course,
it’s not always possible to collect a large number of samples in
a short space of time. Even so, we can still say something
about the maximum possible outbreak size. By definition, it’s
impossible to have more infections than there are people in the
population.

Things aren’t so simple for financial bubbles. People can
leverage their trades, borrowing money to cover additional
investments. This makes it much harder to estimate how much
susceptibility there is, and hence what phase of the bubble
we’re in. Still, it is sometimes possible to spot the signals of
unsustainable growth. As the dot-com bubble grew in the late
1990s, a common justification for rising prices was the claim
that internet traffic was doubling every 100 days. This
explained why infrastructure companies were being valued at
hundreds of billions of dollars and investors were pouring
money into internet providers like WorldCom. But the claim
was nonsense. In 1998, Andrew Odlyzko, then a researcher at
AT&T labs, realised the internet was growing at a much
slower rate, taking about a year to double in size.[26] In one
press release, WorldCom had claimed that user demand was
growing by 10 per cent every week. For this growth to be
sustainable, it would mean that within a year or so, everyone
in the world would have had to be active online for twenty-



four hours a day.[27] There were simply not enough
susceptible people out there.

Arguably the greatest bubble of recent years has been
Bitcoin, which uses a shared public transaction record with
strong encryption to create a decentralised digital currency. Or
as comedian John Oliver described it: ‘everything you don’t
understand about money combined with everything you don’t
understand about computers.’[28] The price of one Bitcoin
climbed to almost $20,000 in December 2017, before dropping
to less than a fifth of this value a year later.[29] It was the
latest in a series of mini-bubbles; Bitcoin prices had risen and
crashed several times since the currency emerged in 2009.
(Prices would start to rise again in mid-2019.)

Each Bitcoin bubble involved a larger group of susceptible
people, like an outbreak gradually making its way from a
village into a town and finally into a city. At first, a small
group of early investors got involved; they understood the
Bitcoin technology and believed in its underlying value. Then
a wider range of investors joined in, bringing more money and
higher prices. Finally, Bitcoin hit the mass-market, with
coverage on the front pages of newspapers and adverts on
public transport. The delay between each of the historical
Bitcoin peaks suggests that the idea didn’t spread very
efficiently between these different groups. If susceptible
populations are strongly connected, an epidemic will generally
peak around the same time, rather than as a series of smaller
outbreaks.

According to Jean-Paul Rodrigue, there is a dramatic shift
during the main growth phase of a bubble. The amount of
money available increases, while the average knowledge base
decreases. ‘The market gradually becomes more exuberant as
“paper fortunes” are made from regular “investors” and greed
sets in,’ he suggested.[30] Economist Charles Kindleberger,
who wrote the landmark book Manias, Panics, and Crashes in
1978, along with Robert Aliber, emphasised the role of social
contagion during this phase of a bubble: ‘There is nothing so
disturbing to one’s well being and judgment as to see a friend
get rich’.[31] Investors’ desire to be part of a growing trend
can even cause warnings about a bubble to backfire. During



the British Railway Mania in the 1840s, newspapers like The
Times argued that railway investment was growing too fast,
potentially putting other parts of the economy at risk. But this
only encouraged investors, who saw it as evidence that railway
company stock prices would continue rising.[32]

In the later stages of a bubble, fear can spread in much the
same way as enthusiasm. The first ripple in the 2008 mortgage
bubble appeared as early as April 2006, when US house prices
peaked.[33] It sparked the idea that mortgage investments
were much riskier than people had thought, an idea that would
spread through the industry, eventually bringing down entire
banks in the process. Lehman Brothers would collapse on 15
September 2008, a week or so after I finished my internship in
Canary Wharf. Unlike Long Term Capital Management, there
would be no saviour. Lehman’s collapse triggered fears that
the entire global financial system could go under. In the US
and Europe, governments and central banks provided over $14
trillion worth of support to prop up the industry. The scale of
the intervention reflected how much banks’ investments had
expanded in the preceding decades. Between the 1880s and
1960s, British banks’ assets were generally around half the
size of the country’s economy. By 2008, they were more than
five times larger.[34]

I didn’t realise it at the time, but as I was leaving finance
for a career in epidemiology, in another part of London the
two fields were coming together. Over on Threadneedle Street,
the Bank of England was battling to limit the fallout from
Lehman’s collapse.[35] More than ever, it was clear that many
had overestimated the stability of the financial network.
Popular assumptions of robustness and resilience no longer
held up; contagion was a much bigger problem than people
had thought.

This is where the disease researchers came in. Building on
that 2006 conference at the Federal Reserve, Robert May had
started to discuss the problem with other scientists. One of
them was Nim Arinaminpathy, a colleague at the University of
Oxford. Arinaminpathy recalled that, pre-2007, it was unusual
to study the financial system as a whole. ‘There was a lot of
faith in the vast, complex financial system being self-



correcting,’ he said. ‘The attitude was “we don’t need to know
how the system works, instead we can concentrate on
individual institutions”.’[36] Unfortunately, the events of 2008
would reveal the weakness in this approach. Surely there was a
better way?

During the late 1990s, May had been Chief Scientist to the
UK Government. As part of this role, he’d got to know
Mervyn King, who would later become Governor of the Bank
of England. When the 2008 crisis hit, May suggested they look
at the issue of contagion in more detail. If a bank suffered a
shock, how might it propagate through the financial system?
May and his colleagues were well placed to tackle the
problem. In the preceding decades, they had studied a range of
infections – from measles to HIV – and developed new methods
to guide disease control programmes. These ideas would
eventually revolutionise central banks’ approach to financial
contagion. However, to understand how these methods work,
we first need to look at a more fundamental question: how do
we work out whether an infection – or a crisis – will spread or
not?

AFTER WILLIAM KERMACK and Anderson McKendrick
announced their work on epidemic theory in the 1920s, the
field took a sharp mathematical turn. Although people
continued working on outbreak analysis, the work became
more abstract and technical. Researchers like Alfred Lotka
published lengthy, complicated papers, moving the field away
from real-life epidemics. They found ways to study
hypothetical outbreaks involving random events, intricate
transmission processes and multiple populations. The
emergence of computers helped drive these technical
developments; models that were previously difficult to analyse
by hand could now be simulated.[37]

Then progress stuttered. The obstacle was a 1957 textbook
written by mathematician Norman Bailey. Continuing the
theme of the preceding years, it was almost entirely
theoretical, with hardly any real-life data. The textbook was an
impressive survey of epidemic theory, which would help lure
several young researchers into the field. But there was a
problem: Bailey had left out a crucial idea, which would turn



out to be one of the most important concepts in outbreak
analysis.[38]

The idea in question had originated with George
MacDonald, a malaria researcher based in the Ross Institute at
the London School of Hygiene & Tropical Medicine. In the
early 1950s, MacDonald had refined Ronald Ross’s mosquito
model, making it possible to incorporate real-life data about
things like mosquito lifespan and feeding rates. By tailoring
the model to actual scenarios, MacDonald was able to spot
which part of the transmission process was most vulnerable to
control measures. Whereas Ross had focused on the mosquito
larvae that lived in water, MacDonald realised that to tackle
malaria, agencies would be better off targeting the adult
mosquitoes. They were the weakest link in the chain of
transmission.[39]

In 1955, the World Health Organization announced plans to
eradicate a disease for the first time. Inspired by MacDonald’s
analysis, they had chosen malaria. Eradication meant getting
rid of all infections globally, something that would eventually
prove harder to achieve than hoped; some mosquitoes became
resistant to pesticides, and control measures targeting
mosquitoes were less effective in some areas than others. As a
result, WHO would later shift its focus to smallpox, eradicating
the disease in 1980.[40]

MacDonald’s idea to target adult mosquitos had been a
crucial piece of research, but it wasn’t the one that Bailey had
omitted in his textbook. The truly groundbreaking idea had
been nestled in the appendix of MacDonald’s paper.[41]
Almost as an afterthought, he had proposed a new way of
thinking about infections. Rather than looking at critical
mosquito densities, he suggested thinking about what would
happen if a single infectious person arrived in the population.
How many more infections would follow?

Twenty years later, mathematician Klaus Dietz would
finally pick up on the idea in MacDonald’s appendix. In doing
so, he would help bring the theory of epidemics out of its
math ematical niche and into the wider world of public health.
Dietz outlined a quantity that would become known as the



‘reproduction number’, or R for short. R represented the
number of new infections we’d expect a typical infectious
person to generate on average.

In contrast to the rates and thresholds used by Kermack and
McKendrick, R is a more intuitive – and general – way to
think about contagion. It simply asks: how many people would
we expect a case to pass the infection on to? As we shall see in
later chapters, it’s an idea that we can apply to a wide range of
outbreaks, from gun violence to online memes.

R is particularly useful because it tells us whether to expect
a large outbreak or not. If R is below one, each infectious
person will on average generate less than one additional
infection. We’d therefore expect the number of cases to
decline over time. However, if R is above one, the level of
infection will rise on average, creating the potential for a large
epidemic.

Some diseases have a relatively low R. For pandemic flu, R
is generally around 1–2, which is about the same as Ebola
during the early stages of the 2013–16 West Africa epidemic.
On average, each Ebola case passed the virus onto a couple of
other people. Other infections can spread more easily. The
SARS virus, which caused outbreaks in Asia in early 2003, had
an R of 2–3. Smallpox, which is still the only human infection
that’s been eradicated, had an R of 4–6 in an entirely
susceptible population. Chickenpox is slightly higher, with an
R around 6–8 if everyone is susceptible. Yet these numbers are
low in comparison to what measles is capable of. In a fully
susceptible community, a single measles case can generate
more than 20 new infections on average.[42] Much of this is
down to the incredible lingering power of the measles virus: if
you sneeze in a room when you have the infection, there could
still be virus floating around in the air a couple of hours later.
[43]

As well as measuring transmission from a single infectious
person, R can give clues about how quickly the epidemic will
grow. Recall how the number of people in a pyramid scheme
increased with each step. Using R, we can apply the same
logic to disease outbreaks. If R is 2, an initial infected person



will generate two cases on average. These two new cases will
on average generate two more each, and so on. Carrying on
doubling and by the fifth generation of the outbreak, we’d
expect 32 new cases to appear; by the tenth, there would be
1,024 on average.

Because outbreaks often grow exponentially at first, a small
change in R can have a big effect on the expected number of
cases after a few generations. We’ve just seen that with an R
of 2, we’d expect 32 new cases in the fifth generation of the
outbreak. If R were 3 instead, we’d expect 243 at this same
point.

Example of an outbreak where each case infects two other
people. Circles are cases, arrows show route of transmission

One of the reasons R has become so popular is that it can
be estimated from real-life data. From HIV to Ebola, R makes it
possible to quantify and compare transmission for different
diseases. Much of this popularity is down to Robert May and
his long-standing collaborator Roy Anderson. During the late
1970s, the pair had helped bring epidemic research to a new
audience. Both had a background in ecology, which gave them
a more practical outlook than the mathematicians who’d
preceded them. They were interested in data and how models



could apply to real-life situations. In 1980, May read a draft
paper by Paul Fine and Jacqueline Clarkson of the Ross
Institute, who had used a reproduction number approach to
analyse measles epidemics.[44] Realising its potential, May
and Anderson quickly applied the idea to other problems,
encouraging others to join them.

It soon became clear the reproduction number could vary a
lot between different populations. For example, diseases like
measles can spread to a lot of people if it hits a community
with limited immunity, but we rarely see outbreaks in
countries with high levels of vaccination. The R of measles
can be 20 in populations where everyone is at risk, but in
highly vaccinated populations, each infected person generates
less than one secondary case on average. In other words, R is
below one in these places.

We can therefore use the reproduction number to work out
how many people we need to vaccinate to control an infection.
Suppose an infection has an R of 5 in a fully susceptible
population, as smallpox did, but we then vaccinate four out of
every five people. Before vaccination, we’d have expected a
typical infectious person to infect five other people. If the
vaccine is 100 per cent effective, four of these people will now
be immune on average. So each infectious person would be
expected to generate only one additional case.

Comparison of transmission with and without 80 per cent
vaccination, when R is 5 in a fully susceptible population

If we instead vaccinate more than four fifths of the
population, the average number of secondary cases will drop
below one. We’d therefore expect the number of infections to



decline over time, which would bring the disease under
control. We can use the same logic to work out vaccination
targets for other infections. If R is 10 in a fully susceptible
population, we’d need to vaccinate at least 9 in every 10
people. If R is 20, as it can be for measles, we need to
vaccinate 19 out of every 20, or over 95 per cent of the
population, to stop outbreaks. This percentage is commonly
known as the ‘herd immunity threshold’. The idea follows
from Kermack and McKendrick’s work: once this many
people are immune, the infection won’t be able to spread
effectively.

Reducing the susceptibility of a population is perhaps the
most obvious way to bring down the reproduction number, but
it’s not the only one. It turns out that there are four factors that
influence the value of R. Uncovering them is the key to
understanding how contagion works.

ON 19 APRIL 1987, Princess Diana opened a new treatment unit
in London’s Middlesex Hospital. While there, she did
something that surprised the accompanying media and even
the hospital staff: she shook a patient’s hand. The unit was first
in the country that was specifically built to care for people
with AIDS. The handshake was significant because despite
scientific evidence the disease could not spread through touch,
there was still a common belief that it could.[45]

The rise of HIV/AIDS in the 1980s created an urgent need to
uncover how the epidemic was spreading. What features of the
disease were driving transmission? The month before Diana
visited Middlesex Hospital, Robert May and Roy Anderson
had published a paper that broke down the reproduction
number for HIV.[46] They noted that R was influenced by a
number of different things. First, it depends on how long a
person is infectious: the shorter an infection is, the less time
there is to give it to someone else. As well as the duration of
infection, R will depend on how many people someone
interacts with while infectious. If they have a lot of contact
with others, it will provide plenty of opportunities for the
infection to spread. Finally, it depends on the probability that
the infection is passed on during each of these encounters,
assuming the other person is susceptible.



R therefore depends on four factors: the duration of time a
person is infectious; the average number of opportunities they
have to spread the infection each day they’re infectious; the
probability an opportunity results in transmission; and the
average susceptibility of the population. I like to call these the
‘DOTS’ for short. Joining them together gives us the value of
the reproduction number:

R = Duration × Opportunities × Transmission probability ×
Susceptibility

Breaking the reproduction number down into these DOTS
components, we can see how different aspects of transmission
trade off against each other. This can help us work out the best
way to control an epidemic, because some aspects of the
reproduction number will be easier to change than others. For
example, widespread sexual abstinence would reduce the
number of opportunities for HIV transmission, but it’s not an
appealing or practical option for most people. Health agencies
have therefore focused on getting people to use condoms,
which reduce the probability of transmission during sex. In
recent years, there has also been a lot of success with so-called
pre-exposure prophylaxis (PrEP), whereby HIV-negative people
take anti-HIV drugs to reduce their susceptibility to the
infection.[47]

The type of transmission opportunities we’re interested in
will depend on the infection. For influenza or smallpox,
transmission can occur during face-to-face conversations,
while infections like HIV and gonorrhea are spread mostly
through sexual encounters. The trade-off in the DOTS means
that if someone is infectious for twice as long, in transmission
terms it’s equivalent to them making twice as many contacts.
In the past, smallpox and HIV have at times both had an R of
around 5.[48] However, people are generally infectious with
smallpox for a shorter period, which means that there must be
more opportunities to spread infection per day, or a higher
transmission probability during each opportunity, to
compensate.

The reproduction number has become a crucial part of
modern outbreak research, but there’s another feature of



contagion we also need to consider. Because R looks at the
average level of transmission, it doesn’t capture some of the
unusual events that can occur during outbreaks. One such
event happened in March 1972, when a Serbian teacher
arrived at Belgrade’s main hospital with an unusual mix of
symptoms. He’d been given penicillin at his local medical
centre to treat a rash, but severe haemorrhaging had followed.
Dozens of students and staff in the hospital gathered to see
what they presumed was a strange reaction to the drug. But it
was no allergy. After the man’s brother also fell ill, staff
realised what the real problem was, and what they had exposed
themselves to. The man had been infected with smallpox, and
there would be 38 more cases – all traceable to him – before
the infections in Belgrade subsided.[49]

Although smallpox wouldn’t be eradicated globally until
1980, it was already gone from Europe, with no cases reported
in Serbia since 1930. The teacher had likely caught the disease
from a local clergyman who’d recently returned from Iraq.
Several similar flare-ups had happened in Europe during the
1960s and 1970s, most of them travel-related. In 1961, a girl
returned from Karachi, Pakistan to Bradford, England,
bringing the smallpox virus with her and unwittingly infecting
ten other people. An outbreak in Meschede, Germany, in 1969
also started with a visitor to Karachi. This time it was a
German electrician who’d travelled there; he would pass the
infection on to seventeen others.[50] However, these events
weren’t typical: most cases who returned to Europe didn’t
infect anyone.

In a susceptible population, smallpox has a reproduction
number of around 4–6. This represents the number of
secondary cases we’d expect to see, but it’s still just an
average value: in reality there can be a lot of variation between
individuals and outbreaks. Although the reproduction number
provides a useful summary of overall transmission, it doesn’t
tell us how much of this transmission comes from a handful of
what epidemiologists call ‘superspreading’ events.

A common misconception about disease outbreaks is that
they grow steadily generation-by-generation, with each case
infecting a similar number of people. If an infection spreads



from person-to-person, creating a chain of cases, we refer to it
as ‘propagated transmission’. However, propagated outbreaks
don’t necessarily follow the clockwork pattern of the
reproduction number, growing by the exact same amount each
generation. In 1997, a group of epidemiologists proposed the
‘20/80 rule’ to describe disease transmission. For diseases like
HIV and malaria they’d found that 20 per cent of cases were
responsible for around 80 per cent of transmission.[51] But
like most biological rules, there were some exceptions to the
20/80 rule of transmission. The researchers had focused on
sexually transmitted infections (STIs) and mosquito-borne
infections. Other outbreaks didn’t always follow this pattern.
After the 2003 SARS epidemic – which had involved several
instances of mass infection – there was renewed interest in the
notion of superspreading. For SARS, it seemed to be particularly
important: 20 per cent of cases caused almost 90 per cent of
transmission. In contrast, diseases like plague have fewer
superspreading events, with the top 20 per cent of cases
responsible for only 50 per cent of transmission.[52]

In other situations, an outbreak may not be propagated at
all. It may be the result of ‘common source transmission’, with
all cases coming from the same place. One example is food
poisoning: outbreaks can often be traced to a specific meal or
person. The most infamous case is that of Mary Mallon – often
referred to as ‘Typhoid Mary’ – who carried a typhoid
infection without symptoms. In the early twentieth century,
Mallon was employed as a cook for several families around
New York City, leading to multiple outbreaks of the disease
and several deaths.[53]

During a common source outbreak, cases often appear
within a short period of time. In May 1916, there was a
typhoid outbreak in California a few days after a school picnic.
Like Mallon, the cook who’d made the ice cream for the
picnic had been carrying the infection without knowing.



Typhoid outbreak following a picnic in California, 1916[54]

We can therefore think of disease transmission as a
continuum. At one end, we have a situation where a single
person – such as Mary Mallon – generates all of the cases.
This is the most extreme example of superspreading, with one
source responsible for 100 per cent of transmission. At the
other end, we have a clockwork epidemic where each case
generates exactly the same number of secondary cases. In
most cases, an outbreak will lie somewhere between these two
extremes.

If there is potential for superspreading events during an
outbreak, it implies that some groups of people might be
particularly important. When researchers realised that 80 per
cent of HIV transmission came from 20 per cent of cases, they
suggested targeting control measures at these ‘core groups’.
For such approaches to be effective, though, we need to think
about how individuals are connected in a network – and why
some people might be more at risk than others.

THE MOST PROLIFIC MATHEMATICIAN in history was an academic
nomad. Paul Erdős spent his career travelling the world, living
from two half-full suitcases without a credit card or
chequebook. ‘Property is a nuisance,’ as he put it. Far from
being a recluse, though, he used his trips to accumulate a vast
network of research collaborations. Fuelled by coffee and
amphetemines, he’d turn up at colleagues’ houses, announcing
that ‘my brain is open’. By the time he died in 1996, he’d



published about 1,500 papers, with over eight thousand co-
authors.[55]

As well as building networks, Erdős was interested in
researching them. Along with Alfréd Rényi, he pioneered a
way of analysing networks in which individual ‘nodes’ were
linked together at random. The pair were particularly
interested in the chance these networks would end up being
fully connected – with a possible route between any two nodes
– rather than split into distinct pieces. Such connectedness
matters for outbreaks. Suppose a network represents sexual
partnerships. If it’s fully connected, a single infected person
could in theory spread an STI to everyone else. But if the
network is split into many pieces, there’s no way for a person
in one component to infect somebody in another.

It can also make a difference if there is a single path across
the network, or several. If networks contain closed loops of
contacts, it can increase STI transmission.[56] When there’s a
loop, the infection can spread across the network in two
different ways; even if one of the social links breaks, there’s
still another route left. For STIs, outbreaks are therefore more
likely to spread if there are several loops present in the
network.

Although the randomness of Erdős–Rényi networks is
convenient from a mathematical point of view, real life can
look very different. Friends cluster together. Researchers
collaborate with the same group of co-authors. People often
have only one sexual partner at a time. There are also links
that go beyond such clusters. In 1994, epidemiologists Mirjam
Kretzschmar and Martina Morris modelled how STIs might
spread if some people had multiple sexual partners at the same
time. Perhaps unsurprisingly, they found that these
partnerships could lead to a much faster outbreak, because
they created links between very different parts of the network.



Illustration of fully-connected and broken Erdős–Rényi
networks

The Erdős–Rényi model could capture the occasional long-
range connections that occurred in real networks, but it
couldn’t reproduce the clustering of interactions. This
discrepancy was resolved in 1998, when mathematicians
Duncan Watts and Steven Strogatz developed the concept of a
‘small-world’ network, in which most links were local but a
few were long-range. They found that such networks cropped
up in all sorts of places: the electricity grid, neurons in worm
brains, co-stars in film casts, even Erdős’s academic
collaborations.[57] It was a remarkable finding, and more
discoveries were about to follow.

The small-world idea had addressed the issue of clustering
and long-range links, but physicists Albert-László Barabási
and Réka Albert spotted something else unusual about real-life
networks. From film collaborations to the World Wide Web,
they’d noticed that some nodes in the network had a huge
number of connections, far more than typically appeared in the
Erdős–Rényi or small-world networks. In 1999, the pair
proposed a simple mechanism to explain this extreme
variability in connections: new nodes that joined the network
would preferentially attach to already popular ones.[58] It was
a case of the ‘rich get richer’.

The following year, a team at the University of Stockholm
showed that the number of sexual partnerships in Sweden also



appeared to follow this rule: the vast majority of people had
slept with at most one person in the past year, whereas some
reported dozens of partners. Researchers have since found
similar patterns of sexual behaviour in countries ranging from
Burkina Faso to the United Kingdom.[59]

What effect does this extreme variability in number of
partners have on outbreaks? In the 1970s, mathematician
James Yorke and his colleagues noticed there was a problem
with the ongoing gonorrhea epidemic in the United States.
Namely, it didn’t seem possible. For the disease to keep
spreading, the reproduction number needed to be above one.
That meant infected people should on average have at least
two recent sexual partners: one who gave the infection to
them, and another who they passed it on to. But a study of
patients with gonorrhea had found that they’d had only 1.5
recent partners on average.[60] Even if the probability of
transmission during sex was very high, it suggested that there
simply weren’t enough encounters for the disease to persist.
What was going on?

If we just take the average number of partners, we are
ignoring the fact that not everyone’s sex lives are the same.
This variability is important: if someone has a lot of partners,
we’d expect them to be both more likely to get infected and
more likely to pass the infection on. We therefore need to
account for the fact that they can contribute to transmission in
these two different ways. Yorke and his colleagues argued that
this might explain why there could be a gonorrhea epidemic,
despite people having few partnerships on average: people
with lots of contacts might be contributing disproportionality
to the spread, pushing the reproduction number above one.
Anderson and May would later show that the more variation
there was in the number of partners people had, the higher
we’d expect the reproduction number to be.

Identifying people who are at higher risk – and finding
ways to reduce this risk – can help stop an outbreak in its early
stages. In the late 1980s, Anderson and May suggested that
STIs would initially spread quickly through such high-risk
groups, even though the overall outbreak would be smaller
than we’d expect if everyone mixed at random.[61]



By breaking contagion down into its basic DOTS
components – duration, opportunities, transmission
probability, susceptibility – and thinking about how network
structure affects contagion, we can also estimate the risk posed
by a new STI. In 2008, an American scientist returned home to
Colorado after a month working in Senegal. A week later, he’d
fallen ill with a headache, extreme tiredness, and a rash on his
torso. Soon after, his wife – who hadn’t travelled – developed
the same symptoms. Subsequent lab tests indicated both had
been exposed to the Zika virus. Prior Zika research had
focused on transmission from mosquitoes, but the Colorado
incident suggested the virus had access to another route: it
could infect people during sexual encounters.[62] As Zika
spread around the globe in 2015–16, more reports of sexual
transmission would follow, fueling speculation about a new
type of outbreak. ‘Zika: The Millennials’ S.T.D.?’ asked one
opinion piece in the New York Times during 2016.[63]

Based on the DOTS for Zika, our research group estimated
that the reproduction number for sexual transmission was
below one; the virus would probably not cause an STI
epidemic. Zika could potentially cause small outbreaks in
groups with a lot of sexual contacts, but it was unlikely to pose
a major risk in areas without mosquitoes.[64] Unfortunately,
the same has not been true for other STIs.

GAËTAN DUGAS WAS BLOND, charming, and had a lot of sex. A
Canadian flight attendant, he’d slept with over two hundred
men a year prior to March 1984, when he died of AIDS a few
weeks after his 31st birthday. Three years later, journalist
Randy Shilts featured Dugas in his bestselling book And the
Band Played On. Shilts suggested that Dugas had played a
central part in the early spread of the disease. He dubbed
Dugas ‘patient zero’, a term still used today to refer to the first
case in an outbreak. Shilts’ book fuelled speculation that
Dugas was the person who introduced the epidemic to North
America. The New York Post called him ‘The Man Who Gave
Us AIDS’; the National Review said he was ‘the Columbus of
AIDS’.

The idea of Dugas as patient zero was certainly attention-
grabbing, and has been repeated often in the decades since.



But it turned out to be fiction. In 2016, a team of researchers
published an analysis of HIV viruses from a range of patients,
including men diagnosed with AIDS in the 1970s and Dugas
himself. Based on the genetic diversity of these viruses and the
rate of HIV evolution, the team estimated that HIV had arrived
into North America in 1970 or 1971. However, they found no
evidence that Dugas had introduced HIV to the US. He was just
another case in a much wider epidemic.[65]

So how did the patient zero designation come about? In the
original outbreak investigation, Dugas hadn’t actually been
listed as ‘Patient 0’, but rather as ‘Patient O’, the ‘O’ short for
‘Outside California’. In 1984, William Darrow, a researcher
with the Centers for Disease Control and Prevention (CDC),
had been assigned to investigate a cluster of deaths among gay
men in Los Angeles.[66] The CDC generally gave each case a
number based on the order in which they had been reported,
but the cases had been relabelled for the LA analysis. Before
Dugas had been linked to the Los Angeles cluster, he was
simply ‘Patient 057’.

When investigators traced how the cases were linked, it
suggested that the deaths might be the result of an as-yet-
unknown STI. Dugas appeared prominently in the network,
with links to multiple cases in New York and LA. This was in
part because he’d tried to help the investigators, naming 72 of
his partners in the preceding three years. Darrow pointed out
that this had always been the aim of the investigation: to
understand how cases were linked, rather than find out who
had started the outbreak. ‘I never said that he was the first case
in the United States,’ he later commented.

When investigating outbreaks, we face a gap between what
we want to know and what we can measure. Ideally, we’d have
data on all the ways in which people are connected, and how
infection has spread through these links. What we can actually
measure is very different. A typical outbreak investigation will
reconstruct some of the links between people who were
infected. Depending on which cases and links are reported, the
resulting network won’t necessarily look like the actual
transmission route. Some people might appear more prominent



than they really were, while some transmission events might
be missed.

When Randy Shilts came across the CDC diagram while
researching his book, his attention was drawn to Dugas. ‘In the
middle of that study was a circle with an O next to it, and I
always thought it was Patient O,’ he later recalled. ‘When I
went to the CDC, they started talking about Patient Zero. I
thought, “Ooh, that’s catchy”.’[67]

It’s easier to tell a story when it has a clear antagonist.
According to historian Phil Tiemeyer, it was Shilts’s editor
Michael Denneny who suggested they make Dugas the villain
in the book and accompanying publicity. ‘Randy hated the
idea,’ Denneny told Tiemeyer. ‘It took me almost a week to
argue him into it.’ The decision – which Denneny later said he
regretted – came because the media seemed to have little
interest in AIDS otherwise. ‘They were not going to review a
book that was an indictment of the Reagan administration and
the medical establishment.’[68]

When discussing outbreaks that involve superspreading
events, there is a tendency to place all attention on the people
apparently at the centre of them. Who are these
‘superspreaders’? What makes them different from everyone
else? However, such attention can be misplaced. Take that
story of the Belgrade teacher who arrived in hospital with
smallpox. There was nothing intrinsically unusual about him
or his behaviour. He had acquired the disease through a chance
encounter, had tried to get medical care at an appropriate place
– a hospital – and the outbreak spread because nobody initially
suspected smallpox was the cause. This is true of many
outbreaks: it’s often difficult to predict in advance what role a
specific individual will play.

Even if we can identify situations that create a risk of
disease transmission, it won’t necessarily lead to the outcome
we expect. On 21 October 2014, at the height of the Ebola
epidemic in West Africa, a two-year-old girl arrived at a
hospital in the city of Kayes, Mali. Following the death of her
father, who had been a healthcare worker, the girl had travelled
over 1,200 km from neighbouring Guinea with her



grandmother, uncle and sister. At the Kayes hospital, the girl
tested positive for Ebola, and would die of the disease the next
day. She was Mali’s first case of Ebola, and health authorities
began to search for people who may have come into contact
with her. During her trip, she’d taken at least one bus and three
taxis, potentially interacting with dozens if not hundreds of
people. She’d already been displaying symptoms when she
arrived at the hospital; based on the nature of Ebola
transmission, there was a good chance she could have passed
the virus on. Investigators eventually managed to track down
over one hundred of the girl’s contacts and placed them in
quarantine as a precaution. However, none of them came down
with Ebola. Despite her long journey, the girl hadn’t infected
anyone.[69]

When Ebola superspreading events did occur during 2014–
15, our team noticed there was one feature that stood out.
Unfortunately, it wasn’t a particularly helpful one: the cases
most likely to be involved in superspreading were the ones
that couldn’t be linked to existing chains of transmission. Put
simply, the people driving the epidemic were generally the
ones the health authorities didn’t know about. These people
went undetected until they sparked a new set of infections,
making it near impossible to predict superspreading events.
[70]

With enough effort, we can often trace some of the path of
infection during an outbreak, reconstructing who might have
infected whom. It can be tempting to construct a narrative as
well, speculating about why certain people transmitted more
than others. However, just because an infection is capable of
superspreading doesn’t necessarily mean the same people are
always the superspreaders. Two people might behave in almost
the same way, but by chance one of them spreads infection and
the other does not. When history is written, one is blamed and
the other ignored. Philosophers call it ‘moral luck’: the idea
that we tend to view actions with unfortunate consequences as
worse than equal actions without any repercussions.[71]

Sometimes the people involved in an outbreak do behave
differently, but not necessarily in the way we might assume. In
his book The Tipping Point, Malcolm Gladwell describes an



outbreak of gonorrhea in Colorado Springs, Colorado, during
1981. As part of the outbreak investigation, epidemiologist
John Potterat and his colleagues had interviewed 769 cases,
asking whom they’d recently had sexual contact with. Of these
cases, 168 people had at least two contacts who were also
infected. This suggested they were disproportionately
important in the outbreak. ‘Who were those 168 people?’
Gladwell asked. ‘They aren’t like you or me. They are people
who go out every night, people who have vastly more sexual
partners than the norm, people whose lives and behaviour are
well outside of the ordinary.’

Were these people really so promiscuous and unusual? Not
particularly, in my view: the researchers found that, on
average, these cases reported sexual encounters with 2.3 other
infected people. This implies they caught the infection from
one person and typically gave it to one or two others. Cases
tended to be black or Hispanic, young, and associated with the
military; almost half had known their sexual partners for more
than two months.[72] During the 1970s, Potterat had begun to
notice that promiscuity wasn’t a good explanation for
gonorrhea outbreaks in Colorado Springs. ‘Especially striking
was the difference in gonorrhea test outcome between sexually
adventurous white women from a local upper middle class
college and similarly aged black women with modest sexual
histories and educational backgrounds,’ he noted.[73] ‘The
former were seldom diagnosed with gonorrhea, unlike the
latter.’ A closer look at the Colorado Springs data suggested
that transmission was likely to be the result of delays in getting
treatment among certain social groups, rather than an
unusually high level of sexual activity.

Viewing at-risk people as special or different can encourage
a ‘them and us’ attitude, leading to segregation and stigma. In
turn, this can make epidemics harder to control. From HIV/AIDS

to Ebola, blame – and fear of blame – has pushed many
outbreaks out of view. Suspicion around disease can result in
many patients and their families being shunned by the local
community.[74] This makes people reluctant to report the
disease, which in turn amplifies transmission, by making the
most important individuals harder to reach.



Blaming certain groups for outbreaks is not a new phenom- 
enon. In the sixteenth century, the English believed syphilis
came from France, so referred to it as the ‘French pox’. The
French, believing it to be from Naples, called it the
‘Neopolitan disease’. In Russia, it was the Polish disease, in
Poland it was Turkish, and in Turkey it was Christian.[75]

Such blame can stick for a long time. We still refer to the
1918 influenza pandemic, which killed tens of millions of
people globally, as the ‘Spanish flu’. The name emerged
during the outbreak because media reports suggested Spain
was the worst hit country in Europe. However, these reports
weren’t quite what they seemed. At the time, Spain had no
wartime censorship of news reports, unlike Germany, England
and France, who quashed news of disease for fear that it might
damage morale. The media blackout in these countries
therefore made it appear that Spain had far more cases than
anywhere else. (For their part, the Spanish media tried to
blame the disease on the French.[76])

If we want to avoid country-specific disease names, it helps
to suggest an alternative. One Saturday morning in March
2003, a group of experts gathered at WHO headquarters in
Geneva to discuss a newly discovered infection in Asia.[77]
Cases had already appeared in Hong Kong, China and
Vietnam, with another reported in Frankfurt that morning. WHO

was about to announce the threat to the world, but first they
needed a name. They wanted something that was easy to
remember, but which wouldn’t stigmatize the countries
involved. Eventually they settled on ‘Severe Acute
Respiratory Syndrome’, or SARS for short.

THE SARS EPIDEMIC WOULD RESULT in over eight thousand cases
and several hundred deaths, across multiple continents.
Despite being brought under control in June 2003, the
epidemic would cost an estimated $40 billion dollars globally.
[78] It wasn’t just the direct cost of treating disease cases; it
was the economic impact of closed workplaces, empty hotels
and cancelled trade.

According to Andy Haldane, now Chief Economist at the
Bank of England, the wider effects of the SARS epidemic were



comparable with the fallout from the 2008 financial crisis.
‘These similarities are striking,’ he said in a 2009 speech.[79]
‘An external event strikes. Fear grips the system, which, in
consequence, seizes. The resulting collateral damage is wide
and deep.’

Haldane suggested that the public typically respond to an
outbreak in one of two ways: flight or hide. In the case of an
infectious disease, flight means trying to leave an affected area
in the hope of avoiding infection. Because of travel restrictions
and other control measures, this generally wasn’t an option
during the SARS epidemic.[80] Had infected people travelled –
rather than being identified and isolated by health authorities –
it could have spread the virus to even more locations. The
flight response can also happen in finance. Faced with a crash,
investors may cut their losses and sell off assets, driving prices
even lower.

Alternatively, people may ‘hide’ during an outbreak,
dodging situations that could potentially bring them into
contact with the infection. If it’s a disease outbreak, they might
wash their hands more often, or reduce their social
interactions. In finance, banks might hide by hoarding money
rather than risking lending to other institutions. However,
Haldane pointed out that there is a crucial difference between
hide responses in disease outbreaks and financial crises.
Hiding behaviour will generally help reduce disease
transmission, even if it incurs a cost in the process. In contrast,
when banks hoard money it can amplify problems, as
happened with the ‘credit crunch’ that hit economies in the run
up to the 2008 crisis.

Although the notion of a credit crunch would make
headlines during 2007/8, economists first coined the term back
in 1966. That summer, US banks had abruptly stopped
lending. In the preceding years, there had been high demand
for loans, with banks making more and more credit available
to keep pace. Eventually, it had got to the point where banks
weren’t taking in enough money in savings to continue
lending, so the loans stopped. It wasn’t just a matter of banks
asking borrowers for higher interest rates. They weren’t
lending at all. Banks had reduced the availability of loans



before – there were several instances of ‘credit squeezes’ in
the US during the 1950s – but some thought ‘squeeze’ was too
gentle a word to describe the sudden impact of 1966. ‘A
“crunch” is different,’ wrote economist Sidney Homer at the
time. ‘It is painful by definition, and it can even break
bones.’[81]

The 2008 crisis wasn’t the first time Andy Haldane had
thought about contagion in financial systems.[82] ‘I remember
back in 2004/5, writing a note about us having entered the era
of “super-systemic risk” as a result of these sorts of
infections.’ His note suggested that the financial network
might be robust in some situations and extremely fragile in
others. The idea was well-established in ecology: the structure
of a network might make it resilient to minor shocks, but the
same structure could also leave it vulnerable to complete
collapse if put under enough stress. Think about a team at
work. If most people are doing well, weaker members can get
away with mistakes because they are linked to high
performers. However, if most of the team are struggling, the
same links will instead drag strong members down. ‘The basic
point was that all this integration did indeed reduce the
probability of mini-crashes,’ Haldane said, ‘but increased the
probability of a maxi-crash.’

It may have been a prescient idea, but it didn’t spread very
far. ‘That note didn’t really go anywhere unfortunately,’ he
said, ‘until the big one came.’ Why didn’t the idea take off? ‘It
was hard to spot any examples of such systemic risk at the
time. It appeared to be a very flat ocean at that point.’ That
would change in autumn 2008. After Lehman Brothers
collapsed, people across the banking industry started thinking
in terms of epidemics. According to Haldane, it was the only
way to explain what had happened. ‘You couldn’t tell a story
about why Lehman had brought the financial system down
without telling a contagion story.’

IF YOU WERE TO MAKE a list of network features that could
amplify contagion, you’d find that the pre-2008 banking
system had most of them. Let’s start with the distribution of
links between banks. Rather than connections being scattered
evenly, a handful of firms dominated the network, creating



massive potential for superspreading. In 2006, researchers
working with the Federal Reserve Bank of New York picked
apart the structure of the US Fedwire payment network. When
they looked at the $1.3 trillion of transfers that happened
between thousands of US banks on a typical day, they found
that 75 per cent of the payments involved just 66 institutions.
[83]

Illustration of assortative and disassortative networks

Adapted from Hao et al., 2011

The variability in links wasn’t the only problem. It was also
how these big banks fitted into the rest of the network. In
1989, epidemiologist Sunetra Gupta led a study showing that
the dynamics of infections could depend on whether a network
is what mathematicians call ‘assortative’ or ‘disassortative’. In
an assortative network, highly connected individuals are
linked mostly to other highly connected people. This results in
an outbreak that spreads quickly through these clusters of
high-risk individuals, but struggles to reach the other, less
connected, parts of the network. In contrast, a disassortative
network is when high-risk people are mostly linked to low risk
ones. This makes the infection spread slower at first, but leads
to a larger overall epidemic.[84]

The banking network, of course, turned out to be
disassortative. A major bank like Lehman Brothers could
therefore spread contagion widely; when Lehman failed, it had
trading relationships with over one million counter-parties.[85]



‘It was entangled in this mesh of exposures – derivatives and
cash – and no one had the faintest idea quite who owed what
to whom,’ Haldane said. It didn’t help that there were
numerous, often hidden, loops in the wider network, creating
multiple routes of transmission from Lehman to other
companies and markets. What’s more, these routes could be
very short. The international financial network had become a
smaller world during the 1990s and 2000s. By 2008, each
country was only a step or two away from another nation’s
crisis.[86]

In February 2009, investor Warren Buffett used his annual
letter to shareholders to warn about the ‘frightening web of
mutual dependence’ between large banks.[87] ‘Participants
seeking to dodge troubles face the same problem as someone
seeking to avoid venereal disease,’ he wrote. ‘It’s not just
whom you sleep with, but also whom they are sleeping with.’
As well as putting supposedly careful institutions at risk,
Buffett suggested that the network structure could also
incentivise bad behaviour. If the government needed to step in
and help during a crisis, the first companies on the list would
be those that were capable of infecting many others. ‘Sleeping
around, to continue our metaphor, can actually be useful for
large derivatives dealers because it assures them government
aid if trouble hits.’

Given the apparent vulnerability of the financial network,
central banks and regulators needed to understand the 2008
crisis. What else had been driving transmission? The Bank of
England had already been working on models of financial
contagion pre-crisis, but 2008 brought a new, real-life urgency
to the work. ‘We started using them in practice when the crisis
broke,’ Haldane said. ‘Not just for making sense of what was
going on, but more importantly for what we might do to stop it
happening again.’

WHEN ONE BANK LENDS money to another, it creates a tangible
link between the two: if the borrower goes under, the lender
loses their money. In theory, we could trace this network to
understand the outbreak risk, just as we can for STIs. But
there’s more to it than that. Nim Arinaminpathy has pointed
out that networks of loans were just one of several problems in



2008. ‘It’s almost like HIV,’ he said. ‘You can have
transmission through sexual contacts, as well as needle
exchanges or blood transfusions. There are multiple routes of
transmission.’ In finance, contagion can also come from
several different sources. ‘It isn’t just lending relationships, it’s
also about shared assets and other exposures.’

A long-standing idea in finance is that banks can use
diversification to reduce their overall risk. By holding a range
of investments, individual risks will balance each other out,
improving the bank’s stability. In the lead up to 2008, most
banks had adopted this approach to investment. They’d also
chosen to do it in the same way, chasing the same types of
assets and investment ideas. Although each individual bank
had diversified their investments, there was little diversity in
the way they had collectively done it.

Why the similarity in behaviour? During the Great
Depression that followed the 1929 Wall Street crash,
economist John Maynard Keynes observed that there is a
strong incentive to follow the crowd. ‘A sound banker, alas, is
not one who foresees danger and avoids it,’ he once wrote,
‘but one who, when he is ruined, is ruined in a conventional
way along with his fellows, so that no one can really blame
him.’[88] The incentive works the other way too. Pre-2008,
many companies started investing in trendy financial products
like CDOs, which were far outside their area of expertise.
Janet Tavakoli has pointed out that banks were happy to
indulge them, inflating the bubble further. ‘As they say in
poker, if you don’t know how to spot the sucker at the table, it
is you.’[89]

When multiple banks invest in the same asset, it creates a
potential route of transmission between them. If a crisis hits
and one bank starts selling off its assets, it will affect all the
other firms who hold these investments. The more the largest
banks diversify their investments, the more opportunities for
shared contagion. Several studies have found that during a
financial crisis, diversification can destabilise the wider
network.[90]



Robert May and Andy Haldane noted that historically, the
largest banks had held lower amounts of capital than their
smaller peers. The popular argument was that because these
banks held more diverse investments, they were at less risk;
they didn’t need to have a big buffer against unexpected
losses. The 2008 crisis revealed the flaws in this thinking.
Large banks were no less likely to fail than smaller ones.
What’s more, these big firms were disproportionally important
to the stability of the financial network. ‘What matters is not a
bank’s closeness to the edge of the cliff,’ May and Haldane
wrote in 2011, ‘it is the extent of the fall.’[91]

TWO DAYS AFTER LEHMAN went under, Financial Times
journalist John Authers visited a Manhattan branch of Citibank
during his lunch break. He wanted to move some cash out of
his account. Some of his money was covered by government
deposit insurance, but only up to a limit; if Citibank collapsed
too, he’d lose the rest. He wasn’t the only one who’d had this
idea. ‘At Citi, I found a long queue, all well-dressed Wall
Streeters,’ he later wrote.[92] ‘They were doing the same as
me.’ The bank staff helped him open additional accounts in the
name of his wife and children, reducing his risk. Authers was
shocked to discover they’d been doing this all morning. ‘I was
finding it a little hard to breathe. There was a bank run
happening, in New York’s financial district. The people
panicking were the Wall Streeters who best understood what
was going on.’ Should he report what was happening? Given
the severity of the crisis, Authers decided it would only make
the situation worse. ‘Such a story on the FT’s front page might
have been enough to push the system over the edge.’ His
counterparts at other newspapers came to the same conclusion,
and the news went uncovered.

The analogy between financial and biological contagion is a
useful starting point, but there is one situation it doesn’t cover.
To get infected during a disease outbreak, a person needs to be
exposed to the pathogen. Financial contagion can also spread
through tangible exposures, like a loan between banks or an
investment in the same asset as someone else. The difference
with finance is that firms don’t always need a direct exposure
to fall ill. ‘There’s one way this is unlike any other network



we’ve dealt with,’ said Nim Arinaminpathy. ‘You can have
apparently healthy institutions come crashing down.’ If the
public believes that a bank will go under, they may try to
withdraw their money all at once, which would sink even a
healthy bank. Likewise, when banks lose confidence in the
financial system – as happened in 2007/8 – they often hoard
money rather than lending it out. The rumour and speculation
that circulates from one trader to another may therefore bring
down firms that would otherwise have survived the crisis.

During 2011, Arinaminpathy and Robert May worked with
Sujit Kapadia at the Bank of England to investigate not only
direct transmission through bad loans or shared investments,
but also the indirect effect of fear and panic. They found that if
bankers started hoarding money when they lost confidence in
the system, it could exacerbate a crisis: banks that would
otherwise have had enough capital to ride it out would instead
fail. The damage was much worse when a large bank was
involved because they tended to be in the middle of the
financial network.[93] This suggested that rather than simply
looking at the size of banks, regulators should consider who is
at the heart of the system. It isn’t just about banks being ‘too
big to fail’; it is more about them being ‘too central to fail’.

These kinds of insights from epidemic theory are now
being put into practice, something Haldane described as a
‘philosophical shift’ in how we think about financial
contagion. One major change has been to get banks to hold
more capital if they are important to the network, reducing
their susceptibility to infection. Then there is the issue of the
network links that transmitted the infection in the first place.
Could regulators target these too? ‘The hardest part of this was
when you went to questions of “Should we act to alter the very
structure of the web”?’ Haldane said. ‘That’s when people
started to kick up more of a fuss because it was a more
intrusive intervention in their business model.’

In 2011, a commission chaired by John Vickers
recommended that larger British banks put a ‘ring-fence’
around their riskier trading activities.[94] This would help
prevent the fallout from bad investments spreading to the retail
parts of banks, which deal with high-street services like our



savings accounts. ‘The ring-fence would help insulate UK
retail banking from external shocks,’ the commission
suggested. ‘A channel of financial system interconnectedness
– and hence of contagion – would be made safer.’ The UK
government eventually put the recommendation into practice,
forcing banks to split their activities. Because it was such a
tough policy to get through, it wasn’t picked up elsewhere;
ring-fencing was proposed in other parts of Europe, but not
implemented.[95]

Ring-fencing isn’t the only strategy for reducing
transmission. When banks trade financial derivatives, it’s often
done ‘over the counter’ from one firm direct to another, rather
than through a central exchange. Such trading activity came to
almost $600 trillion in 2018.[96] However, since 2009, the
largest derivatives contracts are no longer traded directly
between major banks. They now have to go through
independently run central hubs which have the effect of
simplifying the network structure.

The danger, of course, is that if a hub fails, it could become
a giant superspreader. ‘If there is a big shock, it makes things
worse because the risk is concentrated,’ said Barbara Casu, an
economist at Cass Business School.[97] ‘It should act as a risk
buffer, but in extreme cases it could act as a risk amplifier.’ To
guard against this problem, hubs have access to emergency
capital from the members who use them. This mutual
approach has drawn criticism from financiers who prefer an
every-firm-for-themselves style of banking.[98] But by
removing the tangle of hidden loops from the network, the
hubs should mean fewer opportunities for contagion, and less
uncertainty about who is at risk.

Despite progress in our understanding of financial
contagion, there is still work to be done. ‘It’s like infectious
disease modelling in the 1970s and 1980s,’ said
Arinaminpathy. ‘There was a lot of great theory and the data
had some catching up to do.’ One of the big obstacles is access
to trading information. Banks are naturally protective of their
business activities, making it difficult for researchers to form a
picture of exactly how institutions are connected, particularly
at the global level. This makes it difficult to assess potential



contagion. Network scientists have found that, when
examining the probability of a crisis, small errors in
knowledge about the lending network could lead to big errors
in estimates of system-wide risk.[99]

Yet it’s not only a matter of trading data. As well as
studying the structure of networks, we need to think more
about Newton’s ‘madness of people’. We need to consider how
beliefs and behaviours arise, and how they can spread. This
means thinking about people as well as pathogens. From
innovations to infections, contagion is often a social process.



3
The measure of friendship

THE TERMS OF THE WAGER were simple. If John Ellis lost at darts,
he had to get the word ‘penguin’ into his next scientific paper.
It was 1977, and Ellis and his colleagues were in a pub near
the CERN particle physics laboratory, just outside Geneva.
Ellis was playing against Melissa Franklin, a visiting student.
She had to leave before the end of the game, but another
researcher took her place and sealed the victory.
‘Nevertheless,’ Ellis later said,[1] ‘I felt obligated to carry out
the conditions of the bet.’

That raised the question of how to sneak a penguin into a
physics paper. At the time, Ellis was working on a manuscript
that described how a particular type of subatomic particle – the
so-called ‘bottom quark’ – behaved. As was common in
physics, he sketched out a diagram with arrows and loops
showing how the particles would transition from one state to
another. First introduced by Richard Feynman in 1948, these
‘Feynman diagrams’ had become a popular tool for physicists.
The drawings provided Ellis with the inspiration he needed.
‘One evening, after working at CERN, I stopped on my way
back to my apartment to visit some friends living in Meyrin
where I smoked some illegal substance,’ he recalled. ‘Later,
when I got back to my apartment and continued working on
our paper, I had a sudden flash that the famous diagrams look
like penguins.’

Ellis’s idea would catch on. Since the paper was published,
his ‘penguin diagrams’ have been cited thousands of times by
other physicists. Even so, the penguins are nowhere near as
widespread as the figures they are based on. Feynman
diagrams would spread rapidly after their 1948 debut,
transforming physics. One of the reasons the idea sparked was
the Institute for Advanced Study in Princeton, New Jersey. Its
director was J. Robert Oppenheimer, who’d previously led the
US effort to develop the atomic bomb. Oppenheimer called the



institute his ‘intellectual hotel’, bringing in a series of junior
researchers on two-year positions.[2] Young minds arrived
from around the world, with Oppenheimer wanting to
encourage the global flow of ideas. ‘The best way to send
information is to wrap it up in a person,’ as he put it.

The spread of scientific concepts would inspire some of the
first research into the transmission of ideas. During the early
1960s, US mathematician William Goffman suggested that the
transfer of information between scientists worked much like
an epidemic.[3] Just as diseases like malaria spread from
person to person via mosquitoes, scientific research often
passed from scientist to scientist via academic papers. From
Darwin’s theory of evolution to Newton’s laws of motion and
Freud’s psychoanalytic movement, new concepts had spread to
‘susceptible’ scientists who came into contact with them.

Still, not everyone was susceptible to Feynman diagrams.
One sceptic was Lev Landau at the Moscow Institute for
Physical Problems. A highly respected physicist, Landau had
clear ideas about how much he respected others; he was
known to maintain a list rating his fellow researchers. Landau
used an inverted scale from 0 to 5. A score of 0 indicated the
greatest physicist – a position held only by Newton in the list –
and 5 meant ‘mundane’. Landau rated himself a 2.5, upgrading
this to a 2 after he won the 1962 Nobel Prize.[4]

Although Landau rated Feynman as a 1, he wasn’t
impressed by the diagrams, seeing them as a distraction from
more important problems. Landau hosted a popular weekly
seminar at the Moscow Institute. Twice, speakers tried to
present Feynman diagrams; both times they were kicked off
the podium before they could finish their talks. When a PhD
student said he was planning to follow Feynman’s lead,
Landau accused him of ‘fashion chasing’. Landau did
eventually use the diagrams in a 1954 paper, but he outsourced
the tricky analysis to two of his students. ‘This is the first work
where I could not carry out the calculations myself’, he
admitted to a colleague.[5]

What effect did people like Landau have on the spread of
Feynman diagrams? In 2005, physicist Luís Bettencourt,



historian David Kaiser and their colleagues decided to find
out.[6] Kaiser had previously collected academic journals
published around the world in the years after Feynman
announced his idea. He then went through each journal page-
by-page, looking for references to Feynman diagrams, and
tallying up how many authors adopted the idea over time.
When the team plotted the data, the number of authors using
the diagrams followed the familiar S-shaped adoption curve,
rising exponentially before eventually plateauing.

The next step was to quantify how contagious the idea had
been. Although the diagrams had originated in the US, they
had spread quickly when they arrived in Japan. Things were
more sluggish in the USSR, with a slower uptake than the
other two countries. This was consistent with historical
accounts. Japanese universities had expanded rapidly during
the post-war period, with a strong particle physics community.
In contrast, the emerging Cold War – combined with the
scepticism of researchers like Landau – had stifled the
diagrams in the USSR.

With the data they had available, Bettencourt and
colleagues could also estimate the reproduction number, R, of
a Feynman diagram: for each physicist who adopted the idea,
how many others did they eventually pass it on to? Their
results suggested a lot: as an idea, it was highly contagious.
Initially R was around 15 in the USA and potentially as high
as 75 in Japan. It was one of the first times that researchers
had tried to measure the reproduction number of an idea,
putting a number on what had previously been a vague notion
of contagiousness.

This raised the question of why the idea had been so catchy.
Perhaps it was because physicists were interacting with each
other frequently during this period? Not necessarily: the high
value of R instead seemed to be because people kept spreading
the idea for a long time once they’d adopted it. ‘The spread of
Feynman diagrams appears analogous to a very slowly
spreading disease,’ the researchers noted. Adoption was ‘due
primarily to the very long lifetime of the idea, rather than to
abnormally high contact rates’.



Tracing citation networks doesn’t just tell us how new ideas
spread. We can also learn how they emerge. If high profile
scientists dominate a field, it can hinder the growth of
competing ideas. As a result, new theories may only gain
traction once dominant scientists cede the limelight. As
physicist Max Planck supposedly once said, ‘science advances
one funeral at a time.’ Researchers at MIT have since tested
this famous comment by analysing what happens after the
premature deaths of elite scientists.[7] They found that
competing groups would subsequently publish more papers –
and pick up more citations – while collaborators of the ‘star’
researcher tended to fade in prominence.

Scientific papers aren’t only relevant to scientists. Ed
Catmull, co-founder of Pixar, has argued that publications are
a useful way of building links with specialists outside their
company.[8] ‘Publishing may give away ideas, but it keeps us
connected with the academic community,’ he once wrote.
‘This connection is worth far more than any ideas we may
have revealed’. Pixar is known for encouraging ‘small-world’
encounters between different parts of a network. This has even
influenced the design of their building, which has a large
central atrium containing potential hubs for random
interactions, like mailboxes and the cafeteria. ‘Most buildings
are designed for some functional purpose, but ours is
structured to maximize inadvertent encounters,’ as Catmull put
it. The idea of social architecture has caught on elsewhere too.
In 2016, the Francis Crick Institute opened in London.
Europe’s largest biomedical lab, it would become home to
over 1,200 scientists in a £650 million building. According to
its director Paul Nurse, the layout was designed to get people
interacting by creating ‘a bit of gentle anarchy’.[9]

Unexpected encounters can help spark innovation, but if
companies remove too many office boundaries, it can have the
opposite effect. When researchers at Harvard University used
digital trackers to monitor employees at two major companies,
they found that the introduction of open-plan offices reduced
face-to-face interactions by around 70 per cent. People instead
chose to communicate online, with e-mail use increasing by
over 50 per cent. Increasing the openness of the offices had



decreased the number of meaningful interactions, reducing
overall productivity.[10]

For something to spread, susceptible and infectious people
need to come into contact, either directly or indirectly.
Whether we’re looking at innovations or infections, the
number of opportunities for transmission will depend on how
often contacts occur. If we want to understand contagion, we
therefore need to work out how we interact with one another.
However, it’s a task that turns out to be remarkably difficult.

‘THATCHER HALTS SURVEY ON SEX,’ announced the headline in
The Sunday Times. It was September 1989, and the
government had just blocked a proposal to study sexual
behaviour in the UK. Faced with a growing HIV epidemic,
researchers had become increasingly aware of the importance
of sexual encounters. The problem was that nobody really
knew how common these encounters were. ’We had no idea of
the parameter estimates that would drive an epidemic of HIV,’
Anne Johnson, one of the researchers who’d proposed the UK
study, later said. ‘We didn’t know what proportion of the
population had gay partners, we didn’t know the number of
partners that people had.’[11]

In the mid-1980s, a group of health researchers had come
up with the idea of measuring sexual behaviour on a national
scale. They’d run a successful pilot study, but had struggled to
get the main survey off the ground. There were reports that
Margaret Thatcher had vetoed government funding, believing
that the study would intrude into people’s private lives, leading
to ‘unseemly speculation’. Fortunately, there was another
option. Shortly after The Sunday Times article came out, the
team secured independent support from the Wellcome Trust.

The National Survey of Sexual Attitudes and Lifestyles – or
Natsal – would eventually run in 1990, then again in 2000 and
2010. According to Kaye Wellings, who helped develop the
study, it was clear the data would have applications beyond
STIs. ‘Even as we were writing the proposal, I think we
realised that it was going to answer a whole host of questions
of relevance to public health policy, which there hadn’t been
data available to answer before.’ In recent years, Natsal has



provided insights into a whole range of social issues, from
birth control to marriage breakdowns.

Still, it wasn’t easy to get people talking about their sex
lives. Interviewers had to persuade people to take part – often
by emphasising the benefits for wider society – and build
enough trust for participants to answer honestly. Then there
was the issue of sexual terminology. ‘There was that mismatch
between the public health language and the language of
everyday, which was so full of euphemisms,’ Wellings noted.
She recalled that several participants didn’t recognise terms
like ‘heterosexual’ or ‘vaginal’. ‘All the Latin-sounding
names, or any word with more than three syllables, was
thought of as something completely weird and unorthodox.’

Yet the Natsal team did have some advantages, such as the
relatively low frequency of sexual encounters. The most recent
Natsal study found that a typical twenty-something in the UK
has sex about five times a month on average, with less than
one new sexual partner per year.[12] Even the most active
individuals are unlikely to sleep with more than a few dozen
people in a given year. It means that most interviewees will
know how many partners they’ve had and what those
partnerships involved. Contrast that with the sort of
interactions that might spread flu, such as conversations or
handshakes. Each day, we may have dozens of face-to-face
encounters like these.

During the past decade or so, researchers have increasingly
tried to measure social contacts that are relevant for respiratory
infections like flu. The best known is the POLYMOD study,
which asked over 7,000 participants in eight European
countries who they interacted with. This included physical
contacts, like handshakes, as well as conversations.
Researchers have since run similar studies in countries ranging
from Kenya to Hong Kong. The studies are also getting more
ambitious: I recently worked with collaborators at the
University of Cambridge to run a public science project
collecting social behaviour data from over 50,000 volunteers
in the UK.[13]



Thanks to these studies, we now know that certain aspects
of behaviour are fairly consistent around the world. People
tend to mix with people of a similar age, with children having
by far the most contacts.[14] Interactions in schools and at
home typically involve physical contact, and encounters that
occur on a daily basis often last longer than an hour. Even so,
the overall number of interactions can vary a lot between
locations. Hong Kong residents typically have physical contact
with around five other people each day; the UK is similar, but
in Italy, the average is ten.[15]

It’s one thing to measure such behaviour, but can this new
information help predict the shape of epidemics? At the start
of this book, we saw that during the 2009 influenza pandemic,
there were two outbreak peaks in the United Kingdom: one in
the spring and one in the autumn. To understand what caused
this pattern, we simply need to look at schools. These bring
children together in an intensely social environment, creating a
potential mixing pot of infection; during the school holidays,
children have around 40 per cent fewer daily social contacts
on average. As you can see from the graph above, the gap
between the two pandemic peaks in 2009 coincided with the
school holiday. This lengthy drop in social contacts was large
enough to explain the summer lull in the pandemic. However,
school holidays can’t fully explain the second wave of
infection. Although the first peak was probably due to changes
in social behaviour, the second peak was mostly down to herd
immunity.[16] The rise and fall of infections during school
terms and holidays can influence other health conditions too.
In many countries, asthma cases peak at the start of a school
term. These outbreaks can also have a knock-on effect in the
wider community, exacerbating asthma in adults.[17]



Dynamics of the 2009 influenza pandemic in the UK

If we want to predict a person’s risk of infection, it’s not
enough to measure how many contacts they have. We also
need to think about their contacts’ contacts, and their contacts’
contacts. A person with seemingly few interactions might be
just a couple of steps away from a high transmission
environment like a school. A few years ago, my colleagues
and I looked at social contacts and infections during the 2009
flu pandemic in Hong Kong.[18] We found that it was the high
number of social contacts among children that drove the
pandemic, with a drop in contacts and infection after
childhood. But there was a subsequent increase in risk when
people reached parenthood age. As any teacher or parent will
know, interactions with children means an increased risk of
infection. In the US, people without children in their house
typically spend a few weeks of the year infected with viruses;
people with one child have an infection for about a third of the
year; and those with two children will on average carry viruses
more often than not.[19]

As well as driving transmission in communities, social
interactions can also transport infections to other locations. In
the early stages of the 2009 flu pandemic, the virus didn’t
spread according to the as-the-crow-flies distance between
countries. When the outbreak started in Mexico in March, it
quickly reached faraway places like China, but took longer to
appear in nearby countries such as Barbados. The reason? If
we define ‘near’ and ‘far’ in terms of locations on a map,
we’re using the wrong notion of distance. Infections are spread



by people, and there are more major flight routes linking
Mexico and China – such as those via London – than those
connecting Mexico with places like Barbados. China might be
far away for a crow, but it’s relatively close for a human. It
turns out that the spread of flu in 2009 is much easier to
explain if we instead define distances according to airline
passenger flows. And not just flu: SARS followed similar airline
routes when it emerged in China in 2003, arriving in countries
like the Republic of Ireland and Canada before Thailand and
South Korea.[20]

Once the 2009 flu pandemic arrived in a country, however,
long travel distance seemed to be less important for
transmission. In the US, the virus spread like a ripple,
gradually travelling from the southeast outwards. It took about
three months to move 2,000 kilometres across the eastern US,
which works out at a speed of just under 1 km/h. On average,
you could have outwalked it.[21]

Although long-distance flight connections are important for
introducing viruses to new countries, travel within the US is
dominated by local movements. The same is true of many
other countries.[22] To simulate these local movements,
researchers often use what’s known as a ‘gravity model’. The
idea is that we are drawn to places depending on how close
and populous they are, much like larger, denser planets have a
stronger gravitational pull. If you live in a village, you might
visit a nearby town more often than a city further away; if you
live in a city, you’ll probably spend little time in the
surrounding towns.

This might seem like an obvious way to think about
interactions and movements, but historically people have
thought otherwise. In the mid-1840s, at the peak of Britain’s
railway bubble, engineers assumed that most traffic would
come from long-distance travel between big cities.
Unfortunately, few bothered to question this assumption.
There were some studies on the continent, though. To work
out how people might actually travel, Belgian engineer Henri-
Guillaume Desart designed the first ever gravity model in
1846. His analysis showed that there would be a lot of demand
for local trips, an idea that was ignored by rail operators on the



other side of the channel. The British railway network would
probably have been far more efficient had it not been for this
oversight.[23]

It can be easy to underestimate the importance of social
ties. When Ronald Ross and Hilda Hudson wrote those papers
on the ‘theory of happenings’ in the early twentieth century,
they suggested it could apply to things like accidents, divorce
and chronic diseases. In their minds, these things were
independent happenings: if something happened to one person,
it didn’t affect the chances of it happening to someone else.
There was no element of contagion from one person to
another. At the start of the twenty-first century, researchers
started to question whether this was really the case. In 2007,
physician Nicholas Christakis and social scientist James
Fowler published a paper titled ‘The Spread of Obesity in a
Large Social Network over 32 Years’. They had studied health
data from participants in the long-running Framingham Heart
Study, based in the city of Framingham, Massachusetts. As
well as suggesting that obesity could spread between friends,
they proposed that there could be a knock-on effect further
into the network, potentially influencing friends-of-friends and
friends-of-friends-of-friends.

The pair subsequently looked at several other forms of
social contagion in the same network, including smoking,
happiness, divorce, and loneliness.[24] It might seem odd that
loneliness could spread through social contacts, but the
researchers pointed to what might be happening at the edge of
a friendship network. ‘On the periphery, people have fewer
friends, which makes them lonely, but it also drives them to
cut the few ties that they have left. But before they do, they
tend to transmit the same feeling of loneliness to their
remaining friends, starting the cycle anew.’

These papers have been hugely influential. In the decade
after it was published, the obesity study alone was cited over
4,000 times, with many seeing the research as evidence that
such traits can spread. But it’s also come under fire. Soon after
the obesity and smoking studies were published, a paper in the
British Medical Journal suggested that Christakis and
Fowler’s analysis might have flagged up effects that weren’t



really there.[25] Then mathematician Russell Lyons wrote a
paper arguing that the researchers had made ‘fundamental
errors’ and that ‘their major claims are unfounded’.[26] So
where does that leave us? Do things like obesity actually
spread? How do we even work out if behaviour is contagious?

ONE OF THE MOST FAMILIAR EXAMPLES of social contagion is
yawning, and it’s also one of the easiest forms of contagion to
study. Because it’s common, easy to spot, and the delay from
one person’s yawn to another is relatively short, researchers
can look at transmission in detail.

By setting up lab experiments, several studies have
analysed what makes yawns spread. The nature of social
relationships seems to be particularly important for
transmission: the better we know someone, the more likely it
is that we’ll catch their yawn.[27] The transmission process is
also faster, with a smaller delay between yawns among family
members than among acquaintances. Yawn in front of a
stranger and there’s a less than 10 per cent chance it will
spread; yawn near a family member and they’ll catch it in
about half the time. It’s not just humans who are more likely to
pick up yawns from individuals they care about. Similar social
yawning can occur among animals, from monkeys to wolves.
[28] However, it can take a while for us to become susceptible
to a yawn. Although infants and toddlers sometimes yawn,
they don’t seem to catch them from their parents. Experiments
suggest yawning doesn’t become contagious until children
reach about four years old.[29]

As well as yawning, researchers have looked at the spread
of other short-term behaviours, like itching, laughter, and
emotional reactions. These social responses can manifest on
very fast timescales: in experiments looking at teamwork,
leaders were able to spread a positive or negative mood to
their team in a matter of minutes.[30]

If researchers want to study yawning or mood, they can use
laboratory set-ups to control what people see, and avoid
distractions that could skew results. This is feasible for things
that spread quickly, but what about behaviours and ideas that
take much longer to propagate through a population? It’s much



harder to study social contagion outside a laboratory. This isn’t
just a challenge for human populations. Among birds, great tits
have a long-standing reputation for innovation. In the 1940s,
British ecologists noted that they had worked out how to peck
through the foil of milk bottles to get at the cream. The tactic
would persist for decades, but it wasn’t clear how such
innovations spread through bird populations.[31]

Although several studies have looked at the spread of
animal behaviour in captivity, it has been difficult to do the
same in wild populations. Given great tits’ reputation for
innovation, zoologist Lucy Aplin and her colleagues set out to
see how these ideas propagated. First they needed a new
innovation. The team headed out into Wytham Woods, near
Oxford, and set up a puzzle box containing mealworms. If the
birds wanted to get the food inside, they’d need to move a
sliding door in a certain direction. To see how the birds
interacted, the researchers tagged almost all the tits in the area
with automated tracking devices. ‘We could get real-time
information about how and when individuals acquired
knowledge,’ Aplin said. ‘The automated data-collection also
meant we could let the process run without disturbance.’[32]

The birds grouped together into several different sub-
populations; in five of these populations, the researchers
taught a couple of birds how to solve the puzzle. The
technique spread quickly: within twenty days, three in every
four birds had picked up the idea. The team also studied a
control group of birds, which hadn’t been trained. A few
eventually worked out how to get into the box, but it took
much longer for the idea to emerge and spread.

In the trained populations, the idea was also highly
resilient. Many of the birds died from one season to the next,
but the knowledge didn’t. ‘The behaviour re-emerged very
quickly each winter,’ Aplin said, ‘even if there were only a
small number of individuals that were alive from the previous
year and had knowledge of the behaviour.’ She also noticed
that transmission of information between birds had some
familiar features. ‘Some general principles are similar to how
disease spreads through populations, for instance more social
individuals being more likely to encounter and adopt new



behaviours, and socially central individuals can act as
“keystones” or “super-spreaders” in the diffusion of
information.’

The study also demonstrated that social norms could
emerge in wild animals. There were actually a couple of ways
to get into the puzzle box, but it was the solution the
researchers had introduced that became the accepted method.
Such conformity is even more common when we look at
humans. ‘We’re social learning specialists,’ Aplin said. ‘The
social learning and culture we observe in human societies is of
a magnitude greater than anything we observe in the rest of the
animal kingdom.’

WE OFTEN SHARE CHARACTERISTICS with people we know, from
health and lifestyle choices to politicial views and wealth. In
general, there are three possible explanations for such
similarities. One is social contagion: perhaps you behave in a
certain way because your friends have influenced you over
time. Alternatively, it may be the other way around: you may
have chosen to become friends because you already shared
certain characteristics. This is known as ‘homophily’, the idea
that ‘birds of a feather flock together’. Of course, your
behaviour might be nothing to do with social connections at
all. You may just happen to share the same environment,
which influences your behaviour. Sociologist Max Weber used
the example of a crowd of people opening umbrellas when it
starts to rain. They aren’t necessarily reacting to each other;
they’re reacting to the clouds above.[33]

It can be tough to work out which of the three explanations
– social contagion, homophily or a shared environment – is the
correct one. Do you like a certain activity because your friend
does, or are you friends because you both like that activity?
Did you skip your running session because your friend did, or
did you both abandon the idea because it was raining?
Sociologists call it ‘the reflection problem’, because one
explanation can mirror another.[34] Our friendships and
behaviour will often be correlated, but it can be very difficult
to show that contagion is responsible.



What we need is a way to separate social contagion from
the other possible explanations. The most definitive way to do
this would be to spark an outbreak and watch what happens.
This would mean introducing a specific behaviour, like Aplin
and her colleagues did with birds, and measuring how it
spreads. Ideally we would compare results with a randomly
selected ‘control’ group of individuals – who aren’t exposed to
the spark – to see how much effect the outbreak has. This type
of experiment is common in medicine, where it’s known as a
‘randomised controlled trial’.

How might such an approach work in humans? Say we
wanted to run an experiment to study the spread of cigarette
smoking between friends. One option would be to introduce
the behaviour we’re interested in: pick some people at random,
get them to take up smoking, and then see whether the
behaviour spreads through their friendship groups. Although
this experiment might tell us whether social contagion occurs,
it doesn’t take much to spot that there are some big ethical
problems with this approach. We can’t ask people to adopt a
harmful activity like smoking on the off chance it will help us
understand social behaviour.

Rather than randomly introducing smoking, we could
instead look at how existing smoking behaviour spreads
through new social connections. But this would mean
rearranging people’s friendships and locations at random and
tracking whether people adopt their new friends’ behaviour.
Again, this is generally not feasible: who wants to reshuffle
their entire friendship network for a research project?

When it comes to designing social experiments, Aplin’s
work on birds had some big advantages over studies of
humans. Whereas humans may keep similar social links for
years or decades, birds have a relatively short lifespan, which
meant new networks of interactions would form each year.
The team could also tag most of the birds in the area, making
it possible to track the network in real-time. This meant the
researchers could introduce a new idea – the puzzle solution –
and watch how it spread through the newly formed networks.



There are some circumstances in which new human
friendships randomly form all at once, for example when
recruits are assigned to military squadrons or students are
allocated to university halls.[35] Unfortunately for researchers,
these are rare examples. In most real-life situations, scientists
can’t meddle with behaviour or friendship dynamics to see
what might happen. Instead, they must try and gain insights
from what they can observe naturally. ‘Though a lot of the best
strategies involve randomisation or some plausible source of
randomness, for many things we really care about as social
scientists and citizens, we’re not going to be able to
randomise,’ said Dean Eckles, a social scientist at MIT.[36]
‘So we should do the best job we can with purely
observational research.’

Much of epidemiology relies on observational analysis: in
general, reseachers can’t deliberately start outbreaks or give
people severe illnesses to understand how they work. This has
led to some suggestions that epidemiology is closer to
journalism than science, because it just reports on the situation
as it happens, instead of running experiments.[37] But such
claims ignore the huge improvements in health that have come
from observational studies.

Take smoking. In the 1950s, researchers started to
investigate the massive rise in lung cancer deaths that had
occurred during the preceding decades.[38] There seemed to
be a clear link with the popularity of cigarettes: people who
smoked were nine times more likely to die of the disease than
non-smokers. The problem was how to show that smoking was
actually causing cancer. Ronald Fisher, a prominent statistician
(and heavy pipe smoker) argued that just because the two
things were correlated, it didn’t mean one was causing the
other. Perhaps smokers had very different lifestyles to non-
smokers, and it was one of these differences, rather than
smoking, that was causing the deaths? Or maybe there was
some genetic trait – as yet unidentified – that happened to
make people both more likely to develop lung cancer and
more likely to smoke? The issue divided the scientific
community. Some, like Fisher, argued that the patterns linking
smoking and cancer were just a coincidence. Others, like



epidemiologist Austin Bradford Hill, thought that smoking
was to blame for the rising deaths.

Of course, there was an experiment that would have given a
definitive answer, but as we’ve already seen, it wouldn’t have
been ethical to run it. Just as modern social scientists can’t
make people take up smoking to see if the habit spreads,
researchers in the 1950s couldn’t ask people to smoke to find
out if it caused cancer. To solve the puzzle, epidemiologists
had to find a way to work out whether one thing causes
another without running an experiment.

RONALD ROSS SPENT AUGUST 1898 waiting to announce his
discovery that mosquitoes transmitted malaria. While he
battled to get government permission to publish the work in a
scientific journal, he feared others would pounce on his
research and take the credit. ‘Pirates lay in the offing ready to
board me,’ as he put it.[39]

The pirate he feared most was a German biologist named
Robert Koch. Stories were circulating that Koch had travelled
to Italy to study malaria. If he managed to infect a person with
the parasite, it could overshadow Ross’s work, which had used
only birds. Relief came a few weeks later, in the form of a
letter from Patrick Manson. ‘I hear Koch has failed with the
mosquito in Italy,’ Manson wrote, ‘so you have time to grab
the discovery for England.’

Eventually Koch did publish a series of malaria studies,
which fully credited Ross’s work. In particular, Koch
suggested that children in malarial areas acted as reservoirs of
infection, because older adults had often developed immunity
to the parasite. Malaria was the latest in a line of new
pathogens for Koch. During the 1870s and 1880s, he had
shown that bacteria were behind diseases like anthrax in cattle
and tuberculosis in humans. In the process, he’d come up with
a set of rules – or ‘postulates’ – to identify whether a particular
germ is responsible for a disease. To start with, he thought that
it should always be possible to find the germ inside someone
who has the disease. Then, if a healthy host – like a laboratory
animal – was exposed to this germ, it should develop the
disease too. Finally, it should be possible to extract a sample of



the germ from the new host once they fall ill; this germ should
be the same as the one they were originally exposed to.[40]

Koch’s postulates were useful for the emerging science of
‘germ theory’, but he soon realised they had limitations. The
biggest problem was that some pathogens don’t always cause
disease. Sometimes people would get infected but not have
noticeable symptoms. Researchers therefore needed a more
general set of principles to work out what might be behind a
disease.

For Austin Bradford Hill, the disease of interest was lung
cancer. To show that smoking was responsible, he and his
collaborators would eventually compile several types of
evidence. He’d later summarise these as a set of ‘viewpoints’,
which he hoped would help researchers decide whether one
thing causes another. First on his list was the strength of
correlation between the proposed cause and effect. For
example, smokers were much more likely to get lung cancer
than non-smokers. Bradford Hill said this pattern should be
consistent, cropping up in different places across multiple
studies. Then there was timing: did the cause come before the
effect? Another indicator was whether the disease was specific
to a certain type of behaviour (although this isn’t always
helpful because non-smokers can get lung cancer too). Ideally
there would also be evidence from an experiment: if people
stopped smoking, it should reduce their chances of cancer.

In some cases, Bradford Hill said it’s possible to relate the
level of exposure to the risk of disease. For instance, the more
cigarettes a person smokes, the more likely they are to die
from them. What’s more, it may be possible to draw an
analogy with a similar cause and effect, such as another
chemical that causes cancer. Finally, Bradford Hill suggested
it’s worth checking to see whether the cause is biologically
plausible and fits with what’s already known to scientists.

Bradford Hill emphasised that these viewpoints were not a
checklist to ‘prove’ something beyond dispute. Rather, the aim
was to help answer a crucial question: is there any better
explanation for what we are seeing than simple cause and
effect? As well as providing evidence that smoking caused



cancer, these kinds of methods have helped researchers
uncover the source of other diseases. During the 1950s and
1960s, epidemiologist Alice Stewart gathered evidence that
low-dose radiation could cause leukaemia.[41] At the time,
new X-ray technology was regularly being used on pregnant
women; there were even X-rays in shoe shops, so people could
see their feet inside the shoes. After a long battle by Stewart,
these hazards were removed. More recently, researchers at the
US CDC used the Bradford Hill viewpoints to argue that
infections with Zika were causing birth defects.[42]

Establishing such causes and effects is inherently difficult.
Often there will be an intense debate about what is responsible
and what should be done. Still, Stewart believed that, faced
with troubling evidence, people should act despite the
inevitable uncertainty involved. ‘The trick is to get the best
guess of the thickness of the ice when crossing a lake,’ she
once said. ‘The art of the game is to get the correct judgment
of the weight of the evidence, knowing that your judgment is
subject to change under the pressure of new observations.’[43]

WHEN CHRISTAKIS AND FOWLER originally set out to study social
contagion, they’d planned to do it from scratch. The idea was
to recruit 1,000 people, get each of them to name five contacts,
and then get each of their contacts to name five more contacts.
In total, they would have had to track the behaviour of 31,000
people in detail for multiple years. A study that large would
have cost around $30m.[44]

While exploring options, the pair got in touch with the team
running the Framingham Heart Study, because it would be
easier to recruit those initial 1,000 people from an existing
project. When Christakis visited Marian Bellwood, the project
co-ordinator, she mentioned they kept forms in the basement
with details of each participant. To avoid losing contact with
participants, they’d got people to list their relatives, friends
and co-workers on the forms. It turned out that many of these
contacts were also in the study, which meant their health
information was being recorded too.

Christakis was astonished. Rather than recruiting a
completely new set of social contacts, they could instead piece



together the social network among Framingham participants.
‘I called James from the parking lot and said, “you won’t
believe this!”,’ he recalled. There was just one catch: they’d
have to go through twelve thousand names and fifty thousand
addresses to identify the existing links. ‘We had to decipher
everyone’s handwriting,’ Christakis said. ‘It took two years to
computerise it.’

The pair had initially thought about analysing the spread of
smoking, but decided obesity was a better starting point.
Smoking depended on what participants reported, whereas
obesity could be observed directly. ‘Because we were doing
something so novel, we wanted to start with something that
could be objectively measured,’ Christakis said.

The next step was to estimate whether obesity was being
transmitted through the network. This meant tackling the
reflection problem, separating potential contagion from
homophily or environmental factors. To try and rule out the
birds-of-a-feather effect of homophily, the pair included a time
lag in the analysis; if obesity really spread from one person to
their friend, the friend couldn’t have become obese first.
Environmental factors were trickier to exclude, but Christakis
and Fowler tried to tackle the issue by looking at the direction
of friendship. Suppose I list you as a friend in a survey, but
you don’t list me. This suggests I am more influenced by you
than you are by me. However, if in reality we’re actually both
influenced by some shared environmental factor – like a new
fast food restaurant – our friendship direction shouldn’t affect
who becomes obese. Christakis and Fowler found evidence
that it did matter, suggesting that obesity could be contagious.

When the analysis was published, it received sharp
criticism from some researchers. Much of the debate came
down to two main points. The first was that the statistical
evidence could have been stronger: the result showing that
obesity was contagious was not as definitive as it would need
to be for, say, a clinical trial showing whether a new drug
worked. The second criticism was that, given the methods and
data Christakis and Fowler had used, they could not
conclusively rule out other explanations. In theory, it was



possible to imagine a situation involving homophily and
environment that could have produced the same pattern.

In my view, these are both reasonable criticisms of the
research. But it doesn’t mean that the studies weren’t useful.
Commenting on the debate about Christakis and Fowler’s
early papers, statistician Tom Snijders suggested that the
studies had limitations, but were still important because they’d
found an innovative way to put social contagion on scientists’
agenda. ‘Bravo for the imagination and braveness of Nick
Christakis and James Fowler.’ [45]

In the decade since Christakis and Fowler published their
initial analysis of the Framingham data, evidence for social
contagion has accumulated. Several other research groups
have also shown that things like obesity, smoking, and
happiness can be contagious. As we’ve seen, it is notoriously
difficult to study social contagion, but we now have a much
better understanding of what can spread.

The next step will be to move beyond simply saying that
contagion exists. Showing that behaviour can catch on is
equivalent to knowing that the reproduction number is above
zero: on average, there will be some transmission, but we
don’t know how much. Of course, this is still useful
information, because it shows contagion is a factor we need to
think about. It tells us the behaviour is capable of spreading,
even if we can’t predict how big the outbreak might be.
However, if governments and other organisations want to
address health issues that are contagious, they’ll need to know
more about the actual extent of social contagion, and what
impact different policies might have. If one person in a
friendship group becomes overweight, exactly how much
influence will it have on others? If you become happier, how
much will your community’s happiness increase? Christakis
and Fowler have acknowledged that it’s tricky to estimate the
precise extent of social contagion. What’s more, addressing
such questions often means using imperfect data and methods.
But as new datasets become available, they point out others
will be able to build on their analysis, moving towards an
accurate measurement of contagion.



By studying potentially contagious behaviour, researchers
are also uncovering some crucial differences between
biological and social outbreaks. In the 1970s, sociologist Mark
Granovetter suggested that information could spread further
through acquaintances than through close friends. This was
because friends would often have multiple links in common,
making most transmission redundant. ‘If one tells a rumor to
all his close friends, and they do likewise, many will hear the
rumor a second and third time, since those linked by strong
ties tend to share friends.’ He referred to the importance of
acquaintances as the ‘strength of weak ties’: if you want
access to new information, you may be more likely to get it
through a casual contact than a close friend.[46]

These long distance links have become a central part of
network science. As we’ve seen, ‘small-world’ connections
can help biological and financial contagion jump from one part
of a network to another. In some cases, these links may also
save lives. There is a long-standing paradox in medicine:
people who have a heart attack or stroke while surrounded by
relatives take longer to get medical care. This may well be
down to the structure of social networks. There’s evidence that
close-knit groups of relatives tend to prefer a wait-and-see
approach after witnessing a mild stroke, with nobody willing
to contradict the dominant view. In contrast, ‘weak ties’ – like
co-workers or non-relatives – can bring a more diverse set of
perspectives, so flag up symptoms faster and call for help
sooner.[47]

Even so, the sort of network structure that amplifies disease
transmission won’t always have the same effect on social
contagion. Sociologist Damon Centola points to the example
of HIV, which has spread widely through networks of sexual
partners. If biological and social contagion work in the same
way, ideas about preventing the disease should also have
spread widely via these networks. And yet they have not.
Something must be slowing the information down.

During an infectious disease outbreak, infection typically
spreads through a series of single encounters. If you get the
infection, it will usually have come from a specific person.[48]
Things aren’t always so simple for social behaviour. We might



only start doing something after we’ve seen multiple other
people doing it, in which case there is no single clear route of
transmission. These behaviours are known as ‘complex
contagions’, because transmission requires multiple exposures.
For example, in Christakis and Fowler’s analysis of smoking,
they noted that people were more likely to quit if lots of their
contacts stopped as well. Researchers have also identified
complex contagion in behaviours ranging from exercise and
health habits to the uptake of innovations and political
activism. Whereas a pathogen like HIV can spread through a
single long-range contact, complex contagions need multiple
people to transmit them, so can’t pass through single links.
While small-world networks might help diseases spread, these
same networks could limit the transmission of complex
contagions.

Why do complex contagions occur? Damon Centola and his
colleague Michael Macy have proposed four processes that
might explain what’s happening. First, there can be benefits to
joining something that has existing participants. From social
networks to protests, new ideas are often more appealing if
more people have already adopted them. Second, multiple
exposures can generate credibility: people are more likely to
believe in something if they get confirmation from several
sources. Third, ideas can depend on social legitimacy:
knowing about something isn’t the same as seeing others
acting – or not acting – on it. Take fire alarms. As well as
signaling there might be a fire, alarms make it acceptable for
everyone to leave the building. One classic 1968 experiment
had students sit working in a room as it slowly filled with fake
smoke.[49] If they were alone, they would generally respond;
if they were with a group of studious actors, they would
continue to work, waiting for someone else to react. Finally,
we have the process of emotional amplification. People may
be more likely to adopt certain ideas or behaviours amid the
intensity of a social gathering: just think about the collective
emotion that comes with something like a wedding or a music
concert.

The existence of complex contagions means we may need
to re-evaluate what makes innovations spread. Centola has



suggested that intuitive approaches for making things catch on
may not work so well if people need multiple prompts to adopt
an idea. To get innovation to spread in business, for example,
it’s not enough to simply encourage more interactions within
an organisation. For complex contagions to spread,
interactions need to be clustered together in a way that allows
social reinforcement of ideas; people may be more likely to
adopt a new behaviour if they repeatedly see everyone in their
team doing it. However, organisations can’t be too cliquey,
otherwise new ideas won’t spread beyond a small group of
people. There needs to be a balance in the network of
interactions: as well as having local teams acting as incubators
for ideas, there are benefits to having Pixar-style overlaps
between groups to get innovations out to a wider audience.[50]

The science of social contagion has come a long way in the
past decade, but there is still much more to discover. Not least
because it’s often difficult to establish whether something is
contagious in the first place. In many cases, we can’t
deliberately change people’s behaviour, so we have to rely on
observational data, as Christakis and Fowler did with the
Framingham study. However, there is another approach
emerging. Researchers are increasingly turning to ‘natural
experiments’ to examine social contagion.[51] Rather than
imposing behavioural change, they instead wait for nature to
do it for them. For example, a runner in Oregon might change
their routine when the weather is bad; if their friend in
California changes their behaviour too, it could suggest social
contagion is responsible. When researchers at MIT looked at
data from digital fitness trackers, which included a social
network linking users, they found that the weather could
indeed reveal patterns of contagion. However, some were
more likely to catch the running bug than others. Over a five-
year period, the behaviour of less active runners tended to
influence more active runners, but not the other way around.
This implies that keen runners don’t want to be outdone by
their less energetic friends.

Behavioural nudges like changes in weather are a useful
tool for studying contagion, but they do have limits. A rainy
day might alter someone’s running patterns, but it’s unlikely to



affect other, more fundamental behaviours like their marital
choices or political views. Dean Eckles points out there can be
a big gap between what is easily changed and what we ideally
want to study. ‘A lot of the behaviours we care the most about
are not so easy to nudge people to do.’

IN NOVEMBER 2008, Californians voted to ban same-sex
marriage. The result came as a shock to those who’d
campaigned for marriage equality, especially as pre-vote polls
had appeared to be in their favour. Explanations and excuses
soon began to emerge. Dave Fleischer, director of the Los
Angeles LGBT Center, noticed that several misconceptions
about the result were becoming popular. One was that the
people who voted for the ban must have hated the LGBT
community. Fleischer dis agreed with this idea. ‘The dictionary
defines “hate” as extreme aversion or hostility,’ he wrote after
the vote. ‘This does not describe most who voted against
us.’[52]

To find out why so many people were against same-sex
marriage, the LGBT Center spent the next few years
conducting thousands of face-to-face interviews. Canvassers
used most of this time to listen to voters, a method known as
‘deep canvassing’.[53] They encouraged people to talk about
their lives, and reflect on their own experiences of prejudice.
As they conducted these interviews, the LGBT Center realised
that deep canvassing wasn’t just providing information; it
appeared to be changing voters’ attitudes. If so, this would
make it a powerful canvassing method. But was it really as
effective as it seemed?

If people are rational, we might expect them to update their
beliefs when presented with new information. In scientific
research this approach is known as ‘Bayesian reasoning’.
Named after eighteenth-century statistician Thomas Bayes, the
idea is to treat knowledge as a belief that we have a certain
level of confidence in. For example, suppose you are strongly
considering marrying someone, having thought carefully about
the relationship. In this situation, it would take a very good
reason for you to change your mind. However, if you’re not
totally sure about the relationship, you might be persuaded
against marriage more easily. Something that might seem



trivial to the infatuated may be enough to tip a wavering mind
towards a break-up. The same logic applies to other situations.
If you start with a firm belief, you’ll generally need strong
evidence to overcome it; if you are unsure at first, it might not
take much for you to change your opinion. Your belief after
exposure to new information therefore depends on two things:
the strength of your initial belief and the strength of the new
evidence.[54] This concept is at the heart of Bayesian
reasoning – and much of modern statistics.

Yet there are suggestions that people don’t absorb
information in this way, especially if it goes against their
existing views. In 2008, political scientists Brendan Nyhan
and Jason Reifler proposed that persuasion can suffer from a
‘backfire effect’. They’d presented people with information
that conflicted with their political ideology, such as the lack of
weapons of mass destruction in Iraq before the 2003 war, or
the decline in revenues following President Bush’s tax cuts.
But it didn’t seem to convince many of them. Worse, some
people appeared to become more confident in their existing
beliefs after seeing the new information.[55] Similar effects
had come up in other psychological studies over the years.
Experiments had tried to persuade people of one thing, only
for them to end up believing something else.[56]

If the backfire effect is common, it doesn’t bode well for
canvassers hoping to convince people to change their minds
about issues like same-sex marriage. The Los Angeles LGBT
Center thought they had a method that worked, but it needed
to be evaluated properly. In early 2013, Dave Fleischer had
lunch with Donald Green, a political scientist at Columbia
University. Green introduced Fleischer to Michael LaCour, a
graduate student at UCLA, who agreed to run a scientific
study testing the effectiveness of deep canvassing. The aim
was to carry out a randomised controlled trial. After recruiting
voters to participate in a series of surveys, LaCour would
randomly split the group. Some would get visits from a
canvasser; others, acting as a control group, would have
conversations about recycling.

What happened next would reveal a lot about how beliefs
change, just not quite in the way we might expect. It started



when LaCour reported back with some remarkable findings.
His trial had shown that when interviewers used deep
canvassing methods, there was a large increase in
interviewees’ support for same-sex marriage on average. Even
better, the idea often stuck, with the new belief still there
months later. This belief was also contagious, spreading to
interviewees’ housemates. LaCour and Green published the
results in the journal Science in December 2014, attracting
widespread media attention. It seemed to be a stunning piece
of research, showing how a small action could have a massive
influence.[57]

Then a pair of graduate students at the University of
Berkeley noticed something strange. David Broockman and
Joshua Kalla had wanted to run their own study, building on
LaCour’s impressive analysis. ‘The most important paper of
the year. No doubt,’ Broockman had told a journalist after the
Science paper was published. But when they looked at
LaCour’s dataset, it seemed far too pristine; it was almost as if
someone had simulated the data rather than collecting it.[58]
In May 2015, the pair contacted Green with their concerns.
When questioned, LaCour denied making up the data, but
couldn’t produce the original files. A few days later, Green –
who said he’d been unaware of the problems until that point –
asked Science to retract the paper. It wasn’t clear exactly what
had happened, but it was clear that LaCour hadn’t run the
study he said he had. The scandal came as a huge
disappointment to the Los Angeles LGBT Center. ‘It felt like a
big punch to our collective gut,’ said Laura Gardiner, one of
their organisers, after the problems emerged.[59]

Media outlets quickly added corrections to their earlier
stories, but perhaps journalists – and the scientific journal –
should have been more sceptical in the first place. ‘What
interests me is the repeated insistence on how unexpected and
unprecedented this result was,’ wrote statistician Andrew
Gelman after the paper was retracted. Gelman pointed out that
this seems to happen a lot in psychological science. ‘People
argue simultaneously that a result is completely surprising and
that it makes complete sense.’[60] Although the backfire effect
had been widely cited as a major hurdle to persuasion, here



was a study claiming it could be cleared in one short
conversation.

The media has a strong appetite for concise yet counter-
intuitive insights. This encourages researchers to publicise
results that show how ‘one simple idea’ can explain
everything. In some cases, the desire for surprising-yet-simple
conclusions can lead apparent experts to contradict their own
source of expertise. Antonio García Martínez, who spent two
years working in Facebook’s ads team, recalled such a
situation in his book Chaos Monkeys. Martínez tells the story
of a senior manager who built a reputation with pithy,
memorable insights about social influence. Unfortunately for
the manager, these claims were undermined by research from
his company’s own data science team, whose rigorous analysis
had shown something different.

In reality, it’s very difficult to find simple laws that apply in
all situations. If we have a promising theory, we therefore need
to seek out examples that don’t fit. We need to work out where
its limits are and what exceptions there might be, because even
widely reported theories might not be as conclusive as they
seem. Take the backfire effect. After reading about the idea,
Thomas Wood and Ethan Porter, two graduate students at the
University of Chicago, set out to see how common it might
actually be. ‘Were the backfire effect to be observed across a
population, the implications for democracy would be dire,’
they wrote.[61] Whereas Nyhan and Reifler had focused on
three main misconceptions, Wood and Porter tested thirty-six
beliefs across 8,100 participants. They found that although it
can be tough to convince people they’re wrong, an attempted
correction doesn’t necessarily make their existing belief
stronger. In fact, only one correction backfired in the study:
the false claim about weapons of mass destruction in Iraq. ‘By
and large, citizens heed factual information, even when such
information challenges their partisan and ideological
commitments,’ they concluded.

Even in their original study, Nyhan and Reifler found that
the backfire effect is not guaranteed. During the 2004
presidential campaign, Democrats claimed that George Bush
had banned stem cell research, whereas in reality, he’d limited



funding for certain aspects of it.[62] When Nyhan and Reifler
corrected this belief among liberals, the information was often
ignored, but didn’t backfire. ‘The backfire effect finding got a
lot of attention because it was so surprising,’ Nyhan later said.
[63] ‘Encouragingly, it seems to be quite rare.’ Nyhan, Reifler,
Wood and Porter have since teamed up to explore the topic
further. For example, in 2019 they reported that providing fact-
checks during Donald Trump’s election speeches had changed
people’s beliefs about his specific claims, but not their overall
opinion of the candidate.[64] It seems some aspects of
people’s political beliefs are harder to alter than others. ‘We
have a lot more to learn,’ Nyhan said.

When examining beliefs, we also need to be careful about
what we mean by a backfire. Nyhan has noted that there can
be confusion between the backfire effect and a related
psychological quirk known as ‘disconfirmation bias’.[65] This
is when we give more scrutiny to arguments that contradict
our existing beliefs than those that we agree with. Whereas the
backfire effect implies that people ignore opposing arguments
and strengthen their existing beliefs, disconfirmation bias
simply means they tend to ignore arguments they view as
weak.

It might seem like a subtle difference, but it’s a crucial one.
If the backfire effect is common, it implies that we can’t
persuade people with conflicting opinions to change their
stance. No matter how convincing our arguments, they will
only retreat further into their beliefs. Debate becomes hopeless
and evidence worthless. In contrast, if people suffer from
disconfirmation bias, it means their views could change, given
compelling enough arguments. This creates a more optimistic
outlook. Persuading people may still be challenging, but it is
worth trying.

A lot rides on how we structure and present our arguments.
In 2013, the UK legalised same-sex marriage. John Randall,
then a Conservative MP, voted against the bill, a decision he
later said he regretted. He wished he’d talked to one of his
friends in Parl iament beforehand, someone who – to many’s
surprise – had voted in favour of marriage equality. ‘He said to
me that it was something that wouldn’t affect him at all but



would give great happiness to many people,’ Randall recalled
in 2017. ‘That is an argument that I find it difficult to find fault
with.’[66]

Unfortunately, there is a major obstacle when it comes to
finding a persuasive argument. If we have a strong opinion,
Bayesian reasoning implies that we will struggle to distinguish
the effects of arguments that support this existing view.
Suppose you strongly believe in something. It could be
anything from a political stance to an opinion about a film. If
someone presents you with evidence that is consistent with
your belief – regardless of whether this evidence is compelling
or weak – you will go away with a similar opinion afterwards.
Now imagine someone makes an argument against your belief.
If that argument is weak, you won’t change your view, but if it
is watertight, you might well do so. From a Bayesian point of
view, we are generally better at judging the effect of arguments
that we disagree with.[67]

That’s if we even think about different arguments. A few
years ago, social psychologists Matthew Feinberg and Robb
Willer asked people to come up with arguments that would
persuade someone with an opposing political view. They
found that many people used arguments that matched their
own moral position, rather than the position of the person they
were trying to persuade. Liberals tried to appeal to values like
equality and social justice, while conservatives based their
argument on things like loyalty and respect for authority.
Arguing on familiar ground might have been a common
strategy, but it wasn’t an effective one; people were far more
persuasive when they tailored their argument to the moral
values of their opponent. This suggests that if you want to
persuade a conservative, you’re better off focusing on ideas
like patriotism and community, whereas a liberal will be more
convinced by messages promoting fairness.[68]

Even if you manage to identify an effective argument to
support your position, there are things you can do to improve
your chances of persuasion. First, the delivery method can
matter. There’s evidence that people are much more likely to
complete a survey if asked in person rather than by e-mail,[69]
for example. Other experiments have come to similar



conclusions, finding that people can be more convincing face-
to-face than by phone, post or online.[70]

The timing of messages can also make a difference.
According to Briony Swire-Thompson, a psychologist at
Northeastern University, researchers are increasingly thinking
about how ideas wane. ‘It’s this concept that once you change
someone’s mind, it doesn’t stick permanently.’ In 2017, she
conducted a study asking people whether they believed certain
myths, like carrots improving your eyesight or liars moving
their eyes in a certain direction.[71] The study found that they
could often correct false beliefs, but the effect didn’t
necessarily last. ‘If you get a correction, you might reduce
your belief initially, but as time goes on you’re going to re-
believe in the initial misconception,’ Swire-Thompson said. It
seems repetition matters: new beliefs survived longer if people
were reminded of the truth several times, rather than just given
one correction.[72]

Thinking about the moral position of others. Having face-
to-face interactions. Finding ways to encourage long-term
change. All of these things can help improve persuasion. And
it happens that they are also part of the deep canvassing
approach advocated by the Los Angeles LGBT Center. Which
brings us back to that dubious LaCour and Green paper.
Although the study was retracted in 2015, the story didn’t end
there. The following year, David Brookman and Joshua Kalla
– those two Berkeley researchers who’d found the problems in
the original paper – published a new study.[73] This one
focused on transgender rights. And this time they’d definitely
collected the data.

Comparing deep canvassing with results from a control
group, they’d found that a ten-minute conversation about
transgender rights could noticeably reduce prejudice. It didn’t
matter whether the canvasser was transgender; the change in
voters’ opinion persisted regardless. The change in belief also
seemed to be resistant to attacks. After a few weeks, the
researchers showed people anti-transgender adverts from
recent political campaigns. The ads initially swung opinions
back against transgender people, but this reversion effect soon
faded.



To ensure the research was completely transparent,
Brookman and Kalla published all the data and code behind
the analysis. It provided an optimistic epilogue to what had
been an awkward few years for the research community. With
the right approach, it was possible to change attitudes that
many had believed were deeply ingrained. It showed that
views don’t necessarily spread in the way we assume they do,
nor are people as fixed as we think they might be. When faced
with apparent hostility, it seems there can be a lot to gain by
trying something new.



4
Something in the air

‘WE WERE IN A PLACE with real violence.’ After a decade spent
working on disease epidemics in Central and East Africa, Gary
Slutkin had returned home to the United States. He’d chosen
Chicago to be near his elderly parents and was struck by the
extent of violent attacks in the city. ‘It was surrounding, it was
inescapable and so I just started to ask people what they were
doing about it,’ Slutkin said. ‘And there wasn’t anything that
anybody was doing about this that made any sense to me.’[1]

It was 1994 and in the preceding year, there had been over
eight hundred homicides in the city, including sixty-two
children killed in gang violence. Even two decades later,
homicide would still be the main cause of death for young
adults in the state of Illinois.[2] Slutkin heard a range of
explanations for the crisis, from nutrition and jobs to families
and poverty. But the discussions often came back to a narrow
set of solutions involving punishment. In his view, violence
was what he called a ‘stuck problem’. A physician by training,
he’d seen similar situations in his work with infectious
diseases like HIV/AIDS and cholera. Sometimes the thinking
about a situation gets stuck for years. A strategy doesn’t really
work, but it doesn’t change.

If violence were a stuck problem, it would need new
thinking. ‘You have to kind of start over,’ Slutkin said. So he
did what any public health researcher would do: he looked at
maps and graphs, he asked questions, he tried to understand
how violence was happening. And that’s when he started
noticing familiar patterns. ‘The clustering seen in maps of
killings in US cities resembles maps of cholera in
Bangladesh,’ he later wrote.[3] ‘Historical graphs showing
outbreaks of killing in Rwanda resembled graphs of cholera in
Somalia.’

SUSANNAH ELEY LIKED TO GET her water delivered each day.
After her husband had died, she’d moved from the bustle of



London’s Soho to leafy Hampstead. But she still preferred the
water from the pump in town. She thought it tasted better.

One August day in 1854, Eley’s niece visited her from the
neighbouring borough of Islington. Within a week, they would
both be dead. The culprit was cholera, an aggressive disease
that causes diarrhea and vomiting. Left untreated, up to half of
people with severe symptoms will die. The same day that Eley
died from cholera, there were 127 other deaths from the
disease, most of them in Soho. By the end of September, the
outbreak would have claimed over six hundred lives in
London. In this era before Koch’s work on germ theory, the
biology of cholera was still a mystery. ‘We know nothing; we
are at sea in a whirlpool of conjecture,’ wrote Thomas Wakley,
founder of The Lancet medical journal, the year before the
outbreak started. People were starting to realise that diseases
like smallpox and measles were contagious, somehow
spreading from person to person, but cholera seemed to be
something else. Most believed the ‘miasma theory’, which
said that cholera spread through bad smells in the air.[4]

But not John Snow. Originally from Newcastle, Snow had
investigated his first cholera outbreak in 1831 as an eighteen-
year-old medical apprentice. Even then, he’d noticed some odd
patterns. People who should have been at risk from bad air
weren’t getting ill, and people who supposedly weren’t at risk
were. Snow eventually moved to London, building up a
reputation as a talented anaesthetist, with Queen Victoria
among his patients. However, when a cholera outbreak hit the
city in 1848, he revived his old investigations. Who was
catching the disease? When were they getting ill? What linked
the cases? The following year, Snow published an article with
a new theory: the disease spread from one person to another
through contaminated water. The realisation had finally come
when he noticed that patients would often share the same
water company. It was a remarkable insight, not least because
Snow had no idea it was actually microscopic bacteria that
were casting cholera’s enormous shadow.

The 1854 Soho outbreak would prove a good match for
Snow’s theory. There were the workers at the local brewery,
with their diet of ale and imported water, who didn’t get sick.



Then there was Susannah Eley and her niece, who had their
water shipped from Soho to Hampstead and fell ill. As the
outbreak grew, Snow decided it was time to intervene. Public
health in Soho fell under the responsibility of a local Board of
Guardians. He turned up uninvited at one of their meetings and
presented his arguments. The board didn’t fully believe his
explanation, but decided to remove the pump handle all the
same. The outbreak ended soon afterward.

Three months later, Snow wrote up his theory in more
detail. The report included what would become his most
famous illustration: a map of Soho, with black rectangles
showing each of the cholera cases. The cases clustered around
Broad Street, near the pump. It was a pioneering work of
abstraction, removing unnecessary details and diversions.
Whereas abstract artists like Malevich and Mondrian would
later paint blocks of colour to shun reality, Snow’s shapes
brought cholera into focus.[5] His rectangles made a
previously invisible truth – the source of infection – tangible.



Snow’s updated cholera map of Soho

Credit: John Snow Archive & Research Companion. The
mark on the right-hand side is a tear in the original page

Yet on its own, the map was not clear evidence that the
water was responsible. If the cholera outbreak had been the
result of bad air around Broad Street, the pattern would have
looked much the same. So Snow produced a second map, with
a crucial addition. As well as plotting the cases, he worked out
how long it would take to walk to different pumps, drawing a
line to show the places for which the Broad Street pump was
nearest. It illustrated the areas that would be most at risk if the
pump were to blame. Just as his theory suggested, this was
also where most cases were appearing.

Snow would never live to see his ideas vindicated. When he
died in 1858, The Lancet published a two-sentence obituary,
which failed to mention his work on outbreaks. Like an
intellectual miasma, the concept of bad air continued to linger
in the medical community.

Eventually the idea of contagious cholera did catch on. By
the early 1890s, many had come to accept Robert Koch’s
notion of germs that spread disease. Then, in 1895, Koch
managed to infect a laboratory animal with cholera.[6] His
postulates fulfilled, it was convincing evidence that bacteria
was causing the disease, and that cholera was spreading
through infected water rather than coming from bad air. Snow
had been right.

WE NOW THINK ABOUT infectious diseases in terms of germs
rather than miasma, but Gary Slutkin argues that we haven’t
made the same progress in our analysis of violence. ‘We’re
very stuck in moralism – who’s good, who’s bad.’ He points
out that many societies are highly punitive; they haven’t really
shifted in their attitudes to violence for centuries. ‘I really feel
like I’m living in the past.’

Although biology has moved on from the idea of bad air,
debate around crime still focuses on bad people. Slutkin thinks
this is in part because contagious violence is less intuitive than
disease. ‘Here you don’t actually have an invisible



microorganism that you can at least show somebody under the
microscope.’ However, the parallels between infectious
disease and violence seemed clear to him. ‘I remember an
epiphany when I asked someone “what’s the greatest
determinant of violence? What’s the greatest predictor?” And
the answer was “a preceding violent event”.’ In his mind, it
was an obvious sign of contagion. Which made him wonder:
perhaps methods used to control infectious diseases could be
applied to violence too?

There are several similarities between outbreaks of disease
and violence. One is the lag between exposure and symptoms.
Just like an infection, violence can have an incubation period;
we might not see symptoms straight away. Sometimes a
violent event will lead to another one soon after: for example,
it might not take long for one gang to retaliate against another.
On other occasions it may take much longer for knock-on
effects to emerge. In the mid-1990s, epidemiologist Charlotte
Watts worked with the World Health Organization (WHO) to set
up a major study of domestic violence against women.[7]
Watts had trained as a mathematician before moving into
disease research, focusing on HIV. As her work on HIV

developed, she started to notice that violence against women
was influencing disease transmission because it affected their
ability to have safe sex. But this revealed a much bigger
problem: nobody really knew how common such violence
was. ‘Everybody agreed that we needed population data,’ she
said.[8]

The WHO study was the result of Watts and her colleagues
applying public health ideas to the issue of domestic violence.
‘A lot of previous research treated it as a police issue or
focused on psychological drivers of violence,’ she said.
‘Public health people ask, “What’s the big picture? What does
the evidence say about individual, relationship and community
risk factors?”’ Some have suggested that domestic violence is
completely context or culture specific, but this isn’t
necessarily the case. ‘There are some really common elements
that consistently come out,’ Watts said, ‘like exposure to
violence in childhood.’



In most of the locations in the WHO study, at least one in
four women had previously been physically abused by a
partner. Watts has noted that violence can follow what’s
known in medicine as a ‘dose-response effect’. For some
diseases, the risk of illness can depend on the dose of pathogen
a person is exposed to, with a small dose less likely to cause
severe illness. There’s evidence of a similar effect in
relationships. If a man or woman has a history involving
violence, it increases the chance of domestic violence in their
future relationships. And if both members of the relationship
have a history of violence, this risk increases even further.
This isn’t to say that people with a history involving violence
will always have a violent future; like many infections,
exposure to violence won’t necessarily lead to symptoms later
on. But like infectious diseases, there are a number of factors –
in our backgrounds, in our lifestyles, in our social interactions
– that can increase the risk of an outbreak.[9]

Another notable feature of disease outbreaks is that cases
tend to cluster together in a certain location, with infections
appearing over a short period of time. Think about that cholera
outbreak in Broad Street, with cases clustered around the
pump. We can find similar patterns when looking at violent
acts. For centuries, people have reported localised clusters of
self-harm and suicide: in schools, in prisons, in communities.
[10] However, clustering of suicides doesn’t necessarily mean
contagion is happening.[11] As we saw with social contagion,
people may behave in the same way for another reason, like
some shared feature of their environment. One way to exclude
this possibility is to look at the aftermath of high-profile
deaths; a member of the public is more likely to hear about the
suicide of a well-known person than the other way around. In
1974, David Phillips published a landmark paper examining
media coverage of suicides. He found that when British and
American newspapers ran a front-page story about a suicide,
the number of such deaths in the local area tended to increase
immediately afterwards.[12] Subsequent studies have found
similar patterns with media reports, suggesting that suicide can
be transmitted.[13] In response, WHO have published guidelines
for responsible reporting of suicides. Media outlets should
provide information about where to seek help, while avoiding



sensational headlines, details about the method involved, and
suggestions that the suicide was a solution to a problem.

Unfortunately, outlets often ignore these guidelines.
Researchers at Columbia University noted a 10 per cent rise in
suicides in the months following the death of comedian Robin
Williams.[14] They pointed to a potential contagion effect,
given that many media reports about Williams’ death did not
follow WHO guidelines, and the largest increase in suicides
occurred in middle-aged men using the same method as
Williams. There can be a similar effect with mass shootings;
one study estimated that for every ten US mass shootings,
there are two additional shootings as a result of social
contagion.[15]

Because there is often an immediate rise in suicides and
shootings following such media reports, it suggests that the
delay between one contagious event and another – known in
epidemiology as the ‘generation time’ – is relatively short.
Some clusters of suicides have involved multiple deaths over a
matter of weeks: in 1989 there was an outbreak of suicides at a
Pennsylvania high school, which saw nine attempts in eighteen
days. If these events were the result of contagion, the
generation time may in some cases have been only a few days.
[16]

Clustering is common with other types of violence too. In
2015, a quarter of US gun murders were concentrated in
neighborhoods that made up less than 2 per cent of the
country’s overall population.[17] When Gary Slutkin and his
colleagues set out to tackle violence as if it were an outbreak,
it was neighbourhoods like these that they planned to target.
They called the initial programme ‘CeaseFire’; this would
later evolve into a larger organisation called Cure Violence. In
those early days, it took a while to work out precisely what
approach they should use. ‘We took five years of strategy
development before we put a single thing on the street,’
Slutkin said. The Cure Violence method would end up having
three parts. First, the team hires ‘violence interrupters’ who
can spot potential conflicts and intervene to stop the
transmission of violence. Someone might end up in hospital
with a gunshot wound, for example, and an interrupter will



step in to talk their friends out of a retaliatory attack. Second,
Cure Violence identifies who is at greatest risk of violence,
using outreach workers to encourage a change in attitudes and
behaviour. This can include help with things like job hunting
or drug treatment. Finally, the team works to change social
norms about guns in the wider community. The idea is to have
a range of voices speaking out against a culture of violence.

Interrupters and outreach workers are recruited directly
from the affected communities; some are former criminals or
gang members. ‘We hire workers who are credible with that
population,’ said Charlie Ransford, Cure Violence’s Director
of Science and Policy. ‘To change people’s behaviour and talk
them out of doing something it helps if you have an
understanding of where they’re coming from, and they feel
like you have an understanding and maybe even know you or
know someone who knows you.’[18] This is another idea
familiar in the world of infectious diseases: HIV programs will
often recruit former sex workers to help change behaviour
among workers who are still at high risk.[19]

The first Cure Violence project started in 2000, in West
Garfield Park in Chicago. Why did they pick that location? ‘It
was the most violent police district in the country at the time,’
Slutkin said. ‘It has always been my bias – as it is for many
epidemiologists – to head for the middle of the epidemic,
because it’s your best test and you can affect the greatest
impact.’ One year after the programme started, shootings in
West Garfield Park had dropped by about two thirds. The
change had been rapid, with interrupters breaking the chains of
violence from one person to another. So what is it about these
transmission chains that makes interruption possible?

LATE ON A SUNDAY AFTERNOON in May 2017, two gang members
emerged from an alleyway in Chicago’s Brighton Park
neighbourhood. They were carrying assault rifles. The pair
would end up shooting ten people, killing two of them. It was
retaliation for a gang-related murder earlier in the day.[20]

Shootings in Chicago are often linked like this. Andrew
Papachristos, a sociologist at Yale University, has spent
several years studying patterns of gun violence in the city. A



native of Chicago, he’d noticed that shootings were frequently
tied to social contacts. Victims would often know each other,
having previously been arrested together. Of course, just
because two people are connected and share a characteristic –
like involvement in a shooting – it doesn’t necessarily mean
that contagion is involved. It might be down to the
environment they share, or because people tend to associate
with those who have similar characteristics (i.e. homophily).
[21]

To investigate further, Papachristos and his collaborators
obtained data from the Chicago Police Department on
everyone who’d been arrested between 2006 and 2014.[22] In
total, there were over 462,000 people in the dataset. Using this
information, they plotted a ‘co-offending network’ of people
who’d previously been arrested at the same time. Many of the
individuals hadn’t ever been arrested with someone else, but
there was a large group who could be linked together through
a series of co-offending events. Overall this group included
138,000 people, or about a third of the dataset.

Papachristos’s team started by checking whether homophily
or environmental factors could explain the observed patterns
of gun violence. They found that it was unlikely: many
shootings occurred in a linked way that couldn’t be explained
by homophily or environment, suggesting contagion was
responsible. Having identified the shootings that were likely
due to contagion, the team carefully reconstructed the chains
of transmission between one shooting and the next. They
estimated that for every 100 people who were shot, contagion
would result in 63 follow-up attacks. In other words, gun
violence in Chicago had a reproduction number of about 0.63.



Fifty simulated outbreaks of shootings, based on the dynamics
of violence contagion in Chicago. Dots show shootings, with
(grey) arrows indicating follow-up attacks. Although there are
some superspreading events, most outbreaks involve a single

shooting and no onward transmission.

If the reproduction number is below one, it means that an
outbreak might spark but it rarely lasts very long. The Yale
team identified over four thousand outbreaks of gun violence
in Chicago, but most were small. The vast majority consisted
of a single shooting, with no additional contagion. However,
occasionally the outbreaks were much larger; one included
almost five hundred linked shootings. When we see these
highly variable outbreak sizes, it suggests that transmission is
driven by superspreading events. Analysing the outbreak data
from Chicago in more detail, I estimated that transmission of
gun violence was highly concentrated. It’s likely that fewer
than 10 per cent of shootings led to 80 per cent of follow-up
attacks.[23] Just like disease transmission – which can be
similarly influenced by superspreading – most shootings didn’t
lead to any additional contagion.

The chains of transmission in Chicago also revealed the
speed of transmission. On average, the generation time
between one shooting and another was 125 days. Despite the
attention given to dramatic retaliations like the Brighton Park



attack in May 2017, it seems there are a lot of slower-burning
feuds out there that have historically gone undetected.

These networks of shootings help explain why the Cure
Violence approach is possible. Let’s start with the fact that we
can study the networks at all: if we want to control an
outbreak, it helps if we can identify potential routes of
transmission. Slutkin has compared violence interruption to
the methods used to control smallpox outbreaks. As smallpox
was nearing eradication in the 1970s, epidemiologists used
‘ring vaccination’ to stamp out the final few sparks of
infection. When a new disease case appeared, teams would
track down people the infected may have come into contact
with, such as family members and neighbours, as well as these
people’s contacts. They would then vaccinate people within
this ‘ring’, preventing the smallpox virus spreading any
further.[24]

Smallpox had two features that worked in health teams’
favour. To spread from one person to another, the disease
generally required fairly long face-to-face interactions. This
meant teams could identify who was most at risk. In addition,
the generation time for smallpox was a couple of weeks; when
a new case was reported, teams had enough time to go and
vaccinate before more cases appeared. The spread of gun
violence shares these features: violence is often transmitted
through known social links, and the gap between one shooting
and the next is long enough for interrupters to intervene. If
shootings were more random, or the gap between them was
always much shorter, violence interruption wouldn’t be so
effective.

An independent evaluation of Cure Violence by the US
National Institute for Justice found a substantial drop in
shootings in areas where the programme had been introduced.
It can be tough to assess the precise impact of anti-violence
programmes, because violence may have already been
declining for some other reason. But violence hadn’t declined
as much in comparable areas of Chicago, suggesting that Cure
Violence was in fact behind the reduction in shootings in many
locations. In 2007, Cure Violence started working in
Baltimore. When researchers at Johns Hopkins University



later assessed the results, they estimated that in its first two
years, the programme had prevented around thirty-five
shootings and five homicides. Other studies have found similar
reductions after the introduction of Cure Violence methods.
[25]

Even so, the Cure Violence approach has not been free
from criticism. Much of the scepticism has come from those in
charge of existing approaches; in the past, there have been
complaints from Chicago police about a lack of co-operation
from interrupters. There have also been instances of violence
interrupters being charged with other crimes. Such challenges
are perhaps inevitable, given that the programme relies on
having interrupters that are part of the communities at risk,
rather than another branch of the police.[26] Then there’s the
timescale of social change. While stopping retaliatory attacks
can have an immediate effect on violence, tackling the
underlying social issues may take years.[27] The same is true
with infectious diseases: we might be able to stop outbreaks,
but we also need to think about underlying weaknesses in
health systems that enabled them in the first place.

Building on their early work in Chicago, Cure Violence has
expanded to other US cities, including Los Angeles and New
York, as well as launching projects in countries like Iraq and
Honduras. Public health approaches would also inspire a
‘Violence Reduction Unit’ in Glasgow, Scotland. Back in
2005, the city was named the murder capital of Europe. There
were dozens of knife attacks a week, including numerous
incidents of notorious ‘Glasgow smiles’ being slashed into
people’s cheeks. What’s more, the violence was far more
widespread than police figures suggested. When Karyn
McCluskey, head of intelligence analysis at Strathclyde Police,
looked at hospital records, it became clear that most incidents
weren’t even being reported.[28]

McCluskey’s findings – and accompanying
recommendations – led to the creation of the Violence
Reduction Unit, which she would head up for the following
decade. Borrowing techniques from Cure Violence and other
US projects, such as Boston’s Operation Ceasefire, the unit
introduced a range of public health ideas to tackle the spread



of violence.[29] This included interruption approaches, like
monitoring A&E departments for victims of violence to
discourage potential revenge attacks. It also involved helping
gang members move into training and employment, while
taking a tough stance against those who chose to continue with
violence. There were longer-term measures too, like providing
support for vulnerable children to halt the transmission of
violence from generation to the next. Although there is still
more to be done, the initial results have been promising;
following its introduction, the unit has been linked with a
major drop in violent crime.[30]

Since 2018, London has been working on a similar
initiative to tackle what has been described as an ‘epidemic’ of
knife crime in the city. If it is to succeed like Glasgow, it will
require strong links between police, communities, teachers,
health services, social workers, and the media. It will also need
continued investment, given the often complex, deep-rooted
nature of the problem. ‘It’s about putting money where your
mouth is in terms of prevention, and understanding that you
may not see a really quick return on it,’ McCluskey told The
Independent shortly before the London project launched.[31]

Sustaining investment can be tough for public health
approaches. Despite growing acceptance elsewhere, funding
for the original Cure Violence programme in Chicago has
remained sporadic, with several cutbacks over the years.
Slutkin said attitudes to violence are changing in many places,
but not as easily as he would hope. ‘It’s frustratingly slow,’ he
said.

ONE OF THE BIGGEST CHALLENGES in public health is convincing
people. It’s not just a matter of showing a new approach works
better than existing methods. It’s also about advocating for that
approach, presenting a compelling argument that can help turn
statistical evidence into action.

In the world of public health advocacy, few have been as
effective – or as pioneering – as Florence Nightingale. While
John Snow was analysing cholera in Soho, Nightingale was
surveying the illnesses faced by British troops fighting in the
Crimean war. Nightingale had arrived in late 1854 to lead a



team of nurses in the military hospitals. She found that soldiers
were dying at an astonishing rate. It wasn’t just the fighting
that was killing them; it was infections like cholera, typhoid,
typhus and dysentery. In fact, infections were the main source
of death. During 1854, eight times more soldiers died from
diseases than from battle wounds.[32]

Nightingale was convinced poor hygiene was to blame.
Each night, she walked over six kilometres along the corridors
of the wards, lamp in hand. Patients lay on filthy mattresses,
rats hiding beneath, surrounded by walls covered in dirt. ‘The
clothes of those men were swarming with lice,’ Nightingale
noted, ‘as thick as the letters on a page of print.’ With her
nurses, she set about cleaning up the wards. They made sure
linens were laundered, bodies bathed, and walls washed. In
March 1855, the British government sent a group of
commissioners to the Crimea to tackle conditions in the
hospitals. Whereas Nightingale had focused on hygiene, the
commission worked on the buildings, improving ventilation
and sewage systems.

Nightingale’s work earned her fame back at home. Shortly
after returning to England in summer 1856, Queen Victoria
invited her to come to Balmoral to discuss her experiences in
the Crimea. Nightingale used the meeting to push for a Royal
Commission to examine the high death rates. What had really
happened out there?

As well as contributing to the commission, Nightingale
continued with her own research into the hospital data. This
work accelerated after she met statistician William Farr at a
dinner party that autumn. The two had very different
backgrounds: Nightingale came from the upper class, with a
name reflecting her childhood in Tuscany, while Farr had been
raised in poverty in rural Shropshire, eventually studying
medicine before moving into medical statistics.[33]

When it came to population data in the 1850s, Farr was the
man to speak to. Alongside his work on outbreaks like
smallpox, he had set up the first national system to collate data
on things like births and deaths. However, he’d noticed that
these raw statistics could be misleading. The total number of



deaths in a particular area would depend on how many
inhabitants there were, as well as factors like age: a town with
an elderly population would generally have more deaths each
year than a town full of young people. To solve this problem,
Farr came up with a new measurement. Rather than study total
deaths, he looked at the rate of death per thousand people,
accounting for things like age. It meant he could compare
different populations in a fair way. ‘The death-rate is a fact;
anything beyond this is an inference,’ as Farr put it.[34]

Working with Farr, Nightingale applied these new methods
to data from the Crimea. She showed that death rates in army
hospitals were much higher than wards in Britain. She also
measured the decline in disease after the health commissioners
arrived in 1855. As well as producing tables of data, she took
full advantage of a new trend in Victorian science: data
visualisation. Economists, geographers and engineers had
increasingly used graphs and figures to make their work more
accessible. Nightingale adapted these techniques, converting
her key results into bar graphs and pie chart-like figures. Like
Snow’s maps, the graphics focused on the most important
patterns, free of distractions. The visuals were clear and
memorable, helping her message to spread.

In 1858, she published her analysis of health in the British
Army as an 860-page book. Copies were shipped to leaders
ranging from Queen Victoria and the Prime Minister to
newspaper editors and European heads of state. Whether
looking at hospitals or communities, Nightingale believed that
nature followed predictable laws when it came to disease. She
said those disastrous early months in Crimea happened
because people ignored these laws. ‘Nature is the same
everywhere, and never permits her laws to be disregarded with
impunity.’ She was also adamant about what had caused the
problems. ‘The three things which all but destroyed the army
in Crimea were ignorance, incapacity, and useless rules.’[35]

Nightingale’s advocacy sometimes made Farr nervous. He
warned her against focusing too heavily on messages rather
than data. ‘We do not want impressions,’ he said. ‘We want
facts.’[36] Whereas Nightingale wanted to suggest
explanations for the cause of the deaths, Farr believed the job



of a statistician was simply to report what had happened,
rather than speculating about why. ‘You complain that your
report would be dry,’ he once told her. ‘The drier the better.
Statistics should be the driest of all reading.’

Nightingale used her writing to campaign for change, but
she’d never wanted to be just a writer. When she first decided
to train as a nurse in the 1840s, it came as a surprise to her
wealthy, well-connected family, who’d expected her to pursue
the more traditional role of wife and mother. A friend
suggested that she could still pursue a literary career alongside
this role. Nightingale was not interested. ‘You ask me why I
do not write something,’ she replied. ‘I think one’s feelings
waste themselves in words; they ought all to be distilled into
actions and into actions which bring results.’[37]

When it comes to improving health, actions need to be
grounded in good evidence. Today, we routinely use data
analysis to show how much health varies, why that might be,
and what needs to be done about it. Much of this evidence-
based approach can be traced to statisticians like Farr and
Nightingale. As she saw it, people generally had little grasp of
what controlled infections and what didn’t. In some cases,
hospitals may well have increased people’s risk of disease.
‘These institutions, created for the relief of human distress,
positively do not know whether they relieve it or not,’ as she
put it.[38]

Nightingale’s research was highly respected by her
scientific contemporaries, including statistician Karl Pearson.
In the public mind, she was the ‘lady with the lamp’, a nurse
who cared for soldiers and in turn made people sympathetic to
her cause. But Pearson argued that mere sympathy doesn’t
lead to change; it requires knowledge of management and
administration, as well as an ability to interpret information.
He said this was where Nightgale excelled. ‘Florence
Nightingale believed – and in all the actions of her life acted
upon that belief – that the administrator could only be
successful if he were guided by statistical knowledge.’[39]

ACCORDING TO CARL BELL, a public health specialist at the
University of Chicago, three things are required to stop an



epidemic: an evidence base, a method for implementation, and
political will.[40] Yet when it comes to gun violence, the US
has struggled even with the first step. The US Centers for
Disease Control and Prevention (CDC), who would usually
take the lead on public health matters, have done very little
research into the problem in the past two decades.

Without a doubt, the US is a big outlier when it comes to
guns. In 2010, young American adults were almost fifty times
more likely to die in a shooting than their peers in other high-
income countries. The media tend to focus on mass shootings,
which often involve assault weapons, but the problem of gun
deaths is far more widespread than this. In 2016, mass
shootings – defined as four or more people being shot – made
up just 3 per cent of US gun homicides.[41]

So why hasn’t the CDC done more research into gun
violence? The main reason is the 1996 Dickey Amendment,
which stipulates that ‘none of the funds made available for
injury prevention and control at the CDC may be used to
advocate or promote gun control.’ Named after Republican
congressman Jay Dickey, the amendment followed a series of
disagreements about gun research in the US. In the run up to
the vote, Dickey and his colleagues had clashed with Mark
Rosenberg, director of the National Center for Injury
Prevention and Control at the CDC. They claimed that
Rosenberg, who co-chaired a firearms working group, was
trying to present guns as a ‘public health menace’ (the phrase
actually came from a Rolling Stone journalist who’d
interviewed Rosenberg about gun violence).[42]

Rosenberg had contrasted gun research to the progress
made in reducing car-related deaths, an analogy later used by
Barack Obama during his presidency. ‘With more research, we
could further improve gun safety just as with more research
we’ve reduced traffic fatalities enormously over the last 30
years,’ Obama said in 2016. ‘We do research when cars, food,
medicine, even toys harm people so that we make them safer.
And you know what, research, science, those are good things.
They work.’[43]



Cars have become much safer, but the industry was initially
reluctant to accept suggestions that their vehicles needed
improvements. When Ralph Nader published his 1965 book
Unsafe at Any Speed, which presented evidence of dangerous
design flaws, car companies attempted to smear him. They got
private detectives to track his movements and hired a
prostitute to try and seduce him.[44] Even the book’s
publisher, Richard Grossman, was sceptical about the
message. He thought it would be hard to market and probably
wouldn’t sell very well. ‘Even if every word in it is true and
everything about it is as outrageous as he says,’ Grossman
later recalled, ‘do people want to read about that?’[45]

It turned out that they did. Unsafe at Any Speed became a
bestseller and calls to improve road safety grew, leading to
seat belts and eventually features like airbags and antilock
brakes. Even so, it had taken a while for the evidence to
accumulate prior to Nader’s book. In the 1930s, many experts
thought it was safer to be thrown from a car during an
accident, rather than be stuck inside.[46] For decades,
manufacturers and politicians weren’t that interested in car
safety research. After the publication of Unsafe at Any Speed,
that changed. In 1965, a million miles of car travel came with
a 5 per cent chance of death; by 2014 this had dropped to 1 per
cent.

Before he died in 2017, Jay Dickey indicated that his views
on gun research had shifted. He believed the CDC needed to
look at gun violence. ‘We need to turn this over to science and
take it away from politics,’ he told the Washington Post in
2015.[47] In the years following their 1996 clash, Dickey and
Mark Rosenberg had become friends, taking time to listen and
find common ground on the need for gun research. ‘We won’t
know the cause of gun violence until we look for it,’ they
would later write in a joint opinion piece.

Despite constraints on funding, some evidence about gun
violence is available. In the early 1990s, before the Dickey
Amendment, CDC-funded studies found that having a gun in
the home increased the risk of homicide and suicide. The latter
finding was particularly notable, given that around two-thirds
of gun deaths in the US are from suicide. Opponents of this



research have argued that such suicides might have occurred
anyway, even if guns hadn’t been present.[48] But easy access
to deadly methods can make a difference for what are often
impulse decisions. In 1998, the UK switched from selling
paracetamol in bottles to blister packs containing up to thirty-
two tablets. The extra effort involved with blister packs
seemed to deter people; in the decade after the packs were
introduced, there was about a 40 per cent reduction in deaths
from paracetamol overdoses.[49]

Unless we understand where the risk lies, it’s very difficult
to do anything about it. This is why research into violence is
needed. Seemingly obvious interventions may turn out to have
little effect in reality. Likewise, there may be policies – like
Cure Violence – that challenge existing approaches, but have
the potential to reduce gun-related deaths. ‘Like motor vehicle
injuries, violence exists in a cause-and-effect world; things
happen for predictable reasons,’ wrote Dickey and Rosenberg
in 2012.[50] ‘By studying the causes of a tragic – but not
senseless – event, we can help prevent another.’

It’s not just gun violence that we need to understand. So far,
we’ve looked at frequently occurring events like shootings and
domestic violence, which means there is – in theory, at least –
a lot of data to study. But sometimes crime and violence
happen as a one-off event, spreading rapidly through a
population with devastating consequences.

ON THE EVENING OF SATURDAY 6 August 2011, London
descended into what would become the first of five nights of
looting, arson and violence. Two days earlier, police had shot
and killed a suspected gang member in Tottenham, North
London, sparking protests that evolved into riots and spread
across the city. There would also be rioting in other UK cities,
from Birmingham to Manchester.

Crime researcher Toby Davies was living in the London
district of Brixton at the time.[51] Although Brixton avoided
the violence on the first night of the riots, it would end up
being one of the worst affected areas. In the months following
the riots, Davies and his colleagues at University College
London decided to pick apart how such disorder could



develop.[52] Rather than trying to explain how or why a riot
starts, the team instead focused on what happens once it gets
underway. In their analysis, they divided rioting into three
basic decisions. The first was whether a person would
participate in the riot or not. The researchers assumed this
depended on what was happening nearby – much like a
disease epidemic – as well as local socioeconomic factors.
Once someone decided to participate, the second decision
involved where to riot. Because a lot of the rioting and looting
was concentrated in retail areas, the researchers adapted an
existing model for how shoppers flow into such locations
(several media outlets described the London riots as ‘violent
shopping’[53]). Finally, their model included the possibility of
arrest once a person arrived at the rioting site. This depended
on the relative number of rioters and police, a metric Davies
referred to as ‘outnumberedness’.

The model could reproduce some of the broad patterns seen
during the 2011 riots – such as the focus on Brixton – but it
also showed the complexity of these types of events. Davies
points out that the model was only a first step; there’s a lot
more that needs to be done in this area of research. One big
challenge is the availability of data. In their analysis, the UCL
team only had information on the number of arrests for riot-
related offences. ‘As you can imagine, it’s a very small and
very biased subsample,’ Davies said. ‘It doesn’t capture who
could potentially engage in rioting.’ In 2011, the rioters were
also more diverse than might be expected, with groups
transcending long-standing local rivalries. Still, one of the
benefits of a model is that it can explore unusual situations and
potential responses. For frequent crimes like burglary, police
can introduce control measures, see what happens, then refine
their strategy. However, this approach isn’t possible for rare
events, which might only spark now and again. ‘Police don’t
have riots to practise on every day,’ Davies said.

For a riot to start, there need to be at least some people
willing to join. ‘You cannot riot on your own,’ as crime
researcher John Pitts put it. ‘A one-man riot is a tantrum.’[54]
So how does a riot grow from a single person? In 1978, Mark
Granovetter published a now classic study looking at how



trouble might take off. He suggested that people might have
different thresholds for rioting: a radical person might riot
regardless of what others were doing, whereas a conservative
individual might only riot if many others were. As an example,
Granovetter suggested we imagine 100 people hanging around
in a square. One person has a threshold of 0, meaning they’ll
riot (or tantrum) even if nobody else does; the next person has
a threshold of 1, so they will only riot if at least one other
person does; the next person has a threshold of 2, and so on,
increasing by one each time. Granovetter pointed out that this
situation would lead to an inevitable domino effect: the person
with a 0 threshold would start rioting, triggering the person
with a threshold of 1, which would trigger the person with a
threshold of 2. This would continue until the entire crowd was
rioting.

But what if the situation were slightly different? Say the
person with a threshold of 1 had a threshold of 2. This time,
the first person would start rioting, but there would be nobody
else with a low enough threshold to be triggered. Although the
crowds in each situation are near identical, the behaviour of
one person could be the difference between a riot and a
tantrum. Granovetter suggested personal thresholds could
apply to other forms of collective behaviour too, from going
on strike to leaving a social event.[55]

The emergence of collective behaviour can also be relevant
to counter-terrorism. Are potential terrorists recruited into an
existing hierarchy, or do they form groups organically? In
2016, physicist Neil Johnson led an analysis looking at how
support for the so-called Islamic State grew online. Combing
through discussions on social networks, his team found that
supporters aggregated in progressively larger groups, before
breaking apart into smaller ones when the authorities shut
them down. Johnson has compared the process to a school of
fish splitting and reforming around predators. Despite
gathering into distinct groups, Islamic State supporters didn’t
seem to have a consistent hierarchy.[56] In their studies of
global insurgency, Johnson and his collaborators have argued
that these collective dynamics in terrorist groups could explain



why large attacks are so much less frequent than smaller ones.
[57]

Although Johnson’s study of Islamic State activity aimed to
understand the ecosystem of extremism – how groups form,
grow, and dissipate – the media preferred to focus on whether
it could accurately predict attacks. Unfortunately, predictions
are probably still beyond the reach of such methods. But at
least it was possible to see what the underlying methods were.
According to J.M. Berger, a fellow at George Washington
University who researches extremism, it’s rare to see such
transparent analysis of terrorism. ‘There are a lot of companies
that claim to be able to do what this study is claiming,’ he told
the New York Times after the study was published, ‘and a lot of
those companies seem to me to be selling snake oil.’[58]

PREDICTION IS A DIFFICULT BUSINESS. It’s not just a matter of
anticipating the timing of a terrorist attack; governments also
have to consider the method that may be used, and the
potential impact that method will have. In the weeks following
the 9/11 attacks in 2001, several people in the US media and
Congress received letters containing toxic anthrax bacteria. It
led to five deaths, raising concerns that other bioterrorist
attacks may follow.[59] One of the top threats was thought to
be smallpox. Despite having been eradicated in the wild,
samples of the virus were still stored in two government labs,
one in the US and one in Russia. What if other, unreported,
smallpox viruses were out there and fell into the wrong hands?

Using mathematical models, several research groups tried
to estimate what might happen if terrorists released the virus
into a human population. Most concluded that an outbreak
would grow quickly unless pre-emptive control measures were
in place. Soon after, the US Government decided to offer half
a million healthcare workers vaccination against the virus.
There was limited enthusiasm for the plan: by the end of 2003,
fewer than 40,000 workers had opted for the vaccine.

In 2006, Ben Cooper, then a mathematical modeller at the
UK Health Protection Agency, wrote a high-profile paper
critiquing the approaches used to assess the smallpox risk. He
titled it ‘Poxy Models and Rash Decisions’. According to



Cooper, several models included questionable assumptions,
with one particularly prominent example. ‘Collective
eyebrows were raised when the Centers for Disease Control’s
model completely neglected contact tracing and forecast 77
trillion cases if the epidemic went unchecked,’ he noted. Yes,
you read that correctly. Despite there being fewer than 7
billion people in the world at the time, the model had assumed
that there were an infinite number of susceptible people that
could become infected, which meant transmission would
continue indefinitely. Although the CDC researchers
acknowledged it was a major simplification, it was bizarre to
see an outbreak study make an assumption that was so
dramatically detached from reality.[60]

Still, one of the advantages of a simple model is that it’s
usually easy to spot when – and why – it’s wrong. It’s also
easier to debate the usefulness of that model. Even if someone
has limited experience with mathematics, they can see how the
assumptions influence the results. You don’t need to know any
calculus to notice that if researchers assume a high level of
smallpox transmission and an unlimited number of susceptible
people, it can lead to an unrealistically large epidemic.

As models become more complicated, with lots of different
features and assumptions, it gets harder to identify their flaws.
This creates a problem, because even the most sophisticated
mathematical models are a simplification of a messy, complex
reality. It’s analogous to building a child’s model train set. No
matter how many features are added – miniature signals,
numbers on the carriages, timetables full of delays – it is still
just a model. We can use it to understand aspects of the real
thing, but there will always be some ways in which the model
will differ from the true situation. What’s more, additional
features may not make a model better at representing what we
need it to. When it comes to building models, there is always a
risk of confusing detail with accuracy. Suppose that in our
train set all the trains are driven by intricately carved and
painted zoo animals. It might be a very detailed model, but it’s
not a realistic one.[61]

In his critique, Cooper noted that other, more detailed
smallpox models had come to similarly pessimistic



conclusions about the potential for a large outbreak. Despite
the additional detail, though, the models still contained an
unrealistic feature: they had assumed that most transmission
occurred before people developed the distinctive smallpox
rash. Real life data suggested otherwise, with the majority of
transmission happening after the rash appeared. This would
make it much easier to spot who was infectious, and hence
control the disease through quarantine rather than requiring
widespread vaccination.

From disease epidemics to terrorism and crime, forecasts
can help agencies plan and allocate resources. They can also
help draw attention to a problem, persuading people that there
is a need to allocate resources in the first place. A prominent
example of such analysis was published in September 2014. In
the midst of the Ebola epidemic that was sweeping across
several parts of West Africa, the CDC announced that there
could be 1.4 million cases by the following January if nothing
changed.[62] Viewed in terms of Nightingale-style advocacy,
the message was highly effective: the analysis caught the
world’s attention, attracting widespread media coverage. Like
several other studies around that time, it suggested that a rapid
response was needed to control the epidemic in West Africa.
But the CDC estimate soon attracted criticism from the wider
disease research community.

One issue was the analysis itself. The CDC group behind
the number was the same one that had come up with those
smallpox estimates. They’d used a similar model, with an
unlimited number of susceptible people. If their Ebola model
had run until April 2015, rather than January, it would have
estimated over 30 million future cases, far more than the
combined populations of the countries affected.[63] Many
researchers questioned the appropriateness of using a very
simple model to estimate how Ebola might be spreading five
months later. I was one of them. ‘Models can provide useful
information about how Ebola might spread in the next month
or so,’ I told journalists at the time, ‘but it is near impossible to
make accurate longer-term forecasts’.[64]

To be clear, there are some very good researchers within the
wider CDC, and the Ebola model was just one output from a



large research community there. But it does illustrate the
challenges of producing and communicating high profile
outbreak analysis. One problem with flawed predictions is that
they reinforce the idea that models aren’t particularly useful. If
models produce incorrect forecasts, the argument goes, why
should people pay attention to them?

We face a paradox when it comes to forecasting outbreaks.
Although pessimistic weather forecasts won’t affect the size of
a storm, outbreak predictions can influence the final number of
cases. If a model suggests the outbreak is a genuine threat, it
may trigger a major response from health agencies. And if this
brings the outbreak under control, it means the original
forecast will be wrong. It’s therefore easy to confuse a useless
forecast (i.e. one that would never have happened) with a
useful one, which would have happened had agencies not
intervened. Similar situations can occur in other fields. In the
run up to the year 2000, governments and companies spent
hundreds of billions of dollars globally to counter the
‘Millennium bug’. Originally a feature to save storage in early
computers by abbreviating dates, the bug had propagated
through modern systems. Because of the efforts to fix the
problem, the damage was limited in reality, which led many
media outlets to complain that the risk had been overhyped.
[65]

Strictly speaking, the CDC Ebola estimate avoided this
problem because it wasn’t actually a forecast; it was one of
several scenarios. Whereas a forecast describes what we think
will happen in the future, a scenario shows what could happen
under a specific set of assumptions. The estimate of 1.4
million cases assumed the epidemic would continue to grow at
the exact same rate. If disease control measures were included
in the model, it predicted far fewer cases. But once numbers
are picked up, they can stick in the memory, fueling scepticism
about the kinds of models that created them. ‘Remember the 1
million Ebola cases predicted by CDC in fall 2014,’ tweeted
Joanne Liu, International President of Médecins Sans
Frontières (MSF), in response to a 2018 article about
forecasting.[66] ‘Modeling has also limits.’



Even if the 1.4 million estimate was just a scenario, it still
implied a baseline: if nothing had changed, that is what would
have happened. During the 2013–2016 epidemic, almost
30,000 cases of Ebola were reported across Liberia, Sierra
Leone and Guinea. Did the introduction of control measures
by Western health agencies really prevent over 1.3 million
cases?[67]

In the field of public health, people often refer to disease
control measures as ‘removing the pumphandle.’ It’s a nod to
John Snow’s work on cholera, and the removal of the handle
on the Broad Street pump. There’s just one problem with this
phrase: when the pumphandle came off on 8 September 1854,
London’s cholera outbreak was already well in decline. Most
of the people at risk had either caught the infection already, or
fled the area. If we’re being accurate, ‘removing the
pumphandle’ should really refer to a control measure that’s
useful in theory, but delivered too late.

Soho cholera outbreak, 1854

By the time some of the largest Ebola treatment centres
opened in late 2014, the outbreak was already slowing down,
if not declining altogether.[68] Yet in some areas, control
measures did coincide with a fall in cases. It’s therefore tricky
to untangle the exact impact of these measures. Response
teams often introduced several measures at once, from tracing
infected contacts and encouraging changes in behaviour to
opening treatment centres and conducting safe burials. What
effect did international efforts actually have?



Using a mathematical model of Ebola transmission, our
group estimated that the introduction of additional treatment
beds – which isolated cases from the community and thereby
reduced transmission – prevented around 60,000 Ebola cases
in Sierra Leone between September 2014 and February 2015.
In some districts, we found that the expansion of treatment
centres could explain the entire outbreak decline; in other
areas, there was evidence of an additional reduction in
transmission in the community. This could have reflected other
local and international control efforts, or perhaps changes in
behaviour that were occurring anyway.[69]

Historical Ebola outbreaks have shown how important
behaviour changes can be for outbreak control. When the first
reported outbreak of Ebola started in the village of Yambuku,
Zaire (now the Democratic Republic of the Congo) in 1976,
the infection sparked in a small local hospital before spreading
to the community. Based on archive data from the original
outbreak investigation, my colleagues and I estimated that the
transmission rate in the community declined sharply a few
weeks into the outbreak.[70] Much of the decline came before
the hospital closed and before the international teams arrived.
‘The communities where the outbreak continued to spread
developed their own form of social distancing,’ recalled
epidemiologist David Heymann, who was part of the
investigation.[71] Without doubt, the international response to
Ebola in late 2014 and early 2015 helped prevent cases in
West Africa. But at the same time, foreign organisations
should be cautious about claiming too much credit for the
decline of such outbreaks.

DESPITE THE CHALLENGES INVOLVED in producing forecasts, there
is a large demand for them. Whether we’re looking at the
spread of infectious diseases or crime, governments and other
organisations need evidence to base their future policies on. So
how can we improve outbreak forecasts?

Generally, we can trace problems with a forecast back to
either the model itself or the data that goes into it. A good rule
of thumb is that a mathematical model should be designed
around the data available. If we don’t have data about the
different transmission routes, for example, we should instead



try to make simple but plausible assumptions about the overall
spread. As well as making models easier to interpret, this
approach also makes it easier to communicate what is
unknown. Rather than grappling with a complex model full of
hidden assumptions, people will be able to concentrate on the
main processes, even if they’re not so familiar with modelling.

Outside my field, I’ve found that people generally respond
to mathematical analysis in one of two ways. The first is with
suspicion. This is understandable: if something is opaque and
unfamiliar, our instinct can be to not trust it. As a result, the
analysis will probably be ignored. The second kind of
response is at the other extreme. Rather than ignore results,
people may have too much faith in them. Opaque and difficult
is seen as a good thing. I’ve often heard people suggest that a
piece of maths is brilliant because nobody can understand it. In
their view, complicated means clever. According to statistician
George Box, it’s not just observers who can be seduced by
mathematical analysis. ‘Statisticians, like artists, have the bad
habit of falling in love with their models,’ he supposedly once
said.[72]

We also need to think about the data we put into our
analysis. Unlike scientific experiments, outbreaks are rarely
designed: data can be messy and missing. In retrospect, we
may be able to plot neat graphs with cases rising and falling,
but in the middle of an outbreak we rarely have this sort of
information. In December 2017, for example, our team worked
with MSF to analyse an outbreak of diphtheria in refugee
camps in Cox’s Bazar, Bangladesh. We received a new dataset
each day. Because it took time for new cases to be reported,
there were fewer recent cases in each of these datasets: if
someone fell ill on a Monday, they generally wouldn’t show
up in the data until Wednesday or Thursday. The epidemic was
still going, but these delays made it look like it was almost
over.[73]



Diphtheria outbreak in Cox’s Bazar Bangladesh, 2017–18.
Each line shows the number of new cases on a given day, as
reported in the database as it appeared on 9 December, 19

December and 8 January.

Data: Finger et al., 2019

Although outbreak data can be unreliable, it doesn’t mean
it’s unusable. Imperfect data isn’t necessarily a problem if we
know how it’s imperfect, and can adjust accordingly. For
example, suppose your watch is an hour slow. If you aren’t
aware of this, it will probably cause you problems. But if you
know about the delay, you can make a mental adjustment and
still be on time. Likewise, if we know the delay in reporting
during an outbreak, we can adjust how we interpret the
outbreak curve. Such ‘nowcasting’, which aims to understand
the situation as it currently stands, is often necessary before
forecasts can be made.

Our ability to nowcast will depend on the length of the
delay and the quality of data available. Many infectious
disease outbreaks last weeks or months, but other outbreaks
can occur on much longer timescales. Take the so-called
opioid epidemic in the US, in which a rising number of people
are addicted to prescription painkillers, as well as illegal drugs
like heroin. Drug overdoses are now the leading cause of death
for Americans under the age of 55. As a result of these
additional deaths, average life expectancy in the US declined
three years running between 2015 and 2018. The last time that
happened was the Second World War. Despite some aspects of
the crisis being specific to the US, it isn’t the only area at risk;



opioid use has also been on the rise in places like the UK,
Australia and Canada.[74]

Unfortunately, it’s hard to track drug overdoses because it
takes especially long to certify deaths as drug-related.
Preliminary estimates for US overdose deaths in 2018 weren’t
released until July 2019.[75] Although some local-level data is
available sooner, it can take a long time to build up a national
picture of the crisis. ‘We’re always looking backwards,’ said
Rosalie Liccardo Pacula, a senior economist at the RAND
Corporation, which specialises in public policy research. ‘We
aren’t very good at being able to see what’s happening
immediately.’[76]

The US opioid crisis has received substantial attention in
the twenty-first century, but Hawre Jalal and colleagues at the
University of Pittsburgh suggest that the problem goes back
much further. When they looked at data between 1979 and
2016, they found that the number of overdose deaths in the US
grew exponentially during this period, with the death rate
doubling every ten years.[77] Even when they looked at the
state rather than national level, they found the same growth
pattern in many areas. The consistency of the growth pattern
was surprising given how much drug use has changed over the
decades. ‘This historical pattern of predictable growth for at
least 38 years suggests that the current opioid epidemic may
be a more recent manifestation of an ongoing longer-term
process,’ the researchers noted. ‘This process may continue
along this path for several more years into the future.’ [78]

Yet drug overdose deaths only show part of the picture.
They don’t tell us about the events that led up to this point; a
person’s initial misuse of drugs may have started years earlier.
This time lag happens in most types of outbreak. When people
come into contact with an infection, there is usually a delay
between being exposed and observing the effects of that
exposure. For example, during that 1976 Ebola outbreak in
Yambuku, people who were exposed to the virus often took a
few days to become ill. For infections that were fatal, there
was then another week or so between the illness appearing and
death. Depending on whether we look at illnesses or deaths,
we get two slightly different impressions of the outbreak. If we



focus on newly ill Ebola cases, we’d say that the Yambuku
outbreak peaked after six weeks; based on deaths, we’d put the
peak a week later.

1976 Ebola outbreak in Yambuku

Data: Camacho et al., 2014

Both datasets are useful, but they’re not measuring quite the
same thing. The tally of new Ebola cases tells us what is
happening to susceptible people – specifically, how many are
getting infected – whereas the number of deaths shows what is
happening to people who already have the infection. After the
first peak, the two curves go in opposite directions for a week
or so: cases fall while deaths are still rising.

According to Pacula, drug epidemics can be divided into
similar stages. In the early stage of an outbreak, the number of
users increases, as new people are exposed to drugs. In the
case of opioids, exposure often starts with a prescription. It
might be tempting to simply blame patients for taking too
much medication, or doctors for overprescribing. But we must
also consider the pharmaceutical companies who market
strong opioids directly to doctors. And insurance companies,
who are often more likely to fund painkillers than alternatives
like physiotherapy. Our modern lifestyles also play a role, with
rising chronic pain associated with increases in obesity and
office-based work.

One of the best ways to slow an epidemic in its early stages
is to reduce the number of people who are susceptible. For



drugs, this means improving education and awareness.
‘Education has been very important and very effective,’ said
Pacula. Strategies that reduce the supply of drugs can also help
early on. Given the multitude of drugs involved in the opioid
epidemic, this means targeting all potential routes of exposure,
rather than one specific medication.

Once the number of new users peaks, we enter the middle
stage of a drug epidemic. At this point, there are still a lot of
existing users, who may be progressing towards heavier drug
use, and potentially moving on to illegal drugs as they lose
their access to prescriptions. Providing treatment and
preventing heavy use can be particularly effective at this stage.
The aim here is to reduce the overall number of users, rather
than just preventing new addictions.

In the final stage of a drug epidemic, the number of new
and existing users is declining, but a group of heavy users
remains. These are the people who are most at risk, having
potentially switched from prescription opioids to cheaper
drugs like heroin.[79] But it’s not as simple as cracking down
on the illegal drug market in these later stages. The underlying
problem of addiction is much deeper and wider than this. As
Police Chief Paul Cell put it, ‘America can’t arrest its way out
of the opioid epidemic’.[80] Nor is it just a matter of taking
away access to prescription drugs. ‘There’s an addiction
problem, and not just an opioid problem,’ Pacula said. ‘If you
don’t provide treatment when you’re taking away the drug,
you’re basically encouraging them to go to anything else.’ She
pointed out that drug epidemics also come with a series of
knock-on effects. ‘Even if we get the issue of misuse of
opioids under control, we have some very concerning long
term trends that we haven’t even started dealing with.’ One is
the effect on drug users’ health. As people move from taking
pills to injecting drugs, they face the risk of infections like
hepatitis C and HIV. Then there is the wider social impact – on
families, communities, and jobs – of having large numbers of
people with drug addiction.

Because the success of different control strategies can vary
between the three stages of a drug epidemic, it’s crucial to
know what stage we’re currently in. In theory, it should be



possible to work this out by estimating the annual numbers of
new users, existing users, and heavy users. But the complexity
of the opioid crisis – with its mix of prescription and illegal
use, makes it very difficult to pick these things apart. There are
some useful data sources – such as visits to emergency rooms
and results of post-arrest drug tests – but this information has
become harder to get hold of in recent years. We can’t draw a
neat graph showing the different stages of drug use like we can
for the Yambuku Ebola outbreak, because the data simply
aren’t available. It’s a common problem in outbreak analysis:
things that aren’t reported are by definition tough to analyse.

IN THE EARLY STAGES of a disease outbreak, there are generally
two main aims: to understand transmission and to control it.
These goals are closely linked. If we improve our
understanding of how something is spreading, we can come up
with more effective control measures. We may be able to
target interventions at high-risk groups, or identify other weak
links in the chain of transmission.

The relationship works the other way too: control measures
can influence our understanding of transmission. For diseases,
as with drug use and gun violence, health centres often act as
our windows onto the outbreak. It means that if health systems
are weakened or overburdened, it can affect the quality of data
coming in. During the Ebola epidemic in Liberia in August
2014, one dataset we were working with suggested that the
number of new cases was leveling off in the capital Monrovia.
At first this seemed like good news, but then we realised what
was actually happening. The dataset was coming from a
treatment unit that had reached capacity. The case reports
hadn’t peaked because the outbreak was slowing down; they’d
stopped because the unit couldn’t admit any more patients.

The interaction between understanding and control is also
important in the world of crime and violence. If authorities
want to know where crime is occurring, they generally have to
rely on what’s being reported. When it comes to using models
to predict crime, this can create problems. In 2016, statistician
Kristian Lum and political scientist William Isaac published an
example of how reporting might influence predictions.[81]
They’d focused on drug use in Oakland, California. First



they’d gathered data on drug arrests in 2010, and then plugged
these into the PredPol algorithm, a popular tool for predictive
policing in the US. Such algorithms are essentially translation
devices, taking information about an individual or location and
converting it into an estimate of crime risk. According to the
developers of PredPol, their algorithm uses only three pieces
of data to make predictions: the type of historical crime, the
place it happened and when it happened. It doesn’t explicitly
include any personal information – like race or gender – that
could directly bias results against certain groups.

Using the PredPol algorithm, Lum and Isaac predicted
where drug crimes would have been expected to occur in
2011. They also calculated the actual distribution of drug
crimes that year – including those that went unreported – using
data from the National Survey on Drug Use and Health. If the
algorithm’s predictions were accurate, they would have
expected it to flag up the areas where the crimes actually
happened. But instead, it seemed to point mostly to areas
where arrests had previously occurred. The pair noted that this
could produce a feedback loop between understanding and
controlling crime. ‘Because these predictions are likely to
over-represent areas that were already known to police,
officers become increasingly likely to patrol these same areas
and observe new criminal acts that confirm their prior beliefs
regarding the distributions of criminal activity.’[82]

Some people criticised the analysis, arguing that police
didn’t use Predpol to predict drug crimes. However, Lum said
that this is missing the wider point because the aim of
predictive policing methods is to make decisions more
objective. ‘The implicit argument is that you want to remove
human bias from the system.’ If predictions reflect existing
police behaviour, however, these biases will persist, hidden
behind a veil of a supposedly objective algorithm. ‘When
you’re training it with data that’s generated by the same
system in which minority people are more likely to be arrested
for the same behaviour, you’re just going to perpetuate those
same issues,’ she said. ‘You have the same problems, but now
filtered through this high-tech tool.’



Crime algorithms have more limitations than people might
think. In 2013, researchers at RAND Corporation outlined four
common myths about predictive policing.[83] The first was
that a computer knows exactly what will happen in the future.
‘These algorithms predict the risk of future events, not the
events themselves,’ they noted. The second myth was that a
computer would do everything, from collecting relevant crime
data to making appropriate recommendations. In reality,
computers work best when they assist human analysis and
decisions about policing, rather than replacing them entirely.
The third myth was that police forces needed a high-powered
model to make good predictions, whereas often the problem is
getting hold of the right data. ‘Sometimes you have a dataset
where the information you need to make the prediction just
isn’t contained in that dataset,’ as Lum put it.

The final, and perhaps most persistent myth, was that
accurate predictions automatically lead to reductions in crime.
‘Predictions, on their own, are just that – predictions,’ wrote
the RAND team. ‘Actual decreases in crime require taking
action based on those predictions.’ To control crime, agencies
therefore need to focus on interventions and prevention rather
than simply making predictions. This is true for other
outbreaks too. According to Chris Whitty, now the Chief
Medical Officer for England, the best mathematical models are
not necessarily the ones that try to make an accurate forecast
about the future. What matters is having analysis that can
reveal gaps in our understanding of a situation. ‘They are
generally most useful when they identify impacts of policy
decisions which are not predictable by commonsense,’ Whitty
has suggested. ‘The key is usually not that they are “right”, but
that they provide an unpredicted insight.’[84]

IN 2012, POLICE IN CHICAGO introduced the ‘Strategic Subjects
List’ (SSL) to predict who might be involved in a shooting.
The project was partly inspired by Andrew Papachristos’s
work on social networks and gun violence in the city, although
Papachristos has distanced himself from the SSL.[85] The list
itself is based on an algorithm that calculates risk scores for
certain city inhabitants. According to its developers, the SSL
does not explicitly include factors like gender, race or location.



For several years, though, it wasn’t clear what did go into it.
After pressure from the Chicago Sun-Times, the Chicago
Police Department finally released the SSL data in 2017. The
dataset contained the information that went into the algorithm
– like age, gang affiliations, and prior arrests – as well as the
corresponding risk scores it produced. Researchers were
positive about the move. ‘It’s incredibly rare – and valuable –
to see the public release of the underlying data for a predictive
policing system,’ noted Brianna Posadas, a fellow with the
social justice organisation Upturn.[86]

There were around 400,000 people in the full SSL database,
with almost 290,000 of them deemed high risk. Although the
algorithm didn’t explicitly include race as an input, there was a
noticeable difference between groups: over half of black
twenty-something men in Chicago had an SSL score,
compared with 6 per cent of white men. There were also a lot
of people who had no clear link to violent crime, with around
90,000 ‘high-risk’ individuals having never been arrested or a
victim of crime.[87]

This raises the question of what to do with such scores.
Should police monitor people who don’t have any obvious
connection to violence? Recall that Papachristos’s network
studies in Chicago focused on victims of gun violence, not
perpetrators; the aim of such analysis was to help save lives.
‘One of the inherent dangers of police-led initiatives is that, at
some level, any such efforts will become offender-focused,’
Papachristos wrote in 2016. He argued that there is a role for
data in crime prevention, but it doesn’t have to be solely a
police matter. ‘The real promise of using data analytics to
identify those at risk of gunshot victimization lies not with
policing, but within a broader public health approach.’ He
suggested that predicted victims could benefit from the
support of people like social workers, psychologists, and
violence interrupters.

Successful crime reduction can come in a variety of forms.
In 1980, for example, West Germany made it mandatory for
motorcyclists to wear helmets. Over the next six years,
motorcycle thefts fell by two thirds. The reason was simple:
inconvenience. Thieves could no longer decide to steal a



motorcycle on the spur of the moment. Instead, they’d have to
plan ahead and carry a helmet around. A few years earlier, the
Netherlands and Great Britain had introduced similar helmet
laws. Both had also seen a massive drop in thefts, showing
how social norms can influence crime rates.[88]

One of the best-known ideas about how our surroundings
shape crime is the ‘broken windows’ theory. Proposed by
James Wilson and George Kelling in 1982, the idea was that
small amounts of disorder – like broken windows – could
spread and grow into more severe crimes. The solution,
therefore, was to restore and maintain public order. The broken
windows theory would become popular among police forces,
most notably in New York City during the 1990s, where it
inspired a heavy crackdown on minor crimes like subway fare
dodging. These measures coincided with the massive drop in
crime in the city, leading to claims that arrests for
misdemeanours had stopped the larger offences.[89]

Not everyone was comfortable with the way that the broken
windows theory was adopted. One of them was Kelling
himself. He has pointed out that the original notion of broken
windows was about social order rather than arrests. But the
definition of public disorder can be a matter of perspective.
Are those people loitering or waiting for a friend? Is that wall
covered in graffiti or street art? Kelling suggested that it’s not
as simple as just telling police officers to restore order in an
area. ‘Any officer who really wants to do order maintenance
has to be able to answer satisfactorily the question, “Why do
you decide to arrest one person who’s urinating in public and
not arrest another?”’ he said in 2016. ‘If you can’t answer that
question, if you just say “Well, it’s common sense,” you get
very, very worried.’[90]

What’s more, it’s not clear that aggressively punishing
minor offences was the main reason for New York’s decline in
crime in the 90s. There’s little evidence that New York’s
reduction was a direct result of broken windows policing.
Many other US cities saw a drop in crime during that period,
despite using different policing strategies. Of course, this
doesn’t mean broken windows policing has no effect. There’s
evidence that the presence of things like graffiti and stray



shopping trolleys can make people far more likely to litter or
use an out-of-bounds thoroughfare.[91] This suggests that
minor disorder will spark other minor offences. The effect
seems to work the other way too: attempts to restore order –
like picking up litter – can prompt others to tidy up as well.
[92] But it’s quite a leap to go from such results to the
conclusion that arrests for misdemeanours can explain a
massive drop in violence.

So what caused the decline? Economist Steven Levitt has
argued that expanded access to abortion after 1973 played a
role. His theory goes that this meant there were fewer
unwanted children, who would have been more likely to be
involved in crime when they grew up. Others blame childhood
exposure to leaded petrol and lead paint in the mid-twentieth
century, which caused behavioural problems later on; when the
level of exposure declined, so did crime. In fact, a recent
review found that, in total, academics have proposed twenty-
four different explanations for the decline in US crime during
the 1990s.[93] These theories have attracted plenty of attention
– as well as criticism – but the researchers involved all
acknowledge that it’s a complicated question. In reality, the
drop in crime was likely the result of a combination of factors.
[94]

This is a common problem with outbreaks that occur on
long timescales. If we intervene in some way, we might have
to wait a long time to see if it has an effect. In the meantime,
there might be lots of other changes going on too, making it
hard to measure exactly how well our intervention works.
Similarly, it can be easier to focus on the immediate effects of
a violent event, rather than investigate longer-term harm.
Charlotte Watts has pointed out that domestic violence can be
transmitted across generations, with affected children
becoming involved in violence as adults. However, these
children can often be forgotten when discussing interventions.
‘We need to think about support for children growing up in
households where there is domestic violence,’ she said.

Historically, it’s been difficult to analyse intergenerational
transmission given the timescales involved.[95] This is where
public health methods can help, suggests epidemiologist



Melissa Tracy, because researchers have experience analysing
long-term conditions. ‘That’s the strength of epidemiology,
bringing that life course perspective.’

USING PUBLIC HEALTH APPROACHES to prevent crime would be
hugely cost-effective, both in the US and elsewhere. Adding
together the social, economic and judicial consequences of the
average US murder, one study put the cost of a single killing at
over $10m.[96] The problem is that the most effective
solutions may not be those that people are most comfortable
with. Do we want to feel like we’re punishing bad people, or
do we want less crime? ‘When it comes to behavior change,
threats and punishment are just not that effective,’ said Charlie
Ransford of Cure Violence. Although punishment might have
some impact, Ransford suggests that other approaches
generally work better. ‘What is ultimately most effective at
changing a person’s behavior is when you try to sit down and
try to listen to them and hear them out, let them air their
grievances and really try to understand them,’ he said. ‘And
then try to guide them to a healthier way of behaving.’

Projects like Cure Violence have historically focused on in-
person interactions, but online social contacts are increasingly
influencing the spread of violence as well. ‘The environment
has changed,’ Ransford said. ‘You need to make an
adjustment. Now we’re hiring workers who specialise in
combing through social media to look for conflicts that need to
be responded to.’

When dealing with crime and violence, it helps to
understand how people are linked together. The same is true of
outbreaks; we’ve seen how real-life contacts can drive
contagion ranging from smoking and yawning to infectious
diseases and innovation. But the strength of influence online
won’t necessarily be the same as face-to-face encounters. ‘If
you think about contagion of views about acceptability of
violence,’ said Watts, ‘the reach may be much larger, but the
number of people who act might be smaller.’

It’s a problem that a lot of industries are interested in.
However, they generally aren’t so interested in controlling
contagion. When it comes to online outbreaks, people tend to



care about transmission for the opposite reason. They want to
make things spread.



5
Going viral

‘YOUR NIKE ID ORDER was cancelled,’ read the e-mail. It was
January 2001, and Jonah Peretti was trying to get some
personalised trainers. The problem was the name he’d
requested; as a challenge to the company, he’d asked for his
trainers to be printed with the word ‘sweatshop’.[1]

Peretti, then a graduate student in the MIT Media Lab,
ended up exchanging a series of e-mails with Nike. The
company reiterated that it wouldn’t place the order because of
‘inappropriate slang’. Unable to talk them round, Peretti
decided to forward the e-mail thread to a few friends. Many of
them forwarded it to their friends, who forwarded it on, and
on, and on. Within days, the message had spread to thousands
of people. Soon the media picked up on the story too. By the
end of February, the e-mail chain had gained coverage in The
Guardian and Wall Street Journal, while NBC invited Peretti
on to the Today Show to debate the issue with a Nike
spokesperson. In March, the story went international,
eventually reaching several European newspapers. All from
that single e-mail. ‘Although the press has presented my battle
with Nike as a David versus Goliath parable,’ Peretti later
wrote, ‘the real story is the battle between a company like
Nike, with access to the mass media, and a network of citizens
on the Internet who have only micromedia at their
disposal.’[2]

The e-mail had spread remarkably far, but perhaps it had all
been just a fluke? Peretti’s friend and fellow PhD student
Cameron Marlow seemed to think so. Marlow – who would
later become head of data science at Facebook – didn’t believe
a person could deliberately make something take off like that.
But Peretti reckoned that he could do it again. Soon after the
Nike e-mail, he got a job offer from a multimedia non-profit
called Eyebeam in New York. Peretti would end up leading a
‘contagious media lab’ at Eyebeam, experimenting with online



content. He wanted to see what made things contagious and
what kept them spreading.

Over the next few years, he would start to piece together
features that were important for online popularity. Like how
jumping on emerging news stories could drive traffic to
websites. And how polarising topics got more exposure, while
ever-changing content kept users coming back. His team even
pioneered a ‘reblog’ feature that allowed people to share
others’ posts, a concept that would later become fundamental
to how things spread on social media (just imagine how
different Twitter would be without a retweet option, or
Facebook without a ‘share’ button). Peretti would eventually
move into news, helping to develop the Huffington Post, but
those early contagion experiments stuck in his mind.
Eventually, he suggested to his old boss at Eyebeam that they
create a new kind of media company. One that specialised in
contagion, taking their insights about popularity and applying
them on a massive scale. The idea was to compile a rolling
stream of viral content. They called it BuzzFeed.

NOT LONG AFTER DUNCAN WATTS published his work on small-
world networks, he joined the Department of Sociology at
Columbia University. During this period he became
increasingly interested in online content, eventually becoming
an early advisor to BuzzFeed. Although Watts had started off
studying links in networks like film casts and worm brains, the
world wide web contained a wealth of new data. In the early
2000s, Watts and his colleagues began to explore these online
connections. In the process, they would overturn some long-
held beliefs about how information spreads.

At the time, marketers were getting excited about the notion
of ‘influencers’: everyday people who could spark social
epidemics. Nowadays, the word ‘influencer’ has evolved to
refer to everything from influential everyday people to
celebrities and media personalities. But the original concept
involved little-known individuals who can spark word-of-
mouth outbreaks. The idea was that by targeting a few
unexpectedly well-connected people, companies could get
ideas to spread much further for much less cost. Rather than
relying on a celebrity like Oprah Winfrey to promote their



product, they could instead build enthusiasm from the ground
up. ‘The whole thing that made it interesting to people in the
marketing world was that they could get Oprah-like impact
from small budgets,’ said Watts, who is now based at the
University of Pennsylvania.[3]

The idea of such influencers was inspired by psychologist
Stanley Milgram’s famous ‘small-world’ experiment. In 1967,
Milgram set three hundred people the task of getting a
message to a specific stockbroker who lived in the town of
Sharon, near Boston.[4] In the end, sixty-four of the messages
would find their target. Of these, a quarter flowed through the
same one person, who was a local clothing merchant. Milgram
said it came as a shock to the stockbroker to find out that this
merchant was apparently his biggest link to the wider world. If
an innocuous merchant could be this important for the spread
of a message, perhaps there were other, similarly influential
people out there too?

Watts has pointed out that there are actually multiple
versions of the influencer hypothesis. ‘There’s an interesting
but not true version,’ he said, ‘and then there’s a true but not
interesting version.’ The interesting version is that there are
specific people – like Milgram’s clothing merchant – who play
a massively disproportionate role in social contagion. And if
you can identify them, you can make things spread without
huge marketing budgets and celebrity endorsements. It’s an
appealing idea, but one that doesn’t hold up under scrutiny. In
2003, Watts and his colleagues at Columbia re-ran Milgram’s
experiment, this time with e-mails and on a much larger scale.
[5] Picking eighteen different target individuals across thirteen
countries, the team started almost 25,000 e-mail chains, asking
each participant to get their message to a specific target. In
Milgram’s smaller study, the clothing merchant had appeared
to be a vital link, but this wasn’t the case for the e-mail chains.
The messages in each chain flowed through a range of
different people, rather than the same ‘influencers’ cropping
up again and again. What’s more, the Columbia researchers
asked participants why they forwarded the e-mail to the people
they did. Rather than sending the message to contacts who



were especially popular or well connected, people tended to
pick based on characteristics like location or occupation.

The experiment showed that messages don’t need highly
connected people to get to a specific destination. But what if
we’re interested simply in making something spread as far as
possible? Could people who are more connected in the
network – like celebrities – help ensure it takes off? A few
years after the e-mail analysis, Watts and his colleagues looked
at how web links propagate on Twitter. The results suggested
that content was more likely to spread widely if it was posted
by a person with lots of followers or a history of making
things take off. Yet it was no guarantee: most of the time these
people weren’t successful at creating large outbreaks.[6]

Which brings us to the more basic version of the influencer
hypothesis. This is simply the idea that some people can be
more influential than others. There is plenty of evidence to
support this. For example, in 2012 Sinan Aral and Dylan
Walker studied how a person’s friends influenced their choice
of apps on Facebook. They found that within friendship
pairings, women influenced men at a 45 per cent higher rate
than they influenced other women, and over-30s were 50 per
cent more influential than under-18s. They also showed that
women were less susceptible to influence than men and
married people were less susceptible than singles.[7]

If we want an idea to spread, we ideally need people to be
both highly susceptible and highly influential. But Aral and
Walker found that such people were very rare. ‘Highly
influential individuals tend not to be susceptible, highly
susceptible individuals tend not to be influential, and almost
no one is both highly influential and highly susceptible to
influence,’ they noted. So what effect could targeting
influential people have? In a follow-up study, Aral’s team
simulated what would happen if the best possible people were
chosen to spark a social outbreak. Compared with choosing
randomly, the pair found that picking targets effectively could
potentially help things spread up to twice as far. It’s an
improvement, but it’s a long way from having a few little-
known influencers who can spark a huge outbreak all by
themselves.[8]



Why is it so hard to get ideas to spread from person to
person? One reason is that issue of people rarely being both
susceptible and influential. If someone spreads an idea to lots
of susceptible people, these individuals won’t necessarily pass
it on much further. Then there’s the structure of our
interactions. Whereas financial networks are ‘disassortative’ –
with big banks connected to lots of small ones – human social
networks tend to be the opposite. From village communities to
Facebook friendships, there’s evidence that popular people
often form social groups with other popular people.[9] It
means that if we target a few popular individuals, we might
get a word-of-mouth outbreak that spreads quickly, but it
probably won’t reach much of the network. Sparking multiple
outbreaks across a network may therefore be more effective
than trying to identify high profile influencers within a
community.[10]

Watts has noticed that people tend to mix up the different
influencer theories. They might claim to have found hidden
influencers – like the merchant in Milgram’s experiment – and
used them to make something spread. But in reality they may
have just run a mass-media campaign or paid celebrities to
promote the product online, in effect bypassing word-of-
mouth transmission altogether. ‘People either carelessly or
deliberately conflate them, to make the boring thing sound like
the interesting thing,’ Watts said.

The debate around influencers shows we need to think
about how we are exposed to information online. Why do we
adopt some ideas but not others? One reason is competition:
opinions, news, and products are all fighting for our attention.
A similar effect occurs with biological contagion. The
pathogens behind diseases like flu and malaria are actually
made up of multiple strains, which continuously compete for
susceptible humans. Why doesn’t one strain end up
dominating everywhere? Our social behaviour probably has
something to do with it. If people gather into distinct tight-knit
cliques, it can allow a wider range of strains to linger in a
population. In essence, each strain can find its own home
territory, without having to constantly compete with others.
[11] Such social interactions would also explain the huge



diversity in ideas and opinions online. From political stances
to conspiracy theories, social media communities frequently
cluster around similar worldviews.[12] This creates the
potential for ‘echo chambers’, in which people rarely hear
views that contradict their own.

One of the most vocal online communities is the anti-
vaccination movement. Members often congregate around the
popular, but baseless, claim that the measles-mumps-rubella
(MMR) vaccine causes autism. The rumours started in 1998
with a scientific paper – since discredited and retracted – led
by Andrew Wakefield, who was later struck off the UK
medical register. Unfortunately, the British media picked up on
Wakefield’s claims and amplified them.[13] This led to a
decline in MMR vaccination, followed by several large
outbreaks of measles years later, when unvaccinated children
began entering the bustling environments of schools and
universities.

Despite widespread MMR rumours in the UK during the
early 2000s, media reports were very different on the other
side of the channel. While MMR was getting bad press in the
UK, the French media were speculating about an unproven
link between the hepatitis B vaccine and multiple sclerosis.
More recently, there has been negative coverage of the HPV
vaccine in the Japanese media, while a twenty-year-old
rumour about tetanus vaccines resurfaced in Kenya.[14]

Scepticism of medicine isn’t new. People have been
questioning disease prevention methods for centuries. Before
Edward Jenner identified a vaccine against smallpox in 1796,
some would use a technique called ‘variolation’ to reduce their
risk of disease. Developed in sixteenth-century China,
variolation exposed healthy people to the dried scabs or pus of
smallpox patients. The idea was to stimulate a mild form of
infection, which would provide immunity to the virus. The
procedure still carried a risk – around 2 per cent of variolations
resulted in death – but it was much smaller than the 30 per
cent chance of death that smallpox usually came with.[15]

Variolation became popular in eighteenth-century England,
but was the risk worth it? French writer Voltaire observed that



other Europeans thought that the English were fools and
madmen to use the method. ‘Fools, because they give their
children the smallpox to prevent their catching it; and
madmen, because they wantonly communicate a certain and
dreadful distemper to their children, merely to prevent an
uncertain evil.’ He noted that the criticism went the other way
too. ‘The English, on the other side, call the rest of the
Europeans cowardly and unnatural. Cowardly, because they
are afraid of putting their children to a little pain; unnatural,
because they expose them to die one time or other of the
small-pox.’[16] (Voltaire, himself a survivor of smallpox,
supported the English approach.)

In 1759, mathematician Daniel Bernoulli decided to try and
settle the debate. To work out whether the risk of smallpox
infection outweighed the risk from variolation, he developed
the first-ever outbreak model. Based on patterns of smallpox
transmission, he estimated that variolation would increase life
expectancy so long as the risk of death from the procedure was
below 10 per cent, which it was.[17]

For modern vaccines, the balancing act is generally far
clearer. On one side, we have overwhelmingly safe, effective
vaccines like MMR; on the other, we have potentially deadly
infections like measles. Widespread refusal of vaccination
therefore tends to be a luxury, a side effect of living in places
that – thanks to vaccination – have seen little of such
infections in recent decades.[18] One 2019 survey found that
European countries tended to have much lower levels of trust
in vaccines compared to those in Africa and Asia.[19]

Although rumours about vaccines have traditionally been
country-specific, our increasing digital connectedness is
changing that. Information can now spread quickly online,
with automated translations helping myths about vaccination
cross language barriers.[20] The resulting decline in vaccine
confidence could have dire consequences for children’s health.
Because measles is so contagious, at least 95 per cent of a
population needs to be vaccinated to have a hope of preventing
outbreaks.[21] In places where anti-vaccination beliefs have
spread successfully, disease outbreaks are now following. In
recent years, dozens of people have died of measles in Europe,



deaths that could easily have been prevented with better
vaccination coverage.[22]

The emergence of such movements has drawn attention to
the possibility of echo chambers online. But how much have
social media algorithms actually changed our interaction with
information? After all, we share beliefs with people we know
in real life as well as online. Perhaps the spread of information
online is just a reflection of an echo chamber that was already
there?

On social media, three main factors influence what we read:
whether one of our contacts shares an article; whether that
content appears in our feed; and whether we click on it.
According to data from Facebook, all three factors can affect
our consumption of information. When the company’s data
science team examined political opinions among US users
during 2014–2015, they found that people tended to be
exposed to views that were similar to theirs, much more so
than they would have been if they had picked their friends at
random. Of the content that these friends posted, the Facebook
algorithm – which decides what appears on users’ News Feeds
– filtered out another 5–8 per cent of opposing political views.
And of the content people saw, they were less likely to click
on articles that went against their political stance. Users were
also far more likely to click on posts that appeared at the top of
their feed, showing how intensely content has to compete for
attention. This suggests that if echo chambers exist on
Facebook, they start with our friendship choices but can then
be exaggerated by the News Feed algorithm.[23]

What about the information we get from other sources? Is
this similarly polarised? In 2016, researchers at Oxford
University, Stanford University and Microsoft Research
looked at the web browsing patterns of 50,000 Americans.
They found that the articles people saw on social media and
search engines were generally more polarised than the ones
they came across on their favourite news websites.[24]
However, social media and search engines also exposed
people to a wider range of views. The stories might have had
stronger ideological content, but people got to see more of the
opposing side as well.



This might seem like a contradiction: if social media
exposes us to a broader range of information than traditional
news sources, why doesn’t it help dampen the echoes? Our
reaction to online information might have something to do
with it. When sociologists at Duke University got US
volunteers to follow Twitter accounts with opposing views,
they found that people tended to retreat further back into their
own political territory afterwards.[25] On average,
Republicans became more conservative and Democrats more
liberal. This isn’t quite the same as the ‘backfire effect’ we
saw in Chapter 3, because people weren’t having specific
beliefs challenged, but it does imply that reducing political
polarisation isn’t as simple as creating new online connections.
As in real life, we may resent being exposed to views we
disagree with.[26] Although having meaningful face-to-face
conversations can help change attitudes – as they have with
prejudice and violence – viewing opinions in an online feed
won’t necessarily have the same effect.

IT’S NOT JUST ONLINE CONTENT itself that can create conflict; it’s
also the context surrounding it. Online, we come across many
ideas and communities we may not encounter much in real
life. This can lead to disagreements if people post something
with one audience in mind, only to have it read by another.
Social media researcher danah boyd (she styles her name as
lower case) calls it ‘context collapse’. In real life, a chat with a
close friend may have a very different tone to a conversation
with a co-worker or stranger: the fact that our friends know us
well means there’s less potential for misinterpretation. Boyd
points to events like weddings as another potential source of
face-to-face context collapse. A speech that’s aimed at friends
could leave family uncomfortable; most of us have sat through
a best man’s anecdote that has made this mistake and misfired.
But while weddings are (usually) carefully planned, online
interactions may inadvertently include friends, family, co-
workers, and strangers all in the same conversation.
Comments can easily be taken out of context, with arguments
emerging from the confusion.[27]

According to boyd, underlying contexts can also change
over time, particularly as people are growing up. ‘While teens’



content might be public, most of it is not meant to be read by
all people across all time and all space,’ she wrote back in
2008. As a generation raised on social media grows older, this
issue will come up more often. Viewed out of context, many
historical posts – which can linger online for decades – will
seem inappropriate or ill-judged.

In some cases, people have decided to exploit the context
collapse that occurs online. Although ‘trolling’ has become a
broad term for online abuse, in early internet culture a troll
was mischievous rather than hateful.[28] The aim was to
provoke a sincere reaction to an implausible situation. Many
of Jonah Peretti’s pre-BuzzFeed experiments used this
approach, running a series of online pranks to attract attention.

Trolling has since become an effective tactic in social
media debates. Unlike real life, the interactions we have online
are in effect on a stage. If a troll can engineer a seemingly
overblown response from their opponent, it can play well with
random onlookers, who may not know the full context. The
opponent, who may well have a justified point, ends up
looking absurd. ‘O Lord make my enemies ridiculous,’ as
Voltaire once said.[29]

Many trolls – of both the prankster and abuser kinds –
wouldn’t behave this way in real life. Psychologists refer to it
as the ‘online disinhibition effect’: shielded from face-to-face
responses and real-life identities, people’s personalities may
adopt a very different form.[30] But it isn’t simply a matter of
a few people being trolls-in-waiting. Analysis of antisocial
behaviour online has found that a whole range of people can
become trolls, given the right circumstances. In particular, we
are more likely to act like trolls when we are in a bad mood, or
when others in the conversation are already trolling.[31]

As well as creating new types of interactions, the internet is
also creating new ways to study how things spread. In the field
of infectious diseases, it’s generally not feasible to deliberately
infect people to see how something spreads, as Ronald Ross
tried to do with malaria in the 1890s. If modern researchers do
run infection studies, they are usually small, expensive, and
subject to careful ethical scrutiny. For the most part, we have



to rely on observed data, using mathematical models to ask
‘what if?’ questions about outbreaks. The difference online is
that it can be relatively cheap and easy to spark contagion
deliberately, especially if you happen to run a social media
company.

IF THEY HAD BEEN PAYING close attention, thousands of Facebook
users might have noticed that on 11 January 2012, their friends
were slightly happier than usual. At the same time, thousands
of others may have spotted that their friends were sadder than
expected. But even if they did notice a change in what their
friends were posting online, it wasn’t genuine change in their
friends’ behaviour. It was an experiment.

Researchers at Facebook and Cornell University had
wanted to explore how emotions spread online, so they’d
altered people’s News Feeds for a week and tracked what
happened. The team published the results in early 2014. By
tweaking what people were exposed to, they found that
emotion was contagious: people who saw fewer positive posts
had on average posted less positive content themselves, and
vice versa. In hindsight, this result might seem unsurprising,
but at the time it ran counter to a popular notion. Before the
experiment, many people believed that seeing cheerful content
on Facebook could make us feel inadequate, and hence less
happy.[32]

The research itself soon sparked a lot of negative emotions,
with several scientists and journalists questioning how ethical
it was to run such a study. ‘Facebook manipulated users’
moods in secret experiment,’ read one headline in the
Independent. One prominent argument was that the team
should have obtained consent, asking whether users were
happy to participate in the study.[33]

Looking at how design influences people’s behaviour is not
necessarily unethical. Indeed, medical organisations regularly
run randomised experiments to work out how to encourage
healthy behaviour. For example, they might send one type of
reminder about cancer screening to some people and a
different one to others, and then see which gets the best
response.[34] Without these kinds of experiments, it would be



difficult to work out how much a particular approach actually
shifted people’s behaviour.

If an experiment could have a detrimental effect on users,
though, researchers need to consider alternatives. In the
Facebook study, the team could have waited for a ‘natural
experiment’ – like rainy weather – to change people’s
emotional state, or they could have tried to answer the same
research question with fewer users. Even so, it may still not
have been feasible to ask for consent beforehand. In his book
Bit by Bit, sociologist Matthew Salganik points out that
psychological experiments can produce dubious results if
people know what’s being studied. Participants in the
Facebook study might have behaved differently if they had
known from the outset that the research was about emotions. If
psychology researchers do deceive participants in order to get
a natural reaction, however, Salganik notes that they will often
debrief them afterwards.

As well as debating the ethics of the experiment, the wider
research community also raised concerns about the extent of
emotional contagion in the Facebook study. Not because it was
big, but because it was so small. The experiment had shown
that when a user saw fewer positive posts in their feed, the
number of positive words in their status updates fell by an
average of 0.1 per cent. Likewise, when there were fewer
negative posts, negative words decreased by 0.07 per cent.

One of the quirks of huge studies is that they can flag up
very small effects, which wouldn’t be detectable in smaller
studies. Because the Facebook study involved so many users,
it was possible to identify incredibly small changes in
behaviour. The study team argued that such differences were
still relevant, given the size of the social network: ‘In early
2013, this would have corresponded to hundreds of thousands
of emotion expressions in status updates per day.’ But some
people remained unconvinced. ‘Even if you were to accept this
argument,’ Salganik wrote, ‘it is still not clear if an effect of
this size is important regarding the more general scientific
question about the spread of emotions.’



IN STUDIES OF CONTAGION, social media companies have a major
advantage because they can monitor much more of the
transmission process. In the Facebook emotion experiment, the
researchers knew who had posted what, who had seen it, and
what the effect was. External marketing companies don’t have
this same level of access, so instead they have to rely on
alternative measurements to estimate the popularity of an idea.
For example, they might track how many people click on or
share a post, or how many likes and comments it receives.

What sort of ideas become popular online? In 2011,
University of Pennsylvania researchers Jonah Berger and
Katherine Milkman looked at which New York Times stories
people e-mailed to others. They gathered three months of data
– almost 7,000 articles in total – and recorded the features of
each story, as well as whether it made the ‘most e-mailed’ list.
[35] It turned out that articles that triggered an intense
emotional response were more likely to be shared. This was
the case both for positive emotions, such as awe, and negative
ones like anger. In contrast, articles that evoked so-called
‘deactivating’ emotions like sadness were shared less often.
Other researchers have found a similar emotional effect;
people are more willing to spread stories that evoke feelings of
disgust, for example.[36]

Yet emotions aren’t the only reason we remember stories.
By accounting for the emotional content of the New York
Times articles, Berger and Milkman could explain about 7 per
cent of the variation in how widely stories were shared. In
other words, 93 per cent of the variation was down to
something else. This is because popularity doesn’t depend
only on emotional content. Berger and Milkman’s analysis
found that having an element of surprise or practical value
could also influence an article’s shareability. As could the
appearance of the story: an article’s popularity depended on
when it was posted, what section of the website it was on, and
who the author was. When the pair accounted for these
additional characteristics, they could explain much more of the
variation in popularity.

It’s tempting to think we could – in theory, at least – sift
through successful and unsuccessful content to identify what



makes a highly contagious tweet or article. However, even if
we manage to identify features that explain why some things
are more popular, these conclusions may not hold for long.
Technology researcher Zeynep Tufekci has pointed to the
apparent shift in people’s interests as they use online
platforms. On YouTube, for example, she suspected that the
video recommendation algorithm might have been feeding
unhealthy viewing appetites, pulling people further and further
down the online rabbit hole. ‘Its algorithm seems to have
concluded that people are drawn to content that is more
extreme than what they started with – or to incendiary content
in general,’ she wrote in 2018.[37] These shifting interests
mean that unless new content evolves – becoming more
dramatic, more evocative, more surprising – it will probably
get less attention than its predecessors. Here, evolution isn’t
about getting an advantage; it’s about survival.

The same situation arises in the biological world. Many
species have to adapt simply to keep pace with their
competitors. After humans came up with antibiotics to treat
bacterial infections, some bacteria evolved to become resistant
to common drugs. In response, we turned to even stronger
antibiotics. This put pressure on bacteria to evolve further.
Treatments gradually became more extreme, just to have the
same impact as lesser drugs did decades earlier.[38] In
biology, this arms race is known as the ‘Red Queen effect’,
after the character in Lewis Carroll’s Through the Looking-
Glass. When Alice complains that running in the looking-glass
world doesn’t take her anywhere new, the Red Queen replies
that, ‘here, you see, it takes all the running you can do, to keep
in the same place.’

This evolutionary running is about change, but it’s also
about transmission. Even if a new mutation crops up in
bacteria, it won’t automatically spread through a human
population. Likewise, if new content emerges online, it’s not a
guarantee it will become popular. We all know of new stories
and ideas that have spread widely online, but we also know of
posts – perhaps including our own – that have fizzled away
without notice. So how common is popularity online? What
does a typical outbreak even look like?



THE RUMOURS ABOUT THE HIGGS BOSON spread gradually at first.
On 1 July 2012, Twitter users started speculating that the
elusive particle – nicknamed the ‘God particle’– had finally
been discovered. Originally suggested by Peter Higgs in 1964,
the boson was a crucial missing piece in the subatomic jigsaw.
The laws of particle physics said it should exist, but it was yet
to be observed in reality.

That would soon change. The rumours on Twitter initially
claimed that physicists had discovered the boson at the
Tevatron particle accelerator in Illinois. The rumour outbreak
grew at a rate of about one new user per minute during this
period. The next day, researchers at the Tevatron announced
that they’d found promising – but not quite definitive –
evidence that the Higgs boson existed. The Twitter outbreak
accelerated, with more and more users joining, and attention
turned to the Large Hadron Collider at CERN. These latest
rumours would prove true: two days later, CERN researchers
announced they had indeed found the boson. As media interest
in the discovery grew, more joined the Twitter outbreak. It
grew by over five hundred users per minute for the next day or
so, before peaking soon after. By 6 July, five days after the
first rumour emerged, interest in the story had declined
dramatically.[39]

When the Higgs rumours started, some users posted about
the potential discovery, while others retweeted these
comments to their own followers. If we look at how the first
few hundred of these retweets were connected, there is a huge
amount of variation in transmission (see figure on next page).
Most tweets didn’t go very far, only spreading the news to one
or two others. But in the middle of the transmission network,
there is a large chain of retweets, including two large-scale
transmission events, with single users spreading the rumour to
many other people.

This sort of diversity in transmission is common in online
sharing. In 2016, Duncan Watts, then based at Microsoft
Research, worked with collaborators at Stanford University to
look at ‘cascades’ of sharing on Twitter. The group tracked
over 620 million pieces of content, noting which users had
reposted links shared by others. Some links passed between



multiple users in a long chain of transmission. Others sparked
but faded away much faster. Some didn’t spread at all.[40]

Initial retweets about the Higgs boson rumour, 1 July 2012.
Each dot represents a user, with lines showing retweets

Data: De Domenico et al., 2013

For infectious diseases, we’ve seen there are two extreme
types of outbreaks. ‘Common source’ transmission occurs
when every one gets infected from the same source, like food
poisoning. At the other extreme, a propagated outbreak
spreads from person-to-person over several generations. There
is a similar diversity in online cascades. Sometimes content
will spread to lots of people from a single source – known in
marketing as a ‘broadcast’ event – whereas on other occasions
it will propagate from user to user. The Stanford and Microsoft
researchers found that broadcasts were a crucial part of the
largest cascades. About one in a thousand Twitter posts got
more than 100 shares, but only a fraction of these spread
because of propagated transmission. Of the posts that spread,



there was generally a single broadcast event behind its
success.

When we talk about online contagion, it’s tempting to focus
only on things that have become popular. However, this
ignores the fact that the vast majority of things do not take off.
The Microsoft team found that around 95 per cent of Twitter
cascades consisted of a single tweet that nobody else shared.
Of the remaining cascades, most didn’t go any further than one
additional step in terms of sharing. The same is true of other
online platforms: it’s extremely rare to get something that
spreads, and even when it does, it doesn’t spread beyond a few
generations of transmission. Most content just isn’t that
contagious.[41]

IN THE PREVIOUS CHAPTER, we looked at outbreaks of shootings
in Chicago, where transmission generally ended after a small
number of events. Several diseases also stumble and stutter in
human populations like this. For example, strains of bird flu
like H5N1 and H7N9 have caused large outbreaks in poultry,
but don’t spread well among people (at least, not for the
moment).

What sort of outbreaks should we expect if something
doesn’t spread very effectively? We’ve already looked at how
we can use the reproduction number, R, to assess whether an
infectious disease has the potential to spread or not; if R is
above the critical value of one, there is potential for a large
epidemic to occur. But even if R is below one, there’s still a
chance an infected person will pass the disease on to someone
else. It might be unlikely, but it’s possible. Unless the
reproduction number is zero, we should therefore expect to get
some secondary cases occasionally. These new cases may
generate further generations of infection before the outbreak
eventually stutters to an end.

If we know the reproduction number of a stuttering
infection, can we predict how big an outbreak will be on
average? It turns out that we can, thanks to a handy piece of
mathematics. As well as becoming a crucial part of outbreak
analysis, it’s an idea that would shape how Jonah Peretti and



Duncan Watts approached viral marketing in the early days of
Buzzfeed.[42]

Suppose an outbreak starts with one infectious person. By
definition, this first case will generate R secondary cases on
average. Then these new infections will generate R more cases
each – which translates into R2 new cases – and so on:

Outbreak size = 1 + R + R2 + R3 + …

We could try and add up all these values to work out the
expected outbreak size. But fortunately there’s an easier
option. In the nineteenth century, mathematicians proved that
there’s an elegant rule we can apply to sequences like the one
above. If R is between 0 and 1, the following equation is true:

1 + R + R2 + R3 + … = 1/(1–R)

In other words, as long as the reproduction number is below
1, the expected outbreak size is equal to 1/(1–R). Even if
you’re not especially interested in nineteenth-century
mathematics, it’s worth taking a moment to appreciate how
useful this shortcut is. Rather than having to simulate how an
infection might stutter along from one generation to the next
until it eventually fizzles out, we can instead estimate the final
outbreak size directly from the reproduction number.[43] If R
is 0.8, for example, we’d expect an outbreak with 1/(1–0.8) =
5 cases in total. And that’s not all we can do. We can also work
backwards to estimate the reproduction number from the
average outbreak size. If outbreaks consist of five cases on
average, it means R is 0.8.

In my field, we regularly use this back-of-the-envelope
calc ulation to estimate the reproduction number of new
disease threats. During the early months of 2013, there were
130 human cases of H7N9 bird flu in China. Although most of
these picked up the disease from contact with poultry, there
were four clusters of infection that were likely to be the result
of transmission between humans.[44] Because most people
didn’t infect anyone else, the average size of a human H7N9
outbreak was 1.04 cases, suggesting that R in humans was a
paltry 0.04.



This idea isn’t only useful for diseases. During the mid-
2000s, Jonah Peretti and Duncan Watts applied the same
method to marketing campaigns. It meant they could get at the
underlying transmissibility of an idea, rather than just
describing what a campaign had looked like. In 2004, for
example, anti gun violence group The Brady Campaign had
sent out e-mails asking people to support new gun control
measures. They encouraged recipients to forward the e-mails
to their friends; some of these friends then forwarded the
messages to their friends, and so on. For each e-mail that was
sent, on average around 2.4 people ended up seeing the
message. Based on this typical outbreak size, the reproduction
number of the campaign was about 0.58. A subsequent e-mail
campaign aimed to raise money for Hurricane Katrina relief
efforts; this time R was 0.77. However, there wasn’t always so
much transmission. Spare a thought for the marketing
executives trying to spread messages about cleaning products:
Peretti and Watts found that e-mails promoting Tide Coldwater
detergent had an R of only 0.04 (i.e. the same as H7N9 bird
flu). Whereas most of the Katrina e-mails had spread between
multiple people, over 99 per cent of the Tide outbreaks
stuttered to an end after only one transmission event.[45]

Why do we care about measuring an infection if it won’t
lead to a large outbreak? For biological pathogens, a big
concern is that these infections will adapt to their new hosts.
During a small outbreak, viruses could pick up mutations that
enable them to transmit more easily. The more people that get
infected, the more chances for such adaptation. Before SARS

sparked a major outbreak in Hong Kong in February 2003,
there were a series of small clusters of infection in Guangdong
province, in southern China.[46] Between November 2002 and
January 2003, seven outbreaks were reported in Guangdong,
with between one and nine cases in each. The average
outbreak size was five cases, suggesting that R may have been
around 0.8 during this period. But by the time of the Hong
Kong outbreak a couple of months later, SARS had a far more
troubling R of more than 2.

There are several reasons the reproduction number of an
infection may increase. Recall that R depends on the four



DOTS: duration of infection, opportunities for transmission,
transmission probability during each opportunity, and average
susceptibility. For biological viruses, all of these features can
influence transmission. Of the viruses that can spread among
humans, the most successful tend to cause longer infections
(i.e. larger duration) and spread directly from one person to
another rather than via an intermediate source (i.e. more
opportunities).[47] Transmission probability can also make a
difference: bird flu viruses struggle to spread among people
because they can’t latch onto the cells in our airway as easily
as human viruses can.[48]

The same sort of adaptation can happen with online
content. There are many examples of online memes – such as
posts and images – evolving to increase their catchiness. When
Facebook researcher Lada Adamic and her colleagues
analysed the spread of memes on the social network, they
noticed that content would often change over time.[49] One
example was a post that read: ‘No one should die because they
cannot afford health care and no one should go broke because
they get sick.’ In its original form, the meme was shared
almost half a million times. But variants soon emerged, with
one in every ten posts adding a mutation to the wording. Some
of these edits helped the meme propagate; when people
included phrases like ‘post if you agree’, the meme was almost
twice as likely to spread. The meme was also highly resilient.
After an initial peak in popularity, it persisted in one form or
another for at least two years.

Even so, there seems to be a limit to the potential
contagiousness of online content. The most popular trends on
Facebook during 2014–2016 all had a reproduction number of
around 2. This limit seems to occur because the different
components of transmission trade off against each other. Some
trends – like the ice bucket challenge – involved only a few
nominations per person, but came with a high probability of
transmission during each nomination. Other content, such as
videos and links, had far more opportunities to spread, but in
reality only a few friends who saw the post reshared it.[50]
Remarkably, there were no examples of Facebook content that
reached lots of friends and had a consistently high probability



of spreading to each person that saw it. This serves as a
reminder of just how weak online outbreaks are compared to
biological infections: even the most popular content on
Facebook is ten times less contagious than measles can be.

The outlook is even worse for a typical marketing
campaign. Although Jonah Peretti once bet that it was possible
to get something to deliberately take off, he’s since
acknowledged that it’s much harder to guarantee contagion
when working to a client brief.[51] Consider the difference
between his original Nike e-mail, which spread widely, and
those later e-mail campaigns, which were far less
transmissible. Peretti and Watts have pointed out that
infectious diseases have millennia of evolution on their side;
marketers don’t have nearly as much time. ‘The chances are,
therefore, that even talented creatives will typically design
products that exhibit R less than 1, no matter how hard they
try,’ they suggested.[52]

Fortunately, there is another way to increase the size of an
outbreak: get the message out to more people at the start. In
the above examples, we’ve been analysing stuttering outbreaks
by assuming that one person is infectious at the start. If the
reproduction number is small, this will lead to a small
outbreak that fades away quickly. One way to fix this is to
simply introduce more infections. Peretti and Watts call it ‘big
seed marketing’. If we get a slightly contagious message to
lots of people, it can pick up additional attention during
subsequent small outbreaks. For example, if we send a non-
contagious message to one thousand people, we’ll reach one
thousand people. If instead we launch a message with an R of
0.8, we’d expect to reach five thousand people in total. Much
of BuzzFeed’s early content became popular in this way.
People saw articles on the website, then shared them with a
handful of friends on sites like Facebook. Having pioneered
the idea of ‘reblogging’ in the early 2000s, Peretti’s team took
full advantage of it in the decade that followed. By 2013,
Buzzfeed had been named the most ‘social’ publisher on
Facebook, with more comments, likes, and shares than any
other organisation.[53] (Huffington Post, Peretti’s former
company, was second.)



If web content generally has a low R and needs multiple
introductions to spread, it suggests that we shouldn’t be
thinking about online contagion as if it’s the 1918 flu virus or
SARS. Infections like pandemic flu spread easily from person to
person, which means outbreaks initially grow larger and larger
over several generations of transmission. In contrast, most
online content won’t reach many people unless there is some
kind of mass broadcast event. According to Peretti, marketing
companies will often talk about things going ‘viral’ like a
disease, but they actually just mean something has become
popular. ‘We were thinking in terms of an actual
epidemiological definition of viral, with a certain threshold of
contagion that results in it growing through time,’ as he once
put it.[54] ‘Instead of exponential decay, you get exponential
growth. That is what viral is.’

Most online cascades are not viral like pandemics are; they
do not grow exponentially. They are actually more like the
stuttering smallpox outbreaks that occurred in Europe during
the 1970s. These outbreaks would generally fade away, albeit
with the occasional superspreading event leading to a large
cluster of cases. Yet the smallpox superspreader analogy only
goes so far, because media outlets and celebrities have a reach
far beyond what’s possible for biological transmission. ‘A
superspreader is someone who infects, like, eleven people
instead of two,’ Watts said. ‘You don’t have superspreaders
who infect eleven million people.’

GIVEN THAT SOCIAL MEDIA cascades aren’t the same as infectious
disease outbreaks, a traditional disease model won’t
necessarily help us predict what will happen online. But
maybe we don’t need to rely on biologically inspired
predictions. Given the sheer volume of data generated on
social media, researchers are increasingly trying to identify
transmission patterns, and use these to predict the dynamics of
cascades.

How easy is it to predict online popularity? In 2016, Watts
and his colleagues at Microsoft Research compiled data on
almost a billion Twitter cascades.[55] They gathered data on
the tweets themselves – such as the time posted and topic – as
well as information about the users who initially tweeted them,



such as their number of followers and whether they had a
history of getting a lot of retweets. Analysing the resulting
cascade sizes, they found that the content of the tweet itself
provides very little information about whether it would be
popular. As with their earlier analysis of influencers, the team
found that a user’s past tweeting success was far more
important. Even so, their overall prediction ability was fairly
limited. Despite having the sort of dataset a disease researcher
could only dream of, the team could explain less than half the
variability in cascade size.

So what explained to the other half? The researchers
acknowledged that there might be some additional, as-yet-
unknown features of success that could improve prediction
ability. However, a large amount of the variation in popularity
will depend on randomness. Even if we have detailed data
about what is being tweeted and who is tweeting it, the success
of a single post will inevitably depend a lot on luck. Again,
this shows why it is important to spark multiple cascades,
rather than trying to find a single ‘perfect’ tweet.

Because it’s so difficult to predict a tweet’s popularity
before it’s been posted, an alternative is to wait and look at the
start of the cascade before making a prediction. This is known
as the ‘peeking method’, because we’re looking at data on the
early spread before we predict what will happen next.[56]
When Justin Cheng and his colleagues analysed sharing of
photos on Facebook in 2014, they found that their predictions
got much better once they had some data on the initial cascade
dynamics. Large cascades tended to show broadcast-like
spread early on, picking up lots of attention quickly. Yet the
team found that some features were more elusive, even with a
peeking method. ‘Predicting cascade size is still much easier
than predicting cascade shape,’ they noted.[57]

It’s not just social media content that is easier to predict
after some time has passed. In 2018, Burcu Yucesoy and her
colleagues at Northeastern University analysed the popularity
of books on the New York Times bestseller list. Although it’s
very hard to predict whether a given book will take off in the
first place, books that do become popular tend to follow a
consistent pattern afterwards. The team found that most books



on the bestseller list saw rapid initial growth in sales, peaking
within about ten weeks of publication, which then declined to
a very low level. On average, only 5 per cent of sales occurred
after the first year.[58]

Despite progress in understanding online outbreaks, most
analysis still relies on having good historical data. In general,
it’s difficult to predict the duration of a new trend ahead of
time, because we don’t know the underlying rules that govern
transmission. However, occasionally an online cascade does
follow known rules. And it was one such cascade that first
sparked my interest in contagion on social media.

DRESSED IN AN ’I LOVE HATERS’ baseball cap, the woman plucked
the goldfish out of its bag and dropped it into a cup full of
alcohol. Then she downed the drink, fish and all. A trainee
lawyer, she was travelling around Australia and had performed
the stunt after being nominated by a friend. The whole thing
had been filmed. Before long, the video was posted on her
Facebook page, along with an accompanying nomination for
someone else.[59]

It was early 2014, and the woman was the latest participant
in the online game of ‘neknomination’. The rules were simple:
players filmed themselves downing a drink, posted it on social
media, then nominated others to do the same within 24 hours.
The game had swept through Australia, with drinks becoming
more ambitious – and alcoholic – as the nominations spread.
People downed booze while skateboarding, quad biking and
skydiving. Drinks varied from neat spirits to cocktails that
included blended insects and even battery acid.[60]

Coverage of neknomination spread alongside the game
itself. The goldfish video was widely shared, with newspapers
picking up ever-more-extreme stories. When the game reached
the UK, it triggered a media panic. Why was everyone doing
this? How bad would it get? Should the game be banned?[61]

When neknomination hit the UK, I agreed to examine the
game for a BBC radio feature.[62] I’d noticed that during
games like neknomination, participants transmitted the idea to
a handful of specific people, who then passed it along to



others. This created a clear chain of propagated transmission,
much like a disease outbreak.

If we want to predict the shape of an outbreak, there are
two things we really need to know: how many additional
infections each case generates on average (i.e. the
reproduction number), and the lag between one round of
infection and the next (i.e. the generation time). During new
disease outbreaks, we rarely know these values, so we have to
try and estimate them. For neknomination, though, the
information was laid out as part of the game. Each person
nominated 2–3 others, and these people had to do the
challenge – and make their nominations – within 24 hours.
When I forecast the neknomination game in 2014, I didn’t
have to estimate anything; I could plug the numbers straight
into a simple disease model.[63]

My outbreak simulations suggested that the neknomination
trend wouldn’t last long. After a week or two, herd immunity
would kick in, causing the outbreak to peak and begin to
decline. If anything, these simple forecasts were likely to
overestimate transmission. Friends tend to cluster together in
real life; if multiple people nominate the same person during
the game, it will reduce the reproduction number and lead to a
smaller outbreak. Interest in neknomination indeed faded
quickly. Despite the UK media frenzy in early February 2014,
it was all but gone by the end of the month. Subsequent social
media games followed a similar structure, from ‘no makeup
selfie’ photos to the widely publicised ‘ice bucket challenge’.
Based on the rules of the games, my model predicted all of
them would peak within a few weeks, just as they did in
reality.[64]

Although nominated-based games have tended to fade
away after a few weeks, social media outbreaks don’t always
disappear after their initial peak in popularity. Looking at
popular image-based memes on Facebook, Justin Cheng and
his collaborators have found that almost 60 per cent recurred
at some point. On average, there was just over a month
between the first and second peaks in popularity. If there were
only two peaks, the second cascade of sharing was generally



briefer and smaller; if there were multiple peaks, they were
often a similar size.[65]

What makes a meme become popular again? The team
found that a big initial peak in interest made it less likely that
the meme will appear again. ‘It is not the most popular
cascades that recur the most,’ they noted, ‘but those that are
only moderately popular’. This is because a small first cascade
leaves more people who haven’t seen the meme yet. With a
large initial outbreak, there aren’t enough susceptible people
left to sustain transmission. For a cascade to recur, it also helps
if there are several copies of the meme circulating. This is
consistent with what we’ve already seen for stuttering
outbreaks: having multiple sparks can make infections spread
further.

Cheng looked at popular images, but what about other types
of content? Back in 2016, I gave a public talk at London’s
Royal Institution. Over the next couple of years, a video of the
talk somehow racked up over a million views on YouTube.
Around the same time in 2016, I’d given a talk on a similar
topic at Google, which had also been posted on YouTube, on a
channel with a similar number of subscribers. During the same
period, this one was viewed around 10,000 times. (Ideally, this
popularity would have been the other way round: it turns out
that if you give two related talks, but screw up a live
demonstration in one of them, that’s the talk that will become
popular online.)

I hadn’t expected the Royal Institution talk to get so much
attention, but what really came as a surprise was how the
views had accumulated. For its first year online, the video had
gained relatively little interest, getting a hundred or so views
per day. Then suddenly, in the space of a few days, it picked
up more attention than it had in an entire year.



Number of YouTube views per day for my 2016 Royal
Institution talk

Data: Royal Institution

Perhaps people had started sharing it online, making it go
viral? Looking at the data, the real explanation was much
simpler: the video had been featured on the YouTube
homepage. As the views spiked, the YouTube algorithm added
it to the ‘suggested video’ lists that appear alongside popular
videos. Almost 90 per cent of people who viewed the talk
found it on the homepage or one of these lists. It was a classic
broadcast event, with one source generating almost all of the
views. And once the video was popular, its popularity created
a feedback effect, attracting even more interest. It shows how
much the video benefitted from online amplification, first by
the Royal Institution to get those initial few thousand views,
then by the YouTube algorithm to deliver a much bigger
audience.

There are three main types of popularity on YouTube. The
first is where videos get a consistent, low-level number of
views. This number randomly fluctuates from day-to-day,
without noticeably increasing or decreasing. Around 90 per
cent of YouTube videos follow this pattern. The second type of
popularity is when a video suddenly gets featured on the
website, perhaps in response to a news event. In this situation,
almost all of the activity comes after the initial peak. The third



type of popularity occurs when a video is being shared
elsewhere online, gradually accumulating views before
peaking and declining again. It’s also possible to observe a
mixture of these shapes; a shared video may get a boost by
being featured then settle back down to a low level, like mine
did.[66]

Video is a particularly persistent form of media, with
interest tending to last much longer than for news articles. A
typical social media news cycle is around two days; in the first
twenty-four hours, most content comes in the form of articles,
with shares and comments following afterwards.[67] However,
not all news is the same. Researchers at MIT have found that
false news tends to spread further and faster than true news.
Maybe this is because high-profile people with lots of
followers are more likely to spread falsehoods? The
researchers actually found the opposite: it was generally
people with fewer followers who spread the false news. If we
think of contagion in terms of the four DOTS, this suggests
false information spreads because the transmission probability
is high, rather than there being more opportunities for spread.
The reason for the high transmission probability? Novelty
might have something to do with it: people like to share
information that’s new, and false news is generally more novel
than true news.[68]

It’s not just about novelty, though. To understand how
things spread online, we also need to think about social
reinforcement. And that means taking another look at the
concept of complex contagion: sometimes we need to be
exposed to an idea multiple times before we adopt it online.
For example, there’s evidence that we’ll share memes online
without much prompting, but won’t share political content
until we see several other people doing so. When Facebook
users changed their profile picture to a ‘=’ symbol in support
of marriage equality in early 2013, on average they only did so
once eight of their friends had. Complex contagion also
influenced the initial adoption of many online platforms,
including Facebook, Twitter and Skype.[69]

A quirk of complex contagion is that it spreads best in
tight-knit communities. If people share lots of friends, it



creates the multiple exposures needed for an idea to catch on.
However, such ideas may then struggle to break out and
spread more widely.[70] According to Damon Centola, the
structure of online networks can therefore act as a barrier to
complex contagion.[71] Many of our contacts online will be
acquaintances rather than part of a closely linked friendship
group. Whereas we might adopt a political stance if lots of our
friends do, we’re less likely to pick it up from a single source.

This means that complex contagion – such as nuanced
political views – can have a major disadvantage on the
internet. Rather than encouraging users to develop
challenging, socially complex ideas, the structure of online
social interactions instead favours simple, easy-to-digest
content. So perhaps it’s not surprising that this is what people
are choosing to produce.

WITH THE RISING AVAILABILITY of data in the early twenty-first
century, some suggested that researchers would no longer need
to pursue explanations for human behaviour. One of them was
Chris Anderson, then Wired editor, who in 2008 famously
penned an article proclaiming the ‘end of theory’. ‘Who
knows why people do what they do?’ he wrote. ‘The point is
they do it, and we can track and measure it with unprecedented
fidelity.’[72]

We now have vast quantities of data on human activity; it’s
been estimated that the amount of digital information in the
world is doubling every couple of years, with much of it
generated online.[73] Even so, there are a lot of things we still
struggle to measure. Take those studies of obesity or smoking
contagion, which show just how difficult it can be to pick
apart transmission processes. Our inability to measure
behaviour isn’t the only problem. In a world of clicks and
shares, it turns out we’re not always measuring what we think
we’re measuring.

At first glance, clicks seem like a reasonable way to
quantify interest in a story. More clicks mean more people are
opening the article and potentially reading it. Surely writers
who get more clicks should therefore be rewarded
accordingly? Not necessarily. ‘When a measure becomes a



target, it ceases to be a good measure’ as economist Charles
Goodhart reportedly once said.[74] Rewarding success based
on a simple performance metric creates a feedback loop:
people start chasing the metric rather than the underlying
quality it is trying to assess.

It’s a problem that can occur in any field. In the run up to
the 2008 financial crisis, banks paid bonuses to traders and
salesmen based on their recent profits. This encouraged
trading strategies that would reap benefits in the short-term,
with little regard for the future. Metrics have even shaped
literature. When Alexandre Dumas first wrote The Three
Musketeers in serialised form, his publisher paid him by the
line. Dumas therefore added the servant character Grimaud,
who spoke in short sentences, to stretch out the text (then
killed him off when the publisher said that short lines didn’t
count).[75]

Relying on measurements like clicks or likes can give a
misleading impression of how people are truly behaving.
During 2007–8, over 1.1 million people joined the ‘Save
Darfur’ cause on Facebook, which aimed to raise money and
attention in response to the conflict in Sudan. A few of the
new members donated and recruited others, but most did
nothing. Of the people who joined, only 28 per cent recruited
someone else, and a mere 0.2 per cent donated.[76]

Despite these measurement issues, there has been a
growing focus on making stories clickable and shareable. Such
packaging can be highly effective. When researchers at
Columbia University and the French National Institute looked
at mainstream news articles mentioned by Twitter users, they
found that almost 60 per cent of the links were never clicked
on.[77] But this didn’t stop some of the stories spreading:
users shared thousands of posts featuring one of these never-
clicked-on links. Evidently, many of us are happier to share
something than to read it.

Perhaps it’s not that surprising, given that certain types of
behaviour require more effort than others. Dean Eckles, a
former data scientist at Facebook, points out that it doesn’t
take much to get people to interact with social media in simple



ways. ‘That’s a behaviour that’s relatively easy to produce,’ he
said.[78] ‘The behaviour we’re talking about is whether your
friends like or comment on the post.’ Because people don’t
have to put much effort into performing such actions, it’s
much easier to get them to act. ‘It’s a light touch nudge for an
easy to accomplish, low-cost behaviour.’

This creates a challenge for marketers. An advertising
campaign might generate a lot of likes and clicks, but this isn’t
quite the behaviour they’re interested in. They don’t just want
people to interact with their content; they eventually want
people to buy their product or believe in their message. Just as
people with more followers won’t necessarily generate larger
cascades, content that’s more clickable or shareable won’t
automatically generate more revenue or advocacy.

When we’re faced with a new disease outbreak, there are
generally two things we want to know. What are the main
routes of transmission? And which of these routes should we
target to control the infection? Marketers face a similar task
when designing a campaign. First, they need to know the ways
someone can be exposed to a message; then they need to
decide which of these routes to target. The difference, of
course, is that whereas health agencies spend money to block
the crucial paths of transmission, advertising agencies put
money into expanding them.

Ultimately, it’s a question of cost-effectiveness. Whether
we’re dealing with a disease outbreak or marketing campaign,
we want to find the best way to allocate a limited budget. The
problem is that historically it’s not always been clear which
path leads to which outcome. ‘Half the money I spend on
advertising is wasted; the trouble is I don’t know which half,’
as marketing pioneer John Wanamaker supposedly once said.
[79]

Modern marketing has tried to tackle this problem by
linking the ads people see to the actions they take afterwards.
In recent years, most major websites have employed ad
tracking; if companies advertise on them, they know if we saw
the ads as well as whether we browsed or bought anything
afterwards. Likewise, if we take an interest in their product, a



company can follow us around the internet, showing us more
ads.[80]

When we click on a website link, we often become the
subject of a high-speed bidding war. Within about 0.03
seconds, the website server will gather all the information they
have about us and send it to its ad provider. The provider then
shows this information to a group of automated traders acting
on behalf of advertisers. After another 0.07 seconds, the
traders will have bid for the right to show us an advert. The ad
provider selects the winning bid and sends the advert to our
browser, which slots the advert into the webpage as it loads on
the screen.[81]

People don’t always realise that websites work in this way.
In March 2013, the UK Labour party tweeted a link to a new
press release criticising then Education Secretary Michael
Gove. One Conservative MP responded by tweeting about the
choice of advert on Labour’s website. ‘I know Labour are
short of cash but having an invitation to “Date Arab girls” at
top of your press release?’ he wrote. Unfortunately for the MP,
other users pointed out that the Labour page featured targeted
advertising: the offer on display was likely to depend on a
user’s specific online activity.[82]

Some of the most advanced tracking has cropped up in
places we might least expect it. To investigate the extent of
online targeting, journalism researcher Jonathan Albright spent
early 2017 visiting over a hundred extreme propaganda
websites, the sort of places that are full of conspiracy theories,
pseudoscience, and far-right political views. Most of the
websites looked incredibly amateurish, the sort of thing a
beginner would put together. But digging behind the scenes,
Albright found that they concealed extremely sophisticated
tracking tools. The websites were collecting detailed data on
personal identity, browsing behaviour, even mouse
movements. That allowed them to follow susceptible users,
feeding them even more extreme content. It wasn’t what users
could see that made these websites so influential; it was the
data harvesting that they couldn’t.[83]



How much is our online data actually worth? Researchers
have estimated that users who opt-out of sharing their
browsing data are worth about 60 per cent less to advertisers
on Facebook. Based on Facebook’s revenue in 2019, this
implies that data on the behaviour of the average American
user is worth at least $48 per year. Meanwhile, Google
reportedly paid Apple $12bn to be the default iPhone search
engine for 2019. With an estimated one billion iPhones in use,
this would suggest Google value our search activity at about
$12 per device.[84]

Given that our attention is so valuable, tech companies have
a big incentive to keep us online. The more time we spend
using their products, the more information they can collect,
and the better they can tailor their content and adverts. Sean
Parker, the founding president of Facebook, has previously
spoken about the mindset of those who’d built early social
media applications. ‘That thought process was all about: “How
do we consume as much of your time and conscious attention
as possible?”’ he said in 2016.[85] Other companies have
since followed suit. ‘We’re competing with sleep,’ joked
Netflix CEO Reed Hastings in 2017.[86]

One way to keep us hooked on an app is through design.
Tristan Harris, who specialises in the ethics of design, has
compared the process to a magic trick. He notes that
businesses will often try and guide our choices towards a
specific outcome. ‘Magicians do the same thing,’ he once
wrote. ‘You make it easier for a spectator to pick the thing you
want them to pick, and harder to pick the thing you don’t.’[87]
Magic tricks work by controlling our perception of the world;
user interfaces can do the same.

Notifications are a particularly powerful way of keeping us
engaged. The average iPhone user unlocks their phone over
eighty times a day.[88] According to Harris, this behaviour is
similar to the psychological effects of gambling addiction:
‘When we pull our phone out of our pocket, we’re playing a
slot machine to see what notifications we got,’ he suggested.
Casinos capture players’ attention by including payoffs that
are infrequent and highly variable. Sometimes people get a
reward; sometimes they get nothing. In many apps, the sender



can also see if we’ve read their message, which encourages us
to respond quicker. The more we interact with the app, the
more we need to keep interacting. ‘It’s a social-validation
feedback loop,’ as Sean Parker put it. ‘It’s exactly the kind of
thing that a hacker like myself would come up with, because
you’re exploiting a vulnerability in human psychology.’[89]

There are several other design features that keep us viewing
and sharing content. In 2010, Facebook introduced ‘infinite
scrolling’, removing the distraction of having to change page.
Unlimited content is now common on most social media feeds;
since 2015, YouTube has automatically played another video
after the current one ends. Social media design is also centred
on sharing; it’s difficult for us to post content without seeing
what others are up to.

Although not all features were originally intended to be so
addictive, people are increasingly aware of how apps can
influence their behaviour.[90] Even developers have become
cautious of their own inventions. Justin Rosenstein and Leah
Pearlman were part of the team that introduced Facebook’s
‘like’ button. In recent years, both have reportedly tried to
escape the allure of notifications. Rosenstein had his assistant
put parental controls on his phone; Pearlman, who later
became an illustrator, hired a social media manager to look
after her Facebook page.[91]

As well as encouraging interactions, design can also hinder
them. WeChat, China’s vastly popular social media app, had
over a billion active users in 2019. The app brings together a
wide range of services: users can shop, pay bills and book
travel, as well as sending messages to each other. People can
also share ‘Moments’ (i.e. images or media) with their friends,
much like the Facebook News Feed. Unlike Facebook,
however, WeChat users can only ever see their friends’
comments on posts.[92] This means that if you have two
friends who aren’t friends with each other, they can’t see
everything that’s been said. This changes the nature of
interactions. ‘It prevents what I would describe as
conversation from emerging,’ Dean Eckles said. ‘Anybody
who posts anything as a comment knows that it’s possible that
it will be taken totally out of context, because others may see



only their comment and not what happened previously in that
thread.’ Facebook and Twitter have widely shared posts with
thousands of public comments below. In contrast, attempts at
WeChat discussions inevitably look fragmented or confused,
which deters users from trying.

Chinese social media discourages collective action in
several ways, including deliberate barriers created by
government censorship. A few years ago, political scientist
Margaret Roberts and her colleagues tried to reconstruct the
process of Chinese censorship. They created new accounts,
posted different types of content and tracked what got
removed. As they pieced together the censorship mechanisms,
they discovered that criticism of leaders or policies wasn’t
blocked, but discussions of protests or rallies were. Roberts
would later divide online censorship strat egies into what she
calls the ‘three Fs’: flooding, fear, and friction. By flooding
online platforms with the opposing views, censors can drown
out other messages. The threat of repercussions for rule
breaking leads to fear. And removing or blocking content
creates friction by slowing down access to information.[93]

On my first trip to mainland China, I remember trying to
connect to WiFi when I arrived at my hotel. It took me a while
to work out whether I was actually online. All the apps I
usually might load to check my connection – Google,
WhatsApp, Instagram, Twitter, Facebook, Gmail – were
blocked. As well as demonstrating the power of the Chinese
firewall, it made me realise how much influence US
technology firms have. The bulk of my online activity is in the
hands of just three companies.

We share a huge amount of information with such
platforms. Perhaps the best illustration of just how much data
tech companies can collect comes from a 2013 Facebook
study.[94] They looked at who had typed comments on the
platform but never posted them. The research team noted that
the contents of the posts weren’t sent back to Facebook’s
servers, just a record of whether someone had started typing.
Maybe that was the case for this study. But regardless, it
shows the level of detail with which companies can track our



online behaviour and interactions. Or even, in this case, a lack
of interactions.

Given the power of our social media data, organisations can
have a lot to gain by accessing it. According to Carol
Davidsen, who worked on the Obama campaign in the 2012
US presidential election, Facebook’s privacy settings at the
time made it possible to download the friendship network of
everyone who’d agreed to support the campaign on the
platform. These friendship connections gave the campaign a
huge amount of information. ‘We were actually able to ingest
the entire social network of the US that’s on Facebook,’ she
later said.[95] Facebook eventually removed this ability to
gather friendship data. Davidsen claimed that, because the
Republicans had been slow off the mark, the Democrats had
information that their opponents didn’t have. Such data
analysis didn’t break any rules, but the experience raised
questions about how information is collected and who has
control of it. ‘Who owns the fact that you and I are friends?’ as
Davidsen put it.

At the time, many hailed the Obama campaign’s use of data
as innovative.[96] It was a modern method for a new political
era. Just as the finance industry had got excited about new
mortgage products in the 1990s, social media was seen as
something that would change politics for the better. But much
like those financial products, it wasn’t an attitude that would
last.

‘HEY LOVELY YOU GONNA VOTE in the election? & for who?’ In
the run up to the 2017 UK general election, thousands of
people looking for a date on the Tinder app got a political
chat-up line instead. Londoners Charlotte Goodman and Yara
Rodrigues Fowler had wanted to encourage their fellow
twenty-somethings to vote for Labour, so designed a chatbot to
reach a wide audience.

Once a volunteer installed the bot, it automatically set their
Tinder location to somewhere in a marginal constituency,
swiped ‘yes’ to every person, and started chatting to any
matches. If the initial message was well received, volunteers
could take over and start talking for real. The bot sent over



30,000 messages in total, reaching people who canvassers
might not usually talk to. ‘The occasional match was
disappointed to be talking to a bot instead of a human, but
there was very little negative feedback,’ Goodman and
Rodrigues Fowler later wrote. ‘Tinder is too casual a platform
for users to feel hoodwinked by some political
conversation.’[97]

Bots make it possible to have a vast number of interactions
at the same time. With a linked network of bots, people can
perform actions at a scale that simply wouldn’t be feasible if a
human had to do it all manually. These botnets can consist of
thousands, if not millions of accounts. Like human users, these
bots can post content, start conversations, and promote ideas.
However, the role of such accounts has come under scrutiny in
recent years. In 2016, two votes shook the Western world: in
June, Britain voted to leave the EU; in November, Donald
Trump won the US presidency. What had caused these events?
In the aftermath, speculation grew that false information –
much of it created by Russia and far-right groups – had been
spread widely during these elections. Vast numbers of people
in the UK, and then vast numbers in the US, had been duped
by fake stories posted by bots and other questionable accounts.

At first glance, the data seem to support this story. There’s
evidence that over 100 million Americans may have seen
Facebook posts backed by Russia during the 2016 election.
And on Twitter, almost 700,000 people in the US were
exposed to Russian-linked propaganda, spread by 50,000 bot
accounts.[98] The idea that many voters fell for propaganda
posted by fake websites and foreign spies is an appealing
narrative, especially for those of us who were politically
opposed to Brexit and Trump. But if we look more closely at
the evidence, this simple story starts to fall apart.

Despite Russia-linked propaganda circulating during the
2016 US election, Duncan Watts and David Rothschild have
pointed out that a lot of other content was as well. Facebook
users may have been exposed to Russian content, but during
that period American users saw over 11 trillion posts on the
platform. For every Russian post people were exposed to, on
average there were almost 90,000 other pieces of content.



Meanwhile on Twitter, less than 0.75 per cent of election-
related tweets came from accounts linked with Russia. ‘In
sheer numerical terms, the information to which voters were
exposed during the election campaign was overwhelmingly
produced not by fake news sites or even by alt-right media
sources, but by household names,’ noted Watts and
Rothschild.[99] Indeed, it’s been estimated that in the first year
of his campaign, Trump gained almost $2bn worth of free
mainstream media coverage.[100] The pair highlighted the
media focus on the Hillary Clinton email controversy as one
example of what outlets chose to inform their readers about.
‘In just six days, the New York Times ran as many cover stories
about Hillary Clinton’s emails as they did about all policy
issues combined in the 69 days leading up to the election.’

Other researchers have reached a similar conclusion about
the scale of false news sources in 2016. Brendan Nyhan and
his colleagues found that although some US voters consumed
a lot of news from dubious websites, these people were in the
minority. On average, only 3 per cent of the articles that
people viewed were published by websites peddling false
stories. They later published a follow-up analysis of the 2018
midterms; the results suggested that dodgy news had an even
smaller reach during this election. In the UK, there was also
little evidence of Russian content dominating conversations on
Twitter or YouTube in the run up to the EU referendum.[101]

This might seem to suggest that we shouldn’t be concerned
about bots and questionable websites, but again it’s not quite
that simple. When it comes to online manipulation, it turns out
that something much subtler – and far more troubling – has
been happening.

BENITO MUSSOLINI ONCE SAID ‘it is better to live one day as a lion
than 100 years as a sheep’. According to the Twitter user
@ilduce2016, though, the quote actually comes from Donald
Trump. Originally created by a pair of journalists at Gawker,
this Twitter bot has sent thousands of tweets misattributing
Mussolini lines to Trump. Eventually one of the posts caught
Trump’s attention: on 28 February 2016, just after the fourth
Republican primary, he retweeted the lion quote.[102]



Whereas some social media bots target a mass audience,
others have a much narrower range. Known as ‘honey pot
bots’, they aim to attract the attention of specific users and lure
them into responding.[103] Remember how Twitter cascades
often rely on a single ‘broadcast’ event? If you want to get a
message to spread, it helps if someone high profile can
amplify it for you. Because many outbreaks won’t spark, it
also helps to have a bot that can repeatedly try: @ilduce2016
posted over two thousand times before Trump finally
retweeted a quote. Bot creators seem to be aware of how
powerful this approach can be. When Twitter bots posted
dubious content during 2016–17, they disproportionately
targeted popular users.[104]

It’s not just bots that use this targeting strategy. Following
the 2018 shooting at Marjory Stoneman Douglas High School
in Parkland, Florida, there were reports that the shooter had
been a member of a small white supremacist group based in
the state capital Tallahassee. However, the story was a hoax. It
had started with trolls on online forums, who’d managed to
persuade curious reporters that it was a genuine claim. ‘All it
takes is a single article,’ noted one user. ‘And everyone else
picks up the story.’[105]

Although researchers like Watts and Nyhan have suggested
that people didn’t get much of their information from dubious
online sources in 2016, it doesn’t mean it’s not a problem. ‘I
think it really matters, but it doesn’t quite matter in the way
that people think it does,’ said Watts. When fringe groups post
false ideas or stories on Twitter, they aren’t necessarily trying
to reach mass audiences. Not initially, at least. Instead, they
are often targeting those journalists or politicians who spend a
lot of time on social media. The hope is that these people will
pick up on the idea and spread it to a wider audience. During
2017, for instance, journalists regularly quoted messages from
a Twitter user named @wokeluisa, who appeared to be a
young political science graduate from New York. In reality,
though, the account was run by a Russian troll group, who
were apparently targeting media outlets to build credibility and
get messages amplified.[106] This is a common tactic among
groups who want ideas to spread. ‘Journalists aren’t just part



of the game of media manipulation,’ suggested Whitney
Phillips, who researches online media at Syracuse University.
‘They’re the trophy.’[107]

Once a media outlet picks up on a story, it can trigger a
feedback effect, with others covering it too. A few years ago, I
inadvertently experienced this media feedback first hand. It
started when I tipped off a journalist at The Times about a
mathematical quirk in the new National Lottery (at the time,
I’d just written a book about the science of betting). Two days
later the story appeared in print. The morning it was published,
I got an 8.30am message from a producer at ITV’s This
Morning, who’d seen the story. By 10.30am, I was live on
national television. Soon after, I received a message from BBC
Radio 4; they’d also read the article, and wanted to get me on
their flagship lunchtime show. More coverage would follow.
I’d end up reaching an audience of millions, all from that one
initial story.

My experience was a harmless, if surreal, accident. But
others have made a strategic effort to exploit media feedback
effects. This is how false information can spread widely,
despite the fact that most of the public avoid fringe websites.
In essence, it’s a form of information laundering. Just as drug
cartels might funnel their money through legitimate businesses
to hide its origins, online manipulators will get credible
sources to amplify and spread their message, so the wider
population will hear the idea from a familiar personality or
outlet rather than an anonymous account.

Such laundering makes it possible to influence debate and
coverage surrounding an issue. With careful targeting and
amplification, manipulators can create the illusion of
widespread popularity for specific policies or political
candidates. In marketing, this strategy is known as
‘astroturfing’, because it artificially mimics grassroots support.
This makes it harder for journalists and politicians to ignore
the story, so eventually it becomes real news.

Of course, media influence isn’t a recent development; it’s
long been known that journalists can shape the news cycle.
When Evelyn Waugh wrote his 1938 satirical novel Scoop, he



included a tale about a star reporter named Wenlock Jakes,
who is sent to cover a revolution. Unfortunately, Jakes
oversleeps on his train and wakes up in the wrong country. Not
realising his mistake, he makes up a story about ‘barricades in
the streets, flaming churches, machine guns answering the
rattle of his typewriter’. Other journalists, not wanting to be
left out, arrive and concoct similar stories. Before long, stocks
plummet and the country suffers an economic crash, leading to
a state of emergency and finally a revolution.

Waugh’s tale was fictional, but the underlying news
feedback he describes still occurs. However, there are some
major differences with modern information. One is the speed
with which it can spread. Within hours, something can grow
from a fringe meme into a mainstream talking point.[108]
Another difference is the cost of producing contagion. Bots
and fake accounts are fairly cheap to create, and mass
amplification by politicians or news sources is essentially free.
In some cases, popular false articles can even make money by
bringing in advertising revenue. Then there’s the potential for
‘algorithmic manipulation’: if a group can use fake accounts to
manufacture the sort of reactions that are valued by social
media algorithms – such as comments and likes – they may be
able to get a topic trending even if few people are actually
talking about it.

Given these new tools, what sort of things have people tried
to make popular? Since 2016, ‘fake news’ has become a
common term to describe manipulative online information.
However, it’s not a particularly helpful phrase. Technology
researcher Renée DiResta has pointed out that ‘fake news’ can
actually refer to several different types of content, including
clickbait, conspiracy theories, misinformation, and
disinformation. As we’ve seen, clickbait simply tries to entice
people to visit a page; the links will often lead to real news
articles. In contrast, conspiracy theories tweak real-life stories
to include a ‘secret truth’, which may become more
exaggerated or elaborate as the theory grows. Then we have
misinformation, which DiResta defines as false content that is
generally shared by accident. This can include hoaxes and
practical jokes, which are created to be deliberately false but



are then inadvertently spread by people who believe them to
be true.

Finally, we have the most dangerous form of fake news:
disinformation. A common view of disinformation is that it’s
there to make you believe something false. However, the
reality is subtler than this. When the KGB trained their foreign
agents during the Cold War, they taught them how to create
contradictions in public opinion and undermine confidence in
accurate news.[109] This is what disinformation means. It’s
not there to persuade you that false stories are true, but to
make you doubt the very notion of truth. The aim is to shift
facts around, making the reality difficult to pin down. And the
KGB wasn’t just good at seeding disinformation; they knew
how to get it amplified. ‘In the quaint old days when KGB
spies deployed the tactic, the goal was pickup by a major
media property,’ as DiResta put it, ‘because that provided
legitimization and took care of distribution.’[110]

In the past decade or so, a handful of online communities
have been particularly successful at getting their messages
picked up. One early example emerged in September 2008,
when a user posted on the Oprah Winfrey Show’s online
message board. The user claimed to represent a massive
paedophile network, with over 9,000 members. But the post
wasn’t quite what it seemed: the phrase ‘over 9,000’ – a
reference to a fighter shouting about their opponent’s power
level in the cartoon Dragon Ball Z – was actually a meme
from 4chan, an anonymous online message board popular with
trolls. To the delight of 4chan users, Winfrey took the
paedophilia claim seriously and read out the phrase on air.
[111]

Online forums like 4chan – and others such as Reddit and
Gab – in effect act as incubators for contagious memes. When
users post images and slogans, it can spark large numbers of
new variants. These newly mutated memes spread and
compete on the forums, with the most contagious ones
surviving and the weaker ones disappearing. It’s a case of
‘survival of the fittest’, the same sort of process that occurs in
biological evolution.[112] Although it isn’t anything like the
millennia-long timescales that pathogens have had, this crowd-



sourced evolution can still give online content a major
advantage.

One of the most successful evolutionary tricks honed by
trolls has been to make memes absurd or extreme, so it’s
unclear whether they are serious or not. This veneer of irony
can help unpleasant views spread further than they would
otherwise. If users take offence, the creator of the meme can
claim it was a joke; if users assume it was a joke, the meme
goes uncriticised. White supremacist groups have also adopted
this tactic. A leaked style guide for the Daily Stormer website
advised its writers to keep things light to avoid putting off
readers: ‘generally, when using racial slurs, it should come
across as half-joking.’[113]

As memes rise in prominence, they can become an effective
resource for media-savvy politicians. In October 2018, Donald
Trump adopted the slogan ‘Jobs Not Mobs’, claiming that
Republicans favoured the economy over immigration. When
journalists traced the idea to its source, they found that the
meme had probably originated on Twitter. It had then spent
time evolving on Reddit forums, becoming catchier in the
process, before spreading more widely.[114]

It’s not just politicians who can pick up on fringe content.
Online rumours and misinformation have spurred attacks on
minority groups in Sri Lanka and Myanmar, as well as
outbreaks of violence in Mexico and India. At the same time,
disinformation campaigns have worked to stir up both sides of
a dispute. During 2016 and 2017, Russian troll groups
reportedly created multiple Facebook events, with the aim of
getting opposing crowds to organise far-right protests and
counter-protests.[115] Disinformation around specific topics
like vaccination can also feed into wider social unrest; mistrust
of science tends to be associated with mistrust in government
and the justice system.[116]

The spread of harmful information is not a new problem.
Even the term ‘fake news’ has emerged before, briefly
becoming popular in the late 1930s.[117] But the structure of
online networks has made the issue faster, larger and less



intuitive. Like certain infectious diseases, information can also
evolve to spread more efficiently. So what can we do about it?

THE GREAT EAST JAPAN EARTHQUAKE was the largest in the
country’s history. It was powerful enough to shift the Earth on
its axis by several inches, with forty-metre-high tsunami
waves following soon after. Then the rumours started. Three
hours after the earthquake hit on 11 March 2011, a Twitter user
claimed that poisonous rain might fall because a gas tank had
exploded. The explosion had been real, but the dangerous rain
wasn’t. Still, it didn’t stop the rumours. Within a day,
thousands of people had seen and shared the false warning.
[118]

In response to the rumour, the government in the nearby
city of Urayasu tweeted a correction. Despite the false
information having a head start, the correction soon caught up.
By the following evening, more users had retweeted the
correction than the original rumour. According to a group of
Toyko-based researchers, a quicker response could have been
even more successful. Using mathematical models, they
estimated that if the correction had been issued just two hours
earlier, the rumour outbreak would have been 25 per cent
smaller.

Prompt corrections might not stop an outbreak, but they can
slow it down. Researchers at Facebook have found that if users
are quick to point out that their friend has shared a hoax – such
as a get-rich-quick scheme – there’s an up to 20 per cent
chance the friend will delete the post.[119] In some cases,
companies have deliberately slowed down transmission by
altering the structure of their app. After a series of attacks in
India linked to false rumours, WhatsApp made it harder for
users to forward content. Rather than being able to share
messages with over a hundred people, users in India would be
limited to just five.[120]

Notice how these counter-measures work by targeting
different aspects of the reproduction number. WhatsApp
reduced the opportunities for transmission. Facebook users
persuaded their friends to remove a post, which reduced the
duration of infectiousness. Urayasu City Hall reduced



susceptibility, by exposing thousands of people to the correct
information before they saw the rumour. As with diseases,
some parts of the reproduction number may be easier to target
than others. In 2019, Pinterest announced they’d blocked anti-
vaccination content from appearing in searches (i.e. removing
opportunities for transmission), having struggled to remove it
completely, which would have curbed the duration of
infectiousness. [121]

Then there’s the final aspect of the reproduction number:
the inherent transmissibility of an idea. Recall how there are
media guidelines for reporting events like suicides, to limit the
potential for contagion effects. Researchers like Whitney
Phillips have suggested we treat manipulative information in
the same way, avoiding coverage that spreads the problem
further. ‘As soon as you’re reporting on a particular hoax or
some other media manipulation effort, you’re legitimising it,’
she said, ‘and you’re essentially providing a blueprint for what
somebody down the road knows is going to work.’[122]

Recent events have shown that some media outlets still
have a long way to go. In the aftermath of the 2019 mosque
shootings in Christchurch, New Zealand, several outlets
ignored well-established guidelines for reporting on terrorist
attacks. Many published the shooter’s name, detailed his
ideology, or even displayed his video and linked to his
manifesto. Worryingly, this information caught on: the stories
that were widely shared on Facebook were far more likely to
have broken reporting guidelines.[123]

This shows we need to rethink about how we interact with
malicious ideas, and who is really benefitting when we give
them our attention. A common argument for featuring extreme
views is that they would spread anyway, even without media
amplification. But studies of online contagion have found the
opposite: content rarely goes far without broadcast events to
amplify it. If an idea becomes popular, it’s generally because
well-known personalities and media outlets have helped it
spread, whether deliberately or inadvertently.

Unfortunately, the changing nature of journalism has made
it harder to resist media manipulators. An increasing desire for



online shares and clicks has left many outlets open to
exploitation by people who can deliver contagious ideas, and
the attention that comes with them. That attracts trolls and
manipulators, who have a much better understanding of online
contagion than most. From a technological point of view, most
manipulators aren’t abusing the system. They’re following its
incentives. ‘What’s insidious about it is that they use social
media in precisely the ways it was designed to be used,’
Phillips said. In her research, she has interviewed dozens of
journalists, many of whom felt uneasy knowing they are
profiting from stories about extreme views. ‘It’s really good
for me, but really bad for the country,’ one reporter told her.
To reduce the potential for contagion, Phillips argues that the
manipulation process needs to be discussed alongside the
story. ‘Making clear in the reporting that the story itself is part
of an amplification chain, that the journalist is part of an
amplification chain, that the reader is part of an amplification
chain – these things need to be really foregrounded in
coverage.’

Although journalists can play a large role in outbreaks of
information, there are other links in the transmission chain too,
most notably social media platforms. But studying contagion
on these platforms is not as straightforward as reconstructing a
sequence of disease cases or gun incidents. The online
ecosystem has a massive number of dimensions, with trillions
of social interactions and a huge array of potential
transmission routes. Despite this complexity, though, proposed
solutions to harmful information are often one-dimensional,
with suggestions that we need to do more of something or less
of something.

As with any complex social question, there’s unlikely to be
a simple, definitive answer. ‘I think the shift we’re going
through is akin to what happened in the United States on the
war on drugs,’ said Brendan Nyhan.[124] ‘We’re moving from
“this is a problem that we have to solve” to “this is a chronic
condition we have to manage”. The psychological
vulnerabilities that make humans prone to misperceptions
aren’t going to go away. The online tools that help it circulate
aren’t going to go away.’



What we can do, though, is try and make media outlets,
political organisations, and social media platforms – not to
mention ourselves – more resistant to manipulation. To start
with, that means having a much better understanding of the
transmission process. It’s not enough to concentrate on a few
groups, or countries, or platforms. Like disease outbreaks,
information rarely respects boundaries. Just as the 1918
‘Spanish flu’ was blamed on Spain because it was the only
country reporting cases, our picture of online contagion can be
skewed by where we see outbreaks. In recent years,
researchers have published almost five times more studies
looking at contagion on Twitter than on Facebook, despite the
latter having seven times more users.[125] This is because,
historically, it’s been much easier for researchers to access
public Twitter data than to see what’s spreading on closed apps
like Facebook or WhatsApp.

There’s hope the situation could change – in 2019,
Facebook announced it was partnering with twelve teams of
academics to study the platform’s effect on democracy – but
we still have a long way to go to understand the wider
information ecosystem.[126] One of the reasons online
contagion is so hard to investigate is that it’s been difficult for
most of us to see what other people are actually exposed to. A
couple of decades ago, if we wanted to see what campaigns
were out there, we could pick up a newspaper or turn on our
televisions. The messages themselves were visible, even if
their impact was unclear. In outbreak terms, everyone could
see the sources of infection, but nobody really understood how
much transmission was happening, or which infection came
from which source. Contrast this with the rise of social media,
and manipulation campaigns that follow specific users around
the internet. When it comes to spreading ideas, groups seeding
information in recent years have had a much better idea about
the paths of transmission, but the sources of infection have
been invisible to everyone else.[127]

Uncovering and measuring the spread of misinformation
and disinformation will be crucial if we want to design
effective counter-measures. Without a good understanding of
contagion, there’s a risk of either blaming the wrong source,



‘bad air’-style, or proposing simplistic strategies like
abstinence, which – as with STI prevention – might work in
theory but not in practice. By accounting for the transmission
process, we’ll have a better chance of avoiding
epidemiological errors like these.

We’ll also be able to take advantage of knock-on benefits.
When something is contagious, a control measure will have
both a direct and indirect effect. Think about vaccination.
Vaccinating someone has a direct effect because they now
won’t get infected; it also has an indirect effect because they
won’t pass an infection on to others. When we vaccinate a
population, we therefore benefit from both the direct and
indirect effects.

The same is true of online contagion. Tackling harmful
content will have a direct effect – preventing a person from
seeing it – as well as an indirect effect, preventing them
spreading it to others. This means well-designed measures
may prove disproportionately effective. A small drop in the
reproduction number can lead to a big reduction in the size of
an outbreak.

‘IS SPENDING TIME ON SOCIAL MEDIA bad for us?’ asked two
Facebook researchers in late 2017. David Ginsburg and Moira
Burke had weighed up the evidence about how social media
use affects wellbeing. The results, published by Facebook,
suggested that not all interactions were beneficial. For
example, Burke’s research had previously found that receiving
genuine messages from close friends seemed to improve users’
wellbeing, but receiving casual feedback – such as likes – did
not. ‘Just like in person, interacting with people you care about
can be beneficial,’ Ginsburg and Burke suggested, ‘while
simply watching others from the sidelines may make you feel
worse.’[128]

The ability to test common theories about human behaviour
is a big advantage of online studies. In the past decade or so,
researchers have used massive datasets to question long-
standing ideas about the spread of information. This research
has already challenged misconceptions about online influence,
popularity, and success. It’s even overturned the very concept



of something ‘going viral’. Online methods are also finding
their way back into disease analysis; by adapting techniques
used to study online memes, malaria researchers have found
new ways to track the spread of disease in Central America.
[129]

Social media might be the most prominent way our
interactions have changed, but it’s not the only network that’s
been growing in our lives. As we shall see in the next chapter,
technological connections are expanding in other ways, with
new links permeating through our daily routines. Such
technology can be hugely beneficial, but it can also create new
risks. In the world of outbreaks, every new connection is a
potential new route of contagion.



6
How to own the internet

WHEN A MAJOR CYBER-ATTACK took down websites including
Netflix, Amazon, and Twitter, the attackers included kettles,
fridges, and toasters. During 2016, a piece of software called
‘Mirai’ had infected thousands of smart household devices
worldwide. These items increasingly allow users to control
things like temperature via online apps, creating connections
that are vulnerable to infection. Once infected with Mirai, the
devices had formed a vast network of bots, creating a powerful
online weapon.[1]

On 21 October that year, the world discovered that the
weapon had been fired. The hackers behind the botnet had
chosen to target Dyn, a popular domain name system. These
systems are crucial for navigating the web. They convert
familiar web addresses – like Amazon.com – into a numeric IP
address that tells your computer where to find the site on the
web. Think of it like a phonebook for websites. The Mirai bots
attacked Dyn by flooding it with unnecessary requests,
bringing the system to a halt. Because Dyn provides details for
several high profile websites, it meant people’s computers no
longer knew how to access them.

Systems like Dyn handle a lot of requests every day without
problems, so it takes a massive effort to overwhelm them. That
effort came from the sheer scale of the Mirai network. Mirai
was able to pull off its attack – one of the largest in history –
because the software wasn’t infecting the usual culprits. Trad- 
itionally, botnets have consisted of computers or internet
routers, but Mirai had spread through the ‘internet of things’;
as well as kitchenware, it had infected devices like smart TVs
and baby monitors. These items have a clear advantage when
it comes to organising mass cyber-attacks: people turn off their
computers at night, but often leave other electronics on. ‘Mirai
was an insane amount of firepower,’ one FBI agent later told
Wired magazine.[2]



The scale of the Mirai attack showed just how easily
artificial infections can spread. Another high-profile example
would emerge a few months later, on 12 May 2017, when a
piece of software called ‘WannaCry’ started holding thousands
of computers to ransom. First it locked users out of their files,
then displayed a message telling users they had three days to
transfer $300 worth of Bitcoin to an anonymous account. If
people refused to pay up, their files would be permanently
locked. Wanna Cry would end up causing widespread
disruption. When it hit the computers of the UK National
Health Service, it resulted in the cancellation of 19,000
appointments. In a matter of days, over a hundred countries
would be affected, leading to over $1bn worth of damage.[3]

Unlike outbreaks of social contagion or biological
infections, which may take days or weeks to grow, artificial
infections can operate on much faster timescales. Outbreaks of
malicious software – or ‘malware’ for short – can spread
widely within a matter of hours. In their early stages, the Mirai
and WannaCry outbreaks were both doubling in size every 80
minutes. Other malware can spread even faster, with some
outbreaks doubling in a matter of seconds.[4] However,
computational contagion hasn’t always been so rapid.

THE FIRST EVER COMPUTER VIRUS to spread ‘in the wild’ outside
of a laboratory network started as a practical joke. In February
1982, Rich Skrenta wrote a virus that targeted Apple II home
computers. A fifteen-year-old high school student in
Pennsylvania, Skrenta had designed the virus to be annoying
rather than harmful. Infected machines would occasionally
display a short poem he’d written.[5]

The virus, which he called ‘Elk Cloner’, spread when
people swapped games between computers. According to
network scientist Alessandro Vespignani, most early
computers weren’t networked, so computer viruses were much
like biological infections. ‘They were spreading on floppy
disks. It was a matter of contact patterns and social
networks.’[6] This transmission process meant that Elk Cloner
didn’t get much further than Skrenta’s wider friendship group.
Although it reached his cousins in Baltimore and made its way



onto the computer of a friend in the US Navy, these longer
journeys were rare.

Yet the era of localised, relatively harmless viruses
wouldn’t last long. ‘Computer viruses quickly drifted into a
completely different world,’ said Vespignani. ‘They were
mutating. The transmission routes were different.’ Rather than
relying on human interactions, malware adapted to spread
directly from machine to machine. As malware became more
common, the new threats needed some new terminology. In
1984, computer scientist Fred Cohen came up with the first
definition of a computer virus, describing it as a program that
replicates by infecting other programs, just as a biological
virus needs to infect host cells to reproduce.[7] Continuing the
biological analogy, Cohen contrasted viruses with ‘computer
worms’, which could multiply and spread without latching
onto other programs.

Online worms first came to public attention in 1988 thanks
to the ‘Morris worm’, created by Cornell student Robert
Morris. Released on 2 November, it spread quickly through
ARPANET, an early version of the Internet. Morris claimed
that the worm was meant to transmit silently, in an effort to
estimate the size of the network. But a small tweak in its code
would cause some big problems.

Morris had originally coded the program so that when it
reached a new computer, it would start by checking whether
the machine was already infected, to avoid installing multiple
worms. The problem with this approach is that it made it easy
for users to block the worm; they could in essence ‘vaccinate’
their computer against it by mimicking an infection. To get
around this issue, Morris had the worm sometimes duplicate
itself on a machine that was already infected. But he
underestimated the effect this would have. When it was
released, the worm spread and replicated far too quickly,
causing many machines to crash.[8]

The story goes that the Morris worm eventually infected
6,000 computers, around 10 per cent of the internet at the time.
According to Morris’s contemporary Paul Graham, however,
this was just a guess, which soon spread. ‘People like



numbers,’ he later recalled. ‘And so this one is now replicated
all over the Internet, like a little worm of its own.’[9]

EVEN IF THE MORRIS OUTBREAK NUMBER were true, it would pale
in comparison to modern malware. Within a day of the Mirai
outbreak starting in August 2016, almost 65,000 devices had
been infected. At its peak, the resulting botnet consisted of
over half a million machines, before shrinking in size in early
2017.

Yet Mirai did share a similarity with the Morris worm, in
that its creators hadn’t expected the outbreak to get so out of
hand. Although Mirai would hit headlines when it affected
websites like Amazon and Netflix in October 2016, the botnet
was initially designed for a more niche reason. When the FBI
traced its origins, they discovered it had started with a twenty-
one-year-old college student named Paras Jha, his two friends,
and the computer game Minecraft.

Minecraft has over fifty million active users globally, who
play together in vast online worlds. The game has been hugely
profitable for its creator, who bought a $70m mansion after
selling Minecraft to Microsoft in 2014.[10] It has also been
lucrative for people who run the independent servers that host
Minecraft’s different virtual landscapes. While most online
multiplayer games are controlled by a central organisation,
Minecraft operates as a free market: people can pay to access
whichever server they want. As the game became more
popular, some server owners found themselves making
hundreds of thousands of dollars a year.[11]

Given the increasing amount of money on the line, a few
owners decided to try and take out their rivals. If they could
direct enough fake activity at another server – what’s known
as a ‘distributed denial of service’ (DDoS) attack – it would
slow down the connection for anyone playing. This would
frustrate users into looking for an alternative server, ideally the
one owned by the people who organised the attack. An online
arms market emerged, with mercenaries selling increasingly
sophisticated DDoS attacks, and in many cases also selling
protection against them.



This was where Mirai came in. The botnet was so powerful
it would be able to outcompete any rivals attempting to do the
same thing. But Mirai didn’t remain in the Minecraft world for
long. On 30 September 2016, a few weeks before the Dyn
attack, Jha and his friends published the source code behind
Mirai on an internet forum. This is a common tactic used by
hackers: if code is publicly available, it’s harder for authorities
to pin down its creators. Someone else – it’s not clear who –
then downloaded the trio’s code and used it to target Dyn with
a DDoS attack.

Mirai’s original creators – who were based in New Jersey,
Pittsburgh and New Orleans – were eventually caught after the
FBI seized infected devices and painstakingly followed the
chain of transmission back to its source. In December 2017,
the three pleaded guilty to developing the botnet. As part of
their sentence, they agreed to work with the FBI to prevent
other similar attacks in the future. A New Jersey court also
ordered Jha to pay $8.6 million in restitution.[12]

The Mirai botnet managed to bring the internet to a halt by
targeting the Dyn web address directory, but on other
occasions, web address systems have helped someone stop an
attack. As the WannaCry outbreak was growing in May 2017,
British cybersecurity researcher Marcus Hutchins got hold of
the worm’s underlying code. It contained a lengthy gibberish
web address –
iuqerfsodp9ifjaposdfjhgosurijfaewrwergwea.com – that
WannaCry was apparently trying to access. Hutchins noticed
the domain wasn’t registered, so bought it for $10.69. In doing
so, he inadvertently triggered a ‘kill switch’ that ended the
attack. ‘I will confess that I was unaware registering the
domain would stop the malware until after I registered it, so
initially it was accidental,’ he later tweeted.[13] ‘So I can only
add “accidentally stopped an international cyber attack” to my
résumé.’

One of the reasons Mirai and WannaCry spread so widely is
that the worms were very efficient at finding vulnerable
machines. In outbreak terms, modern malware can create a lot
of opportunities for transmission, far more than their
predecessors were capable of. In 2002, computer scientist



Stuart Staniford and his colleagues wrote a paper titled ‘How
to 0wn the Internet in Your Spare Time’[14] (in hacker culture,
‘0wn’ means ‘control completely’). The team showed that the
‘Code Red’ worm, which had spread through computers the
previous year, had actually been fairly slow. On average, each
infected server had only infected 1.8 other machines per hour.
This was still much faster than measles, one of the most
contagious human infections: in a susceptible population, a
person who has measles will infect 0.1 others per hour on
average.[15] But it was still slow enough to mean that, like a
human outbreak, Code Red took a while to really take off.

Staniford and his co-authors suggested that, with a more
streamlined, efficient worm, it would be possible to get a
much faster outbreak. Borrowing from Andy Warhol’s famous
‘fifteen minutes of fame’ quote, they called this hypothetical
creation a ‘Warhol worm’, because it would be able to reach
most of its targets within this time. However, the idea didn’t
stay hypothetical for long. The following year, the world’s first
Warhol worm surfaced when a piece of malware called
‘Slammer’ infected over 75,000 machines.[16] Whereas the
Code Red outbreak had initially doubled in size every 37
minutes, Slammer doubled every 8.5 seconds.

Slammer had spread quickly at first, but it soon burned
itself out as it became harder to find susceptible machines. The
eventual damage was also limited. Although the sheer volume
of Slammer infections slowed down many servers, the worm
wasn’t designed to harm the machines it infected. It’s another
example of how malware can come with a range of symptoms,
just like real-life infections. Some worms are near invisible or
display poems; others hold machines to ransom or launch
DDoS attacks.

As shown by the Minecraft server attacks, there can be an
active market for the most powerful worms. Such malware is
commonly sold in hidden online marketplaces, like the ‘dark
net’ markets that operate outside the familiar, visible websites
we can access with regular search engines. When security firm
Kaspersky Lab researched options available in these markets,
they found people offering to arrange a five-minute DDoS
attack for as little as $5, with an all-day attack costing around



$400. Kaspersky calculated that organising a botnet of around
1,000 computers would cost about $7 per hour. Sellers charge
an average of $25 for attacks of this length, generating a
healthy profit margin.[17] The year of the WannaCry attack,
the dark net market for ransomware was estimated to be worth
millions of dollars, with some vendors making six-figure
salaries (tax-free, of course).[18]

Despite the popularity of malware with criminal groups, it’s
suspected that some of the most advanced examples originally
evolved from government projects. When WannaCry infected
susceptible computers, it did so by exploiting a so-called
‘zero-day’ loophole, which is when software has a
vulnerability that isn’t publicly known. The loophole behind
WannaCry was allegedly identified by the US National
Security Agency as a way of gathering intelligence, before
somehow finding its way into other hands.[19] Tech
companies can be willing to pay a lot to close these loopholes.
In 2019, Apple offered a bounty of up to $2 million for anyone
who could hack into the new iPhone operating system.[20]

During a malware outbreak, zero-day loopholes can boost
transmission by increasing the susceptibility of target
machines. In 2010, the ‘Stuxnet’ worm was discovered to have
infected Iran’s Natanz nuclear facility. According to later
reports, this meant it would have been able to damage the vital
centrifuges. To successfully spread through the Iranian
systems, the worm had exploited twenty zero-day loopholes,
which was almost unheard of at the time. Given the
sophistication of the attack, many in the media pointed to the
US and Israeli military as potential creators of the worm. Even
so, the initial infection may have been the result of something
far simpler: it’s been suggested that the worm got into the
system via a double agent with an infected USB stick.[21]

Computer networks are only as strong as their weakest
links. A few years before the Stuxnet attack, hackers
successfully accessed a highly fortified US government system
in Afghanistan. According to journalist Fred Kaplan, Russian
intelligence had supplied infected USB sticks to several
shopping kiosks near the NATO headquarters in Kabul.
Eventually an American soldier had bought one and used it



with a secure computer.[22] It’s not only humans who pose a
security risk. In 2017, a US casino was surprised to discover
its data had been flowing to a hacker’s computer in Finland.
But the real shock was the source of the leak. Rather than
targeting the well-protected main server, the attacker had got
in through the casino’s internet-connected fish tank.[23]

HISTORICALLY, HACKERS have been most interested in accessing
or disrupting computer systems. But as technology
increasingly becomes internet-connected, there is growing
interest in using computer systems to control other devices.
This can include highly personal technology. While that casino
fish tank was being targeted in Nevada, Alex Lomas and his
colleagues at British security firm Pen Test Partners were
wondering whether it was possible to hack into Bluetooth-
enabled sex toys. It didn’t take them long to discover that
some of these devices were highly vulnerable to attack. Using
only a few lines of code, they could in theory hack a toy and
set it vibrating at its maximum setting. And because devices
allow only one connection at a time, the owner would have no
way of turning it off.[24]

Of course, Bluetooth devices have a limited range, so could
hackers really do this in reality? According to Lomas, it’s
certainly possible. He once checked for nearby Bluetooth
devices while walking down a street in Berlin. Looking at the
list on his phone, he was surprised to see a familiar ID: it was
one of the sex toys that his team had shown could be hacked.
Someone was presumably carrying it with them, unaware a
hacker could easily switch it on.

It’s not just Bluetooth toys that are susceptible. Lomas’
team found other devices were vulnerable too, including a
brand of sex toy with a WiFi-enabled camera. If people hadn’t
changed the default password, it would be fairly easy to hack
into the toy and access the video stream. Lomas has pointed
out that the team has never tried to connect to a device outside
their lab. Nor did they do the research to shame people who
might use these toys. Quite the opposite: by raising the issue,
they wanted to ensure that people could do what they wanted
without fear of being hacked, and in doing so pressure the
industry to improve standards.



It’s not just sex toys that are at risk. Lomas has found that
the Bluetooth trick also worked on his father’s hearing aids.
And some targets are even larger: computer scientists at
Brown University discovered that it was possible to gain
access to research robots, due to a loophole in a popular
robotics operating system. In early 2018, the team managed to
take control of a machine at the University of Washington
(with the owners’ permission). They also found threats closer
to home. Two of their own robots – an industrial helper and a
drone – were accessible to outsiders. ‘Neither was
intentionally made available on the public Internet,’ they
noted, ‘and both have the potential to cause physical harm if
used inappropriately.’ Although the researchers focused on
university-based robots, they warned that similar problems
could affect machines elsewhere. ‘As robots move out of the
lab and into industrial and home settings, the number of units
that could be subverted is bound to increase manifold.’[25]

The internet of things is creating new connections across
different aspects of our lives. But in many cases, we may not
realise exactly where these connections lead. This hidden
network became apparent at lunchtime on 28 February 2017,
when several people with internet-connected homes noticed
that they couldn’t turn on their lights. Or turn off their ovens.
Or get into their garages.

The glitch was soon traced to Amazon Web Services
(AWS), the company’s cloud computing subsidiary. When a
person hits the switch to turn on a smart light bulb, it will
typically notify a cloud-based server – such as AWS –
potentially located thousands of miles away. This server will
then send a signal back to the bulb to turn it on. That February
lunchtime, however, some of the AWS servers had briefly
gone offline. With the server down, a large number of
household devices had stopped responding.[26]

AWS has generally been very reliable – the company
promises working servers over 99.99 per cent of the time –
and if anything this reliability has boosted the popularity of
such cloud computing services. In fact, they’ve become so
popular that almost three-quarters of Amazon’s recent profits
have come from AWS alone.[27] However, widespread use of



cloud computing, combined with the potential impact of a
server failure, has led to suggestions that AWS might be ‘too
big to fail’.[28] If large amounts of the web rely on a single
company, small problems at the source could be greatly
amplified. Related concerns surfaced in 2018, when Facebook
announced that millions of its users had been affected by a
security breach. Because many people use their Facebook
account to sign in to other websites, such attacks may spread
further than users initially realise.[29]

This isn’t the first time we’ve met this combination of
hidden links and highly connected hubs. These are the same
network quirks that made the pre-2008 financial system
vulnerable, allowing seemingly local events to have an
international impact. In online networks, however, these
effects can be even more extreme. And this can lead to some
rather unusual outbreaks.

NOT LONG AFTER THE MILLENNIUM BUG came the ‘love bug’. In
early May 2000, people around the world received e-mails
with a subject line that read ‘ILOVEYOU’. The message
carried a computer worm, which was disguised as a text file
containing a love letter. When opened, the worm corrupted
files on that person’s computer and e-mailed itself to everyone
in their address book. It spread widely, crashing the e-mail
system of several organisations, including the UK parliament.
Eventually IT departments rolled out countermeasures, which
protected computers against the worm. But then something
odd happened. Rather than disappear, the worm persisted.
Even a year later, it was still one of the most active bits of
malware on the internet.[30]

Computer scientist Steve White had noticed the same thing
happening with other computer worms and viruses. In 1998,
he’d pointed out that such bugs would often linger online.
‘Now here’s the mystery,’ White wrote.[31] ‘Our evidence on
virus incidents indicates that, at any given time, few of the
world’s systems are infected.’ Although viruses persisted for a
long time in the face of control measures, suggesting they
were highly contagious, they generally infected relatively few
computers, which implied they weren’t that good at spreading.



What was causing this apparent paradox? A couple of
months after the love bug attack, Alessandro Vespignani and
fellow physicist Romualdo Pastor-Satorras came across
White’s paper. Computer viruses didn’t seem to behave like
biological epidemics, so the pair wondered if the structure of
the network might have something to do with it. The previous
year, a study had shown that there was a lot of variation in
popularity on the world wide web: most websites had very few
links, while some had a vast number.[32]

We’ve already seen that for STIs, the reproduction number
of an infection will be larger when there is a lot of variation in
how many sexual partners people have. An infection that
would fade away if everyone behaved identically can persist if
some people have a lot more partners than others. Vespignani
and Pastor-Satorras realised that something even more extreme
can happen with computer networks.[33] Because there is
huge variability in the number of links, even seemingly weak
infections can survive. The reason is that in this kind of
network, a computer is never more than a few steps from a
highly connected hub, which can spread the infection widely
in a superspreading event. It’s an exaggerated form of the
problem that banks faced in 2008, with a few major hubs able
to drive the entire outbreak.

When outbreaks are driven by superspreading events, it
makes the transmission process extremely fragile. Unless an
infection hits a major hub, it probably won’t go very far. Yet
superspreading can also make an outbreak more unpredictable.
Although most outbreaks won’t take off, those that do can
stutter along for a surprisingly long time. This explains why a
handful of computer viruses and worms have continued to
spread, despite not being that transmissible at an individual
level. The same is true of many trends on social media. If
you’ve ever seen a strange meme spreading and wondered
how it could have persisted for so long, it probably has more
to do with the network itself rather than the quality of the
content.[34] Thanks to their structure, online networks are
giving infections an advantage that they don’t have in other
areas of life.



ON 22 MARCH 2017, web developers around the world noticed
that their apps weren’t working properly. From Facebook to
Spotify, companies using the JavaScript programming
language found themselves unable to work parts of their
software. User interfaces were broken, visuals wouldn’t load,
updates wouldn’t install.

The problem? Eleven lines of computer code – which many
people didn’t even know existed – had gone missing. The code
in question had been written by Azer Koçulu, a developer
based in Oakland, California. Those eleven lines formed a
JavaScript program called ‘left-pad’. The program itself
wasn’t particularly complicated; it just added some extra
characters at the start of a segment of text. It was the sort of
thing most coders could have created from scratch in a few
minutes.[35]

Yet most coders don’t create everything from scratch. To
save time, they use tools that others have developed and
shared. Many of them do this by searching an online resource
called ‘npm’, which collects together handy bits of code like
left-pad. In some cases, people incorporate these existing tools
into new programs, which they subsequently share. Some of
these programs then feed into other new programs, creating a
chain of dependency with each one supporting the next.
Whenever someone installs or updates a program, they will
also need to load everything in the dependency chain,
otherwise they’ll get an error message. Left-pad lay deep
within one of these chains. In the month before it disappeared,
the code had been downloaded over two million times.

On that day in March, Koçulu had pulled his code from
npm after a disagreement over a trademark. Npm had asked
him to rename one of his software packages after another
company complained; Koçulu protested and eventually
responded by removing all of his code. That included left-pad,
which meant that any chains of programs that relied on
Koçulu’s tool were suddenly broken. And because some of the
chains were so long, many developers hadn’t realised they
were so reliant on those eleven lines of code.



Koçulu’s work is just one example of computer code that
has spread much further than we might think. Soon after the
left-pad incident, software developer David Haney noted that
another tool on npm – which consisted of a single line of code
– had become an essential part of seventy-two other programs.
He listed several other pieces of software that were highly
dependent on simple snippets of code. ‘I can’t help but be
amazed by the fact that developers are taking on dependencies
for single line functions that they should be able to write with
their eyes closed,’ he wrote.[36] Borrowed pieces of code can
often spread further than people realise. When researchers at
Cornell University analysed articles written with LaTeX, a
popular scientific writing software, they found that academics
would often repurpose each other’s code. Some files had
spread through networks of collaborators for more than twenty
years.[37]

As code spreads, it can also pick up changes. After those
three students posted the Mirai code online at the end of
September 2016, dozens of different variants emerged, each
with subtly different features. It was only a matter of time
before someone altered the code to launch a major attack. In
early October, a few weeks before the Dyn incident, security
company RSA noticed a remarkable claim on a dark net
marketplace: a group of hackers was offering a way to flood a
target with 125 gigabytes of activity per second. For $75,000,
someone could buy access to a 100,000-strong botnet, which
was apparently based on some adapted Mirai code.[38]
However, it wasn’t the first time the Mirai code had changed.
In the weeks before they published the code, Mirai’s creators
made over twenty alterations, apparently in an attempt to
increase the contagiousness of their botnet. These included
features that made the worm harder to detect, as well as
tweaks to fight off other malware that was competing for the
same susceptible machines. Once out in the wild, Mirai would
continue to change for years to come; new variants were still
appearing in 2019.[39]

When Fred Cohen first wrote about computer viruses in
1984, he pointed out that malware might evolve over time,
becoming harder to detect. Rather than settling down to a well-



balanced equilibrium, the ecosystem of computer viruses and
anti-virus software would continuously shift around. ‘As
evolution takes place, balances tend to change, with the
eventual result being unclear in all but the simplest
circumstances,’ he noted.[40] ‘This has very strong analogies
to biological theories of evolution, and might relate well to
genetic theories of diseases.’

A common way of protecting against malware is to have
anti-virus software look for known threats. Typically, this
involves searching for familiar segments of code; once a threat
is recognised, it can be neutralised.[41] Human immune
systems can do something very similar when we get infected
or vaccinated. Immune cells will often learn the shape of the
specific pathogen we’ve been exposed to; if we get infected
again, these cells can respond quickly and neutralise the threat.
However, evolution can sometimes hinder this process, with
pathogens that once looked familiar changing their appearance
to evade detection.

One of the most prominent – and frustrating – examples of
this process is influenza evolution. Biologist Peter Medawar
once called the flu virus ‘a piece of nucleic acid surrounded by
bad news’.[42] There are two particular types of bad news on
the surface of the virus: a pair of proteins known as
haemagglutinin and neuraminidase, or HA and NA for short.
HA allows the virus to latch onto host cells; NA helps with the
release of new virus particles from infected cells. The proteins
can take several different forms, and the different flu types –
like H1N1, H3N2, H5N1 and so on – are named accordingly.

Winter flu epidemics are mostly caused by H1N1 and
H3N2. These viruses gradually evolve as they circulate,
causing the shape of those proteins to change. This means our
immune system no longer recognises the mutated virus as a
threat. We have annual flu epidemics – and annual flu
vaccination campaigns – because our bodies are in essence
playing a game of evolutionary cat-and-mouse with the
infection.

Evolution can also help artificial infections persist. In
recent years, malware has started to alter itself automatically



to make identification harder. During 2014, for example, the
‘Beebone’ botnet infected thousands of machines worldwide.
The worm behind the bots changed its appearance several
times a day, resulting in millions of unique variants as it
spread. Even if anti-virus software learned what the current
versions of code looked like, the worm would soon shuffle
itself around, distorting any known patterns. Beebone was
finally taken offline in 2015, when police targeted the part of
the system that wasn’t evolving: the fixed domain names used
to co-ordinate the botnet. This proved far more effective than
trying to identify the shapeshifting worms.[43] Similarly,
biologists are hoping to develop more effective flu vaccines by
targeting the parts of the virus that don’t change.[44]

Given the need to evade detection, malware will continue to
evolve, while authorities attempt to keep up. The routes of
transmission will also keep changing. As well as finding new
targets – like household devices – infections are increasingly
spreading through clickbait and tailored attacks on social
media.[45] By sending customised messages to specific users,
hackers can boost the chances they’ll click on a link and
inadvertently let malware in. However, evolution isn’t just
helping infections spread effectively from computer-to-
computer or person-to-person. It’s also revealing a new way to
tackle contagion.



7
Tracking outbreaks

THE AFFAIR WOULD END with a murder attempt. For over ten
years, Richard Schmidt, a gastroenterologist in Lafayette,
Louisiana, had been having a relationship with Janice Trahan,
a nurse fifteen years his junior. She’d divorced her husband
after the affair started, but despite his promises, Schmidt had
not left his wife and three children. Trahan had tried to break
off the affair before, but this time it would be for good.

She would later testify that a couple of weeks afterwards,
on 4 August 1994, Schmidt had come to her home while she
was asleep. Schmidt told her he was there to give her a shot of
vitamin B12. He’d previously given her vitamin injections to
boost her energy levels, but that night she told him she didn’t
want one. Before she could stop him, he’d stuck a needle in
her arm. None of the previous injections had hurt, but this time
the pain spread right through the limb. At which point,
Schmidt said he had to leave to go to the hospital.

The pain continued overnight, and in the weeks that
followed, she became ill with flu-like symptoms. She made
several trips to the hospital, but test after test came back
negative. One doctor had suspected HIV, but didn’t test for it.
He later said that his colleague – one Dr Schmidt – had told
him that Trahan had already tested negative for the infection.
Her illness continued, and eventually another doctor ordered a
new set of tests. In January 1995, Trahan finally received the
correct diagnosis: she was HIV positive.

Back in August, Trahan had told a colleague she’d
suspected that the ‘shot in the dark’ wasn’t B12. There was no
doubt that HIV was a recent infection: she’d given blood
several times and her most recent donation – made in April
1994 – had tested negative for HIV. According to a local HIV

specialist, the progression of her symptoms was consistent
with an early August date of infection. When police searched
Schmidt’s offices, they found evidence that blood had been



drawn from an HIV patient on 4 August – just hours before he’d
allegedly injected Trahan – and the procedure hadn’t been
recorded in the usual way. However, Schmidt denied visiting
her and giving her the injection.[1]

Perhaps the virus itself could provide a clue about what had
happened? At the time, it was already common to use DNA
testing to match suspects to crime scenes. However, the task
was trickier in this case. Viruses like HIV evolve relatively
quickly, so the virus found in Trahan’s blood wouldn’t
necessarily be the same as the one in the blood that infected
her. Faced with a charge of attempted second-degree murder,
Schmidt argued that the HIV virus that infected Trahan was too
different to the original patient’s virus; it just wasn’t plausible
that this had been the source of her infection. Given all the
other evidence pointing to Schmidt, the prosecution disagreed.
They just needed a way to show it.

ON 20 JUNE 1837,THE BRITISH CROWN passed down the royal
family tree, from William IV to Victoria. Meanwhile, a short
walk away in Soho, a young biologist was also thinking about
family trees, albeit on a much grander scale. Back in England
after his five-year voyage on HMS Beagle, Charles Darwin
would end up outlining his theories in a new leather-bound
notebook. To help clarify his thinking, he sketched out a
simplified diagram of a ‘tree of life’. The idea was that the
branches indicated the evolutionary relationships between
different species. Just like a family tree, Darwin suggested that
closely related organisms would be closer to each other, while
distinct species would be much further away. Tracing each of
the branches would lead to a shared root: a single common
ancestor.



Darwin’s original tree of life sketch. Species A is a distant
relative of B, C, and D, which are more closely related. In the
diagram, all the species evolved from a single starting point,

labelled (1)

Darwin started by drawing evolutionary trees based on
things like physical traits. On his Beagle voyage, he
categorised bird species by features such as beak shape, tail
length, and plumage.[2] This field of research would
eventually become known as ‘phylogenetics’, after the
Ancient Greek words for ‘species’ (phylo) and ‘origin’
(genesis).

Although early evolutionary analysis focused on the
appearance of different species, the rise of genetic sequencing
has made it possible to compare organisms in much more
detail. If we have two genomes, we can see how related they
are based on the amount of overlap in the lists of letters that
make up their sequences. The more overlap there is, the fewer
mutations are required to get from one sequence to the other.
It’s a bit like waiting for tiles to appear in a game of Scrabble.
Going from a sequence ‘AACG’ to ‘AACC’, for example, is
easier than getting from ‘AACG’ to ‘TTGG’. And like
Scrabble, we can estimate how long the evolutionary process
has been running based on how much the letters have changed
from their original sequence.

Using this idea – and plenty of computational power – it’s
possible to arrange sequences into a phylogenetic tree, tracing
out their historical evolution. We can also estimate when



important evolutionary changes may have happened. This is
useful if we want to know how an infection may have spread.
For example, after SARS sparked a major outbreak in 2003,
scientists identified the virus in palm civets, a small
mongoose-like animal. Maybe the disease had been routinely
circulating in civets before spilling over into the human
population?

Analysis of different SARS viruses suggested otherwise.
Human and civet viruses were closely related, indicating that
both were relatively new hosts for the virus. SARS had
potentially jumped from civets into humans a few months
before the outbreak started. In contrast, the virus had been
circulating in bats for much longer, making its way into civets
sometime around 1998. Based on the evolutionary history of
the different viruses, civets were probably just a brief stepping
stone for SARS as it made its way into humans.[3]

During Richard Schmidt’s trial, the prosecution used
similar phylogenetic evidence to show that it was plausible
that Trahan’s infection had come from the HIV patient who’d
visited Schmidt. Evolutionary biologist David Hillis and his
colleagues compared the viruses isolated from the pair with
other viruses found in HIV patients in Lafayette. In his
testimony, Hillis said the viruses found in Schmidt’s patient
and Trahan were ‘the most closely related sequences in the
analysis, and as closely related to sequences isolated that two
individuals could be’. Although it wasn’t conclusive proof that
Trahan’s infection had come from Schmidt’s patient, it
undermined the defence’s claim that the cases were unrelated.
Eventually, Schmidt was found guilty and sentenced to fifty
years in prison. As for Trahan, she remarried and continued to
live with HIV, celebrating her twentieth wedding anniversary in
2016.[4]



Simplified phylogenetic tree for SARS viruses in different host
species. Dashed lines show estimated times when viruses

diverged from one another, finding their way into a new group
of hosts. (Data: Hon et al., 2008)

Schmidt’s trial was the first time that phylogenetic analysis
had been used in a US criminal case. Since then, the methods
have appeared in other cases around the world. Following a
surge in cases of hepatitis C in Valencia, Spain, police
investigators linked many of the patients to an anaesthetist
named Juan Maeso. Phylogenetic analysis confirmed he was
the likely source of the outbreak, and in 2007 he was
convicted of infecting hundreds of patients by reusing
syringes.[5] Genetic data has also helped prove innocence.
Shortly after the Maeso case, a group of medics were released
from a prison in Libya. They’d been held for eight years after
accusations that they’d deliberately infected children with HIV.
The group were freed in part because of phylogenetic analysis,
which showed that many of the infections had occurred years
before the team had arrived in the country.[6]

As well as pointing to the likely source of an outbreak,
phylogenetic methods can reveal when a disease arrived in a
particular location. Suppose we are investigating a virus like
HIV, which evolves relatively quickly. If the HIV viruses
circulating in an area are relatively similar, it suggests they
haven’t had long to evolve, so the outbreak is probably quite
recent. In contrast, if there is a lot of diversity among current
viruses, it means that there has been a lot of time for evolution,
which suggests the original virus was introduced a while ago.
These methods are now commonly used in public health.



Recall how in earlier chapters, we looked at the arrival of Zika
into Latin America and HIV into North America. In both cases,
teams used genetic data to estimate the timing of the virus’s
introduction. Researchers have also applied these same ideas
to other infections, from pandemic influenza to hospital
superbugs like MRSA.[7]

With access to genetic data, we can also work out whether
an outbreak started with a single case or multiple
introductions. When our team analysed Zika viruses isolated in
Fiji during 2015 and 2016, we found two distinct groups of
viruses in the phylogenetic tree. Based on the rate of
evolution, one group of viruses had arrived into the capital
Suva in 2013–14, spreading at low levels for the subsequent
year or two, while a separate outbreak had later started in the
west of the country.[8] I didn’t realise it at the time, but some
of the mosquitoes I swatted away during my 2015 visit had
probably been infected with Zika.

Another benefit of phylogenetic analysis is that we can
track transmission in the final stages of an outbreak. In March
2016, a new cluster of Ebola cases appeared in Guinea, three
months after WHO had declared the West Africa epidemic over.
Perhaps the virus had been spreading undetected in humans all
along? When epidemiologist Boubacar Diallo and his
collaborators sequenced viruses from the new cluster of cases,
they hit upon an alternative explanation. The new viruses were
closely related to an Ebola virus found in the semen of a local
man who’d recovered from the disease back in 2014. The virus
had persisted in his body for almost a year-and-a-half, before
spreading to a sexual partner and sparking a new outbreak.[9]

Sequence data is becoming an important part of outbreak
analysis, but the idea of evolving viruses can sometimes lead
to alarmist coverage. During the Ebola and Zika epidemics,
several media reports played up the fact that the viruses were
evolving.[10] But this isn’t necessarily as bad as it sounds: all
viruses evolve, in the sense that their genetic sequence
gradually changes over time. Occasionally this evolution will
lead to a difference we care about – like the flu virus changing
its appearance – but often it will just happen in the background
without having a noticeable effect on an outbreak.



The rate of evolution can affect our ability to analyse
outbreaks, though. Phylogenetic analysis is more effective
when looking at pathogens that evolve fairly quickly, like HIV

and flu. This is because the genetic sequence will change as
pathogens spread from one person to another, making it
possible to estimate the likely path of infection. In contrast,
viruses like measles evolve slowly, which means there won’t
be much variation from one person to another.[11] As a result,
working out how the cases are related is a bit like trying to
piece together a human family tree in a country where
everyone has the same surname.

As well as biological limitations to phylogenetic methods,
there are also practical ones. In the early stages of the West
Africa Ebola epidemic, Pardis Sabeti, a geneticist with the
Broad Institute in Boston, analysed sequence data from ninety-
nine viruses from Sierra Leone. Phylogenetic trees showed
that the infection had spread from Guinea to Sierra Leone in
May 2014, possibly after a funeral. Given the seriousness of
the outbreak, Sabeti and her colleagues quickly added the new
genetic sequences to a public database. This initial burst of
research was then followed by a period of relative silence.
Although several other teams had been collecting virus
samples, nobody else released any new genetic sequences
between 2 August and 9 November 2014. During this same
period, there were over 10,000 Ebola cases reported in West
Africa, with the epidemic reaching its peak in October.[12]

There are a couple of possible reasons for the delay in
releasing sequences. The cynical explanation is that new data
are valuable academic currency. Research papers using genetic
sequences to study outbreaks are likely to get published in
coveted scientific journals, which creates an incentive for
researchers to sit on potentially important data. However,
based on my interactions with researchers during this period,
I’d like to think it was mostly a matter of obliviousness rather
than malicious intentions. Scientific culture just wasn’t
adapted for outbreak timelines. Researchers are used to
developing protocols, performing thorough analysis, writing
up their methods, submitting the results to be peer-reviewed



by fellow scientists. This process can take months – if not
years – and has historically slowed the release of new data.

Such delays are a problem across science and medicine.
When Jeremy Farrar took over as director of the Wellcome
Trust in March 2014, he told The Guardian that clinical
research often took too long, something that became apparent
in the following months as the Ebola outbreak grew. ‘The
systems we have got in place are not fit for purpose when the
situation is moving quickly,’ Farrar said. ‘We have nothing
that enables us to respond in real time.’[13]

This culture is gradually changing. In mid-2018, what
would become another major Ebola outbreak began in the
Democratic Republic of the Congo. This time, researchers
were quick to release new sequence data. Teams also launched
a clinical trial of four experimental treatments. By August
2019, they’d shown that a prompt infusion of anti-Ebola
immune cells could increase someone’s chances of survival to
over 90 per cent, up from a historical average of around 30 per
cent. Meanwhile, outbreak scientists are increasingly posting
draft papers on websites like bioRxiv and medRxiv, which aim
to make new research accessible before it undergoes peer-
review.[14]

During her time working in Sierra Leone, Sabeti discovered
that the word for Kenema, the city where they were based,
meant ‘clear like a river, translucent and open to the public
gaze’.[15] This openness was reflected in her team’s work,
with those ninety-nine sequences shared early in the outbreak.
The attitude has also taken hold among the wider community
of outbreak researchers. One of the best examples is the-  
Nextstrain project, pioneered by computational biologists
Trevor Bedford and Richard Neher. This online platform
automatically collates genetic sequences to show how different
viruses are related and where they might have come from.
Although Bedford and Neher initially focused on flu, the
platform now tracks everything from Zika to tuberculosis.[16]
Nextstrain has proved to be a powerful idea, not just because it
brings together and visualises all the available sequences, but
because it’s separate from the slow and competitive process of
publishing scientific papers.



As it becomes easier to sequence pathogens, phylogenetic
methods will continue to improve our understanding of disease
outbreaks. They will help us discover when infections first
sparked, how outbreaks grew, and what parts of a transmission
process we might have missed. The methods also illustrate a
wider trend in outbreak analysis: the ability to combine new
data sources to get at information that has traditionally been
hard to come by. With phylogenetics, we can uncover the
spread of outbreaks by linking patient information with the
genetic data of the viruses that infected them. These kinds of
‘data linkage’ approaches are becoming a powerful way of
understanding how things mutate and spread in a population.
But they aren’t always being used in the ways we might
expect.

goldilocks was a dishonest, foul-mouthed old woman who
burgled a trio of well-meaning bears. At least, she was when
poet Robert Southey first published the story in 1837. After
swearing her way through three bowls of porridge and
breaking a chair, the woman heard the bears come home and
made her escape through a window. Southey didn’t give her a
name or golden hair; those details would come decades later,
as the villainous woman evolved into a troublesome child and
finally the Goldilocks most of us know today.[17]

The tale of the bears has been around for a long time. A few
years before Southey published his story, a woman named
Eleanor Mure had written a homemade book for her nephew.
This time the bears caught the old woman at the end of the
story. Angry at the damage, the bears set her on fire, tried to
drown her, and then impaled her on the steeple of St Paul’s
Cathedral. In an earlier folk story, three bears saw off a
mischievous fox.

According to Jamie Tehrani, an anthropologist at Durham
University, we can think of culture as information that mutates
as it gets transmitted from person-to-person and generation-to-
generation. If we want to understand the spread and evolution
of culture, folk stories are therefore useful because they are the
product of their society. ‘By definition, folktales don’t have a
single authoritative version,’ said Tehrani. ‘They are stories



that belong to everybody in the community. They have this
organic quality.’[18]

Tehrani’s work on folktales started with ‘Little Red Riding
Hood’. If you live in Western Europe, you’re probably familiar
with the tale as told by the Brothers Grimm in the nineteenth
century: a girl visits her grandmother’s house, only to be met
by a wolf in disguise. However, this isn’t the only version of
the story. There are several other folk tales out there that bear
similarities to ‘Little Red Riding Hood’. In Eastern Europe
and the Middle East, people tell the story of ‘The Wolf and the
Kids’: a disguised wolf tricks a group of baby goats into
letting him into their house. In East Asia, there is the tale of
‘The Tiger Grandmother’, in which a group of children
encounter a tiger that pretends to be their elderly relative.

The tale has spread across the world, but it’s difficult to tell
in which direction. A common theory among historians is that
the East Asian version was the original, with the European and
Middle Eastern stories coming later. But did ‘Little Red
Riding Hood’ and ‘The Wolf and the Kids’ really evolve from
‘The Tiger Grandmother’? Folktales have historically been
spoken rather than written down, which means historical
records are shallow and patchy. It’s often not clear exactly
when and where a particular story originated.

This is where phylogenetic approaches can come in useful.
To investigate the evolution of ‘Little Red Riding Hood’ and
its variants, Tehrani gathered together almost sixty different
versions of the story, spanning multiple continents. In place of
a genetic sequence, he summarised each story based on a set
of seventy-two plot features, such as the type of lead character,
the trick used to deceive them, and how the story ended. He
then estimated how these features evolved, resulting in a
phylo genetic tree that mapped the relationship between the
stories.[19] His analysis would produce an unexpected
conclusion: based on the phylogenetic tree, it seemed that ‘The
Wolf and the Kids’ and ‘Little Red Riding Hood’ had come
first. Contrary to common belief, ‘The Tiger Grandmother’
was apparently a blend of existing tales, rather than being the
original version from which others evolved.



Evolutionary thinking has a long history in the study of
language and culture. Decades before Darwin drew his tree of
life, linguist William Jones had been interested in how
languages emerge, a field known as ‘philology’. In 1786,
Jones noted the similarities between Greek, Sanskrit, and
Latin: ‘no philologer could examine them all three, without
believing them to have sprung from some common source,
which, perhaps, no longer exists.’[20] In evolutionary terms,
he was suggesting that these languages had evolved from a
single common ancestor. Jones’s ideas would later influence
many other scholars, including the Brothers Grimm, who were
keen linguists. As well as collecting together different variants
of folktales, they tried to study how the use of language had
changed over time.[21]

Modern phylogenetic methods make it possible to analyse
the evolution of such stories in much more detail. After
studying ‘Little Red Riding Hood’, Jamie Tehrani worked with
Sara Graça da Silva at the University of Lisbon to examine a
much wider range of stories, tracing the evolution of 275
folktales in total. The pair found that some tales have a long
history; stories such as ‘Rumplestiltskin’ and ‘Beauty and the
Beast’ may have originally emerged over 4,000 years ago.
This would mean they are as old as the Indo-European
languages through which they spread. Although many
folktales eventually travelled widely, da Silva and Tehrani also
found traces of local rivalry in storytelling. ‘Spatial proximity
appears to have had a negative effect on the tales’
distributions,’ they noted, ‘suggesting that societies were more
likely to reject than adopt these stories from their
neighbours.’[22]

Folktales are often tied to a country’s identity, even if their
origins are not. When the Brothers Grimm compiled their
collection of traditional ‘German’ stories, they noticed that
there were similarities with tales in many other cultures, from
Indian to Arabic. Phylogenetic analysis confirms just how
much story borrowing there has been. ‘There’s not a great deal
that’s special about any one country’s oral tradition,’ Tehrani
said. ‘In fact, they’re highly globalised.’



Why did humans start telling stories in the first place? One
explanation is that tales help us preserve useful information.
There’s evidence that storytelling is a highly valued skill in
hunter-gatherer societies, leading to suggestions that stories
took hold in the early stages of human history because good
storytellers were more desirable as mates.[23] There are two
competing theories about what sort of story-based information
we have evolved to value. Some researchers suggest that
stories relating to survival are most important: deep down, we
want information about where food and dangers are. This
would explain why tales that evoke reactions like disgust are
memorable; we don’t want to poison ourselves. Others have
argued that because social interactions dominate human life,
socially relevant information is most useful. This would imply
that we preferentially remember details about relationships and
actions that break social norms.[24]

To test these two theories, Tehrani and his colleagues once
ran an experiment looking at the spread of urban legends.
Their study mimicked the children’s game of ‘broken
telephone’: tales were passed from one person to another, then
to another, with the final version showing how much was
remembered. They found that stories containing survival or
social information were more memorable than neutral stories,
with the social stories outperforming the survival ones.

Other factors can also boost the success of stories. Earlier
broken telephone experiments found that tales tend to become
shorter and simpler as they spread: people remember the gist
but forget the details. Surprises can help a tale as well. There’s
evidence that tales are catchier if they include counter-intuitive
ideas. However, there is a balance to be struck. Stories need
some surprising features, but not too many. Successful folk
tales generally have a lot of familiar elements, combined with
a couple of absurd twists. Take Goldilocks, the story of a girl
who explores the family home of a mother, father, and baby.
The twist, of course, being that it’s a family of bears. This
narrative trick also explains the attraction of conspiracy
theories, which take real-life events and add an unexpected
slant.[25]



Then there’s the structure of a story. Goldilocks’ popularity
might not be down to her, but rather the three bears. They turn
the story into a sequence of memorable triplets: the bowls of
porridge are too hot, too cold, just right; the beds are too soft,
too hard, just right. This rhetorical trick is known as the ‘rule
of three’ and crops up regularly in politics, from the speeches
of Abraham Lincoln to Barack Obama.[26] Why are lists of
three so powerful? It might have something to do with the
mathematical importance of triplets: in general, we need at
least three items in a sequence to establish (or break) a pattern.
[27]

Patterns can also help with the spread of individual words.
As language evolves, new words often have to compete to
displace already popular ones. In such situations, we might
expect people to prefer words that follow consistent rules. For
example, past tense verbs often end in ‘…ed’, so it makes
sense that the historical word ‘smelt’ has made way for
‘smelled’, while ‘wove’ is gradually becoming ‘weaved’.[28]

Yet some words have evolved in the other direction. In the
1830s, people would have ‘lighted’ a candle; nowadays we’d
talk of having lit one. Why did these irregular words
outcompete popular ones? A group of biologists and linguists
at the University of Pennsylvania reckon that rhyming might
have had something to do with it. They noticed that in the mid-
twentieth century, Americans started saying ‘dove’ instead of
‘dived’ as the past tense of ‘to dive’. Around the same time,
newly popular cars were causing people to adopt words like
‘drive’ and ‘drove’. Similarly, people started using ‘lit’ and
‘quit’ instead of ‘lighted’ and ‘quitted’ during the period that
‘split’ became a popular way of saying you were going to
leave.

There are two main ways that new words and stories can
spread through a population. Either they pass down from
generation-to-generation, perhaps picking up some variations
along the way; this is known as ‘vertical transmission’.
Alternatively, tales may blend across communities in the same
generation, in a process of ‘horizontal transmission’. Da Silva
and Tehrani have found that both types of transmission have
influenced the spread of folktales, but for the majority of



stories, the vertical route was more important. In other areas of
life though, horizontal transmission can dominate. Creators of
computer programs often reuse existing lines of code, perhaps
because there’s a useful feature they need to include, or
because they want to save time. In evolutionary terms, this
means that computer code can ‘time travel’, with bits of old
programs or languages suddenly popping up in new ones.[29]

If sections of stories or computer code mix together within
a single generation, it becomes difficult to draw a neat
evolutionary tree. If a parent tells their child a traditional
family story, then the child incorporates parts of their friends’
family stories, the new tale essentially fuses all these different
branches of stories together. The same problem is well known
to biologists. Take the 2009 ‘swine flu’ pandemic. The
outbreak started when genes from four viruses – a bird flu
virus, a human flu virus and two different swine flu strains –
jumbled together inside an infected pig in Mexico, creating a
new hybrid virus that then spread among humans.[30] One
gene was closely related to other human flu viruses; another
was similar to circulating bird flu strains; others were like
swine viruses. And yet, taken as a whole, this new flu virus
wasn’t really like anything else. Changes like these show the
limitations of a simple tree metaphor. Although Darwin’s tree
of life captures many features of evolution, the reality – with
genes potentially passing within as well as between
generations – is more like a bizarre, unkempt hedge.[31]

The processes of horizontal and vertical transmission can
make a big difference to how traits spread through a
population. In the waters of Shark Bay, just off the coast of
Western Australia, a handful of bottlenose dolphins have
started using tools to forage for food. Marine biologists first
noticed the behaviour in 1984; dolphins were breaking off bits
of marine sponge and wearing them as a protective mask while
they rummaged for fish in the seabed. But not all dolphins in
Shark Bay would go on to use ‘sponging’. Only around one in
ten have picked up the technique.[32] Why hasn’t the
behaviour spread further? Twenty years after biologists first
observed sponging, a group of researchers used genetic data to
show that the tactic was almost entirely the result of vertical



transmission. Dolphins are famously social, but it seems that
after one initial dolphin came up with the innovation, it only
spread through their family line. Individuals who weren’t
related to them kept on foraging sponge-free. In effect, this
family of dolphins had created their own unique tradition.

According to ecologist Lucy Aplin, both vertical and
horizontal transmission of culture can occur in the animal
world. ‘It really depends on the species, and also on the
behaviour being learned.’ She points out that the type of
transmission can affect how widely new information spreads.
‘You might imagine in, say, dolphins, where most of the
learning happens vertically, you end up with family-specific
behaviours and it’s quite hard for behaviours to spread more
widely through the population.’ In contrast, horizontal
transmission can result in much faster adoption of innovations.
Such transmission is common in species of birds like great tits.
‘Much of their social learning occurs horizontally,’ Aplin said,
‘with information gained by observing unrelated individuals in
the winter-flocking period, rather than transmitted from parent
to offspring.’[33]

For some animals, the difference between transmission
types could prove crucial to survival. As humans alter the
natural environment more and more, species that can
efficiently transmit innovations will be better placed to adjust
to the changes. ‘Evidence is increasingly showing that some
species can show a high degree of behavioural flexibility in
the face of changing environments,’ Aplin said. ‘As a result,
they appear to be successful at coping with human-modified
habitats and human-induced change.’

Efficient transmission is also helping organisms resist
human change at the microscopic level. Several types of
bacteria have picked up mutations that make them resistant to
antibiotics. As well as spreading vertically when bacteria
reproduce, these genetic mutations often pass horizontally
within the same generation. Just as software developers might
copy and paste code between files, bacteria can pick up
snippets of genetic material from each other. In recent years,
researchers have discovered that this horizontal transmission is
contributing to the emergence of superbugs such as MRSA, as



well as drug-resistant STIs.[34] As bacteria evolve, many
common infections may eventually become untreatable. In
2018, for example, a man in the UK was diagnosed with so-
called ‘super-gonorrhea’, which was resistant to all standard
antibiotics. He’d picked up the infection in Asia, but the
following year two more cases appeared in the UK, this time
with links to Europe.[35] If researchers are to successfully
track and prevent such infections, they will need all the data
they can get.

THANKS TO THE AVAILABILITY of new information sources like
genetic sequences, we are increasingly able to unravel how
different diseases and traits spread through populations.
Indeed, one of the biggest changes to human healthcare in the
twenty-first century will be the ability to rapidly and cheaply
sequence and analyse genomes. As well as uncovering
outbreaks, researchers will be able to study how human genes
influence conditions ranging from Alzheimer’s to cancer.[36]
Genetics has social applications too. Because our genomes can
reveal characteristics like ancestry, genetic testing kits have
become popular gifts for people interested in their family
history.

Yet the availability of such data can have unintended effects
on privacy. Because we share so many genetic characteristics
with our relatives, it’s possible to learn things about people
who haven’t been tested. In 2013, for example, The Times
reported that Prince William had Indian ancestry, after testing
two distant cousins on his mother’s side. Genetics researchers
soon criticised the story, because it had revealed personal
information about the prince without his consent.[37] In some
cases ancestry revelations can have devastating consequences:
there have been several reports of families thrown into
disarray after discovering hidden adoptions or infidelity in a
Christmas ancestry test.[38]

We’ve already seen how data about our online behaviour is
gathered and shared so that companies can target adverts.
Marketers don’t just measure how many people clicked on an
ad; they know what kind of person they are, where they came
from, and what they did next. By combining these datasets,
they can piece together how one thing influences another. The



same approach is common when analysing human genetic
data. Rather than look at genetic sequences in isolation,
scientists will compare them with information like ethnic
background or medical history. The aim is to uncover the
patterns that link the different datasets. If researchers know
what these look like, they can predict things like ethnicity or
disease risk from the underlying genetic code. This is why
genetic testing companies like 23andMe have attracted so
many investors. They aren’t just collecting customers’ genetic
data; they are gathering information about who these people
are, which makes it possible to gain much deeper health
insights.[39]

It’s not just for-profit companies that are building such
datasets. Between 2006 and 2010, half a million people
volunteered for the UK Biobank project, which aims to study
patterns in genetics and health over the coming decades. As
the dataset grows and expands, it will be accessible to teams
around the globe, creating a valuable scientific resource. Since
2017, thousands of researchers have signed up to access the
data, with projects investigating diseases, injuries, nutrition,
fitness, and mental health.[40]

There are huge benefits to sharing health information with
researchers. But if datasets are going to be accessible to
multiple groups, we need to think about how to protect
people’s privacy. One way to reduce this risk is to remove
information that could be used to identify participants. For
example, when researchers get access to medical datasets,
personal information like name and address will often have
been removed. Even without such data, though, it may still be
possible to identify people. When Latanya Sweeney was a
graduate student at MIT in the mid-1990s, she suspected that if
you knew a US citizen’s age, gender, and ZIP code, in many
cases you could narrow it down to a single person. At the time,
several medical databases included these three pieces of
information. Combine them with an electoral register and
Sweeney reckoned you could probably work out whose
medical records you were looking at.[41]

So that’s what she did. ‘To test my hypothesis, I needed to
look up someone in the data,’ she later recalled.[42] The state



of Massachusetts had recently made ‘anonymised’ hospital
records freely available to researchers. Although Governor
William Weld had claimed the records still protected patients’
privacy, Sweeney’s analysis suggested otherwise. She paid $20
to access voter records for Cambridge, where Weld lived, then
cross-referenced his age, gender, and ZIP code against the
hospital dataset. She soon found his medical records, then
mailed him a copy. The experiment – and the publicity it
generated – would eventually lead to major changes in how
health information is stored and shared in the US.[43]

As data spread from one computer to another, so do the
resulting insights into people’s lives. It’s just not medical or
genetic information we need to be careful with; even
seemingly innocuous datasets can hold surprisingly personal
details. In March 2014, a self-described ‘data junkie’ named
Chris Whong used the Freedom of Information Act to request
details of every yellow taxi ride in New York City during the
previous year. When the New York City Taxi and Limousine
Commission released the dataset, it included the time and
location of the pick up and drop off, the fare, and how much
each passenger tipped.[44] There were over 173 million trips
in total. Rather than give the real licence plates, each taxi was
identified by a string of apparently random digits. But it turned
out the journeys were anything but anonymous. Three months
after the dataset was released, computer scientist Vijay
Pandurangan showed how to decipher the taxi codes,
converting the scrambled digits back into the original licence
plates. Then graduate student Anthony Tockar published a
blog post explaining what else could be discovered. He’d
found that with a few simple tricks, it was possible to extract a
lot of sensitive information from the files.[45]

First, he showed how a person might stalk celebrities. After
hours spent trawling through a search of images for
‘celebrities in taxis in Manhattan in 2013’, Tockar found
several pictures with a licence plate in view. Cross-referencing
these with celebrity blogs and magazines, he worked out what
the start point or destination was, and matched this against the
supposedly anonymous taxi dataset. He could also see how
much celebrities had – or hadn’t – tipped. ‘Now while this



information is relatively benign, particularly a year down the
line,’ Tockar wrote, ‘I have revealed information that was not
previously in the public domain.’

Tockar acknowledged that most people might not be too
worried about such analysis, so he decided to dig a little
further. He turned his attention to a strip club in the Hell’s
Kitchen neighbourhood, searching for taxi pick-ups in the
early hours. He soon identified a frequent customer and
tracked the person’s journey back to their home address. It
didn’t take long to find them online and – after a quick search
on social media – Tockar knew what the man looked like, how
much his house was worth, and what his relationship status
was. Tockar chose not to publish any of this information, but it
wouldn’t have taken much effort for someone else to come to
the same conclusions. ‘The potential consequences of this
analysis cannot be overstated,’ Tockar noted.

With high-resolution GPS data, it can be extremely easy to
identify people.[46] Our GPS tracks can easily reveal where
we live, what route we take to work, what appointments we
have, and who we meet. As with the New York Taxi data, it
doesn’t take much to spot how such information could be a
potential treasure trove for stalkers, burglars, or blackmailers.
In a 2014 survey, 85 per cent of US domestic violence shelters
said they were protecting people from abusers who’d stalked
them via GPS.[47] Consumer GPS data can even put military
operations at risk. During 2017, army staff wearing
commercial fitness trackers inadvertently leaked the exact
layout of bases when they uploaded their running and cycling
routes.[48]

Despite these risks, the availability of movement data is
also bringing valuable scientific insights, whether it’s allowing
researchers to estimate where viruses might spread next,
helping emergency teams support displaced populations after
natural disasters, or showing planners how to improve city
transport networks.[49] With high-resolution GPS data, it’s
even becoming possible to analyse interactions between
specific groups of people. For example, studies have used
mobile phone data to track social segregation, political



groupings and inequality in countries ranging from the United
States to China.[50]

If that last sentence made you feel slightly uncomfortable,
you wouldn’t be alone. As the availability of digital data
increases, concerns about privacy are growing too. Issues like
inequality are a major social challenge – and undoubtedly
worthy of research – but there is intense debate about how far
such research should delve into the details of our incomes,
politics or social lives. When it comes to understanding human
behaviour, we often have a decision to make: what is an
acceptable price for knowledge?

Whenever my collaborators and I have worked on projects
involving movement data, privacy has been hugely important
to us. On the one hand, we want to collect the most useful data
we possibly can, especially if it could help to protect
communities against outbreaks. On the other, we need to
protect the private lives of the individuals in those
communities, even if this means limiting the information we
collect or publish. For diseases like flu or measles, we face a
particular challenge, because children – who are at high risk of
infection – are also a vulnerable age group to be putting under
surveillance.[51] There are plenty of studies that could tell us
useful, interesting things about social behaviour, but would be
difficult to justify given the potential infringement on privacy.

In the rare instances where we do go out and collect high-
resolution GPS data, our study participants will have given
consent and know that only our team will have access to their
exact location. But not everyone has the same attitude to
privacy. Imagine if your phone had been leaking GPS data
continuously, without your knowledge, to companies you’ve
never heard of. This is more likely than you might think. In
recent years, a little-known network of GPS data brokers has
emerged. These companies have been buying movement data
from hundreds of apps that people have given GPS access,
then selling this on to marketers, researchers and other groups.
[52] Many users may have long forgotten they installed these
apps – be it for fitness, weather forecasts or gaming – let alone
agreed to constant tracking. In 2019, US journalist Joseph Cox



reported that he’d paid a bounty hunter to track a phone using
second-hand location data.[53] It had cost $300.

As location data becomes easier to access, it is also
inspiring new types of crimes. Scammers have long used
‘phishing’ messages to trick customers into giving sensitive
information. Now they are developing ‘spear phishing’
attacks, which incorporate user-specific data. In 2016, several
residents of Pennsylvania, USA received e-mails asking them
to pay a fine for a recent speeding offence. The e-mails
correctly listed the speed and location of the person’s car. But
they weren’t real. Police suspected that scammers had
obtained leaked GPS data from an app, then used this to
identify people who’d been travelling too fast on local roads.
[54]

Although movement datasets are proving remarkably
powerful, they do still have some limitations. Even with very
detailed movement information, there is one type of
interaction that is near impossible to measure. It’s an event that
is brief, often invisible, and particularly elusive in the early
stages of outbreak. It’s also one that has sparked some of the
most notorious incidents in medical history.

THE DOCTOR CHECKED INTO ROOM 911 of Hong Kong’s
Metropole Hotel at the end of a tiring week. Despite feeling
unwell, he’d made the three-hour bus trip across from
Southern China for his nephew’s wedding that weekend. He’d
come down with a flu-like illness a few days earlier and hadn’t
managed to shake it off. However, it was about to get much
worse. Twenty-four hours later, he’d be in an intensive care
unit. Within ten days, he would be dead.[55]

It was 21 February 2003, and the doctor was the first case
of SARS in Hong Kong. Eventually, there would be sixteen
other SARS cases linked to the Metropole: people who’d stayed
in rooms opposite the doctor, beside him, or along the corridor.
As the disease spread, there was an urgent need to understand
the new virus causing it. Scientists didn’t even know basic
information like the delay from infection to appearance of
symptoms (i.e. the incubation period). With cases appearing
across Southeast Asia, statistician Christl Donnelly and her



colleagues at Imperial College London and in Hong Kong set
out to estimate this crucial information.[56]

The problem with working out an incubation period is that
we rarely see the actual moment of infection. We just see
people showing up with symptoms later on. If we want to
estimate the average incubation period, we therefore need to
find people who could only have been infected during a
specific period of time. For example, a businessman staying at
the Metropole had overlapped with the Chinese doctor for a
single day. He fell ill with SARS six days later, so this delay
must have been the incubation period for his infection.
Donnelly and her colleagues tried to gather together other
examples like this, but there weren’t that many. Of the 1,400
SARS cases that had been reported in Hong Kong by the end of
April, only 57 people had a clearly defined exposure to the
virus. Put together, these examples suggested that SARS had an
average incubation period of about 6.4 days. The same method
has since been used to estimate the incubation period for other
new infections, including pandemic flu in 2009 and Ebola in
2014.[57]

Of course, there is another way to work out an incubation
period: deliberately give someone the infection and see what
happens. One of the most infamous examples of this approach
occurred in New York City during the 1950s and 1960s. The
Willowbrook State School, located on Staten Island, was home
to over 6,000 children with intellectual disabilities.
Overcrowded and filthy, the school had frequent outbreaks of
hepatitis, which had led paediatrician Saul Krugman to set up
a project to study the infection.[58] Working with
collaborators Robert McCollum and Joan Giles, the research
involved deliberately infecting children with hepatitis to
understand how the infection developed and spread. As well as
measuring the incubation period, the team discovered they
were actually dealing with two different types of hepatitis
virus. One type, which we now call hepatitis A, spread from
person-to-person, whereas hepatitis B was blood-borne.

The research brought controversy as well as discoveries. In
the early 1970s, criticism of the work grew, and the
experiments were eventually halted. The study team argued



that the project had been ethically sound: it had approval from
several medical ethics boards, they’d obtained consent from
childrens’ parents, and the poor conditions in the school meant
that many of the children would have got the disease at some
point anyway. Critics responded that, among other things, the
consent forms had brushed over the details of what was
involved and Krugman overstated the chances children would
get infected naturally. ‘They were the most unethical medical
experiments ever performed on children in the United States,’
claimed vaccine pioneer Maurice Hillman.[59]

This raises the question of what to do with such knowledge
once it’s been obtained. Research papers from the
Willowbrook study have been cited hundred of times, but not
everyone agreed they should be acknowledged in this way.
‘Every new reference to the work of Krugman and Giles adds
to its apparent ethical respectability, and in my view such
references should stop, or at least be heavily qualified,’ wrote
physician Stephen Goldby in a letter to The Lancet in 1971.
[60]

There are many other examples of medical knowledge that
has uncomfortable origins. In early nineteenth-century Britain,
the growing number of medical schools created a massive
demand for cadavers for use in anatomy classes. Faced with a
limited legal supply, the criminal market stepped in; bodies
were increasingly snatched from graveyards and sold to
lecturers.[61] Yet it is experiments on the living that have
proved the most shocking. During the Second World War,
Nazi doctors deliberately infected patients at Auschwitz with
diseases including typhus and cholera, to measure things like
the incubation period.[62] After the war, the medical
community created the Nuremberg Code, outlining a set of
principles for ethical studies. Even so, the controversies would
continue. Much of our understanding of typhoid comes from
studies involving US prisoners in the 1950s and 1960s.[63]
Then, of course, there was Willowbrook, which transformed
our knowledge of hepatitis.

Despite the sometimes horrific history of human
experiments, studies involving deliberate infections are on the
rise.[64] Around the world, volunteers are signing up for



research involving malaria, influenza, dengue fever, and
others. In 2019, there were dozens of such studies underway.
Although some pathogens are simply too dangerous – Ebola is
clearly out of the question – there are situations in which the
social and scientific benefits of an infection experiment can
outweigh a small risk to participants. Modern infection
experiments have much stricter ethical guidelines, particularly
when giving participants information and asking for their
consent, but they must still strike this balance between benefit
and risk. It’s a balancing act that is becoming increasingly
prominent in other areas of life as well.



8
A spot of trouble

GRENVILLE CLARK HAD JUST ABOUT SETTLED into his position as
conference chair when someone handed him a folded note.[1]
A lawyer by training, Clark had organised the conference to
discuss the future of the newly formed United Nations and
what it would mean for world peace. Sixty delegates had
already arrived at the Princeton University venue, but there
was one more person who wanted to join. The note in Clark’s
hands came from Albert Einstein, who was based at the
adjacent Institute for Advanced Studies.

It was January 1946, and many in the physics community
were haunted by their role in the recent atomic bombings of
Hiroshima and Nagasaki.[2] Although Einstein was a long-
time pacifist – and had opposed the bombings – his letter to
President Roosevelt in 1939, warning of the potential for a
Nazi atom bomb, had triggered the US nuclear programme.[3]
During the Princeton conference, one attendee asked Einstein
about humanity’s inability to manage new technology.[4]
‘Why is it that when the mind of man has stretched so far as to
discover the structure of the atom we have been unable to
devise the political means to keep the atom from destroying
us?’ ‘That is simple, my friend,’ replied Einstein. ‘It is because
politics is more difficult than physics.’

Nuclear physics is one of the most prominent examples of a
‘dual-use technology’.[5] The research has brought huge
scientific and social benefits, but it has also found extremely
harmful uses. In the preceding chapters, we’ve met several
other examples of technology that can have both a positive and
negative use. Social media can connect us to old friends and
useful new ideas. Yet it can also enable the spread of
misinformation and other harmful content. Analysis of crime
outbreaks can identify people who may be at risk, making it
possible to interrupt transmission; it can also feed into biased
policing algorithms that may over-target minority groups.



Large-scale GPS data is revealing how to respond effectively
to catastrophes, how to improve transport systems, and how
new diseases might spread.[6] But it also risks leaking
personal information without our knowledge, endangering our
privacy and even our safety.

In March 2018, the Observer newspaper reported that
Cambridge Analytica had secretly gathered data from tens of
millions of Facebook users, with the aim of building
psychological profiles of US and British voters.[7] Although
the effectiveness of such profiling has been disputed by
statisticians,[8] the scandal eroded public trust in technology
firms. According to software engineer – and ex-physicist –
Yonatan Zunger, the story was a modern retelling of the ethical
debates that had already occurred in fields like nuclear physics
or medicine.[9] ‘The field of computer science, unlike other
sciences, has not yet faced serious negative consequences for
the work its practitioners do,’ he wrote at the time. As new
technology appears, we mustn’t forget the lessons that
researchers in other fields have already learned the hard way.

When ‘big data’ became a popular buzzword in the early
twenty-first century, the potential for multiple uses was a
source of optimism. The hope was that data collected for one
purpose could help tackle questions in other areas of life. A
flagship example of this was Google Flu Trends (GFT).[10]
By analysing the search patterns of millions of users,
researchers suggested it would be possible to measure flu
activity in real-time, rather than waiting a week or two for
official US disease tallies to be published.[11] The initial
version of GFT was announced in early 2009, with promising
results. However, it didn’t take long for criticisms to emerge.

The GFT project had three main limitations. First, the
predictions didn’t always work that well. GFT had reproduced
the seasonal winter flu peaks in the US between 2003 and
2008, but when the pandemic took off unexpectedly in spring
2009, GFT massively underestimated its size.[12] ‘The initial
version of GFT was part flu detector, part winter detector,’ as
one group of academics put it.[13]



The second problem was that it wasn’t clear how the
predictions were actually made. GFT was essentially an
opaque machine; search data went in one end and predictions
came out the other. Google didn’t make the raw data or
methods available to the wider research community, so it
wasn’t possible for others to pick apart the analysis and work
out why the algorithm performed well in some situations but
badly in others.

Then there’s the final – and perhaps biggest – issue with
GFT: it didn’t seem that ambitious. We get flu epidemics each
winter because the virus evolves, making current vaccines less
effective. Similarly, the main reason governments are so
worried about a future pandemic flu virus is that we won’t
have an effective vaccine against the new strain. In the event
of a pandemic, it would take six months to develop one,[14]
by which time the virus will have spread widely. To predict the
shape of flu outbreaks, we need a better understanding of how
viruses evolve, how people interact, and how populations
build immunity.[15] Faced with this hugely challenging
situation, GFT merely aimed to report flu activity a week or so
earlier than it would have been otherwise. It was an interesting
idea in terms of data analysis, but not a revolutionary one
when it comes to tackling outbreaks.

This is a common pitfall when researchers or companies
talk about applying large datasets to wider aspects of life. The
tendency is to assume that, because there is so much data,
there must be other important questions it can answer. In
effect, it becomes a solution in search of a problem.

IN LATE 2016, epidemiologist Caroline Buckee attended a tech
fundraising event, pitching her work to Silicon Valley insiders.
Buckee has a lot of experience of using technology to study
outbreaks. In recent years, she has worked on several studies
using GPS data to investigate malaria transmission. But she is
also aware that such technology has its limitations. During the
fundraising event, she became frustrated by the prevailing
attitude that with enough money and coders, companies could
solve the world’s health problems. ‘In a world where
technology moguls are becoming major funders of research,
we must not fall for the seductive idea that young, tech-savvy



college grads can single-handedly fix public health on their
computers,’ she wrote afterwards.[16]

Many tech approaches are neither feasible nor sustainable.
Buckee has pointed to many failed attempts at tech pilot
studies or apps that hoped to ‘disrupt’ traditional methods.
Then there’s the need to evaluate how well health measures
actually work, rather than just assuming good ideas will
emerge naturally like successful start ups. ‘Pandemic
preparedness requires a long-term engagement with politically
complex, multidimensional problems – not disruption,’ as she
put it.

Technology can still play a major role in modern outbreak
analysis. Researchers routinely use mathematical models to
help design control measures, smartphones to collect patient
data, and pathogen sequences to track the spread of infection.
[17] However, the biggest challenges are often practical rather
than computational. Being able to gather and analyse data is
one thing; spotting an outbreak and having the resources to do
something about it is quite another. When Ebola caused its
first major epidemic in 2014, transmission was centred on
Sierra Leone, Liberia and Guinea, three countries that ranked
among the world’s poorest. A second major epidemic would
begin in 2018, when Ebola hit a conflict zone in the
northeastern part of the Democratic Republic of the Congo; by
July 2019, with 2,500 cases and rising, WHO would declare it a
Public Health Emergency of International Concern (PHEIC).[18]
The global imbalance in health capacity even shows up in
scientific terminology. The 2009 pandemic flu virus emerged
in Mexico, but its official designation is
‘A/California/7/2009(H1N1)’, because that’s where a lab first
identified the new virus.[19]

These logistical challenges mean that research can struggle
to keep up with new outbreaks. During 2015 and 2016, Zika
spread widely, spurring researchers to plan large-scale clinical
studies and vaccine trials.[20] But as soon as many of these
studies were ready to start, the cases stopped. This is a
common frustration in outbreak research; by the time the
infections end, fundamental questions about contagion can
remain unanswered. That’s why building long-term research



capacity is essential. Although our research team has managed
to generate a lot of data on the Zika outbreak in Fiji, we were
only able to do this because we already happened to be there
investigating dengue. Similarly, some of the best data on Zika
have come from a long-running Nicaraguan dengue study led
by Eva Harris at the University of California, Berkeley.[21]

Researchers have also lagged behind outbreaks in other
fields. Many studies of misinformation during the 2016 US
election weren’t published until 2018 or 2019. Other research
projects looking at election interference have struggled to get
off the ground at all, while some are now impossible because
social media companies – whether inadvertently or
deliberately – have deleted the necessary data.[22] At the same
time, fragmented and unreliable data sources are hindering
research into banking crises, gun violence and opioid use.[23]

Getting data is only part of the problem, though. Even the
best outbreak data will have quirks and caveats, which can
hinder analysis. In her work tracking radiation and cancer,
Alice Stewart noted that epidemiologists rarely have the
luxury of a perfect dataset. ‘You’re not looking for a spot of
trouble against a spotless backdrop,’ she said,[24] ‘you’re
looking for a spot of trouble in a very messy situation.’ The
same issue crops up in many fields, whether trying to estimate
the spread of obesity in friendship data, uncover patterns of
drug use in the opioid epidemic, or trace the effects of
information across different social media platforms. Our lives
are messy and complicated, and so are the datasets they
produce.

If we want a better grasp of contagion, we need to account
for its dynamic nature. That means tailoring our studies to
different outbreaks, moving quickly to ensure our results are
as useful as possible, and finding new ways to thread strands
of information together. For example, disease researchers are
now combining data on cases, human behaviour, population
immunity, and pathogen evolution to investigate elusive
outbreaks. Taken individually, each dataset has its own flaws,
but together they can reveal a more complete picture of
contagion. Describing such approaches, Caroline Buckee has



quoted Virginia Woolf, who once said that ‘truth is only to be
had by laying together many varieties of error.’[25]

As well as improving the methods we use, we should also
focus on the questions that really matter. Take social
contagion. Considering the amount of data now available, our
understanding of how ideas spread is still remarkably limited.
One reason is that the outcomes we care about aren’t
necessarily the ones that technology companies prioritise.
Ultimately, they want users to interact with their products in a
way that brings in advertising revenue. This is reflected in the
way we talk about online contagion. We tend to focus on the
metrics designed by social media companies (‘How do I get
more likes? How do I get this post to go viral?’) rather than
outcomes that will actually make us healthier, happier, or more
successful.

With modern computational tools, there is potential to get
unprecedented insights into social behaviour, if we target the
right questions. The irony, of course, is that the questions we
care about are also the ones that are likely to lead to
controversy. Recall that study looking at the spread of
emotions on Facebook, in which researchers altered people’s
News Feeds to show happier or sadder posts. Despite criticism
of how this research was designed and carried out, the team
was asking an important question: how does the content we
see on social media affect our emotional state?

Emotions and personality are, by their very definition,
emotive and personal topics. In 2013, psychologist Michal
Kosinski and his colleagues published a study suggesting that
it was possible to predict personality traits – such as
extroversion and intelligence – from the Facebook pages that
people liked.[26] Cambridge Analytica would later use a
similar idea to profile voters, triggering widespread criticism.
[27] When Kosinski and his team first published their method,
they were aware that it could have uncomfortable alternative
uses. In their original paper, they even anticipated a possible
backlash against technology firms. The researchers speculated
that as people became more aware of what could be extracted
from their data, some might turn away from digital technology
entirely.



If users are uncomfortable with exactly how their data is
being used, researchers and companies have two options. One
is to simply avoid telling them. Faced with concerns about
privacy, many tech companies have downplayed the extent of
data collection and analysis, fearing negative press coverage
and uproar from users. Meanwhile, data brokers (who most of
us have never heard of) have been making money selling data
(which we weren’t aware they had) to external researchers
(who we didn’t know were analysing it). In these cases, the
assumption seems to have been that if you tell people what
you’re doing with their data, they won’t let you do it. Thanks
to new privacy laws like Europe’s General Data Protection
Regulation (GDPR) and California’s Consumer Privacy Act,
some of these activities are becoming harder. But if research
teams continue to brush over the ethics of their analysis, there
will be further scandals and lapses in trust. Users will become
more reluctant to share data, even for worthwhile studies, and
researchers will shy away from the effort and controversy of
analysing it.[28] As a result, our understanding of behaviour –
and the social and health benefits that can come from such
insights – will stagnate.

The alternative option is to increase transparency. Instead
of analysing people’s lives without their knowledge, let them
weigh up the benefits and risks. Involve them in the debates;
think in terms of permission rather than forgiveness. If social
benefits are the aim, make the research a social effort. When
the NHS announced their ‘Care.data’ scheme in 2013, the hope
was that better data sharing could lead to better health
research. Three years later, the scheme was cancelled after the
public – and doctors – lost confidence in how the data were
being used. In theory, Care.data could have been enormously
beneficial, but patients didn’t seem to know about the scheme,
or didn’t trust it.[29]

Perhaps nobody would agree to data-intensive research if
they knew what was really involved? In my experience, that’s
not necessarily true. Over the past decade, my collaborators
and I have run several ‘citizen science’ projects combining
contagion research with wider discussions about outbreaks,
data, and ethics. We’ve studied what networks of interactions



look like, how social behaviour changes over time, and what
this means for infection patterns.[30] Our most ambitious
project was a massive data collection effort we ran in
collaboration with the BBC during 2017/18.[31] We asked the
public to download a smartphone app that tracked their
movements to the nearest 1km over a day, and also asked them
to tally up their social interactions. Once the study was
completed, this dataset would help form a freely available
resource for researchers. To our surprise, tens of thousands of
people volunteered, despite the project having no immediate
benefit to them. Although just one study, it shows that large-
scale data analysis can still be carried out in a transparent and
socially beneficial way.

In March 2018, the BBC aired a program called
Contagion!, showcasing the initial dataset we’d gathered. It
wasn’t the only story about large-scale data collection in the
media that week; a few days earlier, the Cambridge Analytica
scandal had broken. Whereas we had asked people to
volunteer their data to help researchers understand disease
outbreaks, Cambridge Analytica had allegedly been harvesting
vast quantities of Facebook data – without users’ knowledge –
to help politicians try and influence voters.[32] Here were two
studies of behaviour, two massive datasets, and two very
different outcomes. Several commentators picked up on the
contrast, including journalist Hugo Rifkind in his TV review
for The Times. ‘In a week when we’ve agreed that data and
internet surveillance – boo, hiss – are ruining the world,
Contagion was a welcome reminder that it can sort of save it a
bit too.’[33]

IN THE TIME IT’S TAKEN you to read this book, around three
hundred people will have died of malaria. There will have
been over five hundred deaths from HIV/AIDS, and about eighty
from measles, most of them children. Melioidosis, a bacterial
infection that you may well have never heard of, will have
killed more than sixty people.[34]

Infectious diseases still cause vast damage worldwide. As
well as known threats, we face the ever-present risk of a new
pandemic, and the rising emergence of drug-resistant
infections. However, as our knowledge of contagion has



improved, infectious diseases have on the whole declined. The
global death rate for such diseases has halved in the past two
decades.[35]

As infectious diseases wane, attention is gradually shifting
to other threats, many of which can also be contagious. In
1950, tuberculosis was the leading cause of death for a British
man in his thirties. Since the 1980s, it has been suicide.[36] In
recent years, young adults in Chicago have been most likely to
die from homi cide.[37] Then there are the wider social
burdens of contagion. When I analysed neknomination back in
2014, online transmission seemed like a tangential issue,
almost a curiosity. Three years later, it was dominating front
pages, with concerns about the spread of false information –
and the role of social media – leading to multiple government
investigations.[38]

As our awareness of contagion increases, many of the ideas
honed in the study of infectious diseases are now translating to
other types of outbreaks. After the 2008 financial crisis,
central banks latched onto the idea that the structure of a
network could amplify contagion, a theory pioneered by STI
researchers in the 1980s and 1990s. Recent efforts to treat
violence as an infection – rather than simply a result of ‘bad
people’ – echo the rejection of diseases caused by ‘bad air’ in
the 1880s and 1890s. Concepts like the reproduction number
are helping researchers quantify the spread of innovations and
online content, while methods used to study pathogen
sequences are revealing the transmission and evolution of
culture. Along the way, we’re finding new ways to speed up
beneficial ideas and slow down harmful ones. Just as Ronald
Ross hoped in 1916, a modern ‘theory of happenings’ is now
helping us analyse everything from diseases and social
behaviour to politics and economics.

In many cases, this has meant overturning popular notions
of how outbreaks work. Like the idea that we need to remove
every last mosquito to control malaria, or vaccinate every
person to prevent epidemics. Or the assumption that banking
systems are naturally stable and online content is highly
contagious. It has also meant hunting for new explanations:
why cases of Guillain-Barré Syndrome were appearing on



Pacific Islands, why computer viruses persist for so long, why
most ideas struggle to spread as easily as diseases.

In outbreak analysis, the most significant moments aren’t
the ones where we’re right. It’s those moments when we
realise we’ve been wrong. When something doesn’t look quite
right: a pattern catches our eye, an exception breaks what we
thought was the rule. Whether we want an innovation to take
off or an infection to decline, these are the moments we need
to reach as early as possible. The moments that allow us to
unravel chains of transmission, searching for weak links,
missing links, and unusual links. The moments that let us look
back, to work out how outbreaks really happened in the past.
Then look forward, to change how they happen in future.
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If you want to know more about the topics covered in this
book, additional suggestions for articles, papers and books are
given below. To ensure reproducibility, all data and code
required to generate the figures in the book are available from:
https://github.com/adamkucharski/rules-of-contagion/

Chapter 1

A trio of papers by Paul Fine has more information on the
theory of mechanistic modelling and resulting concepts like
herd immunity: ‘Ross’s A Priori Pathometry – A Perspective’
(Proceedings of the Royal Society of Medicine, 1975); ‘John
Brownlee and the measurement of infectiousness: an historical
study in epidemic theory’ (Journal of the Royal Statistical
Society: Series A, 1979); ‘Herd Immunity: History, Theory,
Practice’ (Epidemiological Reviews, 1993). For a more
technical description of Ross’s analysis and its legacy, see
David Smith and colleagues’ paper ‘Ross, Macdonald, and a
Theory for the Dynamics and Control of Mosquito-
Transmitted Pathogens’ (PLOS Pathogens, 2012).

Chapter 2

Donald MacKenzie and Taylor Spears’s paper ‘“The
Formula That Killed Wall Street”?: The Gaussian Copula and
the Material Cultures of Modelling’ (2012) provides a useful
oral history of the models behind CDOs. Liar’s Poker: Rising
Through the Wreckage on Wall Street (W. W. Norton &
Company, 1989) and The Big Short: Inside the Doomsday
Machine (W. W. Norton & Company, 2010) by Michael
Lewis, written twenty years apart, explain how mortgage
trading started and the chaos it would later cause. When
Genius Failed: The Rise and Fall of Long-Term Capital
Management by Roger Lowenstein (Random House, 2000)
covers the collapse of the titular hedge fund.

Seeking the Positives: A Life Spent on the Cutting Edge of
Public Health by John Potterat (CreateSpace, 2015) gives
more details of his work on how social networks shape



outbreaks of gonorrhoea and other STDs. For a technical
overview of disease modelling, Modelling Infectious Diseases
in Humans and Animals (Princeton University Press, 2007) by
Matt Keeling and Pej Rohani had been an essential textbook
for me ever since I first read it as an undergraduate.

Andy Haldane’s speech ‘Rethinking the Financial Network’
(Bank of England transcript, 2009) was a timely discussion of
the links between ecology, epidemiology and financial
markets. His later paper with Robert May, ‘Systemic risk in
banking ecosystems’ (Nature, 2011), expanded on these ideas
with more technical details.

Chapter 3

Connected: The Amazing Power of Social Networks and
How They Shape Our Lives by Nicholas Christakis and James
Fowler (HarperPress, 2011) describes research into dynamics
of social networks, including their studies on the spread of
obesity and other characteristics. Their subsequent paper
‘Social contagion theory: examining dynamic social networks
and human behavior’ (Statistics in Medicine, 2013) discusses
the criticisms of their research, and the technical challenges
involved in estimating social contagion. Damon Centola’s
book How Behavior Spreads: The Science of Complex
Contagions (Princeton University Press, 2018) covers his
work on complex contagion, as well as other insights from
large-scale studies of behaviour. ‘Randomized experiments to
detect and estimate social influence in networks’ by Sean
Taylor and Dean Eckles (Complex Spreading Phenomena in
Social Systems, 2018) is a useful technical review of
approaches for studying social contagion.

Further insights from the NATSAL studies can be found in
David Spiegelhalter’s book Sex by Numbers: What Statistics
Can Tell Us About Sexual Behaviour (Wellcome Collection,
2015). ‘Culture and cultural evolution in birds: a review of the
evidence’ by Lucy Aplin (Animal Behaviour, 2019) provides
an overview of cultural development in animals, with a focus
on birds.

Chapter 4



For more discussion and case studies about the spread of
violence, including contributions from Carl Bell, Gary Slutkin
and Charlotte Watts, see the papers published in Contagion of
Violence: Workshop Summary, part of the Forum on Global
Violence Prevention (The National Academies Collection,
2013).

Smallpox: The Death of a Disease – The Inside Story of
Eradicating a Worldwide Killer by D.A. Henderson
(Prometheus, 2009) has a first-hand account of how contact
tracing and ring vaccination was deployed to eradicate
smallpox. Neil Ferguson and colleagues’ paper ‘Planning for
smallpox outbreaks’ (Nature, 2003) covers ways to model
smallpox and other emerging infections, as well as their
limitations. ‘Avoidable errors in the modelling of outbreaks of
emerging pathogens, with special reference to Ebola’ by
Aaron King and colleagues (Proceedings of the Royal Society
B, 2015) provides a technical description of some potential
pitfalls in forecasting infectious disease outbreaks.

Weapons of Math Destruction: How Big Data Increases
Inequality and Threatens Democracy by Cathy O’Neil
(Penguin, 2016) highlights the inherent prejudices and biases
in many commonly used algorithms, including ones used in
policing. Hello World: How to be Human in the Age of the
Machine by Hannah Fry (Penguin, 2019) has more on the roles
– and risks – of algorithms in modern life.

Chapter 5

Duncan Watts’ book Everything is Obvious: Why Common
Sense is Nonsense (Atlantic Books, 2011) has some useful
insights into the challenges of understanding and predicting
social behaviour online. His later paper with Jake Hofman and
Amit Sharma, ‘Prediction and explanation in social systems’
(Science, 2017), elaborates on the technical aspects of this
research. Justin Cheng and colleagues’ paper ‘Do Diffusion
Protocols Govern Cascade Growth?’ (AAAI, 2018) provides a
data-driven breakdown of the components of the reproduction
number of online content. The Facebook Research archive
(https://research.fb.com/publications) has a host of other



papers further examining the spread of behaviour and content
online.

Whitney Phillips’s report The Oxygen of Amplification:
Better Practices for Reporting on Extremists (Data & Society,
2018) provides a valuable summary of media manipulation
efforts, and potential ways to overcome these. Zucked: Waking
Up to the Facebook Catastrophe (HarperCollins, 2019) by
Roger McNamee discusses the downsides of social media
platforms, including more details on the work of Tristan Harris
and Renée DiResta. ‘Protecting elections from social media
manipulation’ by Sinan Aral and Dean Eckles (Science, 2019)
has suggestions for ways to rigorously measure online
manipulation and the potential implications for elections.

Chapter 6

For more on the origins and legacy of Mirai attack, see
Garrett Graff’s pair of articles for Wired: ‘How a Dorm Room
Minecraft Scam Brought Down the Internet’ (2017) and ‘The
Mirai Botnet Architects Are Now Fighting Crime With the
FBI’ (2018). Landmark papers such as ’Computer Viruses –
Theory and Experiments’ by Fred Cohen (1984) and ‘How to
0wn the Internet in Your Spare Time’ by Stuart Staniford and
colleagues (Proceedings of the 11th USENIX Security
Symposium, 2002) have more technical details on the history
of viruses and worms. Linked: The New Science of Networks
by Albert-László Barabási (Perseus, 2002) describes the
history of network theory, including how networks shape
malware outbreaks.

Chapter 7

‘Towards a genomics-informed, real-time, global pathogen
surveillance system’ by Jennifer Gardy and Nick Loman
(Nature Reviews Genetics, 2018) reviews how sequencing
tools can be used to diagnose and track diseases. ’Outbreak
analytics: a developing data science for informing the response
to emerging pathogens’ (Philosophical Transactions of the
Royal Society B, 2019) explores the uses of data science
during outbreaks, as well as areas for improvement.



Anthony Tockar’s original two Neustar blog posts,
‘Differential Privacy: The Basics’ and ‘Riding with the Stars:
Passenger Privacy in the NYC Taxicab Dataset’, are worth
reading for a more detailed description of the New York Taxi
analysis and its implications (available from:
https://research.neustar.biz). Bit By Bit: Social Research in the
Digital Age by Matthew Salganik (Princeton University Press,
2018) provides a thoughtful overview of the ethical and logical
issues involved in modern social behaviour research.

Chapter 8

David Sumpter’s book Outnumbered: From Facebook and
Google to Fake News and Filter-bubbles (Bloomsbury, 2018)
assesses the statistical plausibility of claims about online
algorithms, with a particular focus on the Cambridge
Analytica scandal. Getting to Zero: A Doctor and a Diplomat
on the Ebola Frontline by Sinead Walsh and Oliver Johnson
(Zed Books, 2018) gives a first-hand account of the politics,
logistics and human cost involved in responding to the West
Africa Ebola epidemic.
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