


Programmed Cell Death in Cancer 
Progression and Therapy



ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY

Editorial Board:

NATHAN BACK, State University of New York at Buffalo

IRUN R. COHEN, The Weizmann Institute of Science

ABEL LAJTHA, N.S. Kline Institute for Psychiatric Research

JOHN D. LAMBRIS, University of Pennsylvania

RODOLFO PAOLETTI, University of Milan

Recent Volumes in this Series

Volume 607
EUKARYOTIC MEMBRANES AND CYTOSKELETON: ORIGINS AND EVOLUTION

Edited by Gáspár Jékely

Volumes 608
BREAST CANCER CHEMOSENSITIVITY

Edited by Dihua Yu and Mien-Chie Hung

Volume 609
HOT TOPICS IN INFECTION AND IMMUNITY IN CHILDREN VI

Edited by Adam Finn and Andrew J. Pollard

Volume 610
TARGET THERAPIES IN CANCER

Edited by Francesco Colotta and Alberto Mantovani

Volume 611
PETIDES FOR YOUTH

Edited by Susan Del Valle, Emanuel Escher, and William D. Lubell

Volume 612
RELAXIN AND RELATED PETIDES

Edited by Alexander I. Agoulnik

Volume 613
RECENT ADVANCES INTO RETINAL DEGENERATION

Edited by Joe G. Hollyfield, Matthew M. LaVail, and Robert E. Anderson

Volume 614
OXYGEN TRANSPORT TO TISSUE XXIX

Edited by Kyung A. Kang

Volume 615
PROGRAMMED CELL DEATH IN CANCER PROGRESSION AND THERAPY

Edited by Roya Khosravi-Far and Eileen White

A Continuation Order Plan is available for this series. A continuation order will bring delivery of each 
new volume immediately upon publication. Volumes are billed only upon actual shipment. For further 
information please contact the publisher.



Roya Khosravi-Far • Eileen White

Programmed Cell Death 
in Cancer Progression 
and Therapy



ISBN 978-1-4020-6553-8  e-ISBN 978-1-4020-6554-5

Library of Congress Control Number: 2007937291

© 2008 Springer Science + Business Media B.V.
No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any 
means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written 
 permission from the Publisher, with the exception of any material supplied specifically for the purpose 
of being entered and executed on a computer system, for exclusive use by the purchaser of the work.

Printed on acid-free paper.

9 8 7 6 5 4 3 2 1

springer.com

Roya Khosravi-Far Eileen White
Harvard Medical School Rutgers University
Boston, MA Piscataway, NJ
USA USA



Dedication

We dedicate this book to three deserving groups. First, our families for their support 
and encouragement, Simin, Ghasem, Reza and Ali Khosravi-Far, and Greg, Jason and 
Melissa Diamond. Second, to our students, fellows and assistants, who with their hard 
work pave the road to discovery. Last but not least, to anyone who has been touched 
by cancer, as they are our motivation for this work and for our research.



Contents

Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Contributors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xi

Chapter 1 Cell Death: History and Future . . . . . . . . . . . . . . . . . . . . . . . .  1
Zahra Zakeri and Richard A. Lockshin

Chapter 2 Caspase Mechanisms  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13
Guy S. Salvesen and Stefan J. Riedl

Chapter 3 The Mitochondrial Death Pathway. . . . . . . . . . . . . . . . . . . . . .  25
Anas Chalah and Roya Khosravi-Far

Chapter 4  Apoptotic Pathways in Tumor Progression 
and Therapy  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  47
Armelle Melet, Keli Song, Octavian Bucur, Zainab Jagani, 
Alexandra R. Grassian, and Roya Khosravi-Far

Chapter 5 Therapeutic Targeting of Death Pathways in Cancer: 
Mechanisms for Activating Cell Death in Cancer Cells . . . . .  81
Ting-Ting Tan and Eileen White

Chapter 6  Overcoming Resistance to Apoptosis in 
Cancer Therapy  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  105
Peter Hersey, Xu Dong Zhang, and Nizar Mhaidat

Chapter 7 Trail Receptors: Targets for Cancer Therapy . . . . . . . . . . . . .  127
Robin C. Humphreys and Wendy Halpern

Chapter 8 Rational Design of Therapeutics Targeting the BCL-2 
Family: Are Some Cancer Cells Primed for Death 
but Waiting for a Final Push? . . . . . . . . . . . . . . . . . . . . . . . . . .  159
Victoria Del Gaizo Moore and Anthony Letai

vii



 Chapter 9 Autophagy and Tumor Suppression: Recent Advances 
in Understanding the Link between Autophagic 
Cell Death Pathways and Tumor Development. . . . . . . . . . .  177
Shani Bialik and Adi Kimchi

Chapter 10 Regulation of Programmed Cell Death 
by the P53 Pathway  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  201
Kageaki Kuribayashi and Wafik S. El-Deiry

Chapter 11  Regulation of Programmed Cell Death by NF-kB
and its Role in Tumorigenesis and Therapy  . . . . . . . . . . . . .  223

  Yongjun Fan, Jui Dutta, Nupur Gupta, Gaofeng Fan, 
and Céline Gélinas

Chapter 12  Targeting Proteasomes as Therapy in Multiple 
Myeloma  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  251

  Dharminder Chauhan, Teru Hideshima, 
and Kenneth C. Anderson

Chapter 13  Histone Deacetylase Inhibitors: Mechanisms 
and Clinical Significance in Cancer: HDAC 
Inhibitor-Induced Apoptosis  . . . . . . . . . . . . . . . . . . . . . . . . . .  261

  Sharmila Shankar and Rakesh K. Srivastava

Chapter 14  RNA Interference and Cancer: Endogenous 
Pathways and Therapeutic Approaches . . . . . . . . . . . . . . . . .  299

  Derek M. Dykxhoorn, Dipanjan Chowdhury, 
and Judy Lieberman

Chapter 15 Cancer Stem Cells and Impaired Apoptosis  . . . . . . . . . . . . .  331
  Zainab Jagani and Roya Khosravi-Far

Index  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  345

viii Contents



Foreword

Apoptosis is a tightly regulated cell-suicide program that plays an essential role in 
development and maintenance of tissue homeostasis by eliminating unnecessary or 
harmful cells. Impairment of this native defense mechanism of the cell promotes 
uncontrolled growth and frequently confers chemoresistance to tumor cells. Substantial
progress has been made in the elucidation of several of the underlying mechanisms 
of apoptotic signaling and their dysregulation in cancer. These advances have facili-
tated the identification of new drug targets for promising apoptosis-inducing 
therapeutic strategies. Several of the novel therapeutic agents directed against these 
targets demonstrate enhanced apoptotic killing and sensitize resistant cancer cells 
to antineoplastic agents.  As a number of these agents have entered the clinic and 
more are in the pipeline, this is an exciting time for reaping the benefits of years of 
basic science discoveries through their translation into cancer therapies.  

In this book, the regulation of apoptotic signaling in normal cells and the means 
by which this protective response is suppressed in cancer cells will be discussed. In 
addition, the novel apoptosis-inducing therapeutic strategies will be summarized.  
We hope that this book will be a useful source for scientists and clinicians. 
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Chapter 1
Cell Death: History and Future

Zahra Zakeri* and Richard A. Lockshin

Abstract Cell death was observed and understood since the 19th century, but there 
was no experimental examination until the mid-20th century. Beginning in the 1960s, 
several laboratories demonstrated that cell death was biologically controlled (pro-
grammed) and that the morphology was common and not readily explained (apopto-
sis). By 1990, the genetic basis of programmed cell death had been established, and 
the first components of the cell death machinery (caspase 3, bcl-2, and Fas) had been 
identified, sequenced, and recognized as highly conserved in evolution. The rapid 
development of the field has given us substantial understanding of how cell death 
is achieved. However, this knowledge has made it possible for us to understand that 
there are multiple pathways to death and that the commitment to die is not the same as 
execution. A cell that has passed the commitment stage but is blocked from undergo-
ing apoptosis will die by another route. We still must learn much more about how a 
cell commits to death and what makes it choose a path to die.

Keywords apoptosis, autophagy, autophagic cell death, history, lysosome

1  Cell Death has Long been Recognized as an Important 
Biological Problem

Cell death was seen and reported as early as 1842 by Carl Vogt (see Clarke and 
Clarke, 1996) although at that time it was not called cell death. Cell death was reco-
gnized almost as soon as the normal form of a living cell was understood, i.e., by the 
middle of the 19th century. If a living being can die, it is reasonable to watch a cell 

Zahra Zakeri
Department of Biology, Queens College and the Graduate Center of the City University 
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2 Z. Zakeri and R. A. Lockshin

die. Thus, the first histologists recognized dying cells. They even recognized mor-
phologies of death that one would today describe as apoptosis. Much of the work in 
the 19th century relied on the histological identification of dying cells with limited 
recognition of its importance and regulation. This history is well described by Clarke 
and other authors in a number of reviews (Clarke and Clarke, 1995, 1996; Häcker 
and Vaux, 1997; Lockshin and Zakeri, 2001). What is more interesting is to see 
when scientists began to appreciate that death was not an accident. In other words, 
at a certain time the phrase “cells that die are replaced by mitosis” was transformed 
into “cells die, and they are then replaced by mitosis” (the emphasis changed: it is 
no longer that an accident is repaired by an organized act, but that the organized step, 
i.e., cell suicide, is followed by a repair process). With the change in emphasis also 
came the observation that cell death could not be an abnormal event.

It became obvious that the death of cells seen during metamorphosis of amphibians 
or insects could not be considered abnormal (Terre, 1889; Janet, 1907; Pérez, 1910). 
However, the idea that the death was under some sort of control came much later. The 
great insect physiologist V. B. Wigglesworth well understood that the growth and dis-
appearance of muscles in the blood-sucking insect Rhodnius prolixus depended on 
molting and thus on molting hormones (Wigglesworth, 1972). But the importance and 
generalization of that idea dates only from the middle of the 20th century.

2  The Mechanism of Cell Death Becomes 
a Question of Interest

Much of the realization and generalization of the appearance of cell death was 
reported by the developmental biologists. Starting in the 1950s, A. Glücksmann 
assembled a long list of instances of cell death, which he classified according to 
their function (Glücksmann, 1951, 1965). His classifications were heavily teleolog-
ical, based on the presumed value to the organism (elimination of vestigial organs, 
scaffolding or basis for construction of a secondary organ, metamorphic loss of 
structure, etc.). The value of these reports was that they established the common-
ness and reproducibility of cell death as a biological activity. Certainly, the implica-
tion was that the deaths derived in some manner from the organization of the 
animal, but he did not specifically argue a physiology of cell death. It was John 
Saunders who really began the experimental phase. His experiments were very 
simple but revealing. From his transplantation experiments using the wing of a 
chick embryo, he concluded that the cells in the designated area were condemned 
to die but were neither dead nor moribund: hence he noted: “The death clock is 
ticking” (Saunders, 1966).

At the same time, Richard Lockshin, working in the laboratory of Carroll M. 
Williams, on the disappearance of muscles in the large American silkmoths, noted 
the activation of lysosomes (at the time recently discovered) just before the death 
of the muscles and the dependency of both the death and the activation of lyso-
somes on the action of hormones (Lockshin and Williams, 1964, 1965a–d). It was 
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evident that the death of the muscles followed a biological plan and they described 
the plan as a program and the process, programmed cell death. Later, following the 
lead of Jamshed Tata (1966), who studied pieces of tadpole tail in culture, they 
observed a need for protein synthesis for the execution of death (Lockshin, 1969), 
and Jacques Beaulaton and Richard Lockshin described the morphology of dying 
cells and of those protected from death (Beaulaton and Lockshin, 1977, 1978; 
Lockshin and Beaulaton, 1974a, b, 1979). The phrase programmed cell death was 
very much in style, and was readily accepted by the handful of biologists who 
worked on the subject.

A few years after the establishment of the term programmed cell death, John 
Kerr, an Australian pathologist working with A.R. Currie, and a postdoctoral fel-
low named Andrew Wyllie noted that dying cells in tadpole tail, epidermis, thymus, 
tumors, and other tissues resembled each other: they were rounded, dense, with 
blebs, and with rounded or fragmented nuclei, and the chromatin was very con-
densed and pushed against the nuclear membrane. The curiosity was striking for 
not only did they resemble each other, but also their morphology was difficult to 
explain. (Kerr, 1971; Kerr et al., 1972; Kerr and Harmon, 1991).

A necrotic cell (to use today’s terminology) is easily explicable: without oxygen 
or energy, the cell ferments. Lactate accumulates in the cell and draws in water by 
osmotic pressure. Soon the cell explodes. It is much more difficult to explain how a 
cell shrinks. The shrinkage presumes either a loss of osmoles or an expulsion of water 
by hydrostatic pressure (Lockshin and Beaulaton, 1981). Later, it was calculated that 
the force exerted by the cytoskeleton was not enough to expel the water, and John 
Cidlowski explained the loss of osmolality (Bortner and Cidlowski, 2002). Kerr, 
Wyllie, and Currie chose the name “apoptosis” for that generalized form of death, 
thus indicating three things: (1) the form of death was general and common; (2) it 
suggested a very interesting physiology of death; and (3) death perhaps followed a 
ritual as well disciplined as birth, i.e., mitosis (Kerr et al., 1972). Still the field 
remained quiet. What catapulted the field of studying cell death was the recognition 
of its role and the morphology of apoptosis in cancer, which is the focus of this book. 
After 36 years, we readily accept that, for homeostasis to function, it is certainly nec-
essary for both birth and death to be regulated.

It is not worth the trouble to insist too much on the distinction between “pro-
grammed cell death” and “apoptosis.” At first, “programmed cell death” described 
a process, whereas “apoptosis” described a morphological conformation. The 
former term was used primarily in development, whereas the latter often referred 
to pathological situations. The implication of a requirement for synthesis of 
protein or mRNA for programmed cell death was vehemently argued for the case 
of apoptosis. Today, however, both terms are used in an essentially interchange-
able fashion, and to insist like a scholastic on the purity of the terms no longer 
makes sense. It is also true that to explain a phenomenon by saying “the loss of 
cells is by apoptosis” does not say anything more than “the loss of cells is by 
cell death.” As described below, we now understand that apoptosis is perhaps 
the most efficient means of cell destruction, but there are others; not all deaths 
are apoptotic, and if apoptosis is blocked, the cell may default to an alternative 
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pathway. Today it is not only acceptable but also fashionable to describe some 
deaths as nonapoptotic or to use other names to describe cell death.

It is therefore more important to explain how apoptosis occurs and the trigger 
that launches it. For that story we are indebted to Robert Horvitz and his little 
worms.

3 The Genetics of Cell Death Reveals the Physiology

The first big step was taken when Brenner, Sulston, and others traced the embry-
onic descent of each cell in the nematode worm Caenorhabditis elegans. Horvitz 
and colleagues, among others, showed that all the cell deaths in the embryo (13% 
of the cells, 131 total) were under the control of a handful of genes, which they 
named ced (cell death defective, after the mutant phenotype). The activity of the 
ced genes was regulated by ces (cell death selection) genes. These results were very 
interesting, but the discovery, shortly thereafter, that one gene encoded a type of 
restriction protease, a CASPase (cysteinyl protease cleaving at the carboxyl side of 
an aspartic acid) was earthshaking. First, one now had the first mechanism of death; 
and second, the gene was conserved from worm to mammal (Horvitz, 2003). Its 
function was therefore obviously important. This recognition was quickly followed 
by the identification of substrates and homologous genes in mammals and the reali-
zation that mutations of these and other cell death genes were at the origin of dif-
ferent cancers. Thus began the excitement that led by mid-2006 to over 180,000 
publications. But the explosion of interest is also due to the realization that cell 
death is an important component of diseases such as neurodegenerative diseases 
(Lang-Rollin et al., 2003; Tolkovsky et al., 2004), acquired immune deficiency 
syndrome (AIDS) (Ameisen and Capron, 1991), cancers (Yonish-Rouach et al., 
1993), and immunologic diseases (Golstein et al., 1995a, b; Nagata and Golstein, 
1995; Golstein, 1997).

4  The Activation of Cell Death is a Decision by a Cell, 
but the Decision is made Based on the Type of Cell; 
Activities by its Neighboring Cells; Nutrients, Kinins, 
Growth Factors, and Other Components of its 
Environment; and the Past History of the Cell

We know today the events taking place during the process of apoptosis, and the 
sequence of the activation of enzymes and the molecular partners that encourage or 
block apoptosis. These stories are worth telling and constitute a major section of 
this book. However, they are far from the entire story, because in many situations 
either the components do not change in amount or only a fraction of supposedly 
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identical cells die in response to challenge. The decision to commit suicide is always 
very delicate and depends on many factors beyond the machinery itself. B-cell lym-
phoma can be caused by the transposition and activation of the antiapoptotic gene 
bcl-2, but in the lymphoma the pre-caspases are still present and can be activated by 
more intense challenge. This is also true for the p53-type cancers: the cancerous 
cells persist certainly not because of the failure of apoptosis, but because apoptosis 
is invoked only at a very high threshold of challenge. We have much to learn about 
the establishment of the threshold. By the same token, in cell culture, when cells 
are subjected to a modest challenge, the destiny of sister cells is always very varia-
ble as a function of time or sensitivity to dose of toxin or other inducer of cell death. 
As the 19th-century physiologist Claude Bernard remarked: “Life is the result of 
contact between the organism and the milieu; we cannot comprehend it by the 
organism itself, no more than by the environment alone.” The activation of the 
death pathway is a type of positive feedback in which the threshold is vigorously 
defended, but once passed, death progresses without recourse. This threshold may 
be marked by the activation of caspases or of caspase-3. Thanks to many investiga-
tors, we know the partners of the apoptosome and the competition that determines 
their assembly and activation, but what do we still not know? What is the role of 
adenosine triphosphate (ATP), guanidine triphosphate (GTP), ceramide, NO, pros-
taglandin, and other resources of metabolism? How do the more sensitive and less 
sensitive cells differ? What makes in the same environment one cell more sensitive 
and the other more resistant? Why is it that much of our effort to block cell death 
only delays the event and that 100% block of cell death is less attainable?

5  It is Easy to Categorize, but Harder to Live 
with Intermediates or Ambiguity

We human beings love names and categories. A child who asks five times per 
minute “What is that?” is generally satisfied if one gives him or her the name of the 
object. We readily classify everything: “Is it a boy or a girl? Animal or vegetable?” 
“Are his politics to the left or the right?” We tolerate ambiguity very poorly. Thus, 
we had apoptosis vs necrosis. Then we found that there are intermediates, and more 
complex deaths. There have been several efforts to reduce confusion by describing 
and defining intermediate or alternative forms of cell death (see, e.g., Jaattela, 
2004; Sperandio et al., 2004; Kroemer et al., 2005). While these efforts have some 
value in clarifying concepts, occasionally there is a sense that square pegs are being 
forced into round holes, and that the focus really needs to be on the process and the 
physiology. When all is said and done, what we are examining is more often than 
not a corpse, and this corpse may be the result of concurrent or sequential events, 
some of which may have been aborted or failed to conclude. One very common 
error is to suppose that there are only one, two, or three forms of death. But one 
does not need an instruction manual to die. If caspases are inhibited when cells are 
exposed to a very strong toxin, the cells will die, but the death demonstrates neither 
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the existence of a second pathway to death nor the absence of a caspase pathway. 
If a toxin blocks, for example, all sources of energy, or the possibility of protein 
synthesis, the cell is going to die. For example, there are many reports that an 
embryo, before the point at which it begins to synthesize its own RNA, resists 
apoptosis (Hensey and Gautier, 1997, 1999; Negron and Lockshin, 2004). We find 
that such an embryo, exposed to cycloheximide, does not display a single morpho-
logical sign of apoptosis. Nevertheless, it activates caspase 3 at the same time as an 
older embryo would, though the cells of an older embryo would become apoptotic. 
The difference is that the cells of the younger embryo burst, necrotic, immediately 
after the activation of caspase 3, whereas the older cells survive another 90 min and 
thus have the time to transform themselves into apoptotic cells. It is therefore a 
weakness (of uncertain origin) of the younger cells so that they cannot reach the 
stage of apoptosis (Negron and Lockshin, 2004).

What is possible is that the most efficient pathway is the one preferred by the 
menaced cell and is determined by the nature of the cell, the agent that induces cell 
death, the environment and history of the cell, and much more. We see cells that 
consume the bulk of their cytoplasm before dying, in a form of death that is called 
“autophagic cell death” but we do not know if the autophagy in this situation differs 
in character from the autophagy seen in a starving cell (a protective autophagy, not 
necessarily fatal). We also do not know if death by autophagy is not more correctly 
described as an autophagy that continues without resolution, perhaps terminated by 
an apoptotic death. In the case of insect metamorphosis, it is possible that an acti-
vated autophagic process terminates by apoptosis. For example, the metamorphic 
death of labial glands or salivary glands (homologous organs in moths and flies, 
respectively) is well known as an autophagic type II cell death (Zakeri et al., 1993). 
At the beginning of metamorphosis, there is an activation of lysosomes and an 
expansion of the autophagic compartment. The bulk of the cytoplasm is eliminated 
without intervention of phagocytes, and without indication of any sign of apoptosis – 
no DNA fragmentation, no coalescence or margination of chromatin, no exteriori-
zation of phosphatidylserine, no activation of caspases (even though the cells 
contain caspase genes). The death is therefore purely manifested by increased activ-
ity of autophagy, for instance, the death of a cell of mammary epithelium (Zakeri 
et al., 1995). But at the end (4th of 5 days for disappearance of the labial gland of 
Manduca sexta; 12th of 13.5 h for disappearance of the labial gland of Drosophila) 
one sees: cleavage of DNA, exteriorization of phosphatidylserine, coalescence and 
margination of chromatin, cleavage of caspase substrates. It would seem as if, for 
bulky, cytoplasm-rich cells, outside of the mitotic cycle, the elimination of cyto-
plasm is the priority, and this occurs by autophagy. For the moment, we do not 
know if this autophagy differs from an autophagy provoked by the lack of nourish-
ing substrates in the milieu. In this case, autophagic death would not be death by 
autophagy, but autophagy activated by an unknown failure of the cell, with apop-
tosis being activated only when the autophagy had carried the cell beyond the point 
at which it could survive. For instance, in sympathetic neurons deprived of nerve 
growth factor, the autophagy and the threatened death of the cell is reversible until 
the mitochondria have been consumed (Xue et al., 1999, 2001; Zakeri and Lockshin, 
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2002, 2004; Lockshin and Zakeri, 2004a–c; C.O. B. Facey and R.A. Lockshin, in 
preparation). This argument would be consistent with observations of others empha-
sizing the protective role of autophagy: that inactivation of autophagy genes disrupts 
the formation of dauer larvae in Caenorhabditis (Melendez et al., 2003); the neonatal 
death of mice that lack Atg5, during the time that they must switch from placental 
nourishment to milk (Kuma et al., 2004); and the importance of autophagy in pro-
longing the life of cells deprived of growth factors (Boya et al., 2005; Lum et al., 
2005). If such cells are not rescued, they die with a morphology typically described 
as autophagic cell death, with DNA fragmentation occurring very late if at all 
(Okada and Mak, 2004; Kroemer et al., 2005). One draws from this discussion 
the following arguments. First, apoptosis or programmed cell death is a very 
important and well-regulated process; it is not the event once considered to be 
passive. Second, in an acute situation a temporary protection against cell death, 
or in which one wishes to kill certain cells, interference with apoptosis prom-
ises a good outcome. But in more chronic situations, such as neurodegenera-
tion, diseases such as AIDS or autoimmune disease, blocking apoptosis only 
allows alternative pathways to be exposed, and at the end of the day the cell will 
die. What is threatening the cell, and the limit to which it can be pushed before 
it invokes the death sequence, are questions that still must be resolved. 
Similarly, when one wishes to activate cell death as in cancer, the cell resources 
become a major consideration and one must examine very carefully the issue of 
specific targeting.

6 Where are We Now? Do We Know Where We are Going?

The aim of this chapter is not to review the over 180,000 publications on cell death, 
but to emphasize that several of our most favored arguments are based on some-
what tenuous ground and that we should not avoid the ambiguities. The value of 
this book is that the several authors confront these ambiguities and the options that 
we perceive today. The longer one works as a scientist, the more suspicious one 
becomes of predictions: there are always surprises, and we all remember instances 
such as very renowned professors being oblivious to about-to-break ideas such as 
clonal selection. Thus, it seems inappropriate if not self-destructive to attempt to 
imagine the next 5 or 10 years. Nevertheless, there are several themes that can be 
recognized as important for current research:

● The regulation of cell death is an important factor in disease. An important and 
even determining factor in many cancers is the reluctance of the affected cells to 
die on schedule, usually by mutation of genes in the cell death pathways; and in 
other diseases, the pathology is exacerbated or caused by the suicide of cells that 
appear to be capable of surviving.

● One cannot address these deaths simply by focusing on the direct apoptosis 
pathway. In many situations such as the p53- and bcl-2-driven cancers, the 
effectors (initiator and effector caspases) are in place but are not activated at 
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the appropriate time. In other situations, the affected cell is in dire straits and 
blocking caspases simply allows the cell to die by other means, or to persist 
in a nonfunctional zombie-like state, alive but incapable of fulfilling its 
physiological role.

● It is important therefore to consider apoptosis, or cell death in general, as 
more of a symptom or result than as a process, and to learn more about what 
in the environment or the history of the cell initiates the process. After all, in 
a community, murder and suicide rates are statistics, but they are only statis-
tics revealing an underlying social pathology. Controlling access to guns may 
have value, but if this move simply diverts the pathology to knives and poi-
son, the issue is not resolved. Similarly, blocking apoptosis, particularly in 
the acute situation, may provide real benefit, but more often the problem will 
persist. If, for instance, bystander cells cross the threshold to suicide in AIDS, 
will more aggressive positive support such as lymphokines help keep them 
below the threshold? Can one disrupt the Fas–FasL interaction that triggers 
receptor-mediated death? What effect will such disruption have on the physio-
logy of the organism?

● Similarly, in situations such as neurodegenerative disease, cells are clearly ago-
nizing over extended periods of time before they ultimately fail. Almost cer-
tainly, if one blocks the immediate executioner, the cells will still be agonizing 
and will probably die using other pathways, or remain alive in a weakened and 
poorly functional state. The question is far more to disrupt the process: to rec-
ognize the causes of stress on the cell, and to relieve the stress or support the cell 
so that it can better resist the stress.

● Activation of apoptosis as an oncolytic intervention will require considerable 
subtlety. Certainly, specific activation of apoptosis in cancer, especially dissem-
inated cancer, is theoretically very interesting, because it promises to be 
considerably less toxic than systemic antimetabolites or antimitotics. However, 
most cancer cells are not dangerous because they have lost the death effector 
machinery; for one reason or another, they have increased their threshold to 
activating it. Thus, any efforts to address these cancers will have to reach the 
malignant cells in a highly specific and targeted manner.

● Large, postmitotic, cytoplasm-rich cells including postweaning mammary 
epithelium and postcastration prostatic epithelium undergo substantial 
autophagy prior to dying, in what has been called autophagic cell death. We 
need to understand whether the autophagy is a death process or an agony, and 
what the threshold and point of no return are. If the autophagy represents an 
agony, we need to know why, for instance, insect larval tissue appears to be 
agonizing during metamorphosis, when the blood is filled with available nutri-
ents. If we can recognize and relieve agony in threatened cells that it is desira-
ble to maintain, we will have accomplished much without directly manipulating 
the cell death pathway.

● Perhaps the nicest element of the following chapters is that they emphasize proc-
ess rather than cell death itself. This seems to be the pathway leading to the most 
important growth in the field, since we still have much to learn.
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Chapter 2
Caspase Mechanisms

Guy S. Salvesen* and Stefan J. Riedl

Abstract The main effectors of apoptosis encompass proteases from the caspase 
family, which reside as latent precursors in most nucleated animal cells. The 
apoptotic caspases constitute a minimal two-step signaling pathway. The apical 
(initiator) caspases are activated within oligomeric signaling complexes in response 
to apoptotic stimuli. Their mechanism of activation probably results from prox-
imity-induced clustering to the dimeric active forms. Once activated, the apical 
caspases directly activate the executioner (effector) caspases by limited proteolytic 
cleavage. The distinct activation mechanisms explain how an apoptotic stimulus 
is converted to proteolytic activity, and how this activity is amplified to allow for 
limited proteolysis of the dozens of protein substrates whose cleavage is required 
for efficient apoptosis.

Keywords apoptosome, caspase, DISC, IAP, inhibition, protease, zymogen

1 Apoptosis and Limited Proteolysis

Apoptosis is a mechanism to regulate cell number, and is vital throughout the life 
of all metazoan animals. Although several different types of biochemical events 
have been recognized as important in apoptosis, perhaps the most fundamental is 
the participation of the caspases1–3 – a family of proteases found in multicellular 
animals. The name caspase comes from cysteine-dependent aspartate-specific 
 protease,4 thus their enzymatic properties are governed by a stringent specificity for 
protein substrates containing Asp, and by the use of a Cys side chain for catalyzing 
peptide bond cleavage. The use of a Cys side chain as a nucleophile during peptide 
bond hydrolysis is common to several protease families. However, the primary 
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specificity for Asp turns out to be very rare among proteases throughout biotic 
kingdoms. Of all known mammalian proteases only the caspase activator granzyme 
B, a serine protease, has the same primary specificity.5, 6 Caspases cleave a number 
of cellular proteins,7, 8 and the process is one of limited proteolysis where a small 
number of cuts, usually only one, are made. Sometimes cleavage results in activa-
tion of the protein, sometimes in inactivation, but presumably not in degradation 
since their substrate specificity distinguishes the caspases as among the most 
restricted of endopeptidases. This is an important distinction from the other 
cytosolic proteases such as the proteasome, which permits signaling by wholesale 
destruction of regulatory proteins such as IκB in NFκB signaling and PDS1 in ana-
phase promotion,9 or calpains, whose specificity has pretty much defied analysis in 
vivo so far.10

2 Caspase Signaling

A consensus view of caspases places them in two main groups. First are the 
cytokine activators (inflammatory caspases) related to caspase-1, probably includ-
ing mouse caspase-11 and its orthologs caspase-4 and caspase-5 in humans. Their 
role is to respond to infection by rapidly converting active cytokines (IL-1β,
IL-18) from intracellular stores. Confirmation of the important roles of the 
caspases in the inflammatory cytokine response comes from gene ablation experi-
ments in mice. Animals ablated in caspase-1 or caspase-11 are deficient in 
cytokine processing,11, 12 but without any overt apoptotic phenotype. The second 
group constitutes the apoptotic caspases that transduce and execute death signals. 
The phenotypes of these knockouts are very gross, usually antiapoptotic, and vary 
from early embryonic lethality to perinatal lethality to relatively mild with defects 
in the process of normal oocyte ablation.13, 14 Researchers in the area have placed 
the apoptotic caspases in two converging pathways, such that some are activated 
by others (Fig. 2.1). The core pathways probably represent the minimal apoptotic 
program, and certainly its simplicity is complicated by cell-specific additions that 
help to fine-tune individual cell fates. Nevertheless, the basic order and at least 
some of the essential functions and, importantly, the catalytic and activation 
mechanisms are known.

2.1 Caspase Activation

In common with most proteolytic enzymes, caspases reside as latent forms 
(zymogens) that are usually activated by limited proteolysis. It is relatively easy to 
imagine that the caspases operating at the bottom of the pathway are activated by 
ones above. But the question of how the first caspase in a pathway became activated, 
how the first death signal was generated, was initially perplexing.



How exactly does a recruited zymogen become active? To understand this one 
must understand the unusual properties of caspase zymogens that set them apart 
from most other proteases. For, unlike most other proteases, simple ectopic expres-
sion of caspase zymogens in Escherichia coli usually results in their autolytic 
cleavage by limited proteolysis within a “linker segment” that separated the large 
(~20 kDa) and small (~10 kDa) subunits of the catalytic domain.15, 16 This processing 
is a consequence of intrinsic proteolytic activity residing in the caspase zymogens. 
It is not due to E. coli proteases since catalytically disabled caspase mutants fail to 
undergo processing. In vitro, apical caspase zymogens can be induced to become 
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Fig. 2.1 The framework of apoptosis. Death may be signaled through ligand enforced clustering 
of receptors at the cell surface via the extrinsic pathway, which leads to the activation of apical 
caspase-8.54 This caspase then directly activates the executioner caspase-3 and caspase-7 (and 
possibly 6), which are primarily responsible for the limited proteolysis that defines apoptotic 
dismantling of the cell. Irreparable damage to the genome caused by mutagens, pharmaceuticals 
that inhibit DNA repair, or ionizing radiation – transmitted by a mechanism thought to involve the 
release of cytochrome C from mitochondria via the intrinsic pathway – engages the same execu-
tioner caspases.55 The latter events progress through the apical caspase-9 and its cofactor Apaf-1.26

Activation of the extrinsic pathway is regulated by FLIP, which modulates the recruitment of 
caspase-8 to its adapters.56 The execution phase is regulated through direct caspase inhibition by 
XIAP, which can also regulate the active form of caspase-9. In turn, the IAPs are under the influ-
ence of antagonist proteins that compete with caspases for IAPs.44 Though other modulators may 
regulate the apoptotic pathway in a cell-specific manner, this framework is considered common to 
most mammalian cells
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active either by self-association (dimerization), and executioner caspases by proteo-
lytic processing, reviewed by Fuentes-Prior and Salvesen.17 These distinct require-
ments activation are at the heart of the processes that generate caspase activity 
in vivo.

2.1.1 The Activation Complexes

The seminal discovery that apoptotic signaling via ligation of death receptors 
required, in its most basic form, simply a transmembrane receptor, an adapter mol-
ecule and a caspase18, 19 uncovered a solution to the perplexing problem of how the 
first proteolytic signal was generated during apoptosis, since it implicated a caspase 
directly in the triggering event, as outlined below.

Extracellular ligands such as FasL and TRAIL that bind in a conventional man-
ner to the extracellular domains of transmembrane receptors trigger the extrinsic 
pathway, reviewed by LeBlanc and Ashkenazi.20 The death signal is transmitted to 
the cytosol by receptor clustering followed by recruitment of the apical caspase-8 
(Fig. 2.1). The caspase-8 paralog, caspase-10, is also an initiator in death-receptor-
mediated cell death, at least in humans (mice apparently lack a caspase-10 gene), 
although there is controversy in the literature regarding the ability of caspase-10 to 
functionally substitute for caspase-8 in death receptor signaling.21 Structural infor-
mation on the conformation adopted by the receptors in this complex is very 
sketchy, but recent data on the adaptor protein FADD,22 and homologues of cas-
pase-823, 24 suggest that activation of caspase-8 occurs at the cytosolic face of the 
cell membrane by an induced proximity mechanism (see below). The exact process 
of ligand binding and receptor oligomerization may require receptor internalization 
in addition to clustering,25 but it is clear that the death-inducing signaling complex 
(DISC) represents a common example of a typical ligand-dependent transmem-
brane signaling receptor.

The receptor of the intrinsic pathway – the apoptosome – in contrast is not a typical 
transmembrane signaling receptor.26 In the apoptosome, the cytosolic protein Apaf-127

senses the release of ligand, cytochrome C, which, upon binding to Apaf-1, triggers its 
oligomerization. As a “soluble” receptor, Apaf-1 lacks the two-dimensional arrange-
ments of transmembrane domains spanning the cell membrane, and uses another 
mechanism to generate a two-dimensional surface, or platform, for signaling. This 
process has been reviewed,28 and involves a mechanism-based oligomerization that 
uses the specialized AAA+ domain of Apaf-1 to generate a ring with sevenfold sym-
metry for the recruitment of caspase-9, the apical caspase of the intrinsic pathway.

2.1.2 Apical Caspases: Induced Proximity

Having formed a seven-membered recruitment platform, the apoptosome must now 
activate pro-caspase-9. In common with other caspases, caspase-9 is a dimer in its 
active form.29 However, pro-caspase-9 exists in cells at a concentration of ~20 nM,30



and the K
d
 for dimerization in buffers in the physiologic range is more than 50 µM

in vitro.31 The zymogen therefore must exist as a monomer under normal physio-
logic conditions in vivo (Fig. 2.2). Following formation of the apoptosome, and 
uncovering of the caspase-9-binding site on Apaf-1, the zymogen can associate 
with the activator complex.

Two hypotheses have been put forward for the activation of caspase-9. The first 
was an “allosteric model” that postulated the activation of a monomer directly by the 
apoptosome.32 The second, the “induced proximity model,” postulated that the apop-
tosome provides a platform for caspase-9 dimerization.33 The contrasting hypotheses 
have been reviewed extensively, including recent revisions of the models.34, 35
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OR Caspase-9
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Fig. 2.2 Initiator caspases: architecture and activation. (A) Initiator caspases are expressed as 
single chains, comprising one or two adaptor domain(s) belonging to the DEATH domain family at 
the N-terminus followed by a catalytic domain, which can be divided into a large and small subunit 
and a relatively long loop region between the subunits. Although they can be cleaved (as revealed, 
for example, in their crystal structures) initiator caspases, such as caspase-9, show full activity in 
their uncleaved forms, which could be due to the long linker loops between subunits. 
(B) Their activity is regulated by dimerization, instead of by cleavage. Initiator caspases exist as 
inactive monomers (top). Binding to an oligomeric platform, such as the apoptosome in the case of 
caspase-9, occurs via adaptor domains (such as CARD, caspase recruitment domain) and results in 
an induced proximity of the catalytic domains of initiator caspases. Recent results suggest that this 
leads to dimerization, which allows for the formation of a productive active site as shown here in 
the structure of cleaved, dimeric caspase-9 (bottom). Interestingly, only one of the two sites adopts 
the active form in the crystal structure of caspase-9. PDB entry: caspase-9, 1JXQ
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Significantly, unlike the executioner caspases 3 and 7, pro-caspase-9 does not 
need to be cleaved in the linker region to become active30, 36 (Fig. 2.2A). Not only 
is cleavage unnecessary, but also it is insufficient to produce an active enzyme. 
Instead, caspase-9 is activated by small-scale rearrangements of surface loops that 
define the substrate cleft and catalytic residues.29 In the induced proximity model, 
this is achieved by dimerization of caspase-9 monomers within the apoptosome,37

with the dimer interface providing surfaces compatible with catalytic organization 
of the active site (Fig. 2.2B). Consistent with the induced proximity model is the 
finding that activation of caspase-9 by the apoptosome has bimolecular kinetics, 
and that a hybrid containing the catalytic domain of caspase-8 tagged onto the 
recruitment domain of caspase-9 is also activated by the apoptosome.31 It is tempt-
ing to speculate that a similar dimerization mechanism activates the caspase-8 
zymogen to trigger the extrinsic pathway, especially since clustering of adaptors is 
critical for caspase-8 activation.22–24 Finally, we note that the induced proximity 
activation of apical caspases by dimerization may also explain the requirement for 
apoptosome-like structures, known as inflammasomes, to activate inflammatory 
caspase zymogens, reviewed in Refs.28, 38

2.1.3 Executioner Caspases: Activation by Cleavage

Once an apical caspase has become active ensuing activation of the executioners 
is more easily explained. At their cytosolic concentration in human cells, the 
caspase-3 and caspase-7 zymogens are already dimers, but they are not active 
(Fig. 2.3). Cleavage within their respective linker segments is required for acti-
vation.39, 40 Caspase-6 is not as widely studied as caspase-3 and caspase-7, but is 
classified as an executioner caspase based on its lack of a long pro-domain and its 
cleavage downstream of the initiators. The crystal structures of zymogen cas-
pase-7, active caspase-7, and inhibitor-bound caspase-7 serve as models with 
which to  rationalize the apparent conflict between the cleavage mechanism for 
executioner caspase activation and the dimerization mechanism for apical caspase 
activation.39, 40, 57 When cleaved and uncleaved caspase-7 structures are compared, 
a similar reordering of catalytic and substrate binding residues occurs as seen in 
caspase-9, so the fundamental mechanism of zymogen activation is equivalent 
(Fig. 2.3B). Only the driving forces are distinct. Most importantly, the linker seg-
ment of pro-caspase-7 blocks ordering of the  catalytic residues, and requires 
cleavage to allow a productive active site. The new N- and C-terminal sequences 
so generated aid in active site stabilization. The  property that allows the very 
different driving forces of dimerization and  cleavage to converge on the same 
activation mechanism seems to be the unusual mobility of the residues that 
together constitute the caspase active site, which are mainly placed on flexible 
loops and not ordered secondary structure.

Progress in understanding caspase structures and mechanisms now allows us 
to answer the question of why the executioner caspase zymogens are dimeric 
whereas the apical caspase zymogens are monomeric at physiologic concentrations. 
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Much of the reason for this lies the relatively weak hydrophobic character of the 
dimer interface in caspase-8 and caspase-9, strongly contrasting with a more hydro-
phobic nature of the dimer interface in caspase-3 and caspase-7. Specifically, the K

d

for caspase-3 dimerization is less than 50 nM,41 which is more than three orders of 
magnitude tighter than that for caspase-8 ~~50 µM).42 Interestingly, caspase-3, like 
apical caspases, can also be activated by experimentally induced proximity employ-
ing hybrids that possess engineered dimerization domains (see, e.g., Mallet et al.43).
In this context, the dimerization domains, which must be introduced as multiple 
tandem copies, likely recruit high local concentrations of preformed pro-caspase-3 
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Fig. 2.3 Executioner caspases: architecture and activation. (A) Activation of executioner cas-
pases. Caspases are initially expressed as single-chain proteins that undergo an activation cleav-
age. An executioner caspase is typically cleaved twice, ultimately leading to the release of a short 
N-terminal peptide. The actual activation cleavage divides the catalytic unit into a large and small 
subunit. The position of the active-site cysteine residue is indicated in red. Bottom: schematic 
illustrating that executioner caspases are constitutive dimers of two catalytic units. (B) Surface 
rendering of an executioner caspase (caspase-7) preactivation and postactivation cleavage. The 
same color code as in panel A is used and important loop regions are displayed as ribbons. 
Cleavage releases strains on surface loops (red and orange) and the chains rearrange. The newly 
formed termini of large and small subunit (orange) interact with each other across the other cata-
lytic unit, and with the red loops to nicely align the substrate-binding pockets at the bottom of the 
active-site cleft. This results in a highly active caspase (bottom). PDB entries: caspase-7, 1F1J; 
pro-caspase-7, 1GQF
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dimers leading to proteolytic activation in trans of the type seen in high-level 
expression in E. coli.

2.2 IAPs: Caspase Inhibitors

The best-characterized endogenous caspase inhibitor is the X-linked IAP (XIAP), 
a member of the IAP family, also known as BIRC proteins.44 The family is broadly 
distributed and, as the name implies, the founding members are capable of blocking 
apoptosis, having initially been identified in baculoviruses, reviewed by Verhagen 
et al.45 Eight distinct IAPs have been identified in humans, and despite initial 
reports, it seems now that only XIAP is capable of directly inhibiting caspases,46

having been found by multiple research groups to be a potent but restricted inhibi-
tor targeting caspases 3, 7, and 9, reviewed by Salvesen and Duckett44 and Deveraux 
and Reed.47 IAPs have functions in addition to caspase inhibition because they have 
been found in organisms such as yeast which neither contain caspases nor undergo 
apoptosis.48

XIAP contains three baculovirus IAP repeat (BIR) domains, which represent the 
defining characteristic of the family. Currently, there is no known function for 
BIR1, but the second BIR domain (BIR2) of XIAP specifically target caspases 3 
and 7 (K

i
≈ 0.1–1 nM), and the third BIR domain (BIR3) specifically target caspase 

9 (K
i
≈ 10 nM). This led to the general assumption that the BIR domain itself was 

important for caspase inhibition. Surprisingly, the structures of BIR2 in complex 
with caspase-3 and caspase-7 have revealed that the BIR domain has a secondary 
role in the inhibitory mechanism, and that the main inhibitory contacts are made by 
the flexible region preceding the BIR domain.49–51 Interestingly, the mechanism of 
inhibition of caspase-9 by the BIR3 domain requires cleavage in the inter subunit 
linker to generate the new sequence NH

2
-ATPF.36 In part, this explains the cleavage 

of caspase-9 during apoptosis, which as described above is not required for its acti-
vation. Paradoxically, it is required for its inactivation by XIAP. Another surprise 
was in store for researchers when the structure of the BIR3–caspase-9 complex was 
solved.52 Here, there was no interaction of the BIR3 domain with the active site, but 
instead the BIR was found associated with the dimer interface of caspase-9. 
Essentially, BIR3 had monomerized the caspase thus reversing the activation 
mechanism.

Together, the structures of BIR2 bound to the executioner caspase-3 and 
 caspase-7, and BIR3 bound to the apical caspase-9 complete our understanding of 
caspase activation, at least at the structural level. Each domain has found a solution 
matched to the special properties of their targets. BIR2 binds to active caspase-3 
and caspase-7 in their dimeric active forms, with a very specific and somewhat 
unusual geometry blocking the catalytic site. BIR3 subverts the dimer/monomer 
transition of caspase-9, and is thus totally selective for this protease. The BIR 
domains of XIAP represent extraordinary mechanisms that are unique in the field 
of protease inhibitors, achieving tight binding and stringent specificity.
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3 Conclusions

Stemming from the original observation that executioner caspases are activated by 
proteolysis, but that apical caspases are not, has come from the current understand-
ing of the controls placed on caspase activity. So far as we know, caspase zymogens 
reside mainly as soluble cytosolic proteins. Upon ligation of death receptors, or 
formation of the apoptosome, apical caspase zymogen monomers are recruited to 
their cognate activation complexes where they are activated, most likely by 
 proximity-induced dimerization. Thus, the first protease in each pathway gains 
 catalytic activity. Following this, the zymogens of executioner caspases are 
 activated by a direct proteolytic attack of the apical caspases. The executioners now 
orchestrate the demise of the cell by cleaving a large number of cellular proteins. 
There is no appropriate evidence to suggest why two steps are required for 
 apoptosis. For example, in C. elegans a single apoptotic caspase, CED3, seems to 
be able to orchestrate apoptosis on its own. Possibly, advanced animals  incorporated 
the executioner caspases as a mechanism to provide additional regulation, or to 
allow the apical apoptotic caspases to function in additional, non-death, roles. 
Indeed, the proposed non-death roles of apoptotic caspases, reviewed by Lamkanfi 
et al.,53 provides a fertile field of investigation now that the fundamental  mechanisms 
of caspase activation have been elucidated.
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Chapter 3
The Mitochondrial Death Pathway

Anas Chalah and Roya Khosravi-Far*

Abstract Mitochondria have long been known to be critical for cell survival due 
to their role in energy metabolism. However, not until the mid-1990s did it become 
evident that mitochondria are also active participants in programmed cell death 
(PCD). This chapter focuses mainly on the role the mitochondria in mammalian 
cell death and cancer progression and therapy.

Keywords apoptosis, death receptors, mitochondria, bid, membranes, phospholi-
pases, cardiolipin

1 Introduction

Apoptosis, or programmed cell death (PCD), is an evolutionarily conserved 
mechanism for the selective removal of aging, damaged or otherwise unwanted 
cells (Abe et al., 2000; Degli Esposti, 1999; Lawen, 2003; Ozoren and El-Deiry, 
2003; Peter and Krammer, 1998; Strasser et al., 2000; Thorburn, 2004). It is an 
essential component of many normal physiological processes such as embryogene-
sis, normal tissue development, and the immune response (Vaux and Korsmeyer, 
1999). Thus, regulation of apoptosis is critical for tissue homeostasis and its dereg-
ulation can lead to a variety of pathological conditions including carcinogenesis 
and chemoresistance (Burns and El-Deiry, 2003; Daniel et al., 2001; Green and 
Evan, 2002; Ozoren and El-Deiry, 2003; Sheikh and Huang, 2004; Thompson, 
1995; Zornig et al., 2001).

Apoptosis is mediated primarily through the activation of specific proteases called 
caspases (cysteinyl, aspartate-specific proteases) (Algeciras-Schimnich et al., 2002; 
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Ozoren and El-Deiry, 2003; Salvesen and Dixit, 1997; Stegh and Peter, 2001; 
Thorburn, 2004). Caspases are effectors of cell suicide and cleave multiple sub-
strates, leading to biochemical and morphological changes that are characteristic of 
apoptotic cells(Abe et al., 2000; Strasser et al., 2000). These alterations include: 
mitochondrial outer membrane permeabilization; cell membrane remodeling and 
blebbing; exposure of phosphatidylserine (PS) at the external surface of the cell; cell 
shrinkage with cytoskeletal rearrangements; nuclear condensation; and DNA frag-
mentation (Ashkenazi and Dixit, 1999; Green and Evan, 2002; Lawen, 2003; Peter 
and Krammer, 2003; Schulze-Osthoff et al., 1998; Thorburn, 2004). These morpho-
logical changes culminate in the formation of apoptotic bodies that are normally 
eliminated by phagocytosis (Geske and Gerschenson, 2001; Wallach, 1997). In 
mammalian systems, the extrinsic death receptor pathway and the intrinsic mito-
chondrial pathway are the two major signaling systems that result in the activation 
of the executioner/effector caspases and the consequent demise of the cell (Abe et 
al., 2000; Ozoren and El-Deiry, 2003; Peter and Krammer, 2003; Strasser et al., 
2000; Thorburn, 2004). In many cell types, including cancer cells, activation of the 
extrinsic pathway also engages the mitochondrial pathway for full execution of cell 
death (Jaattela, 2004; Khosravi-Far and Esposti, 2004; Kroemer, 2003; Newmeyer 
and Ferguson-Miller, 2003; Thorburn, 2004). Thus, many apoptotic signals merge 
at the mitochondria, and thus mitochondria have been termed “gatekeepers” of the 
apoptotic machinery (Jaattela, 2004; Khosravi-Far and Esposti, 2004; Kroemer, 
2003; Newmeyer and Ferguson-Miller, 2003; Thorburn, 2004).

As gatekeepers, the proteins comprising the intrinsic mitochondrial pathway are 
the major mediators of the cytotoxic effects of many chemotherapeutic agents and 
radiation therapy (Brenner et al., 2003; Costantini et al., 2000; Debatin et al., 2002; 
Hersey and Zhang, 2003). Cancer cells often evade this apoptosis and develop 
chemoresistance and radioresistance. Indeed, disruption of the mitochondrial apop-
totic machinery has been observed in many tumors (Daniel et al., 2001; Morisaki 
and Katano, 2003). It is also likely that disruption of the mitochondrial machinery 
or mutations in the mitochondrial DNA could play a role in cancer initiation. 
Because of the central role of mitochondria in these processes, various components 
of the mitochondrial machinery can be targets for novel therapeutic strategies.

2 The Mitochondrial Pathway of Apoptosis

Mitochondria are thought to be the primary organelles involved in mediating most 
apoptotic pathways in mammalian cells (Green and Kroemer, 2004; Kroemer, 
2003; Newmeyer and Ferguson-Miller, 2003; Ravagnan et al., 2002; Sorice et al., 
2004; Zamzami and Kroemer, 2001). Mitochondria are engaged via the intrinsic 
pathway of cell death, which can be initiated by a variety of stress stimuli, includ-
ing ultraviolet (UV) radiation, γ-irradiation, heat, DNA damage, the actions of 
some oncoproteins and tumor suppressor genes (i.e., P53), viral virulence factors, 
and most chemotherapeutic agents (Fig. 3.1) (Kroemer, 2003). These diverse forms 
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of stress are sensed by multiple cytosolic or intraorganellar molecules. Transduction 
of these signals to the mitochondria ultimately results in alterations of the outer 
mitochondrial membrane (OM) (Esposti et al., 2003; Green and Kroemer, 2004; 
Kuwana et al., 2002; Newmeyer and Ferguson-Miller, 2003; Zamzami and 
Kroemer, 2001). These changes in the OM then lead to increased permeability to 
proteins that normally reside between the OM and the inner mitochondrial mem-
brane (IM), enabling these proteins to escape the mitochondria and diffuse into the 
cytosol.

The mitochondrial pathway of apoptosis can also be activated in response to 
death ligands. In a majority of cells (type II cells), including tumor cells, extracel-
lular death signals engage the mitochondria in a way that is equivalent to the intrin-
sic pathway (Abe et al., 2000; Algeciras-Schimnich et al., 2002; Ozoren and 
El-Deiry, 2002; Peter and Krammer, 1998). In these cells, signals originating from 
the death ligand-induced activation of caspase-8 and caspase-10 bifurcate into two 
arms, one of which directly engages mitochondria via a sequence of events causing 
activation of the effector caspases (i.e., caspase-3). The second arm promotes the 
cleavage of noncaspase substrates, such as Bid, inducing changes in the mitochon-
drial OM and the release of apoptogenic factors and activation of caspase-9, which 
then cooperates with the less-efficient activation of caspase-8 in these cells.

Fig. 3.1 Schematic representation of the intrinsic and extrinsic apoptotic pathways
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3 The Release of Proapoptotic Factors

Mitochondria contain and release many soluble proteins that are involved in the 
apoptotic cascade (Fig. 3.2) (Daniel et al., 2001; Debatin et al., 2002; Green and 
Kroemer, 2004; Reed, 2004). The variety of mitochondrial proteins participating in 
this pathway indicates the pivotal role of these organelles in determining cellular 
fates. Bcl-2 family members control apoptosis by regulating the permeabilization 
of the mitochondrial membrane (Chao and Korsmeyer, 1998; Cory et al., 2003; 
Daniel et al., 2001). The release of mitochondrial proteins, including cytochrome c,
apoptosis-inducing factor (AIF), second mitochondria-derived activator of caspases 
(Smac/Diablo), high-temperature requirement A2 (HtrA2/Omi), and endonuclease 
G, is believed to play a pivotal role in inducing PCD (Martinou and Green, 2001; 
Zamzami and Kroemer, 2001).

Fig. 3.2 Mitochondrial membrane permeabilization is regulated by an elegant balance of oppos-
ing actions of proapoptotic and antiapoptotic Bcl-2 family members. Bax, Bad, and Bak promote 
the release of cytochrome c and AIF through the formation of transmembrane channels across the 
mitochondrial outer membrane, while Bcl-2 and Bcl-X

L
 delay this release and abort the apoptotic 

response, leading to cell survival. Besides the release of mitochondrial proapoptotic components, 
the loss of mitochondrial membrane integrity results in the loss of many essential biochemical 
cellular functions such as ATP synthesis and results in the generation of reactive oxygen species 
(ROS). The increased levels of ROS are directly linked to the oxidation of lipids, proteins, and 
nucleic acids
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4 Cytochrome C

Cytochrome c (Cyt c), a small (13 kDa) nuclear encoded mitochondrial protein, was 
the first protein identified as being released from mitochondria upon apoptosis. It 
is considered a key regulator of apoptosis because once it is released from the 
mitochondrial intermembrane space (IMS), the cell is irreversibly committed to 
death (Green and Evan, 2002; Kluck et al., 1997; Zhivotovsky et al., 1998a; 
Zhivotovsky et al., 1998b) and Cyt c is synthesized in the cytosol and translocates 
to the mitochondria as an unfolded apoprotein through the TOM (translocase in the 
OMM) complex (Diekert et al., 2001). The driving force for translocation of apo-
Cyt c into the IMS appears to be its interaction with the enzyme cytochrome c heme 
lyase (Dumont et al., 1991; Mayer et al., 1995).

The release of cytochrome c to the cytosol is considered among the major steps 
in the intrinsic death pathway (Kluck et al., 1997; Newmeyer and Ferguson-Miller, 
2003; Zhivotovsky et al., 1998a). Once it escapes to the cytosol, it is captured by 
the apoptosis protease activating factor (APAF-1), a 130 kDa adaptor protein 
(Soengas et al., 1999; Zou et al., 1999). Prior to binding Cyt c, APAF-1 is virtually 
inactive. Once bound to Cyt c, the APAF-1 monomer goes through a cytochrome 
c-induced conformational change that promotes its activation. Further oligomeriza-
tion occurs, resulting in a cartwheel-shaped heptameric structure containing seven 
Cyt c/APAF-1 complexes. This larger multiprotein complex is termed the apopto-
some (Acehan et al., 2002; Adrain et al., 2001; Adrain et al., 1999; Srinivasula 
et al., 1999). Pro-caspase-9 is recruited to the apoptosome through its CARD 
domain, promoting its cleavage and converting it to an active protease (Adrain 
et al., 1999). Consequently, caspase-9 dissociates from the complex and goes on to 
activate effector caspases (3, 6, and 7) which collectively orchestrate the execution 
of apoptosis (Slee et al., 1999; Srinivasula et al., 1999; Zou et al., 1999).

5 Apoptosis-Inducing Factor

The precursor of the protein AIF is synthesized in the cytosol and imported into 
mitochondria (Susin et al., 1999). It contains an N-terminal mitochondrial localiza-
tion sequence (MLS) which is cleaved upon its mitochondrial translocation to form 
the mature 57 kDa AIF (Susin et al., 1999). Under apoptosis-inducing conditions, 
AIF translocates through the permeabilized mitochondrial outer membrane to the 
cytosol (Cande et al., 2002; Susin et al., 1999). Subsequently, AIF is transported to 
the nucleus where it induces ATP-independent nuclear chromatin condensation, as 
well as large-scale DNA fragmentation (Cande et al., 2002; Susin et al., 1999). In 
contrast to cytochrome c, AIF acts in a caspase-independent fashion and does not 
require the presence of cytosolic factors to induce apoptotic features in the nuclei 
(Lorenzo et al., 1999; Miramar et al., 2001; Susin et al., 1999; Zamzami and 
Kroemer, 2001). Moreover, AIF translocation occurs in Apaf-1-null mice which 
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fail to activate the executioner caspase (Cecconi et al., 1998). However, some stud-
ies indicate that crosstalk does occur between AIF and the apoptotic caspase cas-
cade (Cande et al., 2002). For instance, AIF was observed to trigger the release of 
cytochrome c from isolated mitochondria (Susin et al., 1999). Additionally, AIF 
interacts with heat-shock protein 70 (Hsp70), a known protective factor and inhibi-
tor of Apaf-1-dependent caspase activation (Ravagnan et al., 2002).

6 Smac/Diablo

Second mitochondria-derived activator of caspases (Smac) is a 22 kDa mitochondrial 
protein also known as direct IAP-associated binding protein with low pI (Diablo). 
Inhibitors of apoptosis (IAP) family members have the ability to interact and inhibit 
the enzymatic activity of caspases through their baculovirus inhibitor repeat (BIR) 
functional motif (Deveraux and Reed, 1999; Miller, 1999). Smac/Diablo was first 
identified as a mammalian IAP (Srinivasula et al., 1999; Verhagen and Vaux, 2002). 
Specifically, XIAP, c-IAP1, and c-IAP2 are proapoptotic factors regulated by Smac/
Diablo (Ekert et al., 2001; Srinivasula et al., 1999; Verhagen and Vaux, 2002). The 
Smac/Diablo precursor is synthesized in the cytosol, then imported to the mitochon-
dria where it is cleaved and activated. A mature form of Smac/Diablo is released to the 
cytosol under apoptotic conditions. Unlike cytochrome c, which directly activates 
APAF-1 and caspase-9, Smac/Diablo binds to the BIR domains of multiple IAP mem-
bers, antagonizing them and promoting indirect caspase activation (Ekert et al., 2001; 
Srinivasula et al., 1999; Verhagen and Vaux, 2002). Smac/Diablo and cytochrome c
were found to be released from the mitochondria at around the same time. Moreover, 
the release was found to coincide with mitochondrial membrane potential depolariza-
tion (Rehm et al., 2003; Springs et al., 2002; Verhagen and Vaux, 2002). However, a 
recent study presented evidence suggesting that the release of Smac/Diablo may, in 
fact, depend on the release of cytochrome c (Hansen et al., 2006).

7 HtrA2/Omi

HtrA2, also referred to as Omi, is a mitochondrial protein that belongs to the family 
of serine proteases. This proapoptotic protein is expressed as a 50 kDa precursor that 
is cleaved at the N-terminal, upon translocation to the mitochondria, to generate the 
active 36 kDa protein (Hegde et al., 2002; Martins et al., 2002; Suzuki et al., 2001; 
Verhagen and Vaux, 2002). Similar to cytochrome c and Smac/Diablo, mature 
HtrA2/Omi localizes to the IMS (Hegde et al., 2002; Suzuki et al., 2004). Its release 
to the cytosol is stimulated by apoptotic triggers. Upon its release, HtrA2/Omi binds 
directly to the BIR domain of IAPs and inhibits their caspase-inhibitory activity 
(Suzuki et al., 2001). The first four N-terminal amino acids of the mature HtrA2 
protein (AVPS) constitute the IAP-binding motif.
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In addition to the proapoptotic effect of IAP binding and inhibition, Omi/HtrA2 
appears to utilize its serine protease activity to induce an IAP inhibition-independ-
ent, caspase-independent apoptosis (Hegde et al., 2002; Suzuki et al., 2001). 
Recently, it was reported that the proapoptotic serine protease activity of HtrA2/Omi 
also plays a significant role in antagonizing IAPs. The observed HtrA2 cleavage of 
c-IAP produced significant caspase activation and sensitized cells to apoptosis 
(Yang et al., 2006).

8 Endonuclease G

As with most mitochondrial proteins, Endonuclease G is expressed as a precursor 
in the cytosol. Upon its translocation to the mitochondria, the 33 kDa protein is 
cleaved to a 28 kDa mature form (Cote and Ruiz-Carrillo, 1993). During apoptosis, 
endonuclease G is released from the mitochondrial IMS and translocates to the 
nucleus, where it causes oligonucleosomal DNA fragmentation (Li et al., 2001; van 
Loo et al., 2001). Endonuclease G release appears to be dependent on caspase acti-
vation downstream of mitochondria (Arnoult et al., 2003). Interestingly, endonucle-
ase G-induced DNA degradation was observed to be caspase-independent (Li et al.,
2001; Susin et al., 1999), suggesting an important role for endonuclease G in 
 bringing about caspase-independent cell death.

9 Mitochondrial Proteins and Caspase Activation

Among the various proteins that leak out of mitochondria, a few, such as cytochrome c,
play a major role in promoting caspase activation. (Kluck et al., 1999; Saelens et al., 
2004) These apoptogenic factors are released in a hierarchical manner during cell 
death. Upon activation of the intrinsic pathway, cytochrome c, Htr2A/Omi and Smac/
Diablo are released first, with similar kinetics (Saelens et al., 2004). The subsequent 
release of AIF and endonuclease G (Arnoult et al., 2003; Penninger and Kroemer, 
2003) is associated with more severe damage to both the outer and inner membranes. 
Notably, cytochrome c has been shown to be directly involved in the mediation of cell 
death, as it is indispensable for the activation of Apaf-1 and subsequent formation of 
the apoptosome (Arnoult et al., 2003).

The apoptosome itself is a platform for recruiting and facilitating the autocata-
lytic activation of pro-caspase-9, the apical caspase of the intrinsic pathway of 
apoptosis (Adams and Cory, 2002; Baliga and Kumar, 2003; Cain et al., 2002; 
Chinnaiyan, 1999; Hill et al., 2003; Salvesen and Renatus, 2002; Shi, 2002). The 
activation of caspase-9 leads to the local accumulation of zymogens, promoting an 
autocatalytic process of downstream caspase activation (Adams and Cory, 2002; 
Baliga and Kumar, 2003; Cain et al., 2002; Chinnaiyan, 1999; Hill et al., 2003; 
Salvesen and Renatus, 2002; Shi, 2002). However, the apoptosome requires additional
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regulatory factors, including Smac/Diablo, for full activation of the caspase cas-
cade. Smac/Diablo interacts with several IAPs to release them from their inhibitory 
interaction with pro-caspase-9 and other caspases (Adams and Cory, 2002; Baliga 
and Kumar, 2003; Cain et al., 2002; Shi, 2002). Smac/Diablo is also present in the 
mitochondria, where it is directly attached to the OM and is released upon altera-
tions in the OM permeability (Cain et al., 2002; Saelens et al., 2004).

10 Mechanisms of Mitochondrial Protein Release

The exact mechanism by which mitochondrial proapoptotic components are 
released from the IMS is a matter of a long and ongoing debate. Currently, two 
general mechanisms are considered: nonspecific and specific release (Lim et al., 
2001). The opening of the permeability transition pore (PTP) located in the mito-
chondrial IMS is proposed as the first possible mechanism. The permeability pore 
is comprised of three proteins: cyclophilin D, adenine nucleotide translocator 
(ANT), and voltage-dependent anion channel (VDAC), a matrix, an inner mem-
brane, and an outer membrane protein, respectively (Crompton, 1999). The open-
ing of the PTP triggers many processes, including (A) loss of the proton gradient 
produced by the electron transport machinery; (B) leakage of cellular water into the 
mitochondrial matrix, resulting in the gradual swelling of the IMS and the rupturing 
of the inflexible OM (Green and Kroemer, 2004); and (C) leakage of apoptotic fac-
tors from the IMS into the cytoplasm, which begins the cascade of proteolytic 
activities leading ultimately to nuclear damage and cell death (Brenner et al., 2000; 
Dejean et al., 2006; Kroemer, 2003; Marzo et al., 1998a; Marzo et al., 1998b). This 
mechanism represents a nonspecific release mode for proapoptotic mitochondrial 
mediators. However, the physical outer membrane disruption theory fails to explain 
the release of proapoptotic factors such as cytochrome c and AIF in the absence of 
any loss of outer membrane structural integrity (Dejean et al., 2006).

The second suggested mode of release involves the opening of large outer 
membrane channels that would allow cytochrome c and other IMS proteins to 
move into the cytosol. In contrast with the other scenarios, this model would 
leave the outer membrane largely intact. A benefit of this model is that there is 
no need for the mitochondrial matrix to swell. This better fits with the evidence 
that mitochondrial morphology remains the same in most cell death in vivo. 
Several outer membrane channels, including the VDAC and mitochondrial 
 apoptosis-induced channel (MAC), have been targeted as possible specific regu-
lators of mitochondrial release. Both provide aqueous pathways through the 
hydrophobic environment of the mitochondrial membrane.

VDAC is a 30 kDa highly conserved voltage-dependent, ion-selective, mito-
chondrial OM protein. The OM is densely packed with VDAC proteins which form 
barrel structures that enclose 3 nm internal diameter channels. VDAC can switch 
between two functional states, open and partially open. The “open” state is defined 
by large conductance and anion selectivity, while the “partially open” state is 
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defined by lower conductance (about half that of the fully open state) and cation 
selectivity. The voltage-dependent change between these two states is widely 
attributed to structural rearrangements that lead to changes of size and charge dis-
tributions within the channel (Colombini et al., 1996; Mangan and Colombini, 
1987; Thomas et al., 1993).

MAC was first identified in 2001. It is a mitochondrial outer membrane channel 
that, according to some reports, forms at early stages of the intrinsic apoptotic path-
way (Dejean et al., 2006; Guo et al., 2004). Alternatively, other studies have reported 
the formation of MAC at late stages of the extrinsic apoptotic pathway (Guihard et 
al., 2004). MAC was found to be slightly cation-selective, and unlike VDAC, volt-
age-independent (Dejean et al., 2005; Guo et al., 2004). MAC activity was found to 
be induced by apoptosis and regulated by Bax, a proapoptotic Bcl-2 family protein. 
Bax translocation to the mitochondria was linked to MAC formation and cyto-
chrome c release (Antonsson et al., 1997; Dejean et al., 2006; Guo et al., 2004; Saito 
et al., 2000; Schendel et al., 1997). Bax oligomerization is proposed to form MAC 
channels (Cheng et al., 2001; Dejean et al., 2006; Wei et al., 2001). The pore diame-
ter of the MAC channel was measured to be ∼4 nm, which is proposed to allow for 
the release of the ∼3 nm diameter cytochrome c (Pavlov et al., 2001).

11  The Bcl-2 Family of Proteins and Regulation 
of the Mitochondrial Pathway to Cell Death

The process of mitochondrial release of proapoptotic factors such as cytochrome 
c is elegantly regulated through members of the Bcl-2 family (Fig. 3.2) (Antonsson 
et al., 1997; Cory et al., 2003; Danial and Korsmeyer, 2004; Green and Kroemer, 
2004; Schendel et al., 1997). In mammals, the antiapoptotic members of this fam-
ily include Bcl-2, Bcl-X

L
, and Bcl-W, while the proapoptotic members include 

Bax, Bak, Bad, Bik, Bim, and Bid. The proapoptotic family members are further 
classified based on domain sequence homology into two groups: one that contains 
multiple BH domains and one that contains only the BH3 domain (Cheng et al., 
2001; Fiers et al., 1999; Kuwana and Newmeyer, 2003; Wei et al., 2001). The fate 
of the cell depends to a great degree on the precious balance of function between 
these proapoptotic and antiapoptotic Bcl-2 proteins. Studies have shown that Bax, 
Bad, and Bak promote the release of AIF and cytochrome c, while Bcl-2 and 
Bcl-X

L
 delay the release and abort the apoptotic response, promoting cell survival 

(Cory and Adams, 2002; Yang et al., 1997).
It is believed that Bcl-2 family members regulate the apoptotic response by 

controlling mitochondrial membrane permeabilization (MMP) (Green and 
Kroemer, 2004). The proapoptotic proteins Bax and Bak have been shown to con-
tribute to the formation of transmembrane channels across the mitochondrial OM, 
leading to the escape of AIFs (Dejean et al., 2005; Korsmeyer et al., 2000; Kuwana 
et al., 2002; Nechushtan et al., 2001; Wei et al., 2001). Bcl-2, Bcl-W, and Bcl-X

L

are, on the other hand, believed to prevent pore formation and to inhibit the release 
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of cytochrome c from the mitochondria (Kluck et al., 1997; Yang et al., 1997). 
Moreover, heterodimerization of Bax or Bad with Bcl-2 or Bcl-X

L
 is thought to 

inhibit their protective effect.
Bid is a potent proapoptotic protein that is normally located in the cytosol, but also 

shuttles through the surfaces of intracellular membranes due to its lipid-interacting 
capacity. Bid plays an important role in the mitochondrial pathway to apoptosis as 
it has been identified as the link between the death receptor signal and the release of 
cytochrome c. Activated caspase-8 engages the intrinsic apoptotic pathway through 
the truncation of Bid (Li et al., 1998; Luo et al., 1998). Upon death signaling, acti-
vated caspase-8 cleaves Bid (26 kDa) into two fragments: a C-terminus fragment 
(15 kDa) and an N-terminus fragment (11 kDa) (Luo et al., 1998). The 15 kDa frag-
ment, which contains the BH3 domain, is termed truncated Bid or tBid. This func-
tional fragment translocates to the mitochondria where it interacts with several 
proteins through its BH3 domain (Wang et al., 1996). There are two modes of Bid 
proapoptotic action. (1) In the BH3-dependent mode, Bid interacts with the antia-
poptotic Bcl-X

L
 through its BH3 domain and prevents the formation of the Bcl-

X
L
/Apaf1 antiapoptotic complex. (2) In the BH3-independent mode, after 

truncation, Bid is proposed to form selective channels similar to BAX through its 
structural motifs (Chou et al., 1999; McDonnell et al., 1999). Moreover, tBid has 
been shown to induce the oligomerization of Bax and Bak, resulting in MAC for-
mation and the subsequent release of proapoptotic cytochrome c (Eskes et al., 
2000; Wei et al., 2000).

The mitochondrial receptor for caspase-cleaved Bid is thought to be cardiolipin 
(CL), a mitochondrial lipid (Esposti et al., 2003; Kuwana et al., 2002; Newmeyer 
and Ferguson-Miller, 2003; Sorice et al., 2004). CL is a glycerophospholipid that is 
synthesized and localized in the inner membrane of the mitochondria, making it one 
of its major constituents (Khosravi-Far and Esposti, 2004; McMillin and Dowhan, 
2002; Schlame et al., 2000; Wright et al., 2004). This dimeric molecule apparently 
plays a significant role in controlling the mitochondrial membrane structure and 
function. Abnormal mitochondrial morphology and function have been observed in 
cells defective in the CL synthesis mechanism (Ohtsuka et al., 1993). It has been 
proposed that upon apoptotic stimulation, CL contributes to the apoptotic signal 
through the recruitment of cytosolic proteins such as tBid to the mitochondrial mem-
brane. Additionally, it is thought that CL is involved in altering MMP, leading to the 
subsequent release of proapoptotic factors (Lutter et al., 2000).

12 Mitochondria and Oxidative Stress

Mitochondria are the sites of aerobic respiration. Energy is generated in mito-
chondria through the process of ATP synthesis via the oxidative phosphorylation 
pathway. This process, however, also results in the formation of single unpaired 
electrons, leading to reactive oxygen species (ROS). ROS such as hydrogen per-
oxide (H

2
O

2
), the superoxide anion (O

2
−), and hydroxyl radicals (OH) are highly 
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reactive molecules generated and eliminated in a balanced process in normal cells. 
In particular, free radicals (superoxides) are byproducts of ATP generation by the 
mitochondrial respiratory chain (Andreyev et al., 2005; Beyer, 1992; Raha and 
Robinson, 2000). Cellular energy is usually liberated from ATP molecules through 
the removal of single phosphate-oxygen groups, producing adenosine diphosphate 
(ADP). ADP is recycled in the mitochondria where it is recharged through oxida-
tive processes to reproduce ATP. Since ROS are harmful, the balance between 
energy supply and energy demand is extremely critical. Any shift in this balance 
would introduce excess ROS to cells and would result in oxidative stress.

The damaging effect of elevated levels of ROS is thought to be due to the highly 
reactive free electrons available to form stable chemical bonds. While H

2
O

2
 is free 

to escape the mitochondrion, both the superoxide anion and hydroxyl radicals have 
limited diffusion, and are more likely to contribute to inner membrane damage of 
mitochondria (Szeto, 2006). Several studies have demonstrated a direct relationship 
between mitochondrial ROS and the mitochondrial apoptotic pathway. For exam-
ple, the release of cytochrome c to the cytosol has been linked to mitochondrial 
oxidation (Shidoji et al., 1999). It is believed that the release mechanism might 
involve the opening of mitochondrial PTPs (Vieira et al., 2001). Several antioxi-
dant compounds, such as ascorbic acid (vitamin C), α-tocopherol (vitamin E), and 
ubiquinol are naturally present in the cell and act to protect against the effects of 
ROS (Sies and de Groot, 1992).

13 Mitochondria and Cancer

Given the important roles mitochondria play in cellular energy metabolism, free 
radical formation and PCD, defects in mitochondrial function are suspected to con-
tribute to the development and progression of cancer and to resistance to therapy 
(Bettaieb et al., 2003; Brenner et al., 2003; Costantini et al., 2000; Debatin et al., 
2002; Hersey and Zhang, 2003; Jaattela, 2004; Kasibhatla and Tseng, 2003; Kim et 
al., 2004). Defective apoptosis is one of the hallmarks of tumorigenicity and is 
implicated in multiple stages of tumor progression (Burns and El-Deiry, 2003; 
Hanahan and Weinberg, 2000; Ozoren and El-Deiry, 2003). Furthermore, the abil-
ity of tumor cells to escape apoptosis plays a key role in promoting resistance to 
conventional chemotherapy and radiation therapy (Abe et al., 2000; Barnhart et al., 
2004; Daniel et al., 2001; El-Deiry, 1997; Thompson, 1995; Zornig et al., 2001).

A link between mitochondria and cancer progression was suggested over half a 
century ago when Warburg reported the role of mitochondria in cellular energy 
metabolism. This phenomenon was coined the “Warburg effect.” The Warburg 
effect suggested that the development of an injury to the respiratory machinery is 
an important event in carcinogenesis (Warburg, 1951). This injury results in com-
pensatory increases in glycolytic ATP production to fulfill the energy needs of 
tumor cells. Since then, preferential reliance on glycolysis over the oxidative 
metabolism has been shown to correlate with tumor progression in several types of 
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cancer (Semenza et al., 2001). Since the initial report of the Warburg effect, a 
number of cancer-related mitochondrial defects have also been identified (Brenner 
et al., 2003; Carew and Huang, 2002; Debatin et al., 2002; Jaattela, 2004). These 
defects include altered expression and activity of respiratory chain subunits and 
glycolytic enzymes, changes in oxidation of NADH-linked substrates and muta-
tions in mitochondrial DNA. Thus, the differences in energy metabolism between 
normal cells and cancer cells constitute a biochemical basis for the development of 
therapeutic strategies that might selectively kill cancer cells in their compromised 
respiratory state.

Furthermore, dysregulation of members of the Bcl-2 family has been detected in 
a variety of malignancies, especially hematological cancers. Bcl-2 itself was origi-
nally discovered as an oncogene in B cell lymphoma Danial and Korsmeyer, 2004. 
Additionally, overexpression of Bcl-2 has been detected in AML and non-Hodgkin’s 
lymphomas. Dysregulation of other Bcl-2 family proteins have also been detected 
in other cancers; for example, increased expression of Mcl-1 has been detected in 
relapsed AML and multiple myeloma. Increased expression levels and mutations in 
the promoter of the mcl-1 gene have also been observed in chronic lymphoblastic 
leukemias. These studies reiterate that changes to the mitochondrial-associated 
proteins, mainly members of the Bcl-2 family, are directly involved in tumor 
progression.

Additionally, there is some evidence that alterations in the mitochondrial DNA 
could also be involved in cancer progression. Besides hosting hundreds of nuclear 
encoded proteins, mitochondria have their own DNA that encodes 13 mitochon-
drial proteins (Schatz, 1995; Singh et al., 1999). Mutations in mtDNA could occur 
during oxidative phosphorylation involving ROS. Investigations of human bladder, 
lung, neck, and head primary tumors revealed a high percentage of mtDNA muta-
tion (∼50%) in these tumors (Fliss et al., 2000). These observations suggest a link 
between cancer development and mitochondrial dysfunction; however, they do not 
present a clear answer to whether mitochondrial DNA mutation is simply a result, 
or rather the cause, of alterations in PCD.

Mitochondria also play an important role in resistance to chemotherapy and radia-
tion therapy. Since mitochondria are integrators of apoptotic signaling pathways, 
induction of apoptosis in many cell types leads to the induction of MMP (Brenner 
et al., 2003; Kroemer, 2003). MMP defines the point of no return in most PCD 
 pathways and is regulated by pre-mitochondrial signal transduction pathways. These 
pathways involve caspase-dependent and caspase-independent mechanisms, members 
of the Bcl-2 family of proteins and changes in the composition of mitochondrial mem-
branes (Bettaieb et al., 2003; Brenner et al., 2003; Green and Kroemer, 2004; Kim et 
al., 2004; Kroemer, 2003; Kuwana et al., 1998; Newmeyer and Ferguson-Miller, 2003; 
Peter and Krammer, 1998; Ravagnan et al., 2002; Sorice et al., 2004; Waterhouse 
et al., 2001; Zamzami and Kroemer, 2001). In response to MMP, proapoptotic factors 
are released into the cytosol to trigger the execution of cell death. This is likely due to 
the opening of protein channels such as the VDAC. Under pathological conditions, 
cancer cells escape from apoptosis and/or become resistant to treatment by affecting 
MMP (Bettaieb et al., 2003; Debatin et al., 2002; Hersey and Zhang, 2003; Kim et al.,
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2004). Therefore, overcoming abnormalities in tumor cells that suppress MMP 
could lead to therapeutic targets by generating a potent proapoptotic stimulus. 
Additionally, since MMP is an early event in apoptosis, strategies to detect this 
process can be useful in assessing the response to chemotherapy.

Mutations in mtDNA have been implicated in the cellular response to chemo-
therapy. For example, Singh et al. (1999) examined the response of a tumor cell 
line lacking mitochondrial DNA to several anticancer drugs, including adriamy-
cin (a DNA-interacting drug widely used in chemotherapy for its role in binding 
DNA and stopping the process of replication). Cancer cells lacking mtDNA 
showed great chemotherapy resistance, indicating an important role of the mito-
chondrial genome in regulating the cellular response to therapeutic agents. 
Similar findings were also reported in A549 non-small-cell lung cancer cell lines 
and their rho0 derivatives in which mitochondrial DNA has been eradicated (Lo 
et al., 2005). The parental cell line showed increased sensitivity to chemotherapy 
when compared with the mtDNA-compromised derivative cell line. Notably, the 
restoration of mtDNA restored chemosensitivity of the resistant cell line (Lo et 
al., 2005).

14 Targeting Mitochondria in Cancer Therapy

As mitochondria are gatekeepers of apoptotic signals, targeting mitochondria 
to induce apoptosis of malignant cells is an important therapeutic strategy. In 
the past several years, extensive research has focused on screening for chemi-
cal compounds, small molecules and peptides that could target the mitochon-
dria. Therapeutic tactics have included strategies that involve the Bcl-2 family 
proteins, activation of PTPs, the respiratory chain, mitochondrial DNA deple-
tion, and selective targeting of ROS-stressed malignant cells, as well as target-
ing inhibitors of apoptosis such as IAPs (Dias and Bailly, 2005). Targeting the 
antiapoptotic members of the Bcl-2 family, namely Bcl-2 and Bcl-X

L
, and tar-

geting the PTP are among the most studied mechanisms (Dias and Bailly, 2005; 
O’Neill et al., 2004; Shangary and Johnson, 2003; Walensky, 2006). Targeting 
of the Bcl-2 family of proteins is discussed in Chapter 8. Here, we will briefly 
describe strategies for targeting and activation of the PTP.

15  Targeting and Activation of the Permeability 
Transition Pore

The induction of proapoptotic protein release through increased PTP formation and 
opening has been explored in the recent years as a possible mechanism for cancer 
treatment. As a chemotherapeutic approach, this method involves perturbation of 
the mitochondrial membrane through direct targeting of the components of the 
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membrane permeability transition pore complex (PTPC) (Brenner et al., 2003; 
Costantini et al., 2000; Debatin et al., 2002; Fantin and Leder, 2006; Galluzzi et al., 
2006; Khosravi-Far and Esposti, 2004; Morisaki and Katano, 2003; Reed, 2004). 
Additionally, alterations in energy metabolism, such as depletions in ADP and 
ATP, can also facilitate formation of the PTPC.

In addition to therapeutic strategies that target Bcl-2 family members, sev-
eral chemotherapeutic agents such as paclitaxel or etopiside have been shown 
to induce opening of the PTPC, albeit at high concentrations. Additionally, 
several experimental anticancer agents act directly on the components of the 
PTPC. For example, the synthetic retinoid CD437, arsenic acid and lonidamine 
are inhibitors of ANT (Debatin et al., 2002; Fantin and Leder, 2006; Galluzzi 
et al., 2006). Arsenic acid also inhibits the VDAC. Hexokinase, which is a 
component of the PTPC and a major player in maintaining the malignant state 
of transformed cells, is also inhibited by lonidamine (Debatin et al., 2002; 
Fantin and Leder, 2006; Galluzzi et al., 2006). Additionally, jasmonates are 
known to act selectively and directly on cancer cell mitochondria in a PTPC-
mediated mechanism, resulting in membrane depolarization, swelling, and the 
release of cytochrome c (Rotem et al., 2005) leading to apoptosis of tumor 
cells. Similarly, lamellarins are another group of anticancer drugs that target 
mitochondria of cancer cells and induce permeability transition effects (Kluza 
et al., 2006).

16 Conclusions and Future Prospects

Mitochondria are the power generators of the cell due to their involvement in glu-
cose metabolism, and they are “gatekeepers” of the cell involved in integrating 
apoptotic signals in majority of cells. Because tumor cells rely on glycolysis and 
since evasion of apoptosis is one of the hallmarks of cancer, mitochondria therefore 
play a central role in cancer cell biology. The intrinsic and extrinsic death pathways 
leading to changes in mitochondrial permeability; the components of the PTPC, 
including members of the Bcl-2 family; apoptogenic factors and their regulators, 
and mutations in mtDNA have been studied extensively in the past for their contri-
butions to cancer progression or resistance to therapy. These constitute an extensive 
list of targets that could induce apoptosis, some with possible specificity for cancer 
cells. Therapeutic agents against many of these targets, including Bcl-2 family 
members and components of the PTP, are currently at various stages in the devel-
opment pipeline. The ultimate goal of these studies is to generate novel mitotoxic 
agents that can selectively induce apoptosis of cancer cells and reduce the possibil-
ity of resistance.
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Chapter 4
Apoptotic Pathways in Tumor Progression 
and Therapy

Armelle Melet, Keli Song, Octavian Bucur, Zainab Jagani, 
Alexandra R. Grassian, and Roya Khosravi-Far*

Abstract Apoptosis is a cell suicide program that plays a critical role in develop-
ment and tissue homeostasis. The ability of cancer cells to evade this programmed 
cell death (PCD) is a major characteristic that enables their uncontrolled growth. 
The efficiency of chemotherapy in killing such cells depends on the successful 
induction of apoptosis, since defects in apoptosis signaling are a major cause 
of drug resistance. Over the past decades, much progress has been made in our 
understanding of apoptotic signaling pathways and their dysregulation in cancer 
progression and therapy. These advances have provided new molecular targets for 
proapoptotic cancer therapies that have recently been used in drug development. 
While most of those therapies are still at the preclinical stage, some of them have 
shown much promise in the clinic. Here, we review our current knowledge of apop-
tosis regulation in cancer progression and therapy, as well as the new molecular 
targeted molecules that are being developed to reinstate cancer cell death.

Keywords apoptosis, cancer, therapy, inhibitors, signal transduction, oncogene, 
intrinsic, extrinsic

1 Introduction

Apoptosis, is an evolutionarily conserved mechanism for the selective removal of 
unwanted cells (Abe et al., 2000b; Degli Esposti, 1999; Lawen, 2003; Ozoren and 
El-Deiry, 2003; Peter and Krammer, 1998; Strasser et al., 2000; Thorburn, 2004). 
Regulation of apoptosis is critical for tissue homeostasis, therefore, its deregulation 
can lead to a variety of pathological conditions, including cancer. For this reason, 
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inhibition of apoptosis or the promotion of resistance to apoptosis contributes to 
carcinogenesis and chemoresistance (Burns and el-Deiry, 2003; Daniel et al., 2001; 
Green and Evan, 2002; Ozoren and El-Deiry, 2003; Sheikh and Huang, 2004; 
Thompson, 1995; Zornig et al., 2001).

Apoptosis is primarily mediated through the activation of specific proteases 
called caspases (cysteinyl, aspartate-specific proteases) (Algeciras-Schimnich 
et al., 2002; Ozoren and El-Deiry, 2003; Salvesen and Dixit, 1997; Stegh and Peter, 
2001; Thorburn, 2004). Caspases, which are effectors of PCD, cleave multiple 
substrates, leading to biochemical and morphological changes that are characteristic 
of suicidal cells (Abe et al., 2000b; Bouillet et al., 2000). Cells undergoing apoptosis 
undergo cell membrane remodeling and blebbing; the exposure of phosphatidylserine 
(PS) at the external surface of the cell; cell shrinkage with cytoskeletal rearrange-
ments; nuclear condensation; and DNA fragmentation (Ashkenazi and Dixit, 1999; 
Green and Evan, 2002; Lawen, 2003; Peter and Krammer, 2003; Schulze-Osthoff 
et al., 1998; Thorburn, 2004). These morphological changes culminate in the 
formation of apoptotic bodies that are normally eliminated by phagocytosis (Geske 
and Gerschenson, 2001; Wallach, 1997).

In this chapter, we introduce the major apoptotic machinery and discuss some 
recent insights into the involvement of apoptosis in cancer progression, cancer 
therapy, and resistance to therapy.

2 Apoptotic Machinery

In mammals, the two major signaling systems that result in the activation of cas-
pases and the consequent induction of apoptosis are the extrinsic death receptor 
pathway and the intrinsic mitochondrial pathway (Fig. 4.1) (Abe et al., 2000b; 
Ozoren and El-Deiry, 2003; Peter and Krammer, 2003; Strasser et al., 2000; 
Thorburn, 2004). In the past few years, increasing evidence indicates that the death 
receptor and mitochondrial pathways are not isolated systems. Instead, significant 
cross talks and “biofeedbacks” regulate the apoptotic machinery (Abe et al., 2000b; 
Li and Yuan, 1999; Reed, 2000; Zornig et al., 2001).

2.1 The Death Receptor Pathway of Apoptosis

The extrinsic apoptotic pathway is activated upon the binding of cytokine ligands 
(i.e., FasL, tumor necrosis factor [TNF], and TNF-related apoptosis-inducing 
ligand [TRAIL]) to members of the TNFα receptor superfamily, which are usually 
called the death receptors (i.e., Fas, also called CD95/Apo-1; TNF receptors; and 
TRAIL receptors) (Abe et al., 2000b; Ashkenazi and Dixit, 1999; Ozoren and 
El-Deiry, 2003; Peter and Krammer, 2003; Schulze-Osthoff et al., 1998; Thorburn, 
2004). Death receptors contain an intracellular globular interaction domain known 



as a death domain (DD). Upon ligand binding to their extracellular domains, death 
receptors aggregate at the cell surface and possibly form trimes. This results in the 
recruitment of adaptor molecules to the aggregated intracellular domains of the 
receptors. The Fas-associated death domain (FADD) is one of the major adaptors 
to be recruited to the death receptors. FADD possesses a DD that interacts either 
directly with the DD of death receptors, or indirectly through another adaptor mol-
ecule, TNF receptor-associated death domain (TRADD). FADD also contains a 
second protein interaction domain, known as the death effector domain (DED). This 
DED domain interacts with the DED of the weakly active zymogen pro-caspase-8, 
to form an intracellular multiprotein complex known as the death-inducing signal-
ing complex (DISC) (Abe et al., 2000a; Ashkenazi and Dixit, 1998; Boatright et al., 
2003; Cory and Adams, 2002; Wallach et al., 1999). Once formed, the DISC pro-
motes the proximity-induced processing of caspase-8, which then proceeds to be 
further activated via an autoproteolysis mechanism (Salvesen and Dixit, 1999; Yang 
et al., 1998). Active caspase-8 subsequently activates executioner/effector caspases, 
such as caspase-3, leading to cell execution via degradation of the nucleus and 
other intracellular structures (Ashkenazi and Dixit, 1998; Cohen, 1997; Peter and 
Krammer, 2003; Scaffidi et al., 1998). This direct activation of caspase-dependent 
cell execution is thought to occur in certain cell types, including thymocytes, that 
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are classified as type I cells (Boatright et al., 2003; Ozoren and El-Deiry, 2002; 
Scaffidi et al., 1998). These cells are able to efficiently activate caspase-8 so that 
it can cleave and consequently activate its primary targets, the executioner cas-
pases including caspase-3. This simplified pathway of type I cells plays an impor-
tant role in the immune response that is involved in the deletion of transformed cells 
(Hickman, 2002; Zornig et al., 2001) and resembles the linear pathway of develop-
mental cell death established in genetic studies of Caenorhabditis elegans (Horvitz, 
1999; Vaux, 2002). Nonetheless, PCD in C. elegans is distinct in that Bcl-2/Ced-9 
is unable to block caspase activation following death receptor stimulation in type I 
cells (Peter and Krammer, 2003; Scaffidi et al., 1999).

2.2 The Mitochondrial Pathway of Apoptosis

Mitochondria are thought to be the central organelles involved in mediating most 
apoptotic pathways in mammalian cells (Green and Kroemer, 2004; Kroemer, 2003; 
Newmeyer and Ferguson-Miller, 2003; Ravagnan et al., 2002; Sorice et al., 2004; 
Zamzami and Kroemer, 2001). Mitochondria are engaged via the intrinsic pathway 
of cell death, which can be initiated by a variety of stress stimuli, including ultraviolet 
(UV) radiation, γ-irradiation, heat, DNA damage, the actions of some oncoproteins 
and tumor suppressor genes, viral virulence factors, and most chemotherapeutic 
agents (Kroemer, 2003). These diverse forms of stress are sensed or decoded by 
multiple cytosolic or intraorganellar molecules which then transduce the signals 
to mitochondria, resulting in alterations in the permeability of the outer mito-
chondrial membrane (OM) (Esposti et al., 2003; Green and Kroemer, 2004; 
Kuwana et al., 2002; Newmeyer and Ferguson-Miller, 2003; Zamzami and 
Kroemer, 2001). This leads to increased permeability to apoptotic proteins that are 
normally trapped between the OM and the inner mitochondrial membrane (IM), thus 
enabling these proteins to escape the mitochondria and diffuse into the cytosol.

The release of apoptotic factors leads to apoptosome-mediated activation of 
caspases (Fig. 4.1). The apoptosome works like a large platform for recruiting and 
facilitating the self-activation of the apical caspase of the intrinsic pathway of apop-
tosis, pro-caspase-9 (Adams and Cory, 2002; Baliga and Kumar, 2003; Cain et al., 
2002; Chinnaiyan, 1999; Hill et al., 2003; Salvesen and Renatus, 2002; Shi, 2002). 
The apoptosome promotes the local accumulation of zymogens that initiate an 
autocatalytic activation of caspase-9 in a manner similar to the activation of caspase-8
at the DISC (Adams and Cory, 2002; Baliga and Kumar, 2003; Cain et al., 2002; 
Chinnaiyan, 1999; Hill et al., 2003; Salvesen and Renatus, 2002; Shi, 2002). The 
apoptosome, however, requires additional regulatory factors to fully activate the 
caspase cascade. These factors include Smac/Diablo, a protein that interacts with 
several inhibitor of apoptosis proteins (IAPs) and displaces them from their inhibitory
interaction with pro-caspase-9 and other caspases.(Adams and Cory, 2002; Baliga 
and Kumar, 2003; Cain et al., 2002; Shi, 2002).



The mitochondrial pathway can also be activated in response to death ligands. 
In type II cells, selective cleavage of Bid by caspase-8 has been found to connect 
upstream signals from the DISC to the mitochondria (Gross et al., 1999; Li et al., 
1998; Luo et al., 1998). Furthermore, genetic ablation of Bid reduces Fas-induced 
hepatotoxicity and mitochondrial damage (Zinkel et al., 2003). The caspase-cleaved 
form of Bid, tBid, migrates to the OM, where it cooperates with other Bcl-2 family 
proteins, such as Bak or Bax, to induce the release of mitochondrial proteins into 
the cytosol (Wei et al., 2001b).

3  Oncogene-Induced Evasion of Apoptosis: A Mechanism 
for Tumor Progression

It has become clear that a fundamental property of cancer cells is their ability to 
evade the apoptotic cellular death program (Hanahan and Weinberg, 2000). This 
not only promotes their unchecked growth, but also suggests a mechanism whereby 
they can be controlled. Investigating the mechanisms underlying this resistance of 
tumor cells to apoptosis remains of significant interest, since a desired goal of 
anticancer therapies is to selectively unleash the apoptotic potential of tumor cells.

In the normal cellular context, proliferation and death programs are tightly 
linked. Given this, cells harboring a single oncogenic mutation driving proliferation 
undergo a protective growth inhibitory response, appropriately resulting in apoptosis 
of the pre-neoplastic cell. In contrast, such as in the progression of tumors, oncogenes
overcome these protective cellular responses by taking advantage of cooperating, 
additional mutations in apoptosis signaling molecules, resulting in the abnormal 
proliferation and survival/antiapoptosis of the tumor cell (Lowe et al., 2004). In a 
classic example, overexpression of the wild-type c-Myc oncoprotein can induce 
apoptosis and sensitize cells towards a host of apoptotic stimuli in certain cell types 
(Pelengaris et al., 2002). However, several events, including inactivation of p53, 
overexpression of Bcl-2, and loss of Bim are able to cooperate with Myc in inducing 
tumorigenesis (Pelengaris et al., 2002). In another strategy for tumorigenicity, 
fusion proteins such as Bcr-Abl can simultaneously activate multiple pathways, 
including those involved in cellular proliferation and in the promotion of survival 
and suppression of apoptosis.

3.1 Myc

C-Myc is a proto-oncogene first identified as the cellular homologue of the oncogene 
found in the avian myelocytomatosis retrovirus (Gonda et al., 1982). The other two 
Myc genes in mammals are MYCN and L-Myc. Myc, which is a transcription factor, 
can both activate and repress target genes. Recent estimates suggest that c-Myc
could regulate as many as 15% of genes in genomes from flies to humans 
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(Fernandez et al., 2003; Orian et al., 2003). These target genes are involved in 
diverse functions including cell proliferation, differentiation, cell adhesion, metab-
olism, DNA repair, and apoptosis (Dang, 1999; Oster et al., 2002). Myc expression 
and its activity in normal cells are tightly regulated. However, Myc overexpression 
has been found in up to 50% of all human cancers (Alitalo and Schwab, 1986; 
Pompetti et al., 1996). Myc is thought to contribute to tumorigenesis through 
unrestrained cellular growth and proliferation and also exerts its effects on cellular 
processes such as cellular adhesion, angiogenesis and genomic instability (Calvisi 
et al., 2004; Felsher and Bishop, 1999; Ingvarsson, 1990; Knies-Bamforth et al., 
2004). In addition to its established roles in promoting cellular growth and prolif-
eration, Myc was also found to be an inducer of apoptosis (Evan and Vousden, 
2001; Evan et al., 1992). It has been reported that Myc potentiates apoptosis 
through both p53-dependent and p53-independent mechanisms (Sakamuro et al., 
1995). Even though the mechanisms by which Myc protein drives such disparate 
functions are still not well understood, it has been suggested that the ability of Myc 
to sensitize cells to apoptosis could be an intrinsic property of cells. Abrogation of 
this proapoptotic property profoundly contributes to cancer progression (Sakamuro 
et al., 1995). Some principles have also emerged from studies in cell culture and 
animal models to explain how Myc can promote cancer growth while acting as an 
inducer of apoptosis.

Modes of Myc dysregulation include chromosomal translocation and amplification,
activation of upstream growth stimulatory signaling cascades, and increased protein 
stability (Oster et al., 2002). One of the important cellular processes caused by Myc 
dysregulation is genomic instability, which is prone to additional genomic mutations.
Thus, activation of other oncogenes may follow in response to Myc deregulation. 
The antiapoptotic functions of some oncogenes can overcome the proapoptotic 
function of Myc. For example, in a conditional transgenic model of Myc-induced 
breast adenocarcinomas (Arvanitis and Felsher, 2006; Boxer et al., 2004; D’Cruz 
et al., 2001; Hutchinson and Muller, 2000), Myc inactivation results in tumor 
regression in about 50% of the tumors. Many of the tumors that initially regress 
subsequently relapse. Half of the tumors that do not regress and those that later 
relapse have active mutations in K-Ras or H-Ras. In those mice, mutant Ras 
appears to facilitate the ability of tumors to become independent of Myc.

Myc cooperation with other oncogenes is another important mechanism by 
which Myc promotes tumorigenesis. In mice, when the C-Myc transgene is coupled 
to the immunoglobulin heavy chain µ-enhancer, it leads to B-cell-specific overex-
pression of the C-Myc gene and development of lymphomas (Adams et al., 1985; 
Harris et al., 1988). This Eµ-Myc mouse is a model for the human disease Burkitt’s 
lymphoma, where a reciprocal chromosomal translocation to the immunoglobulin 
locus leads to inappropriate expression of Myc in the B-cell compartment. The 
lymphomas that develop in the mouse model are consistently clonal, indicating that 
additional mutations are necessary to produce tumors. However, mice doubly trans-
genic for Eµ-Myc and Eµ-BCL2 mutations display a marked decrease in latency of 
disease, developing a leukemia of early progenitor cells (Strasser et al., 1990), 
rather than the lymphoma that develops with Eµ-Myc alone (Harris et al., 1988). 



4 Apoptotic Pathways in Tumor Progression and Therapy 53

Studies in both cell culture and transgenic mice have shown that enforced Bcl2 
expression was capable of blocking Myc-induced apoptosis and left the prolif-
eration functions of Myc intact (Bissonnette et al., 1992; Fanidi et al., 1992; 
Letai et al., 2004).

Notably, the specific consequences of Myc inactivation appear to depend both 
on the type of cancer cells and the constellation of genetic events unique to a given 
tumor. Studies in conditional transgenic mouse model systems have shown that 
Myc inactivation results in the proliferation arrest, differentiation and/or apoptosis 
of tumor cells (Arvanitis and Felsher, 2006). Additionally, recent reports have 
suggested that targeted inactivation of Myc is a potential approach to cancer 
therapy, if used in conjunction with other anticancer treatments (Arvanitis and 
Felsher, 2006). To date, however, no drugs that target Myc have been identified for 
the treatment of humans with cancer (Arvanitis and Felsher, 2006).

3.2  Signaling Pathways Activated by Bcr-Abl
and the Suppression of Apoptosis

The Bcr-Abl fusion protein activates multiple signaling pathways that lead to 
proliferation, reduced dependence on growth factors, apoptosis, and abnormal 
interactions with the extracellular matrix and stroma. Recent research suggests that 
one key mechanism by which Bcr-Abl facilitates the expansion of myeloid cells 
involves the suppression of apoptosis. Notably, the primary consequence of  tyrosine 
kinase inhibition with imatinib in Bcr-Abl-transformed cells is the induction of 
apoptosis (Druker et al., 1996; Gambacorti-Passerini et al., 1997). Additionally, in 
growth factor-dependent hematopoietic cells, Bcr-Abl induces the survival and pro-
liferation of cells that would otherwise undergo apoptotic cell death in response to 
growth factor withdrawal (Bedi et al., 1994). Furthermore, antisense oligonucleotide-
mediated inhibition of Bcr-Abl expression in these transformed cells results in 
apoptosis without altering their cell cycle (Bedi et al., 1994). It has also been 
demonstrated that Bcr-Abl-positive cells are highly resistant to various apoptotic 
stimuli and become sensitized to drug treatment upon antisense inhibition of 
Bcr-Abl (McGahon et al., 1994). Additional evidence for the antiapoptotic effects 
of Bcr-Abl comes from experiments with temperature-sensitive Bcr-Abl kinase 
mutants, in which induction of Bcr-Abl kinase activity at the permissive temperature 
led to a significant decrease in apoptosis in the absence of growth factors (Carlesso 
et al., 1994; Kabarowski et al., 1994). In fact, studies in primary cells have revealed 
that chronic myelogenous leukemia (CML) progenitors show a normal proliferative 
response to growth factors and do not have a greater proliferative potential than 
normal progenitors (Emanuel et al., 1991). Furthermore, in the absence of serum 
and growth factors, neither normal nor CML progenitors proliferated, yet the latter 
maintained higher cell viability (Bedi et al., 1994).

As a result of its elevated tyrosine kinase activity, the Bcr-Abl fusion protein 
activates several signaling pathways, including Ras (Sawyers et al., 1995), PI3-K/Akt 
(Skorski et al., 1997; Varticovski et al., 1991), Stat (Carlesso et al., 1996; Ilaria and 
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Van Etten, 1996; Shuai et al., 1996), and NF-κB (Reuther et al., 1998) some of 
which may be crucial for its leukemogenic activity. In accordance with the ability 
of Bcr-Abl to substitute for the requirement of cytokines, many of these pathways 
are also activated by hematopoietic cytokines upon binding to their respective 
cytokine receptors. A functional consequence of the activation of these pathways 
involves changes in the activity and gene expression of key molecules, which have 
a direct impact on cellular survival, growth, and behavior. In particular, the Ras 
(Sawyers et al., 1995), PI3-K/Akt (Varticovski et al., 1991), Stat (Nieborowska-
Skorska et al., 1999; Sillaber et al., 2000), NF-κB (Reuther et al., 1998), and FOXO 
(Ghaffari et al., 2003) pathways are capable of transmitting antiapoptotic signals, 
which could promote the evasion of Bcr-Abl-transformed cells from apoptosis. Thus,
determining which of these antiapoptotic signals plays a role in Bcr-Abl-mediated 
evasion of apoptosis and promotion of leukemogenesis is of interest, especially 
since the cross talk between, and potential cooperation among, these pathways may 
be important in mediating the leukemogenic effects of Bcr-Abl.

4  Chemotherapeutic Drugs and Conventional 
Radiation-Induced Apoptosis in Tumor Cells

Aberrant cell proliferation, a major hallmark of cancer, has been exploited for anti-
cancer drug development. Most existing chemotherapeutic drugs interfere with 
DNA synthesis and cell division, thereby preferentially killing rapidly dividing cells 
such as cancer cells (Schulze-Bergkamen and Krammer, 2004). These drugs include 
such diverse groups as antimetabolites, genotoxic/DNA-damaging agents (alkylating 
and intercalating agents, topoisomerase inhibitors) and mitotic inhibitors (vinca 
alkaloids and taxanes) (Luqmani, 2005). It is now well established that these cyto-
toxic agents exert their antitumor activity mainly through induction of apoptosis and 
that defects in apoptotic pathways can lead to treatment failure (Johnstone et al., 
2002; Kaufmann and Earnshaw, 2000; Lowe and Lin, 2000; Mesner et al., 1997).

Apoptosis induced by chemotherapeutic drugs primarily involves the mito-
chondrial apoptotic pathway and, in some cases, the death receptor pathway and 
upregulation of death receptors and/or ligands (Bucur et al., 2006; Pommier et al., 
2004). The relative contribution of each pathway to drug-induced apoptosis may 
depend on the cytotoxic drug, dose, kinetics, and cell type ((Fulda et al., 2001b), 
reviewed in (Debatin and Krammer, 2004)).

4.1 DNA-Damaging Agents and Induction of Apoptosis

Chemotherapeutic drugs damage DNA either directly or indirectly (antimetabolites) 
and subsequently initiate a DNA-damage response through both p53-dependent 
and p53-independent mechanisms (Waxman and Schwartz, 2003). Irradiation 
mainly induces direct DNA damage, but can also act indirectly, one example being 
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the modulation of the epigenetic effectors in distant bystander tissue in vivo. X-ray 
exposure to one part of the animal body induces DNA strand breaks and causes an 
increase in levels of Rad51 in unexposed bystander tissue (Koturbash et al., 2006).

Drug- and radiation-induced DNA damage is first sensed by DNA-binding 
factors such as Rad17-RFC and the Rad9-1-1 supercomplex, BRCA1 and the Ku 
subunit of DNA-PK. The DNA damage signal is then transduced by activation of 
the PI3K family members DNA-PK, ATM, and ATR which, in turn, phosphorylate 
effector kinases such as the Ser/Thr kinases Chk1 and Chk2 and the tyrosine kinase 
c-Abl. These activated kinases then phosphorylate their downstream targets including 
the transcription factors p53, p73, and E2F, resulting in the transactivation of 
numerous genes involved in DNA repair, cell cycle arrest, and apoptosis.

The tumor suppressor p53 plays a key role in cellular response to stress and 
DNA damage (Meek, 2004) and has been implicated frequently in drug-induced 
apoptosis (Blagosklonny, 2002). Following DNA damage, p53 is induced by 
phosphorylation via ATM and Chk2. Phosphorylation of p53 not only enhances its 
DNA binding and transcriptional activity, but also stabilizes the protein by inhibiting 
its MDM2-mediated ubiquitination and its subsequent proteasomal degradation. 
The resulting increase in protein stability ultimately enhances the transcription of 
p53 target genes. p53 was shown to activate the mitochondrial apoptotic pathway 
by upregulating proapoptotic genes such as Bax, Bid, Noxa, and Puma, and down-
regulating antiapoptotic proteins such as Bcl-2 and Mcl-1 (Michalak et al., 2005; 
Schuler and Green, 2005; Yu and Zhang, 2005). In addition, p53 can activate the 
extrinsic pathway by upregulating death receptors such as Fas, DR4, and DR5, 
although this pathway alone seems insufficient to induce apoptosis in some cancer 
cells (Reinke and Lozano, 1997). Recent evidence also suggests that p53 exerts proa-
poptotic functions independent of transcription, by translocating to the mitochondrion 
(Erster and Moll, 2005; Marchenko et al., 2000) and binding to Bcl-2 (Mihara et al., 
2003; Tomita et al., 2006) and Bcl-XL (Mihara et al., 2003; Xu et al., 2006).

DNA-damaging agents can also induce apoptosis through p53-independent 
pathways involving, for instance, the transcription factor E2F (Lin et al., 2001). 
E2F exerts important proapoptotic activity in p53-deficient cells through transacti-
vation of proapoptotic genes such as Apaf-1 (Furukawa et al., 2002; Moroni et al., 
2001), the caspase proenzymes (Nahle et al., 2002), p73 (Irwin et al., 2003; Seelan 
et al., 2002; Stiewe and Putzer, 2000; Wang and Ki, 2001), and through repression 
of Mcl-1 (Croxton et al., 2002). In certain cell types, radiation treatment, when used 
alone, may activate death receptors to execute the apoptotic program (Gong and 
Almasan, 2000). Finally, DNA-damaging drugs can engage a stress response via 
the stress-activated protein kinase/JNK pathway to activate the AP-1 and NF-κB-
dependent transcription of FasL (Herr and Debatin, 2001; Kasibhatla et al., 1998).

4.2 Targeting the Apoptotic Machinery Directly

Targeting Bcl-2 family of proteins, death receptors, IAPs, caspases, and p53 are 
discussed in Chapter 8.
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4.3 Microtubule Inhibitors and Induction of Apoptosis

Like DNA-damaging agents, microtubule inhibitors also lead to the phosphorylation 
and stabilization of p53 as a mechanism for drug-induced apoptosis (Blagosklonny, 
2002; Wang et al., 1999). However, in MCF-7 breast cancer cells, inactivation of p53 
does not affect cellular sensitivity to paclitaxel killing. In those cells, p53 may act as a 
survival factor by blocking them in the G2/M phase, rather than serving as an apoptotic 
inducer. By contrast, the transcription factor FOXO3a has been shown to upregulate 
the proapoptotic Bcl-2 family member, Bim, and contribute to paclitaxel-induced cell 
death in MCF7 cells (Sunters et al., 2003). Similarly, another FOXO family member, 
FOXO1, has been implicated in drug-induced apoptosis through the transcriptional 
activation of the TNF-R1-associated protein TRADD (Rokudai et al., 2002).

4.4 Anticancer Therapeutics and Other Forms of Cell Death

In addition to classical apoptosis, anticancer drugs sometimes trigger autophagic 
and necrotic modes of cell death (Gozuacik and Kimchi, 2004; Kim et al., 2006; 
Kondo et al., 2005; Nelson and White, 2004). For instance, tamoxifen induces 
autophagic cell death in MCF-7 cells (Bursch et al., 1996). Similarly, the 
 alkylating agent temozolomide kills malignant glioma cells through autophagy 
rather than apoptosis (Kanzawa et al., 2004). Some reports also indicate that 
paclitaxel and vinblastine induce both autophagic and apoptotic cell death (Broker 
et al., 2004; Hirsimaki and Hirsimaki, 1984). Necrotic cell death (Proskuryakov 
et al., 2003) has also been observed in vitro in resistant human ovarian carcinoma 
cells exposed to HPMA copolymer-bound doxorubicin (Demoy et al., 2000) and 
in vivo in p53/Bcl-2-deficient mice treated with DNA-alkylating agents (Zong 
et al., 2004). These alternative modes of cell death have only recently been identi-
fied and their respective importance and possible cross talk in drug cytotoxic 
action remain to be further defined. These forms of cell death together with 
mitotic catastrophe are further discussed in Chapter 3.

5 Mechanisms of Radiation and Drug Resistance

Drug resistance can be classified as nononcogenic (impaired drug-target interaction) 
and oncogenic (deregulation of apoptosis and the cell cycle). Principal mechanisms 
of nononcogenic resistance include increased drug membrane export involving the 
PgP protein product of the MDR gene; decreased drug activation; increased drug 
degradation; enhanced DNA repair; and mutations of drug targets (Longley and 
Johnston, 2005; Luqmani, 2005). In oncogenic resistance, the drug interacts with 
its target, but downstream pathways of apoptosis and the cell cycle are altered 
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(Longley and Johnston, 2005; Luqmani, 2005). Intrinsic or acquired oncogenic 
resistance can result from multiple mechanisms, as outlined below.

5.1 Prosurvival Signaling (Mitogenic Kinases and NF-kB)

Mitogenic protein tyrosine kinases play a major role in drug resistance through 
their regulation of antiapoptotic signaling pathways (Blume-Jensen and Hunter, 
2001). These include, for instance, members of the EGFR and Ras families, 
Bcr-Abl, and Akt. Overexpression of EGFR and Her-2 has been reported to 
increase resistance to chemotherapeutic drugs (Chevallier et al., 2004; Knuefermann 
et al., 2003; Mendelsohn and Fan, 1997; Nagane et al., 1998; Pegram et al., 1997). 
Activated Ras family members have also been shown to decrease cells’ sensitivity 
to cytotoxic agents (Fan et al., 1997; Jansen et al., 1997). For example, several 
reports suggest that expression of Ras oncoproteins can contribute to cisplatin 
resistance by reducing drug uptake and increasing the degree of DNA repair 
(Dempke et al., 2000; Levy et al., 1994). Similarly, Bcr-Abl-expressing hematopoietic
cell lines and various patient-derived CML cell lines are highly resistant to 
apoptotic induction by chemotherapy (Aichberger et al., 2005; Bedi et al., 1994; 
Cortez et al., 1996; Gesbert and Griffin, 2000; Keeshan et al., 2001; McGahon 
et al., 1994; Ray et al., 2004; Skorski, 2002; Underhill-Day et al., 2006).

The PI3K/Akt pathway, at the crossroads of multiple signaling networks, has been 
shown to be overactivated by upstream mitogenic kinases and oncogenic mutations 
in a wide range of tumors (Osaki et al., 2004). A number of studies have established 
that overexpression or activation of Akt increases chemoresistance both in cell lines 
(Page et al., 2000; Pommier et al., 2004) and in vivo (Kim et al., 2005; Martelli et al., 
2005; McCormick, 2004; Wendel et al., 2004). Accordingly, inhibition of the PI3K/
Akt pathway enhances the cytotoxic effects of a variety of chemotherapeutic agents 
(Hennessy et al., 2005; Nguyen et al., 2004; Nicholson et al., 2003; O’Gorman et al., 
2000; Toretsky et al., 1999). The PTEN tumor suppressor is frequently mutated in 
human tumors. Loss of PTEN is associated with constitutive survival signaling 
through the PI3K/Akt pathway. Adenovirus-mediated expression of PTEN com-
pletely suppressed Akt activation in various cancer cell lines, such as the LNCaP 
prostate cancer cell line, and enhanced apoptosis induced by a broad range of apop-
totic stimuli, including the chemotherapeutic agents mitoxantrone and etoposide, and 
death receptor-mediated treatments such as TRAIL, TNF-α, and agonistic antibodies 
against Fas (Yuan and Whang, 2002).

Finally, tumors with constitutive NF-κB activity are highly resistant to cytotoxic 
drugs (Arlt and Schafer, 2002; Baldwin, 2001). Accordingly, inhibition of NF-κB
dramatically increases the sensitivity of these tumors to drugs by downregulation 
of antiapoptotic proteins (Nakanishi and Toi, 2005). Moreover, treatment with 
diverse cytotoxic drugs (including 5-FU, doxorubicin, paclitaxel, and cisplatin) can 
activate NF-κB, thereby blunting the ability of chemotherapy to induce cell death 
(Chuang et al., 2002).
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5.2 Loss of p53 Function

Loss of p53 function is frequently encountered in human tumors and plays a critical 
role in resistance to chemotherapeutic drugs and conventional radiation (Levine 
et al., 2004; Lowe et al., 1994; Weller, 1998). Mechanisms responsible for p53 
dysfunction include mutations or allelic loss in the p53 gene; upregulation of 
p53 inhibitors such as Mdm2; silencing of key p53 coactivators such as ARF; 
and altered upstream or downstream signaling (Vogelstein et al., 2000). For 
instance, lymphomas from mice deficient in p53 are markedly resistant to 
chemotherapy both in vitro and in vivo (Schmitt et al., 1999). p53 expression is 
predictive for response to chemotherapy in non-small-cell lung cancers (NSCLC) 
(Harada et al., 2003). Moreover, p53 mutations have been correlated with resistance 
to doxorubicin treatment and early relapse in patients with breast carcinomas (Aas 
et al., 1996). Cancers that retain wild-type p53 are more likely to respond to 
 chemotherapy than other tumor types. However, many types of wt p53 tumors with 
 defective apoptotic machinery do not undergo apoptosis despite genotoxic stress 
(Blagosklonny, 2001; Gudas et al., 1996).

5.3 Defective Apoptotic Machinery

5.3.1 Defective Mitochondrial Activation

The Bcl-2 protein family plays a pivotal role in the regulation of the mitochondrial 
apoptotic pathway and, consequently, its members serve as major regulators of 
tumor sensitivity to drugs (Kirkin et al., 2004; Kostanova-Poliakova and Sabova, 
2005; Pommier et al., 2004). Overexpression of antiapoptotic Bcl-2 members such 
as Bcl-2, Bcl-XL, and Mcl-1, or deficiency of the proapoptotic members Bak and 
Bax, has been associated with drug resistance in cell lines, mouse models, and 
patients (Kirkin et al., 2004; Kostanova-Poliakova and Sabova, 2005; Pommier 
et al., 2004). Indeed, overexpression of Bcl-2 (Dole et al., 1994; Kamesaki et al., 
1993; Miyashita and Reed, 1992; Walton et al., 1993) or Bcl-XL (Amundson et al., 
2000) prevents apoptosis induced by most chemotherapeutic drugs in vitro. Some 
evidence also indicates similar effects with Mcl-1 overexpression (Song et al., 
2005; Zhou et al., 1997). In concordance with overexpression data, downregulation 
of Bcl-XL or Bcl-2 has been shown to sensitize cancer cells to DNA damage-
induced apoptosis. Fibroblasts deficient in both Bak and Bax are resistant to 
apoptosis induced by various agents (Wei et al., 2001a). While Bak deficiency 
renders Jurkat cells resistant to staurosporin, bleomycin, and cisplatin (Wang et al., 
2001), loss of Bax expression is associated with acquired resistance to oxaliplatin 
(Gourdier et al., 2002) or resistance to 5-FU (Zhang et al., 2000) in colon carcinoma 
cell lines. Clinically, high expression of antiapoptotic Bcl-2 family members (Reed, 
1996) and loss or inactivation of Bax (Ionov et al., 2000; Tai et al., 1998) has been 
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correlated with poor response to chemotherapy in some types of malignancy, but 
not all kinds of tumors.

5.3.2 Impaired Activation of the Death Receptor Pathway

Alterations in activation of the death receptor pathway are also implicated in 
chemoresistance. For instance, downregulation of Fas/CD95 in lymphoid and solid 
tumors is often associated with resistance to drug-induced cell death (Debatin and 
Krammer, 2004; Friesen et al., 1997; Fulda et al., 1998a; Fulda et al., 1998b). 
Direct downstream signaling molecules such as FADD and c-FLIP are also 
involved. Of note, absence or low expression levels of FADD in acute myeloid 
leukemia cells predicts resistance to chemotherapy and poor outcome (Tourneur 
et al., 2004). c-FLIP silencing dramatically sensitizes colorectal cancer cells to the 
chemotherapeutic agents 5-fluorouracil, oxaliplatin, and irinotecan (Longley et al., 
2006). In addition, decoy receptors seem to be also implicated in resistance of 
cancer cells to different treatments, like Apo2L/TRAIL. This ligand has five receptors,
two of which have cytoplasmic DDs (DR4 and DR5) and three of which act as 
“decoys” (DcR1, DcR2, and osteoprotegerin [OPG]). DcR1 and OPG lack a 
cytosolic region and DcR2 has a truncated, nonfunctional cytoplasmic DD 
(Almasan and Ashkenazi, 2003).

5.3.3 Deregulation of Caspase Activation

Both the death receptor and mitochondrial pathways lead to the activation of 
caspases, the final effectors of apoptotic cell death. Deregulation in the expression 
of caspases or their regulators (Apaf-1 and IAPs) has been observed in tumors. 
Although caspase mutations occur at low frequency, caspase expression and 
function appears to be impaired frequently by epigenetic mechanisms in cancer 
cells (Teitz et al., 2000). Caspase-8 expression was found to be inactivated by 
hypermethylation in varied resistant tumors, including childhood neuroblastoma, 
Ewing and malignant brain tumors and melanoma (Teitz et al., 2000). Importantly, 
restoration of caspase-8 expression by gene transfer or by demethylation treatment 
sensitizes resistant tumor cells to drug-induced apoptosis (Fulda et al., 2001a; Teitz 
et al., 2001). Downregulation of caspase-3 has been proposed as a possible mechanism
for breast cancer chemoresistance. Doxorubicin-induced apoptosis was restored by 
reconstitution of caspase-3 expression in caspase-3-deficient MCF-7 breast cancer 
cells (Devarajan et al., 2002).

Inhibition of caspase activity by members of the IAP family is also involved in 
chemotherapy resistance in some tumors. The X-linked inhibitor of apoptosis 
protein (XIAP) is a factor in chemoresistance of human androgen-insensitive 
DU145 prostate cancer cells, as its inhibition induces apoptosis and enhances 
sensitivity to chemotherapy (Amantana et al., 2004). Overexpression of many IAPs 
has been reported in multidrug-resistant HL-60 leukemia cells (Notarbartolo et al., 
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2002). Survivin expression has been shown to inhibit paclitaxel-induced apoptosis 
in HeLa cells (Giodini et al., 2002) and to correlate with paclitaxel resistance in 
ovarian cancer (Zaffaroni et al., 2002). As a final example, loss of Apaf-1 has been 
associated with chemoresistance in melanoma cells (Soengas et al., 2001).

6 Strategies to Overcome Chemotherapeutic Resistance

Conventional drugs target cancer cells preferentially, but not exclusively. As a 
result, they also kill high-proliferating normal cells from bone marrow and the gut, 
causing unwanted side effects. Moreover, the efficacy of therapy is limited by 
innate or acquired resistance to such agents. New targeted cancer therapies, though, 
aim at using drugs that interfere with specific defects of cancer cells to improve 
selectivity. Current therapies include the use of monoclonal antibodies, small 
molecules, RNAi, and adenovirus-based gene therapy. These methods are currently 
being developed and studied for use alone or in combination with conventional 
drugs to overcome resistance (Fesik, 2005). The major proapoptotic targeted 
therapies are outlined below.

6.1 Inhibition of Mitotic Kinases (RTK, Ras, Akt, and mTOR)

Targeting the mitotic kinases that are involved in the survival of cancer cells has 
become a potential strategy for the induction of apoptosis either as a single treatment 
or in combination with traditional therapies. Two major approaches are being 
considered for targeting these kinases: small-molecule inhibitors and blocking 
monoclonal antibodies.

Tyrosine kinase inhibitors have been designed to compete with and prevent the 
binding of ATP to the tyrosine kinase domain. One of the greatest advances in 
molecular targeted therapy in cancer involves the treatment of CML with a small-
molecule inhibitor of the Bcr-Abl oncogenic kinase called imatinib-mesylate 
(Gleevec) (Deininger et al., 2005; Druker et al., 1996). Imatinib leads to unprece-
dented responses in the chronic phase, with 80% of newly diagnosed patients 
achieving complete hematological remission. Imatinib has been shown to eradicate 
Bcr-Abl-positive leukemia cells through the induction of apoptotic (le Coutre et al., 
1999) or nonapoptotic caspase-independent cell death (Okada et al., 2004). Since 
imatinib also inhibits other kinases such as c-Kit and PDGFR, its application has 
been broadened to other types of cancer such as c-Kit-positive gastrointestinal 
stromal tumors (GIST) (Dagher et al., 2002). Other successful examples of targeted 
small molecules include two EGFR/HER1 tyrosine kinase inhibitors, gefitinib 
(Iressa), and erlotinib (Tarceva), both of which have recently been approved 
by the Food and Drug Administration (FDA) for the treatment of NSCLC 
(De Marinis et al., 2006).
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Humanized monoclonal antibodies targeting the EGFR superfamily have also 
been developed to bind the extracellular domain of these receptors competitively 
and thus prevent tyrosine kinase activation. Trastuzumab (herceptin), a monoclonal 
antibody against the extracellular domain of Her-2, is a prime example (Emens, 
2005). The drug, which is approved for the treatment of breast cancers overexpressing
Her-2, is best used in combination with paclitaxel for first-line therapy, but may 
also be used as a single agent as second- and third-line therapy.

As Ras mutations have been found in a great majority of carcinomas, targeting 
of Ras or downstream effector pathways of Ras has been of great interest (Khosravi-
Far et al., 1998; Khosravi-Far and Der, 1994; Wennerberg et al., 2005). Farnesyl 
transferase inhibitors have potently inhibited Ras in preclinical studies, but have 
exhibited rather disappointing results in clinics so far (Appels et al., 2005). 
Chemical inhibitors of the PI3K/Akt pathway have a potential use as suppressors 
of tumor growth and inducers of apoptosis (Hennessy et al., 2005). Although inhi-
bition of the PI3K family members has been shown to inhibit growth of both cancer 
cells in vitro and tumors in animal models, these compounds so far lack selectivity. 
By contrast, rapamycin and its analogues, which inhibit the Akt downstream 
 substrate mTOR, slow the growth of tumors in animal models without displaying 
significant toxicity (Morgensztern and McLeod, 2005) (Dudkin et al., 2001; Eng 
et al., 1984). These compounds are currently in clinical trials for the treatment of 
breast, colon, and lung cancers.

6.2 Targeting of Transcription Factors

Several transcription factors, including p53, members of the FOXO superfamily, 
and NF-κB, are involved in drug-induced cellular response and have therefore 
emerged as attractive targets for new apoptosis-inducing therapies (Kim et al., 
2003). Restoring p53 activity in tumor cells has a therapeutic potential because 
p53 loss or dysfunction in many tumors is a major cause of drug resistance. 
Different approaches to restore p53 function include gene transfer of wt p53, 
chemical restoration of wt p53 activity, and inhibition of Mdm2–p53 interaction 
(Blagosklonny, 2002). Many clinical trials employing wt p53 gene transfer are 
ongoing in different types of p53-deficient cancers. p53 activity can also be 
restored by small molecules that modify mutant p53 back to wt (Bykov et al., 
2003; Foster et al., 1999). CP-31398, a styrylquinazoline, restores a wt DNA-binding 
conformation to mutant p53 and is capable of suppressing tumor growth in vitro 
and in vivo (Luu et al., 2002). Blocking the interaction of Mdm2–p53 in order to 
inhibit p53 degradation has also been considered as a valuable strategy for cancer 
therapy. A small molecule inhibiting the p53 pocket of Mdm2 (IC50 = 100 nM) 
was recently discovered within a series of cis-imidazoline analogues called the 
nutlins (Vassilev et al., 2004). Dose-dependent antiproliferative and cytotoxic 
activities of nutlins were shown to be dependent on the p53 status of tumor cell 
lines. Nutlins inhibited the growth of tumors in xenograft models without causing 
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significant toxicities (Vassilev et al., 2004). These results emphasize that small 
molecule inhibitors of Mdm2 could be valuable anticancer agents, especially for 
tumors retaining wt p53 but overexpressing Mdm2.

Recently, Hu et al. (2004) demonstrated that FOXO3a is inactivated by IKKβ in 
two thirds of breast cancer patients studied and that the presence of active FOXO3a 
correlates with improved patient survival. Additionally, FOXO3a has also been 
shown to be involved in paclitaxel-induced apoptosis in MCF-7 breast cancer cells. 
Notably, the FOXO family of transcription factors have been shown to regulate 
expression of proapoptotic genes such as Fas (Suhara et al., 2002), TRAIL (Ghaffari 
et al., 2003; Modur et al., 2002), and Bim (Gilley et al., 2003; Stahl et al., 2002). 
Taken together, these studies suggest that downregulation of FOXO transcription 
factors may be a key mechanism in tumorigenesis. As a proof of concept, chemical 
library screening identified a series of compounds that could target FOXO1 to the 
nucleus and that restored the induction of apoptosis in PTEN-null cells (Kau et al., 
2003; Wang and El-Deiry, 2004).

Finally, an NF-κB inductive response to cytotoxic drugs can be targeted through 
its physiological inhibitor, IκB. Indeed, adenovirus-based inhibition of NF-κB
elicited by gene delivery of an IκB superrepressor abrogates chemoresistance in 
some types of tumors such as androgen-independent prostate cancer cells and in 
glioma-derived cell lines (Orlowski and Baldwin, 2002). Targeting the IKK kinases 
that phosphorylate and promote the proteasomal degradation of IκB could be 
another approach, which is all the more appealing since FOXO3a is also regulated 
by IKKs in breast cancer cells. Moreover, conditional knockout of IKKβ in intestinal 
epithelial cells impedes irradiation-induced NF-κB activation and promotes the 
activation of p53 and apoptosis in those cells (Egan et al., 2004). Thus, as suggested 
by Finnberg and El-Deiry (2004), direct activation of FOXO3a, inhibition of 
NF-κB, and indirect activation of p53 by targeting IKKs could be an effective 
multifaceted anticancer therapy to inhibit cellular proliferation and promote cell 
death by multiple signaling pathways.

6.3 Direct Targeting of the Apoptotic Machinery

6.3.1 Activators of the Intrinsic/Mitochondrial Pathway

The mitochondria, as a major cell death checkpoint, constitute a prominent target 
for new anticancer therapies. The mitochondrial pathway can be selectively targeted 
by gene delivery of proapoptotic proteins such as Apaf-1 (Perkins et al., 2000) or 
Bax (Kagawa et al., 2000; Kaliberov et al., 2002). Alternatively, overexpressed 
antiapoptotic proteins such as Bcl-2, Bcl-XL, and XIAP can be downregulated. An 
antisense oligo against BCl-2, oblimersen, sensitizes patient-derived malignant 
melanoma cells to apoptosis induced by dacarbazine (Jansen et al., 2000) and has 
been recently approved by FDA for use in combination with this drug in advanced 
melanoma (Kim et al., 2004; Klasa et al., 2002). Phase II/III clinical trials are being 
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carried out to assess the benefits of oblimersen in combination with conventional 
drugs in Acute myelogenous leukemia (AML) and Non-small Cell Lung Cancer 
(NSCLC). Varied designer ligands (peptidomimetics or organic small molecules) 
that bind to the BH3-binding pocket of BCL-2 and Bcl-XL have been shown to 
induce apoptosis in vitro (Yin et al., 2005; Degterev et al., 2001; Enyedy et al., 2001; 
Kutzki et al., 2002; Tzung et al., 2001; Walensky et al., 2004; Wang et al., 2000). To 
date, a stapled BH3 peptide has been reported to inhibit the growth of leukemia 
xenografts (Walensky et al., 2004) and a small-molecule inhibitor of the Bcl-2 fam-
ily members, ABT-737 (Abbot Laboratories), has been shown to induce regression 
of solid tumors in vivo (Oltersdorf et al., 2005). Moreover, a dual Bcl-2/BclXL 
antagonist (GX15-070, GeminX Biotechnology) entered clinical trials last year.

Inhibition of XIAP and other IAPs is another mechanism considered to induce 
apoptosis in cancer cells (Huang et al., 2004; Schimmer et al., 2006). Knockdown 
of XIAP by antisense oligos or RNAi induces apoptosis in cancer cells (Adams, 
2003; Lima et al., 2004; McManus et al., 2004). Peptidic and nonpeptidic inhibitors 
of XIAPs have also been reported (Huang et al., 2004; Schimmer et al., 2006). In 
particular, cell-permeable Smac peptidomimetics that inhibit IAPs potently induce 
caspase activation and apoptosis in cancer cells and inhibit tumor growth in 
xenograft mouse models (Fulda et al., 2002).

Finally, drugs which act directly on mitochondrial components are also being 
developed to enforce cell death in tumor cells in which upstream apoptotic 
pathways are disabled (reviewed in Dias and Bailly, 2005; Bouchier-Hayes et al., 
2005; Costantini et al., 2000; Debatin et al., 2002). Betulinic acid, a natural 
pentacyclic triterpenoid which acts via the permeabilization transition pore, has 
been shown to exert antitumor effects against neuroblastodermal and malignant 
head and neck tumors irrespective of their p53 status (Fulda and Debatin, 2000; 
Pisha et al., 1995).

6.3.2 Activators of the Extrinsic/Death Receptors Pathway

There is significant interest in targeting the extrinsic pathway to circumvent drug 
resistance, since chemorefractory cells tend to have dysfunctional p53 and defects 
in their intrinsic pathway. Death receptor ligands such as Fas, TNF, and TRAIL 
can be strong inducers of apoptosis in tumor cells in vitro. Among these ligands, 
TRAIL emerges as the most promising antitumor agent due to its lack of toxicity 
(Abe et al., 2000b; Yagita et al., 2004). Unlike Fas and TNF, recombinant TRAIL 
induces tumor regression in preclinical models with little toxicity to normal tis-
sues (Ashkenazi et al., 1999; Walczak et al., 1999) and is currently in phase I 
clinical trials for the treatment of solid tumors. Agonistic antibodies against DR4 
and DR5 also induce apoptosis in cancer cells, but not in normal cells and slow 
the growth of tumors in xenograft tumor models with no apparent systemic toxicity 
(Yagita et al., 2004). Phases I and II clinical trials have been initiated for an agonistic 
antibody targeting DR4 and phase II clinical trials are ongoing for an antibody 
that targets DR5.
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6.4 General Inhibitors (Proteasome, Hsp90, and HDAC)

Targeting more general cellular components such as the 26S proteasome (Adams, 
2004), the molecular chaperone protein Hsp90 (Whitesell and Lindquist, 2005), 
and histone deacetylases (HDAC) (Minucci and Pelicci, 2006; Yoo and Jones, 
2006) has led to some surprising success in specific anticancer therapy. These 
therapies, while not intended to induce apoptosis, preferentially kill cancer cells by 
exploiting their greater dependence on the targeted cellular processes than their 
normal counterparts.

The proteasome inhibitor Velcade has been approved for treatment of multiple 
myeloma and is under evaluation as a single agent or in combination chemotherapy 
for the treatment of other hematopoietic and solid cancers (Adams and Kauffman, 
2004). Preclinical studies demonstrate that proteasome inhibition by Velcade 
potentiates the activity of other cancer therapeutics, in part by downregulating 
chemoresistance pathways such as NF-κB and by inducing proapoptotic proteins 
such as p53 or FOXO3a (Fujita et al., 2005; Ghaffari et al., 2003).

Hsp90 is a molecular chaperone protein required for the stability and function 
of multiple mutated chimeric and overexpressed signaling proteins. Hsp90 inhibitors
have shown promising antitumor activity in preclinical model systems (Banerji 
et al., 2005) and a 17-AAG compound has reached phase II clinical trials 
(Heath et al., 2005).

HDAC inhibitors are novel anticancer agents in clinical development that 
target the family of HDAC enzymes responsible for deacetylating core nucleosomal 
histones and other proteins. The precise mechanisms resulting in the antiproliferative 
biological effects of these agents are not fully understood. Nevertheless, a phase 
I clinical trial of suberoylanilide hydroxamic acid (SAHA) has shown that it is 
well tolerated, and has antitumor activity in both solid and hematological tumors 
(Kelly et al., 2005).

6.5  Combined Treatment as a Strategy to Overcome Resistance 
to Conventional Radiation and Chemotherapeutic Drugs

Most chemotherapeutic agents utilize the apoptotic pathway to induce cancer cell 
death, as does radiation. To overcome resistance to apoptosis, combination thera-
pies involving two or more treatments can be used. The efficiency is usually highest 
when these treatments act on different signaling pathways. Targeting apoptosis 
through both the intrinsic and extrinsic pathways has been shown to be a good 
strategy. For example, joint activation of the intrinsic pathway (via the Bcl-2 family 
of proteins) and the extrinsic pathway (using different ligands like Apo2L/TRAIL) 
has a synergistic effect in prostate cancer cell lines (Almasan and Ashkenazi, 2003). 
Also, resistance to death receptor-induced cell death (as in resistance to Apo2L/
TRAIL treatment) can be overcome by using a variety of therapeutic strategies, 
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like the activation of the intrinsic pathway, inhibition of survival factors, metabolic 
inhibition (blocking protein synthesis), proteasome inhibition (bortezomib), and 
others (Bucur et al., 2006).

6.5.1 Conclusions and Future Directions

Apoptosis and its deregulation in cancer has been an intensive field of research over 
the past decades. A deeper understanding of the mechanisms involved in evasion of 
cancer cells from apoptosis, and its link to drug resistance, has enabled the recent 
development of molecular targeted proapoptotic therapies. These therapies have 
produced significant results in cancer treatment and, in the case of Gleevec in CML, 
have even exceeded expectations. However, as for conventional drugs, resistance 
has subsequently emerged, even to single targeted agents. To avoid resistance, 
combination therapies involving both an apoptosis inducer and a conventional drug 
appear to be the best approach to date, but different strategies can be also used.

When apoptosis is impaired, resistance can often be overcome by targeting both 
the extrinsic and intrinsic pathways of apoptosis. In addition, alternative modes of 
cell death, such as autophagy, mitotic catastrophe, or necrosis, might be activated. 
Involvement of these different types of cell death in drug-induced cytotoxicity raises 
the possibility of using these newly identified cellular pathways instead to treat 
chemoresistant cancers. A deeper understanding of these alternative modes of cell 
death and identification of the interplay and molecular switches between apoptosis–
autophagy and necrosis might provide new therapeutic targets for cancer therapy.

Finally, it is becoming clearer that tumor cells are not homogeneous and that 
neither most conventional drugs nor even targeted agents such as Gleevec can 
eliminate the cancer stem cells from which the disease arises (Bhatia et al., 2003). 
Relapses could occur in part due to the failure of current therapies to target this 
specific and original cancer cell population. Therefore, future directions of cancer 
research must better decipher the different modes of cell death and their potential 
application in attacking cancer stem cells.
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Chapter 5
Therapeutic Targeting of Death 
Pathways in Cancer

Mechanisms for Activating Cell Death in Cancer Cells

Ting-Ting Tan and Eileen White*

Abstract Defects in apoptosis that evolve during the course of cancer progression 
not only provide cancer cells with intrinsic survival advantage, but also provide inher-
ent resistance to chemotherapeutic agents. Thus, modulation of apoptosis by targeting 
components of the apoptotic machinery and its regulators to restore apoptotic func-
tion is a rational approach for treating cancer. With our increasing knowledge of the 
mechanisms of apoptosis regulation and of how apoptosis is disabled in cancer cells, 
numerous novel approaches targeting apoptotic pathways can now be exploited for 
cancer therapy. While most of these therapies are still in preclinical development, 
some have shown considerable promise and progressed into the clinic. This chapter 
summarizes the current knowledge of the apoptotic pathways and provides a selective 
review on the development of drugs that target the apoptotic machinery.

Keywords apoptosis, chemotherapy, targeted therapy, BCL-2 family, death  receptors, 
signal transduction inhibitors

1 Introduction

Inactivation of apoptosis is selected for in cancer, endowing cells with intrinsic sur-
vival advantage and the capacity to evade surveillance by the immune system. 
Furthermore, killing of cancer cells by currently used cytotoxic therapies, including 
chemotherapy, γ-irradiation, and immunotherapy largely depends on activation or 
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reactivation of the apoptosis program. Accordingly, failure to engage in apoptosis 
produces resistance to treatment. Defective apoptosis can allow genetically unstable 
and damaged cells to avoid elimination, further facilitating tumor progression (Nelson 
et al., 2004) and treatment failure (Johnstone et al., 2002). Advances in the under-
standing of the molecular mechanisms of apoptosis have laid the foundation for dis-
covery of new drugs targeting various components of the apoptotic pathway to 
increase the effectiveness of cancer treatment. Several new approaches are being 
investigated that include gene therapy, small molecule peptide mimetics, antibodies, 
kinase inhibitors, and proteasome inhibitors to target specific apoptosis regulators. 
Knowing how apoptosis is regulated, identifying the key components that control the 
apoptotic response in cancer cells, and how common mutations found in human 
tumors alter apoptotic signaling, has provided a rational approach to cancer therapy.

2 Apoptosis Signaling Pathways

Apoptosis is a stringently regulated, evolutionarily conserved mechanism of cell 
death that is considered a critical regulatory process for development and for main-
taining a homeostatic balance between cell survival and cell death. Disruption of 
apoptosis contributes to the pathogenesis of a wide variety of diseases. Too much 
cell death can contribute to degenerative disorders, whereas too little cell death 
leads to autoimmunity and cancer (Cory and Adams, 2002; Danial and Korsmeyer, 
2004). Two alternative pathways can initiate apoptosis: one is mediated by death 
receptors on the cell surface, and is referred to as the “extrinsic pathway”; and the 
other is referred to as “ intrinsic pathway” and involves the BCL-2 family proteins 
that regulate mitochondrial function. Ultimately, the two pathways converge on 
downstream effector cysteine aspartyl-specific proteases (caspases), activation of 
which leads to the biochemical and morphological changes that are characteristic 
of apoptosis (Shi, 2002). Caspase activation results in a collapse of cellular 
ultrastructure and function through internal proteolytic digestion, which is evident 
as dismantling of the cytoskeleton, metabolic dysfunction, and genomic fragmenta-
tion. In the end, the condensed cell corpse is engulfed by nearby cells in tissues and 
eliminated without inflammation (Wyllie, 1980).

2.1 The Intrinsic Pathway

The BCL-2 family members serve as key regulators of the intrinsic apoptotic path-
way that signals through mitochondria (Fig. 5.1). About 20 BCL-2 family members 
in mammals fall into three interacting groups that share at least one of four relatively 
conserved BCL-2 homology domains (BH1–4). Multidomain antiapoptotic BCL-2 
and its homologues (e.g., BCL-x

L
 BCL-w, BFL-1/A1, MCL-1, and adenoviral 

homolog E1B19K) act predominantly to inhibit apoptosis (Cuconati and White, 
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2002; Danial and Korsmeyer, 2004). The other two groups instead are proapoptotic. 
One of these proapoptotic groups comprises the multidomain proteins represented by 
BAX, BAK, and BOK that share BH1–3 with BCL-2. These three conserved regions 
in multidomain BCL-2 family members form a hydrophobic surface groove for bind-
ing of either a putative transmembrane helical domain at the carboxyl terminus, or a 
BH3 (Fesik, 2000; Suzuki et al., 2000). The other proapoptotic group is comprised of 
the BH3-only proteins (e.g., BAD, BID, BIM, HRK, PUMA, NOXA, and NBK/BIK) 
that are the most apical regulators of this intrinsic death signaling (Gelinas and White, 
2005; Willis and Adams, 2005). BH3-only proteins typically initiate the apoptotic 
activity of the BCL-2 family in response to diverse cytotoxic stimuli. The BH3 is an 
amphipathic α-helix that serves as a  binding motif for interaction with the hydropho-

Fig. 5.1 Schematic representation of the major apoptotic pathway components and the acting 
points of agents that target the regulators of apoptosis. Apoptosis occur through two main path-
ways: the extrinsic and intrinsic pathways. Both pathways converge on activation of caspases that 
culminate in cell death. Extracellular signals via cytokines and growth factors are central to cell 
survival. Loss of p53 and hyperactivation of survival pathways are commonly found in cancer 
cells to deregulate cell cycle control and interfere with apoptotic signaling. Comprehensive 
knowledge of these pathways provides a variety of options for targeted therapy. Summarized here 
are major acting points of targeted agents indicated as numbered and colored circles. Red solid 
circles represent activation and blue solid circles represent inhibition of the target/pathway. The 
numbers stand for different classes of drugs: (1) represents antisense oligonucleotides or small-
molecule inhibitors targeting antiapoptotic BCL-2-like proteins; (2) BH3 mimetics; (3) soluble 
death receptor ligands or agonistic antibodies against death receptors; (4) IAP inhibitors; (5) 
SMAC mimetics; (6) caspase activators; (7) p53 activators; (8) proteasome inhibitors; (9) IκB
stabilizers; (10) antireceptor tyrosine kinase antibodies; (11) tyrosine kinase inhibitors; (12) MEK 
kinase inhibitors; (13) RAF kinase inhibitors; and (14) mTOR inhibitors
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bic groove on either multidomain antiapoptotic or proapoptotic BCL-2 proteins. 
Systematic study of the binding of BH3-only proteins to BCL-2 antiapoptotic pro-
teins has shown that certain BH3-only proteins target specific subsets of the prosur-
vival proteins (Letai et al., 2002; Chen et al., 2005; Kuwana et al., 2005; Willis et al., 
2005). BIM, PUMA, and tBID bind avidly to all five antiapoptotic proteins and dem-
onstrate potent killing. In contrast, BAD and BMF bind preferentially to BCL-2, 
BCL-x

L
, and BCL-w, whereas NOXA binds preferentially to MCL-1 and BFL-1/A1. 

Although BH3-only proteins with restricted targets can be less-potent inducers of 
apoptosis, BAD and NOXA with complementary affinity to antiapoptotic BCL-2 fam-
ily members cooperate to induce substantial cell death (Chen et al., 2005). Although 
BH3-only proteins cannot initiate apoptosis in the absence of BAX and BAK (Cheng 
et al., 2001; Zong et al., 2001), it remains unresolved whether they activate BAX and 
BAK directly or indirectly. A direct binding model has been proposed for BAX acti-
vation where binding of BH3-only sensitizers (e.g., BAD or BIK) to BCL-2 displaces 
the normally sequestered BH3-only activators (e.g., tBID or BIM), releasing tBID or 
BIM to trigger BAX oligomerization (Letai et al., 2002). Evidence suggests a dis-
placement model for the activation of BAK whereby MCL-1 and BCL-x

L
 sequester 

BAK, and that the binding of BH3-only proteins such as NOXA to MCL-1 displaces 
BAK as an apoptosis-activating step (Cuconati et al., 2003; Gelinas and White, 2005; 
Willis and Adams, 2005; Willis et al., 2005).

BH3-only proteins initiate apoptosis in response to a wide range of damage 
and stress, including DNA damage, deregulated growth, survival factor defi-
ciency, hypoxia, anoikis, and Ca+2 overload (Adams, 2003; Cory and Adams, 
2005; Willis and Adams, 2005). Although these diverse apoptotic stimuli activate 
different upstream components in the apoptotic signaling pathway, in most cells, 
these signals are transduced to and converge on mitochondria and cause permea-
bilization of outer mitochondrial membrane causing the release of cytochrome c 
and other apoptogenic proteins (e.g., SMAC/DIABLO). Cytochrome c release 
promotes the formation of the apoptosome, a large protein complex that contains 
cytochrome c, apoptotic protease-activating factor 1 (APAF1) and caspase-9 (Li 
et al., 1997; Zou et al., 1997). Apoptosome formation triggers activation of cas-
pase-9, which further cleaves and activates the effector caspase-3, resulting in 
selective destruction of subcellular structures and organelles, and of the genome 
(Earnshaw et al., 1999).

2.2 The Extrinsic Pathway

Activation of the extrinsic apoptotic pathway is initiated by ligand-mediated acti-
vation of cell surface death receptors (DRs). It plays an important role in immune 
surveillance of transformed or virus-infected cells and in the removal of self-reac-
tive lymphocytes. Death receptors form a subgroup of the tumor necrosis factor 
(TNF) receptor superfamily that includes TNF-R1, CD95 (also called APO-1 or 
FAS), DR3 (APO-2), DR4 (TNF-related apoptosis-inducing ligand receptor 1 
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[TRAIL R1]), DR5 (TRAIL R2), and DR6 (Zapata et al., 2001). Upon ligand binding,
the death receptors interact via their intracellular motif called the death domain 
(DD) with the DD of adapter proteins such as FAS-associated death domain 
(FADD). These adapter proteins also contain a second protein interaction motif, 
the death effector domain (DED), that facilitates binding to a corresponding 
DED in the amino-terminal prodomains of initiator caspase-8 (or in some cases, 
its relative caspase-10) to form the death-inducing signaling complex (DISC) 
(Wallach et al., 1999). DISC formation activates caspase-8, which subsequently 
cleaves and activates caspase-3, resulting in further cleavage of cellular 
targets.

In many cells, however, DISC formation mediated caspase-3 activation is 
insufficient to complete the cell death program, and death receptor signaling 
must be amplified by engagement of the mitochondria-mediated cell death 
pathway through the caspase-8-mediated cleavage of the BH3-only protein 
BID (Fig. 5.1). Once cleaved, truncated BID translocates to mitochondria, 
where it can activate BAX and BAK and induce the release of cytochrome c
and SMAC/DIABLO serving to amplify apoptosis signaling (Danial and 
Korsmeyer, 2004).

The intrinsic and extrinsic apoptotic pathways converge on downstream 
effector caspases that implement cell elimination. The caspase family forms the 
engine of apoptosis and is divided into two major groups (Fischer et al., 2003; 
Fuentes-Prior and Salvesen, 2004). The subset of caspases that cleave selected 
substrates to produce the typical alteration associated with apoptosis are known 
as executioner caspases, which in mammals are caspase-3, caspase-6, and cas-
pase-7. Executioner caspases are activated by apical initiator caspases, including 
caspase-8, caspase-9, and caspase-10. Effector caspases are targets of suppres-
sion by an endogenous family of antiapoptotic proteins called inhibitor of apop-
tosis proteins (IAPs). The IAP family, characterized by one or more baculovirus 
IAP repeat (BIR) domains, includes X-linked IAP (XIAP), c-IAP1, c-IAP2, 
Survivin, Livin (ML-IAP), ILP2, and Apollon. Different BIR domains are 
responsible for suppression of specific caspases. Structural studies have revealed 
that the BIR3 of XIAP is responsible for binding and inhibition of caspase-9 and 
that a region adjacent to BIR2 is the major determinant for inhibition of caspase-
3 and caspase-7. ML-IAP contains a single BIR and inhibits caspase-9 but not 
caspase-3 and caspase-7. BIRs are sometimes accompanied by really interesting 
new gene (RING) and ubiquitin-conjugating enzyme domains, which are associ-
ated with the ability to target them and other proteins for proteasome degrada-
tion. SMAC/DIABLO is an IAP antagonist that is released into the cytoplasm 
upon mitochondrial permeabilization. SMAC/DIABLO binds to IAPs in a 
 manner similar to caspases, thereby promoting apoptosis by liberating caspases 
from IAPs (Fesik and Shi, 2001). The amino-terminal tetrapeptide motif of 
SMAC/DIABLO is responsible for binding to BIR domains of IAPs (Wu et al., 
2000). Evidence suggests that apoptosis requires or is facilitated by coordinate 
inhibition of IAPs by SMAC/DIABLO and activation of the apoptosome by 
 cytochrome c.
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3 Targeting the Apoptotic Machinery

3.1 BCL-2 Family Proteins as Targets

Proteins of the BCL-2 family are crucial checkpoints of the intrinsic mitochondrial 
death pathway. Overexpression of antiapoptotic BCL-2 family proteins such as 
BCL-2, BCL-x

L
, BFL-1/A1, or MCL-1 has been observed in various malignancies 

and can confound cancer treatment (Reed and Pellecchia, 2005). Reduction of 
expression levels of antiapoptotic BCL-2 family genes is considered to potentially 
contribute to the proapoptotic effects of some novel anticancer agents, such as 
retinoids, histone deacetylase inhibitors, and peroxisome-proliferator-activated 
receptor-γ (PPARγ)-modulating drugs (Reed and Pellecchia, 2005). Drug design 
targeting antiapoptotic BCL-2 family members has been focused on three strategies 
inducing mRNA degradation with antisense oligonucleotides, BH3-domain pep-
tido-mimetics, and synthetic small molecule drugs interfering directly with BCL-2 
family member protein function (Fig. 5.1).

Currently, oblimersen sodium (G3139, Genasense; Genta, Inc., Berkeley Heights, 
New Jersey) is the only nucleic acid-based inhibitor of BCL-2 and its antiapoptotic 
relatives to enter clinical trials. Oblimersen is a DNA-based synthetic 18-mer anti-
sense oligonucleotide to BCL-2 and has been reported to induce RNaseH-mediated 
degradation of BCL-2 mRNA (Fig. 5.1). A completed phase 3 clinical trial of oblim-
ersen for advanced melanoma in combination with dacarbazine demonstrated 
slowed disease progression, but failed to extend the survival time (Fischer and 
Schulze-Osthoff, 2005). Several phase 3 clinical trials of oblimersen in combination 
with conventional chemotherapy involving patients with other tumors are still being 
evaluated. Antisense directed against BCL-x

L
 also displays proapoptotic effects in 

cancer cells (Fennell et al., 2001). Bispecific BCL-2/BCL-x
L
-suppressing antisense 

oligonucleotides under preclinical studies may optimize efficacy because simultane-
ous overexpression of multiple antiapoptotic members of the BCL-2 family may 
occur in malignant cells (Del Bufalo et al., 2003). An MCL-1 antisense compound 
has recently demonstrated efficacy in a sarcoma xenograft model (Thallinger et al., 
2004). Efficient delivery of these agents to tumor cells remains as a potential limita-
tion of this approach.

An alternative means to interfere with BCL-2 antiapoptotic proteins is direct 
inhibition by modified BH3 peptides or small molecules (Fig. 5.1). A hydrocarbon-
stapled BID BH3 peptide engineered to be helical, protease resistant, and cell per-
meable, potently induces apoptosis in Jurkat T leukemia cells and slows the growth 
of a transplanted leukemia (Walensky et al., 2004). A BAD-BH3 peptide preferably 
kills BCL-x

L
 and BCL-2 overexpressing Jurkat cells, and a BAX BH3 peptide is 

slightly more effective in BCL-2 overexpressing cells, suggesting that the efficacy 
of BH3 peptides might depend on the affinity of a certain BH3 domain for a limited 
set of antiapoptotic BCL-2 proteins (Shangary and Johnson, 2002).

Small-molecule inhibitors of BCL-2 or related antiapoptotic relatives have 
recently been identified through high-throughput screening of chemical libraries 
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for the ability to dock onto the BH3 pocket of antiapoptotic BCL-2 family pro-
teins, negating their prosurvival activity. The most advanced among these is the 
natural product gossypol, and its semisynthetic analogs with less toxicity, which 
are undergoing late steps of preclinical and clinical testing (Qiu et al., 2002). 
Chelerythrine, identified as an inhibitor of BCL-x

L
/BAK-BH3 interaction from a 

natural compound library, induces apoptosis effectively in BCL-2 or BCL-x
L
 over-

expressing cells (Chan et al. 2003). Others include BH3I-1 and BH3I-2, identified 
by screening using a BH3 peptide displacement assay, and HA14–1 and antimycin 
analogs, identified by computational modeling (Reed and Pellecchia, 2005). Most 
promising is ABT737 (Abbott, Abbott Park, Illinois), a synthetic small molecule 
developed by NMR-guided, structure-based drug design (Oltersdorf et al., 2005) 
that exhibits very high affinity for the hydrophobic pocket of BCL-2, BCL-x

L
, and 

BCL-w (Cory and Adams, 2005). ABT737 significantly sensitizes many tumors to 
cytotoxic agents and is effective as a single agent against certain lymphomas and 
solid tumors, inducing tumor regression in xenograft models. The BAD-like selec-
tivity of ABT737 suggests that tumor resistance to ABT737 could result from high-
level expression of MCL-1 or BFL-1/A1, and small molecules that target these 
proteins should synergize with ABT737 (Cory and Adams, 2005). A chapter by 
Moore and Letai will provide more detail on rationale designs of therapeutics that 
target BCL-2 family of proteins.

3.2 Targeting Death Receptors

Most chemotherapeutic agents and radiation therapy induce apoptosis in cancer 
cells primarily by engagement of the mitochondrial apoptosis machinery. 
Accordingly, chemorefractory tumor cells often evolve defects in their intrinsic 
apoptotic pathway. By directly activating the caspase cascade, death receptor-
mediated apoptosis, in contrast, can bypass the mitochondria and thereby sensitize 
resistant tumor cells to conventional chemotherapeutic agents or ionizing radiation 
(Fig. 5.1).

Despite the selective antitumor activity, the proinflammatory actions of TNF 
preclude its systemic administration in cancer therapy. Nonetheless, because TNF 
destroys tumor-associated blood vessels by apoptosis and improves vascular per-
meability to cytotoxic drugs, local application of TNF has been exploited for cancer 
therapy. Low-dose TNF was shown to improve penetration of doxorubicin for the 
treatment of melanoma and lymphoma (Curnis et al., 2000). Isolated limb perfusion 
of high-dose TNF combined with chemotherapeutic drugs demonstrated significant 
synergistic effect in treatment of locally advanced melanomas and sarcomas 
(Eggermont and ten Hagen, 2001).

CD95L and TRAIL are expressed on cytolytic T cells, natural killer cells, and 
other immune cells and play an important role in eradication of virus-infected and 
transformed cells (Locksley et al., 2001). Unlike TNF, these death ligands do not 
induce concomitant NF-κB activation (Karin and Lin, 2002). Unfortunately, severe 
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hepatotoxicity precluded the systemic administration of CD95 ligand (Ogasawara 
et al., 1993). Most promising is TRAIL and agonistic antibodies that bind TRAIL 
receptors, which selectively kill tumor cells in mouse xenograft models without 
harming normal tissues (Ashkenazi et al., 1999). Genentech (South San Francisco, 
California) and Amgen (Thousand Oaks, California) have initiated phase 1 clinical 
trials with soluble TRAIL. Human Genome Sciences, Inc. (Rockville, Maryland) 
has recently completed phase 1 clinical trials with an agonistic monoclonal anti-
body against TRAIL-R1 (HGS ETR1) and advanced to phase 2 clinical trials for 
the treatment of a variety of cancers, such as non-small-cell lung cancer (NSCLC), 
colorectal carcinoma, and non-Hodgkins lymphoma. So far, patients had little tox-
icity (Le, 2004; Georgakis et al., 2005; Pukac et al., 2005). Humphreys and Halpern 
will discuss targeting of TRAIL receptors for cancer therapy in Chapter 7.

3.3 Therapeutic Inactivation of IAPs

IAPs inhibit executioner caspases activated by extrinsic or intrinsic pathways. 
XIAP, cIAP1, cIAP2, ML-IAP, and Survivin are upregulated in many tumors 
including leukemias and neuroblastomas, and have been correlated with adverse 
prognosis (Salvesen and Duckett, 2002). Targeted therapy attacking XIAP is cur-
rently under preclinical and clinical investigation and includes XIAP antisense, 
XIAP antagonists that specifically target BIR2 domain of XIAP, and SMAC-peptide 
and nonpeptide mimetics.

Antisense molecules targeting XIAP have been shown to sensitize a variety of 
tumor cell lines to radiotherapy and chemotherapy. Second-generation oligonu-
cleotides, comprising DNA/RNA hybrid backbones with improved pharmacoki-
netics and reduced toxicity are in phase 1 clinical trials in patients with solid 
tumors (Fischer and Schulze-Osthoff, 2005). XIAP antagonists that target BIR2 
and displace caspase-3 were identified by an enzyme derepression assay where 
XIAP-mediated suppression of caspase-3 is overcome by chemical compounds 
(Wu et al., 2003; Schimmer et al., 2004). These compounds display proapoptotic 
effects in tumor cell lines through a BCL-2/BCL-x

L
-independent pathway (Wang 

et al., 2004).
Proapoptotic SMAC/DIABLO is released from mitochondria during the apop-

totic process and relieves inhibition of caspase-3, caspase-7, and caspase-9 by 
IAPs. The four N-terminal residues (AVPI) of SMAC/DIABLO recognize a sur-
face groove on BIR3 of XIAP normally occupied by processed caspase-9, thereby 
dislodging caspase-9 from the XIAP-inhibitory complex (Shiozaki et al., 2003). 
A series of SMAC peptido-mimetics consisting of 4, 5, or 7 amino acids of the 
amino-terminus of SMAC/DIABLO fused to a carrier peptide for intracellular 
delivery (cell-permeable SMAC peptides), overcome resistance of cancer cells 
with high levels of XIAP expression to apoptosis, and enhance the activity of 
conventional anticancer drugs in vitro and in vivo (Fulda et al., 2002; Guo et al., 
2002; Yang et al., 2003; Sun et al., 2005). A series of nonpeptidic small-molecule 
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XIAP antagonists are being developed to improve proteolytic stability, cell perme-
ability, and pharmacokinetics (Li et al., 2004; Nikolovska-Coleska et al., 2004; 
Oost et al., 2004; Park et al., 2005). These potent mimetics represent a novel class 
of anticancer drugs particularly useful in combination chemotherapy.

Survivin is an IAP member that plays a major role in both cell division and 
apoptosis. Survivin is highly expressed in cancer cells and is implicated in tumor 
resistance to radiotherapy and chemotherapy (Altieri, 2003). In addition, Survivin 
deficiency results in abnormal spindle formation and mitotic catastrophe inde-
pendent of p53 and BCL-2 (Okada and Mak, 2004). Several preclinical studies 
demonstrated that inhibition of Survivin by antisense oligonucleotides, ribozymes, 
small interfering RNAs, dominant negative mutants, and cyclin-dependent kinase 
inhibitors was able to promote spontaneous apoptosis in tumor cells and to 
enhance the efficacy of conventional treatments including chemotherapy, radio-
therapy, and immunotherapy (Zaffaroni et al., 2005). The high level and specifi-
city of Survivin expression in cancer cells make it an attractive target for anticancer 
drug discovery.

3.4 Caspase Activators

Selective activation of caspases might be a valuable strategy for cancer therapy. 
Several approaches to trigger caspase activation in tumor cells are presently 
being developed. Inducible caspases have been engineered by fusing them to 
chemical dimerization domains. After delivery of these chimeric, regulatable 
caspases by adenoviral gene transfer, they can be activated to trigger apoptosis 
in tumor cells by cell permeable dimerization drugs (Shariat et al., 2001). 
Tumor-specific delivery is also achieved by fusing caspases with antibodies 
against receptors that are overexpressed in human cancers. For instance, cas-
pase-3 linked to a anti-HER2 antibody is internalized via endocytosis by 
HER2 overexpressing tumors (Xu et al., 2004). In addition, high-throughput 
drug screening has identified a series of small molecule caspase activators, 
which have been shown to induce apoptosis in multiple cancer cell lines 
including prostate, breast, colorectal, lung cancer (Jiang et al., 2003; Nguyen 
and Wells, 2003). How specificity to tumor cells will be achieved in this case 
is not yet clear.

3.5 Modulation of the p53 Tumor Suppressor

The p53 pathway is composed of a network of genes and their products that 
respond to stresses, which disturb the fidelity of DNA replication and cell divi-
sion (Balint and Vousden, 2001). Loss of p53 leads to genomic instability, 
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impaired cell cycle regulation, and inhibition of apoptosis. p53 mutation and 
thereby inactivation are found in more than 50% of human cancers, and lack of 
functional p53 may render tumor cells resistant to apoptosis induced by chemo-
therapy and radiotherapy. In Chapter 10, El-Diery describes the regulation of 
programmed cell death by p53.

Three main therapeutic strategies are currently in development that target the 
p53 pathway (Fig. 5.1). First is reconstitution of wild type p53 in cancer cells by 
introduction of exogenous p53 with viral vectors. The most commonly used viral 
p53 delivery mechanism is the use of an adenoviral vector carrying the wild-type 
p53 gene. Due to the low efficiency of gene delivery of gene therapy vectors and 
hepatotoxicity associated with systemic applications, current clinical trials evaluate 
the efficacy of Ad-p53 through intratumoral injection in advanced solid tumors. 
Ad-p53 gene therapy alone failed to demonstrate beneficial effects in patients and 
new trials in combination with chemotherapy or radiotherapy are being investi-
gated (Khuri et al., 2000).

Second is reactivation of mutant p53 to the wild-type form to induce apoptosis. 
Several compounds have been identified by screening or rational design with the 
capability of restoring the transcriptional function of mutant p53 and thereby apop-
tosis. These p53 reactivators include PRIMA-1 (Bykov et al., 2002), CP-31398 
(Foster et al., 1999), and CDB3 (Friedler et al., 2002). As p53-mediated apoptosis 
is induced by transcriptional upregulation of the BH3-only proteins PUMA and 
NOXA, and the majority of human tumors have mutant p53, this approach has 
enormous potential for success.

Third, is the interruption of the regulatory interaction between p53 and 
MDM2 to prevent p53 degradation by the E3 ligase activity of MDM2. Nutlins 
and RITA increase p53 levels by binding to the p53 pocket for MDM2 interac-
tion thereby inhibiting tumor growth in mice (Issaeva et al., 2004; Vassilev et al., 
2004). However, restoration of p53 function in tumors with a lower frequency 
of p53 mutations maybe counterproductive as certain tumors may adapt 
normal p53 activation to achieve cell cycle arrest and DNA damage repair 
inflicted by chemotherapy and/or radiotherapy (Scott et al., 2003; Stoklosa 
et al., 2004).

4 Targeting Survival Signaling Pathways

Another set of targeted therapies aims to inhibit survival signaling pathways that 
are regulated by cytokines, hormones, and growth factors. In cancer cells, key 
components of these pathways are altered by oncogene activation or loss of tumor 
suppressor gene function, resulting in deregulated cell proliferation, inhibition of 
apoptosis, and enhanced angiogenesis. Strategies targeting survival signaling 
include neutralization of ligands, inhibition of receptors, and inhibition of 
 cytoplasmic secondary messengers.
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4.1 The NF-κB Pathway

Growth factors, cytokines such as interleukin-1 and TNF, hormones and other signals 
activate NF-κB by phosphorylation of inhibitor of κB (IκB), which has been linked to 
enhancement of both survival and tumorigenesis (see Chapter 11). Substantial evidence 
indicates that NF-κB plays an important role in tumorigenesis. Tumor suppressor genes 
such as CYLD and ING4 have been shown to negatively regulate NF-κB (Brummelkamp 
et al., 2003; Garkavtsev, 2004), and NF-κB activation is implicated in the increased 
incidence of cancer associated with inflammatory diseases (Greten et al., 2004; Pikarsky 
et al., 2004). Constitutive activation of NF-κB observed in tumors contributes to chem-
oresistance, perhaps by blocking apoptosis through direct transcriptional induction of 
expression of antiapoptotic proteins such as BCL-x

L
, BFL-1/A1, or IAP1/2 and XIAP 

and/or repression of proapoptotic p53 (Nakanishi and Toi, 2005). Several anticancer 
agents stimulate NF-κB, such as taxanes, vinca alkaloids, and topoisomerase inhibitors, 
which can potentially lead to chemoresistance (Nakanishi and Toi, 2005). Thus, the 
possibility of increasing the efficacy of anticancer drugs by inactivation of NF-κB
makes this pathway an attractive chemotherapeutic target (Fig. 5.1).

BAY11-7082 and BAY11-7085 inhibit IκB phosphorylation and stabilize IκB,
allowing it to sequester NF-κB in the cytoplasm in an inactivated state. In preclini-
cal studies, these two drugs sensitized tumor cells to conventional chemotherapy 
agents. For example, the histone deacetylase inhibitor suberoylanilide hydroxamic 
acid (SAHA) increases the NF-κB transcriptional activity through the enhanced 
nuclear translocation of the p65 subunit, which may diminish its effectiveness as a 
cancer therapeutic. However, inhibition of NF-κB by BAY11-7085 coordinately 
administrated with SAHA increases cell death in NSCLC cell lines (Rundall et al., 
2004). BAY11-7085 also increases the efficacy of cisplatin and paclitaxel in an in 
vivo ovarian cancer model (Mabuchi et al., 2004a; Mabuchi et al., 2004b).

Inhibition of NF-κB activity is considered as one of the major mechanisms of pro-
teasome inhibitors, a novel class of anticancer drugs. IκB is polyubiquitinated upon 
phosphorylation by the IκB kinase, IKK, which then targets it for degradation by the 
26S proteasome. Proteasome inhibitors thereby induce IκB accumulation, which 
retains NF-κB in the cytoplasm and prevents transcriptional activation of target genes. 
The proteasome inhibitor bortezomib (Velcade, PS-341; Millennium, Cambridge, 
Massachusetts) (also see Chapter 12) exhibits antitumor activity against a wide range 
of malignancies either as a single agent or combined with conventional chemothera-
peutic drugs, and has been approved by US Food and Drug Administration (FDA) for 
the treatment of relapsed or refractory multiple myeloma (Rajkumar et al., 2005).

4.2 Therapeutic Modulation of the BH3-Only Protein BIM

While proteasome inhibitors may work in some situations as NFκB inhibitors, 
other targets for the anticancer activity of proteasome inhibitors include cell cycle 
regulatory proteins, p53-mediated apoptosis, unfolded protein response pathway, 
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intrinsic and extrinsic apoptosis pathway. For example, the H-ras/MAP kinase 
 pathway suppresses apoptosis induced by the proapoptotic BH3-only protein BIM 
in response to taxanes (paclitaxel) by phosphorylating BIM and targeting BIM for 
degradation in proteasomes. The proteasome inhibitor bortezomib restores BIM 
induction and apoptosis, abrogating resistance to paclitaxel conferred by H-ras, 
promoting BIM-dependent tumor regression. This suggests the potential benefits of 
combinatorial chemotherapy of bortezomib and paclitaxel preferentially in tumors 
with MAP kinase activation (Fig. 5.1) (Tan et al., 2005). The newly developed 
orally bioactive proteasome inhibitor NPI-0052 induces apoptosis in multiple mye-
loma cells resistant to conventional chemotherapeutic drugs and bortezomib, with 
less toxicity as it is mechanistically distinct from bortezomib (Chauhan et al., 2005) 
(also see Chapter 12). More drugs of this class, whether the ultimate therapeutic 
target is NF-κB, BIM, or yet another protein, are likely to be entering the clinic in 
the near future.

4.2.1 Tyrosine Kinase Inhibitors

Tyrosine kinases (TKs), particularly receptor tyrosine kinases (RTKs), are key fac-
tors in the promotion of cancer cell survival, and as such represent an attractive 
therapeutic target for cancer therapy (Fig. 5.1). Deregulated TK activity can cause 
increased cell proliferation, reduced apoptosis, invasion and angiogenesis. Small-
molecule inhibitors of TKs compete with the ATP-binding site of the catalytic 
domain of oncogenic TKs and thereby prevent their activation. This has been the 
basis for the success in the treatment of chronic myelogenous leukemia (CML), 
where development of the inhibitor of the oncogenic BCR-ABL TK fusion protein, 
imatinib mesylate (Gleevec, STI571; Novartis, Basel, Switzerland), has produced 
dramatic clinical responses (see also Chapter 4). Over 90% of CML patients carry 
the Philadelphia chromosome, a translocation between chromosomes 9 and 22 that 
generates the bcr-abl oncogene (Faderl et al., 1999). The constitutively activated 
BCR-ABL kinase leads to growth factor independence and apoptosis resistance by 
activation of RAS-MAP kinase and Janus activating kinases-signal transducers and 
activators of transcription (JAK-STAT) pathways (Yamauchi et al., 1998). BCR-
ABL also activates the antiapoptotic PI3K/AKT pathway, increases BCL-2, and 
suppresses BIM expression (Kuribara et al., 2004; Essafi et al., 2005). Imatinib 
produces major hematologic and cytogenetic responses in 65–90% of CML patients 
after failed interferon-α therapy and in 80–90% of newly diagnosed and untreated 
patients (Kantarjian et al., 2002a; Kantarjian et al., 2002b). However, most patients 
experienced relapse after treatment discontinuance and a significant number of 
newly diagnosed patients start out resistant (Druker, 2004). The most common 
resistance mechanism involves mutations that affect the conformation of the BCR-
ABL kinase domain and prevent binding to imatinib (Gorre et al., 2001). Second-
generation kinase inhibitors retain activity against almost all imatinib-resistant 
mutants and are currently under early clinical evaluation (Shah et al., 2004). 
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Combination therapy of imatinib with other therapeutics is also being investigated 
to overcome resistance. Imatinib also targets the receptor c-KIT and platelet-
derived growth factor receptor (PDGFR). Gastrointestinal stromal tumors (GISTs), 
where mutated c-KIT is implicated in the pathogenesis, also show significant 
responses to imatinib (Debiec-Rychter et al., 2004).

A member of the epidermal growth factor receptor (EGFR) family, Her-2/neu
is overexpressed in 20–30% of malignant breast tumors. A recombinant human-
ized monoclonal antibody targeted to the extracellular domain of the Her-2/neu
receptor, trastuzumab (Herceptin; Genentech, Inc., San Francisco, California) has 
demonstrated overall tumor response rates between 15% and 26% in the metastatic 
setting. In combination with chemotherapy, trastuzumab produces prolonged dis-
ease-free and overall survival when compared to standard chemotherapeutic treat-
ment regimens. Trastuzumab induces induction of G1 arrest of cell cycle 
progression and apoptosis and is now part of the treatment of choice for Her-2-
positive breast cancers (Emens, 2005).

The EGFR is overexpressed in a variety of tumors, including tumors of the 
breast, lung, ovaries, and kidney, and thus a rational target for cancer therapy (Jones 
et al., 2005). Presently, two classes of EGFR antagonists are in phase 2 and 3 trials: 
anti-EGFR monoclonal antibodies and TK inhibitors. Cetuximab (Erbitux; ImClone 
Systems, Inc., New York), the most established monoclonal antibody, is approved 
for use as a single agent or in combination with irinotecan in patients with meta-
static colorectal cancer (Wong, 2005). Erlotinib (Tarceva; OSI, Long Island, New 
York), an orally available selective inhibitor of the EGFR (ErbB1) TK, has received 
FDA approval for the treatment of patients with locally advanced or metastatic 
NSCLC after failure of at least one prior chemotherapy regimen (Comis, 2005). 
Erlotinib is the only EGFR TK inhibitor that showed survival improvement in 
NSCLC patients in a randomized phase 3 clinical trial (Perez-Soler, 2004). When 
administered in combination with gemcitabine, erlotinib also significantly improved 
survival in patients with advanced or metastatic pancreatic cancer in a phase 3 trial 
(Thomas and Grandis, 2004). Gefitinib (Iressa; AstraZeneca, Wilmington, 
Delaware), is another EGFR TK inhibitor that is approved for refractory NSCLC. 
In the subset of patients with specific EFGR TK domain mutations, the response 
rate to gefitinib was high, suggesting that screening for these mutations in lung 
cancers to identify patients that respond is advisable (Lynch et al., 2004; Sordella 
et al., 2004).

4.2.2 RAS-MAP Kinase Pathway

The RAS-RAF-MEK-ERK pathway represents a common downstream pathway for 
several key RTKs such as EGFR, PDGFR, and VEGFR, which are frequently 
mutated or overexpressed in human malignancies and thus is a logical therapeutic 
target (Fig. 5.1). Constitutive activation of the MAP kinase pathway not only pro-
motes tumor cell proliferation, but may also interfere with apoptosis. Activation of 



94 T.-T. Tan and E. White

the MEK-ERK cascade upregulates antiapoptotic proteins BCL-2, BCL-X
L
, and 

MCL-1 (Liu et al., 1999; Leu et al., 2000; Jost et al., 2001), and promotes survival 
by phosphorylating BCL-2 and blocking its degradation in proteasomes (Dimmeler 
et al., 1999) and by phosphorylating BIM and accelerating its proteasomal degrada-
tion (Ley et al., 2003; Luciano et al., 2003; Tan et al., 2005).

Two novel MEK inhibitors CI-1040 (PD 184352) and PD 0325901 are in clini-
cal trials (Pfizer, Inc., New York). A phase 2 study testing the MEK inhibitor 
CI-1040 in NSCLC, breast, colorectal, and pancreatic cancers was performed with 
negative results (Rinehart et al., 2004). The second-generation agent PD 0325901 
with better bioavailability and increased potency is currently in clinical trials. In 
addition, MEK inhibitors suppress the expression of several antiapoptotic players, 
thus lowering the apoptotic threshold and have shown striking synergistic effects 
with conventional chemotherapy. For example, MEK blockade sensitizes leukemic 
cells to classical cytotoxics including nucleoside analogs, microtubule-targeted 
drugs, and γ-irradiation (Milella et al., 2005).

Although no mutations in A-RAF or C-RAF have been found in human can-
cers, B-RAF is mutated and constitutively activated in 70% of melanomas and 
other cancer types (ovarian, thyroid, colon, lung) with a moderate to high fre-
quency, suggesting its implication in cancer development (Wan et al., 2004). 
Sorafenib (Nexavar, BAY43-9006; Bayer, West Haven, Connecticut and Onyx, 
Emeryville, California) is one of the most promising agents of the class of RAF 
kinase inhibitors and has shown significant efficacy and minimal toxicity both as 
a single agent and in combination with standard chemotherapies in renal cell, 
hepatocellular, colorectal, ovarian, and breast cancers in phase 1 and 2 studies 
(Thompson and Lyons, 2005). Sorafenib can also indirectly inhibit several impor-
tant TKs including VEGFR-2, VEGFR-3 Flt-3, and c-Kit that are upstream of 
RAF, which contributes to its antiproliferative, antiapoptotic, and antiangiogenic 
properties (Wilhelm et al., 2004).

4.2.3 PI3KAKT/mTOR Pathway

The PI3K/AKT/mTOR pathway regulates cell proliferation and cell survival and is 
commonly found aberrantly activated in a variety of tumors due to amplification of 
the PI3KC gene encoding for the p110α catalytic subunit of PI3K, gene amplifica-
tion of AKT, and loss of PTEN tumor suppressor function (Morgensztern and 
McLeod, 2005). AKT promotes cell survival by inhibiting BAD, caspase-9 and 
FORKHEAD, and activating several antiapoptotic proteins including IKK 
(Downward, 2004). A downstream effector in the PI3K pathway is the protein 
kinase mTOR, which is inhibited by tuberous sclerosis complex (TSC1/2). 
Activation of AKT results in phosphorylation of TSC2 which disrupts TSC1/2 
complex, leading to derepression of mTOR (Inoki et al., 2002). mTOR promotes 
cell proliferation by regulating translation initiation, mediated by activation of the 
40S ribosomal protein p70S6 kinase (S6K1) and inactivation of 4E-binding protein 
(4E-BP1). The increase in the translation of a subset of mRNAs produces proteins 
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that are required for G1/S phase cell cycle progression (Hay and Sonenberg, 2004). 
Rapamycin, a natural mTOR inhibitor, was not developed as an anticancer drug due 
to poor solubility and instability. Rapamycin analogs, including CCI-779 (Wyeth-
Ayerst, Princeton, New Jersey), RAD001 (Novartis, Basel, Switzerland), and 
AP23573 (Ariad, Cambridge, Massachusetts), have improved pharmacokinetics 
and are currently under clinical evaluation for cancer treatment (Fig. 5.1). While 
RAD001 and AP23573 are in the early stage of phase 1 clinical trials, CCI-779 has 
completed phase 1 and 2 studies with good tolerance and impressive response rate 
in patients with renal cell carcinoma (RCC), breast, lung and neuroendocrine 
tumors, which has led to phase 3 studies in patients with RCC and breast cancer 
(Morgensztern and McLeod, 2005). Identification of biomarkers to predict tumor 
sensitivity and the synergy between CCI-779 and standard chemotherapy, hormone 
or growth factor inhibitors are also being investigated (Vignot et al., 2005).

5  Targeting Pathways for Alternate Forms 
of Cell Death in Cancer Therapy

Although apoptosis represents the predominant mechanism by which cancer cells 
are eliminated, other modes of cell death, such as necrosis, autophagy, and mitotic 
catastrophe are also considered as cell death response to cytotoxic therapies. What 
determines the form of cell death induced by a particular anticancer agent depends 
on the cell type, the genotype of the cell, the type of cellular damage that the drug 
induces, the dose of the agent used, as well as the microenvironment. Thus, a better 
understanding of these diverse modes of cell death in cancer therapy may lead to 
new approaches to overcome drug resistance.

Necrosis refers to cell death characterized by cell swelling and rupture in response 
to profound damage or a physical insult, that subsequently releases its intracellular 
components into the surrounding tissue. A major consequence of this is the activa-
tion of an inflammatory response and thereby immune surveillance. Chronic inflam-
mation is thought to promote tumor formation and progression, which is the basis 
for current efforts to use nonsteroidal anti-inflammatory agents for chemoprevention 
(Balkwill et al., 2005). DNA-alkylating agents cause necrotic cell death, which is 
equally effective in cells with and without apoptotic defects, and is independent of 
p53 or BCL-2 family proteins (Zong et al., 2004). Interestingly, alkylating agents 
selectively target cells using aerobic glycolysis, as is characteristic of many cancer 
cells, but not normal cells that use mitochondrial substrates for oxidative phosphor-
ylation (Zong et al., 2004). Induction of necrosis has also been reported with arsenic 
trioxide, which triggers a regulated form of caspase-independent necrotic cell death 
(Scholz et al., 2005). Thus, stimulation of necrotic cell death may be an alternative 
in cancer cells with a defective apoptotic response, but may be coupled to inhibition 
of inflammation.

Autophagy is also an ordered cellular process where cell compartmentalizes to 
form autophagic vacuoles in cytoplasm and digests itself (Klionsky and Emr, 
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2000). It is a bulk protein degradation system that is essential for normal cell activ-
ity and survival when nutrients are scarce. Recent studies have linked defective 
autophagy to tumor development. Loss of beclin1, the mammalian ortholog of the 
yeast autophagy gene apg6 that is monoallelically deleted in many human tumors, 
correlates with reduced autophagy and promotes tumorigenesis in mice (Qu et al., 
2003; Yue et al., 2003). It is likely that activation of the AKT and mTOR signaling 
pathway contributes to malignant transformation by simultaneous inhibition of 
autophagy and apoptosis. Autophagic cell death is reportedly activated in cancer 
cells in response to various chemotherapeutic drugs, such as paclitaxel, vinblastine, 
and rapamycin, as well as to irradiation (Kim, 2005), although the clinical signifi-
cance of autophagy in cancer therapy is unclear. If autophagy functions to promote 
survival of cancer cells by enabling catabolism, then autophagy inhibitors may be 
therapeutically useful. Alternatively, if autophagic cell death is a significant mech-
anism of cancer cell elimination, then inhibition of mTOR and activation of 
autophagy may be therapeutically beneficial.

Finally, driving cells past mitotic checkpoints and into aberrant mitoses that lead 
to death by mitotic catastrophe has recently attracted interest as a means to kill 
tumor cells independently of a defective apoptotic response (Castedo et al., 2004). 
Inhibiting normal mitosis in tumor cells can result in death due to mitotic failure 
and many current antimicrotubule drugs already in use in the clinic may induce 
death this way, and others that directly target regulation of mitosis are in 
development.

6 Future Prospects

Defective apoptosis is essential in tumor development and renders cancer cells 
refractory to chemotherapeutic agents. The identification of genes and gene prod-
ucts that regulate apoptosis at different molecular levels, along with an increased 
knowledge about their mechanisms of action provides a variety of therapeutic 
options for rational drug design targeting apoptosis.

In targeted anticancer drug development, high-throughput screening of chemical 
libraries, along with modification by structural biology and combinatorial chemis-
try to generate potent drugs with highly specific targets and favorable pharmacol-
ogy has replaced the previous random screening. However, the sheer number of 
targets requires the development of a rapid, efficient preclinical and clinical screen-
ing system to eliminate ineffective agents with the minimal cost. In the preclinical 
setting to provide the proof of concept in vivo, it requires judicious application of 
the most appropriately genetically defined animal models of human cancers based 
on the proposed target of the drugs. In clinical trials, careful patient selection based 
on genetic information of the tumors being treated and the therapeutic target of the 
drug being tested is considered critical. The hypothesis with this approach is that 
those tumors in which the targeted apoptotic pathway or survival pathway is critical 
will be more susceptible to the therapeutic agents. The successful application of TK 
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inhibitor imatinib mesylate in CML patients with Philadelphia chromosome sup-
ports this hypothesis. Similarly, the recent identification of point mutations in the 
EGFR gene in tumors from patients responding to gefitinib and their absence in 
nonresponders provides a means for patient selection. These findings illustrate the 
importance of matching the therapy to the tumor as a form of personalized 
medicine.

Cancer cells may be more dependent on apoptosis suppression because of onco-
gene activation, deregulated cell cycle control, and environmental stress. Improved 
understanding of how cancer cells interfere with apoptotic pathways in contrast 
with normal cells is required for selectively killing cancer cells without affecting 
normal tissues. The conventional chemotherapy and radiotherapy will remain the 
mainstay in cancer treatment, however, specific apoptosis-targeted drugs will tip 
the balance in favor of death, thereby sensitizing tumor cells to lower doses of 
chemotherapy and reducing side effects. Thus, molecularly targeted drugs will be 
evaluated in select patient populations as a platform for combinatorial chemother-
apy to achieve optimal synergistic effect.

Future targeted cancer therapy will be characterized by individualized treat-
ment, matching the genetic lesions in tumors to the optimal agents. However, 
tumor cells represent a heterogeneous and constantly evolving population where 
multiple apoptosis resistance mechanisms may be involved or a single cell may 
have acquired mutations paralyzing more than one apoptotic pathway. Thus, for 
targeted therapy to work successfully, drugs that target common apoptotic path-
ways will be needed and alternatively, combinatorial chemotherapy will be more 
effective to achieve maximal efficacy. Because of the complex nature of cancer, 
analysis of clinical samples using genomic and proteomic arrays is necessary to 
study the impact of targeted drugs on apoptosis signaling molecules and to cor-
relate the genotype of tumors with the therapeutic outcome of particular treat-
ment regimens, thereby providing the basis for targeted, personalized cancer 
therapy.
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Chapter 6
Overcoming Resistance to Apoptosis 
in Cancer Therapy

Peter Hersey*, Xu Dong Zhang, and Nizar Mhaidat

1 Introduction

A fundamental characteristic of cancer cells is suppression of apoptosis and increased 
cell survival.1,2 These properties, when combined with deregulated cell proliferation, are 
the basic requirements for development of cancer. Increased deregulated cell prolifera-
tion by itself paradoxically may trigger cell death pathways which prevent outgrowth of 
the cancer cell unless the cell death pathways are inhibited.3 Another consequence of the 
latter may be resistance to treatments that depend on induction of apoptosis in the cancer 
cell. These widely held concepts have given rise to intense study of the antiapoptotic 
mechanisms generated in different cancer cells that are driven by different oncogenic 
stimuli and how these mechanisms may operate against different therapies used against 
cancers. The mechanisms by which different therapies induce apoptosis are in turn 
poorly understood and answers to both questions are needed in development of effective 
treatment approaches. In the following sections, we review recent information about 
regulation of apoptosis, how oncogenes interact with apoptotic pathways, and some of 
the therapeutic opportunities that are developing as a consequence of this information. 
Emphasis is given to studies on melanoma as a model system in these developments.

2 Recent Concepts About Regulation of Apoptosis

Although apoptosis is traditionally described in terms of intrinsic and extrinsic 
pathways in most instances, apoptosis induced by oncogenes proceeds via the mito-
chondrial “intrinsic” pathway. Much is known about this pathway and in particular 
the proteins involved in regulation of the pathway.
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2.1 Bcl-2 Family Proteins in Regulation of Apoptosis

Apoptosis via the mitochondrial pathway is regulated by the Bcl-2 family of proteins 
which share at least one conserved Bcl-2 homology (BH) domain. The prosurvival 
Bcl-2 proteins share four such domains and act to protect intracellular membranes 
associated with mitochondria, nuclei, and endoplasmic reticulum. The proapoptotic 
Bax and Bak proteins have three BH domains and are located in the cytosol (Bax) 
and mitochondrial outer membrane (Bak). They are essential for apoptosis to pro-
ceed and mice lacking both genes have a number of developmental abnormalities.1

Similarly, apoptosis of cancer cells induced by several chemotherapy agents is 
dependent on Bax.4–6

Once activated, Bax and Bak oligomerize and insert into the outer mitochondrial 
membrane and thereby cause the release of several factors from mitochondria that 
can trigger apoptosis. These include cytochrome-c, Smac/DIABLO, Omi, apopto-
sis-inducing factor (AIF), and endonuclease G. These factors are located in the 
membrane or intermembranous space between the outer and inner mitochondrial 
membranes. Two models have been proposed to explain the release of these pro-
teins during apoptosis. In one model, an autonomous channel formed by Bax or 
Bak is formed and this allows the release of the factors from the intermembrane 
space.2 Another model depends on specific interaction of Bax or Bcl-2 with com-
ponents of the permeability transition pore (PTP), which exists at sites of contact 
between outer and inner mitochondrial membranes. This results in opening of the 
PTP, swelling of the mitochondrial matrix, and rupture of the outer mitochondrial 
membrane.7

2.1.1 Bcl-2 Sensor Proteins

The discovery of a third group of Bcl-2 proteins which share a single BH3 domain 
has had a major influence on concepts regarding initiation of apoptosis.8,9 They are 
regarded as sensors of damage to cells and different members respond to a diverse 
array of damaging agents by activating the Bax/Bak proteins to damage mitochon-
dria. Two of the members, Bid and Bim, may be able to directly cause changes in 
Bax and Bak, which result in their oligomerization and insertion into mitochon-
dria.9 The other members, such as Bad, Noxa, and P53-upregulated modulator of 
apoptosis (PUMA), appear to function by binding to and neutralizing the antiapop-
totic proteins. In addition, they may displace other BH3 proteins such as Bid, Bim, 
and p53, which have the ability to activate Bax and Bak.10

Bid appears to mediate apoptosis induced by tumor necrosis factor (TNF) family 
ligands and by granzyme B from cytotoxic T lymphocyte (CTL). Bid is cleaved by 
caspase-8 at Asp59 into tBid or by granzyme B at Asp75 into active (gtBid) form.11 tBid 
is able to cause oligomerization of cytosolic Bax or Bak associated with mitochondria 
which facilitates binding of the Bax/Bak oligomers to the outer mitochondrial 
 membrane and release of aptogenic proteins as referred to above.
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Several sensor proteins appear to be located in the cytoskeleton of cells. BimEL, 
BimL, and BimS are the main splice variants of Bim. BimEL is a relatively weak 
inducer of apoptosis and is degraded in proteasomes after phosphorylation by 
ERK1/2 on Serine 65. BimL and BimS appear to be the main inducers of apopto-
sis.12,13 BimL (and BimEL) is associated with microtubules by attachment to the 
Dynein motor complex and is released from this by agents such as the vinca alka-
loids and taxols. Once released into the cytosol, Bim binds to prosurvival Bcl-2 
proteins (Bcl-2, Bcl-XL, and Mcl-1) and may also bind to and activate Bax similar 
to that proposed for interaction of tBid and Bax. In some hematopoietic cell types 
Bim is located predominantly with Bcl-2 antiapoptotic proteins on mitochondria. 
Bak may be activated simply by releasing it from the antiapoptotic Mcl-1 and Bcl-
XL proteins (not Bcl-2) due to competitive binding of BH3 (Bim) proteins to 
antiapoptotic proteins.9 Bmf is associated with the Actin Myosin V motor com-
plex14 and is released by anoikis (cell detachment) and appears to have more 
restricted binding to the antiapoptotic proteins Bcl-2 and Bcl-XL.15

Agents which damage DNA and upregulate p53 result in p53-dependent upregu-
lation of several BH3 proteins, Bad, Noxa, and PUMA (see also Chapter 3). Noxa 
appears to bind predominantly to the antiapoptotic protein Mcl-1 and competitively 
inhibits binding of Bak to Mcl-1. This results in release of Bak, allowing it to oli-
gomerize and bind to the outer mitochondrial membrane. PUMA is also believed 
to mediate its effects by binding to the antiapoptotic proteins Bcl-XL (and Bcl-2) 
and thereby cause the release of proapoptotic proteins bound to them. One of the 
proteins so released may be p53 itself, which may be able to induce mitochondrial 
permeabilization directly16 or by binding to Bak on the outer mitochondrial mem-
brane and thereby induce apoptosis.17 This nontranscriptional role of p53 is depend-
ent on it being transported into the cytosol18 Noxa has a more restricted specificity 
to the antiapoptotic proteins Mcl-1 and A1.19 In addition to transcriptional regula-
tion by p53, Noxa may be increased by inhibition of proteasome degradation20 and 
by a gamma-secretase tripeptide inhibitor.21

Another transcription target of p53 is a relatively little studied protein called 
PIDD, which is believed to combine with an adaptor protein, RAIDD, and form a 
complex with caspase-2 called the PIDDOSOME.22 Caspase 2 is an initiator cas-
pase that appears to act upstream of mitochondria. Substrates may include Bid23 and 
PKCδ, as well as proteins in the Golgi apoptosis complex and cytoskeleton. It may 
have direct effects on mitochondria and cause release of aptogenic proteins.24

Caspase 2 may also be activated by casein kinase 2 and sensitize cells to TNF-
related apoptosis-inducing ligand (TRAIL) by processing of caspase 8.25

2.2 Inhibitor of Apoptosis Proteins

Apoptosis is also regulated by another family of proteins referred to as inhibitor of 
apoptosis proteins (IAPs).26–28 These include IAP 1 and 2, XIAP, ML-IAP, and 
Survivin. In general, they bind to caspases and prevent their activation (caspase-9) 
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or inhibit their effector function (caspases 3 and 7). As discussed elsewhere, they 
also have other roles as E3 ligases and in ubiquination of proteins for degradation 
by proteasomes.29 Binding of IAPs to caspases is competitively inhibited by Smac/
DIABLO and OMI released from mitochondria and this allows effector caspases to 
induce apoptosis. This mechanism was shown to be the principal pathway in 
TRAIL-induced apoptosis of melanoma.30

3 Oncogenes and Apoptosis

3.1 Drivers of Cell Proliferation

Several transcription factors appear to be key players in cell proliferation, such as 
E2F, which is under the control of the Retinoblastoma protein (Rb), and c-Myc, 
which targets a number of proteins involved in cell division. Transition from G1 to 
S phase is regulated mainly by cyclin D, CDK4/6 complexes which phosphorylate 
Rb proteins and thereby activate E2F1–3 transcription of proteins involved in cell 
division. c-Myc is believed to play an essential role in this process by increasing 
cyclin D1/CK4/6 levels and suppression of CDK inhibitors such as p27.31

Regulatory control of the G1/S transition is believed to vary widely between differ-
ent tissues and different cancers. In melanoma the Ras and P1(3)K pathways appear 
to be key drivers of cell division in response to a number of mitogenic factors act-
ing on Tyrosine kinase and G protein-coupled receptors. Activating mutations of 
BRAF are relatively common in melanoma32,33 and naevi,34 and have focused atten-
tion on this particular pathway. There is some evidence that loss of inhibitors of the 
cell cycle such as P16 may differentiate melanoma from naevi.35 There may also be 
subsets of melanoma that are particularly dependent on constitutive activation of 
this pathway, e.g., melanoma in skin without signs of chronic sun damage were 
more likely (81%) to have activating mutations of N-RAS or BRAF than melanoma 
in chronic sun-damaged skin. The latter had increases in gene copies for Cyclin D1 
(CCND1) and CDK436 but whether this is caused by elevated c-Myc levels, as dis-
cussed above, is not known. Immunohistological studies on nodular melanoma also 
found correlations with nuclear staining for Rb, Cyclin D1 and high mitotic rate 
measured by Ki-67 staining.37

3.2 Oncogene Pathways and Apoptosis

The transcription factors E2F and c-Myc target a number of genes involved in initia-
tion of apoptosis. Most important of these is the transcription factor p53, which in turn 
targets genes for proteins such as PUMA, Noxa, PIDD, Bid, Bax, and Apaf-1 (see also 
Chapter 10). As discussed above, p53 itself may have a direct nontranscriptional role 
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in inducing apoptosis.9 Oncogenes may also upregulate p53 via the alternate read-
ing frame (ARF) of the CDKN2A gene and thereby increase p53 levels by inhibi-
tion of HDM2, which ubiquinates and degrades p53. c-Myc may also be more 
important in induction of ARF than E2F and in induction of Bim, which mediates 
p53-independent apoptosis.

Given the evidence that oncogenes may also drive apoptosis, the survival of 
cancer cells implies that cancer cells that have been selected by outgrowth of apop-
tosis-resistant cells. Rb is inactivated (and E2F thereby activated) in melanoma by 
high cyclin D/CDK4 levels associated with extracellular stimuli or mutated signal 
pathway intermediates such as BRAF. This is complemented in some cells by 
mutated CDKN2a genes and low p16 protein levels which normally would inhibit 
the CDKs. In normal cells the increased levels of E2F would induce proteins asso-
ciated with apoptosis, but it is speculated that Rb may selectively dissociate from 
E2F promoter regions involved in cell cycle regulation, but may not dissociate from 
those inducing apoptosis.38

Mutations in CDKN2a are present in approximately 20% of patients with famil-
ial melanoma, but are uncommon in sporadic melanoma which account for over 
90% of melanoma cases.39 Mutations in the p53 gene is also uncommon in 
melanoma compared to some other cancers,40,41 but were reported to be higher in 
melanoma from sun-exposed sites.42 Protein levels of p53 appear to be elevated in 
18–40% of melanoma.40,43,44 The reasons for the elevated p53 levels are not clear. 
p53 in some melanoma appeared functionally inactive and could not induce cell 
cycle arrest.45 This question is of much interest in view of reports of splice variants 
which may act like dominant negatives to inhibit the function of wild type p53.46

These studies on oncogenic pathways do not adequately explain a number of 
changes in cancer cells, e.g., in melanoma, contrary to expectations, the antiapop-
totic protein Bcl-2 was reduced in progressive forms of the disease, whereas Bcl-
XL and Mcl-1 increased in thick primary melanoma and in metastases.47 The basis 
for elevation of Mcl-1 in melanoma is not clear. Activation of signal transducer and 
transcription activator 3 (Stat 3) by Src kinases in melanoma cells was reported to 
upregulate both Mcl-1 and Bcl-XL48 and Stat 3 was regarded as a critical transcrip-
tional activator of Mcl-1, Bcl-XL, and survivin.49 Activation of Akt was also held 
responsible for upregulation of Mcl-1 levels in Cholangiocarcinoma cells.50 Akt is 
frequently activated in melanoma and may therefore in part be responsible for ele-
vation of Mcl-1. Mcl-1 levels were downregulated by the multikinase BRAF 
inhibitor BAY 43-9006 (Sorafenib), but this was apparently due to increased pro-
teasome degradation.51 Mcl-1 was reported to be ubiquinated by a specific Mcl-1 
ubiquitin ligase E3 (Mule),52 which also targets p53.19,53

The decrease in Bcl-2 expression in metastatic melanoma is also hard to explain. 
The microphthalmia-associated transcription factor (MITF) appears to be a key 
factor in its regulation. MITF in turn is regulated through the receptor c-kit and is 
believed to be responsible for differentiation and survival of melanocytes.54 C-kit is 
downregulated in melanoma cells55 and this may play some role via decreased acti-
vation of MITF in the decreased levels of Bcl-2. Another transcription factor regu-
lating Bcl-2 and c-kit is activator protein 2 (AP-2).56 This was shown to be lost in 
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progression of melanoma and loss of AP-2 was associated with short overall and 
relapse-free survival.57 AP-2 proteins were reported to bind with p53 to p53 target 
genes such as p21 and so act as a tumor suppressor.58 It is not clear why AP-2 is 
lost in melanoma but AP-2 appears essential for development of neural crest 
lineages.56

4  Signal Pathways Involved in Resistance 
of Cancer Cells to Cell Death

The above-mentioned studies suggest that activation of signal pathways may be all 
important in driving both cell division and resistance to apoptosis. Some of the 
principal pathways are described as follows.

4.1 The ERK1/2 Kinase Pathway in Inhibition of Apoptosis

The RAS, RAF, MEK ERK1/2 pathway has received particular attention in 
melanoma.59 In previous studies on melanoma cell lines, we found that activation of 
this pathway was a common cause of resistance to apoptosis.60 Similar results were 
found in studies on other cancers.61 Activation of MAPK (ERK1/2) was detected 
more frequently in primary melanoma than in naevi, and activation of ERK was 
higher in thick melanoma and subcutaneous metastases.62 Introduction of activated 
MAPK kinase into melanocytes resulted in tumorigenesis in nude mice.63

As discussed earlier, a high proportion of melanoma has activating mutations 
(such as the V600E) in BRAF downstream of Ras.32 A smaller proportion has acti-
vating mutations in Ras that were exclusively seen in melanoma without BRAF 
mutations.33 These findings suggested this pathway may be responsible for induc-
tion of melanoma, but this idea was tempered by the finding that benign naevi also 
frequently had BRAF mutations.34 Further insights into growth arrest of naevi was 
the finding that expression of the p16 protein was high in naevi and may account 
for growth arrest of naevus cells despite activation of the ERK1/2 pathway. p16 
expression was not uniform and other senescence-inducing factors were thought to 
be involved.35 One study suggested that melanoma with BRAF mutations were 
more sensitive to MEK inhibitors64 but this was not the finding in studies by Zhang 
et al.60 Clinical responses to the BRAF inhibitor BAY 43-9006 (Sorafenib) also did 
not correlate with BRAF mutation in the melanoma.65

Apart from activating mutations of BRAF and NRAS, the RAS, RAF, and ERK 
pathways are activated by a number of external factors such as β3 integrin/adhesion 
interactions66,67 and autocrine growth factors acting through receptor tyrosine 
kinases such as c-kit, IL-6, insulin growth factor, basic fibroblast growth factor 
(bFGF), hepatocyte growth factor.59 Factors acting on G protein-coupled receptors 
such as MSH also activate adenylate cyclase and thereby RAS.59
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Several target proteins in the apoptosis pathway are phosphorylated by the 
ERK1/2 kinases. BimEL is phosphorylated directly by ERK1/2 on Serine69 and 
possibly two other sites.68 This promotes proteasomal degradation of BimEL and 
may prevent interactions with Bax. In both cases the effect is to limit apoptosis 
mediated by BimEL. It is not clear whether BimL is phosphorylated by 
ERK1/2.68

The ERK1/2 pathway has also been implicated in transcriptional upregulation of 
Mcl-1 by the transcription factor ElK-169 and of Bcl-2 and Bcl-XL.61 Bcl-2 is 
known to be regulated by the microphthalmic transcription factor (MITF).54 MITF, 
however, may be suppressed by activation of ERK perhaps due to degradation of 
the protein.70 ERK phosphorylates and stabilizes c-Myc, which in turn induces 
cyclin D1 and cell proliferation.2

4.2 Inhibition of Apoptosis by Akt Signaling

An equally important cell survival signal pathway appears to be the Akt/PKB 
pathway. This is initiated by tyrosine kinase and G protein-coupled receptor 
activation of phosphoinositide-3-kinase PI(3)K, which in turn phosphorylates 
phosphatidylinositol biphosphate (PIP2) to PIP3. This causes translocation of 
PIP3 to the cell membrane and phosphorylation of Akt by phosphoinositide 
dependent kinase-1 (PDK-1) on threonine 308 and on Serine 473 in the hydro-
phobic tail by the rictor–m TOR complex.71,72 Akt consists of three family mem-
bers; Akt, Akt2, and Akt3. The latter appears to be preferentially upregulated in 
melanoma.71

Akt is constitutively activated in many melanoma cells73 and is able to sup-
press apoptosis via a number of mechanisms. These include phosphorylation of 
forkhead transcription factors, which regulate several proapoptotic proteins such 
as Bim and Fas ligand. The phosphorylated forkhead proteins are trapped in the 
cytosol and cannot enter the nucleus. Akt also phosphorylates and inactivates 
several proapoptotic proteins such as Bad and caspase 9.71,74, Importantly, it acti-
vates I Kappa B Kinase (IKK) and thereby activates the transcription factor NF-
κB, leading to transcription of several antiapoptotic proteins such as Bcl-XL, AI, 
and XIAP.75

The main factors involved in upregulation of Akt in melanoma are not 
clearly defined, but may result from growth factor stimulation of surface recep-
tors as proposed for the RAS, RAF, MEK, and ERK pathway. Activating muta-
tions of proteins in this pathway have not been described in melanoma, but 
have been in colon carcinoma (PDK1, ATK2, and PAK4).76 Another possibility 
is that the downregulatory mechanisms in this pathway are abnormal, e.g., there 
has been much interest in PTEN status in melanoma as this phosphatase inacti-
vates PIP3. Abnormalities in PTEN appear, however, to be a low-frequency 
event77 and would not account for activation of this pathway in the majority of 
melanoma.
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4.3 The Protein Kinase C Pathway in Apoptosis

Protein kinase C (PKC) is a family of phospholipid-dependent serine/threonine 
kinases comprising at least 11 isoforms that play fundamental roles in signal transduc-
tion pathways that regulate cellular proliferation, differentiation, and apoptosis.78,79

Activation of PKC by phorbol esters (PMA) has been shown to have variable effects 
on apoptosis.80–86 In particular, activation of PKCδ seemed proapoptotic,80–82 whereas 
activation of PKCε and PKCα was antiapoptotic.83–86 Activation of PKC has been 
reported to abrogate Fas-induced apoptosis through inhibition of death-inducing sign-
aling complex formation by blocking Fas-associated death domain (FADD) recruit-
ment and thus caspase-8 activation.87–89 A similar mechanism has also been implicated 
in protection of HeLa cells from TRAIL-induced apoptosis.90 Moreover, inhibition of 
TRAIL-induced apoptosis by PKC activation was suggested to occur at the level of 
proteolytic cleavage of caspase-8 or downstream of caspase-8-mediated Bid 
cleavage.89,91

The expression levels of PKCε may play an important role in determining sen-
sitivity of melanoma to apoptosis induced by TRAIL.92 This was supported by 
studies using an adenovirus vector expression systems to express PKCε in the 
PKCε-deficient melanoma cells, which reversed the potentiating effect of PMA on 
TRAIL-induced apoptosis whereas expression of a dominant-negative PKCε in 
PKCε-expressing Mel-RM cells reversed the protective effect of PMA on TRAIL-
induced apoptosis. In contrast, PKCδ in melanoma cells increased TRAIL-induced 
apoptosis. Hence, activation of PKC by TRAIL may provide positive or negative 
regulation of sensitivity of cells to TRAIL-induced apoptosis depending on the 
levels of these two PKC isoforms. Activation of PKC was found to regulate 
TRAIL-induced apoptosis of melanoma by modulating Bax activation and did not 
cause significant changes in the expression levels of TRAIL death receptors, altera-
tions in activation of caspase-8, or cleavage of Bid. The protective effect of PKCε
was found in part to be associated with activation of ERK1/2 induced by TRAIL60

as inhibition of ERK1/2 by the MAPK kinase-specific inhibitor partially reversed 
the protective effect on melanoma cells. In addition, activation of ERK1/2 was 
downstream of PKC as inhibition of PKC blocked TRAIL-induced activation of 
ERK1/2. These results suggest that measurement of the relative amounts of PKC 
isoforms may help define melanoma that is sensitive or resistant to treatment.

4.4 The Jun NH2 Kinase Pathway

The Jun NH2 kinase (JNK) pathway may be activated by TNF or TRAIL receptor-
associated factors (TRAFs) or by environmental and genotoxic stresses such as 
ultraviolet (UV) or gamma radiation. The JNK proteins are coded for by three sepa-
rate genes and these give rise to approximately ten different splice variants. All 
JNK are able to phosphorylate c-Jun and thereby upregulate activator protein-1 
(AP-1)-dependent genes. One of the genes so regulated is Bim.68 In addition, JNK 
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has important posttranscriptional effects on Bim, which include phosphorylation of 
the Bim motif binding to the Dynein motor complex of microtubules and thereby 
release of Bim into the cytosol.93 In addition, JNK may phosphorylate Bcl-2 and 
Bcl-XL94 and inhibit their ability to bind to the BH3-only sensor proteins such as 
Bim, PUMA, and human protein harakiri (HRK). It may also phosphorylate 14-3-3 
proteins in the cytosol and promote translocation of Bax to mitochondria.95 These 
proapoptotic effects of JNK may be inhibited by the Akt pathway.96

Activation of JNK by TRAIL was reported to occur predominantly via TRAIL-
R2 rather than –R1 death receptors97 and to involve FADD and caspase activation.98

Subsequent studies showed that activation of JNK was dependent on formation of 
a secondary complex of FADD, TRAF2, RIP1, and IKK.99 TRAIL may therefore 
mediate some of its apoptotic effects via the JNK Bim pathway. This secondary 
complex is also responsible for activation of NF-κB which exerts antiapoptotic 
effects by upregulation of antiapoptotic proteins Bcl-2, Bcl-XL, and A1, as well as 
the IAP proteins, some of which bind to and inhibit TRAF2.100

Inhibitors of JNK have attracted much attention, particularly in treatment of 
neurological diseases.101 SP600125 is a direct inhibitor of JNK and has been used 
to treat arthritis in animal models. CEP-1347 acts to inhibit MAP kinases upstream 
of JNK. Peptide inhibitors that inhibit substrate-binding sites or regulatory regions 
have also been studied with some success.101

5 Therapeutic Opportunities

The rational development of treatments against cancer would ideally be based on 
the known oncogenic pathways involved and the resistance mechanisms which 
prevent oncogene-induced apoptosis. In practice, several factors act against imple-
menting such an idealized approach. Principal among these is the heterogeneity of 
most solid cancers so that treatments focused on any particular pathway or against 
particular targets may only be effective against 10–20% of patients with particular 
cancers. The second limitation is the state of ignorance surrounding particular 
mechanisms involved in resistance to cell death.

5.1  Understanding how Commonly used Agents Kill Cancer 
Cells and Resistance Mechanisms Against them

In the case of melanoma with apparently normal p53 pathways, it should be a sim-
ple matter of using DNA-damaging agents such as Cisplatin or Doxorubicin to 
activate p53 and thereby the apoptotic pathway to cell death discussed earlier. In 
practice, melanoma shows low response rates to Doxorubicin and Cisplatin. In the 
case of Cisplatin, cell death, when it occurs, may be more related to necrosis 
induced by activation of poly (ADP-ribose) polymerase (PARP) in DNA repair and 
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consumption of ATP102 as described by others.103 In studies on melanoma cell lines 
several proapoptotic BH3 proteins (PUMA, Noxa, and Bim) appeared constitu-
tively upregulated, but there was no evidence that this adversely affected the cell 
lines. The mechanism involved in resistance to apoptosis of these cells remains 
uncertain. Inhibition of ERK1/2 and Akt pathways increased apoptosis in the lines 
but other factors were clearly involved.

p53-independent initiators such as BimEL were also detectable in melanoma. 
Agents targeting microtubules such as the Taxols and Vinca alkaloids are pos-
tulated to release BimEL and possibly BimL from the microtubules. Nevertheless, 
studies on Doxetaxel showed a wide variation in susceptibility to Doxetaxel-
induced apoptosis. ERK1/2 inhibitors potentiated apoptosis induced by 
Doxetaxel strongly in some melanoma cell lines and this was in proportion to 
activation of ERK1/2 by Doxetaxel. In contrast, there was a good correlation 
between activation of JNK and induction of apoptosis. Hence, in the case of 
Doxetaxel the relative activation of these two pathways appears to largely deter-
mine the overall degree of apoptosis103a. These results provide further support 
for the use of inhibitors of the RAF/MEK/ERK pathway in combination with 
Taxols. Similar results were seen with Vincristine, but the mechanism of induc-
tion of apoptosis differed from that of Doxetaxel144. Whether results from such 
studies can be utilized to define responsive tumor subgroups remains unknown. 
It is encouraging however to think that further insights into the mechanisms of 
induction and resistance to commonly used agents may help to define respon-
sive tumor subsets.

Apart from more intelligent use of existing agents, studies over the past few 
years have generated a number of new agents designed to overcome resistance to 
apoptosis. These are summarized as follows.

5.2 Therapeutic Approaches Targeting Signal Pathways

5.2.1 The RAS, RAF, MEK, and ERK Pathway

Several inhibitors of this pathway have been produced, such as the Onyx/
Bayer 43-9006 agent (Sorafenib)104 and the Pfizer compound CI-1040.105 In 
phase II studies with Sorafenib as a single agent there was only one response 
in 34 patients, but when given in combination with Carboplatin and Paclitaxel 
there were 20 partial responses and 26 with stable disease in 54 patients. 
Response rates in 23 previously untreated patients was 48%.65 These results 
are now being tested in a randomized trial in previously untreated patients 
(ECOG trial 2603) and in previously treated patients (Onyx/Bayer [117118 
protocol]).

RAS is upstream of RAF and requires a farnesyl group to be attached for 
membrane anchorage. It may therefore be possible to inhibit the pathway with 
inhibitors of  farnesyl transferase. These have shown antitumor activity in 
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preclinical studies106,107 and sensitized human melanoma cells to Cisplatin108 but 
further evaluation is needed108a. Recent studies suggest that the MEK inhibitor, 
VO126, induced by upregulation of Bim and PUMA and down regulation of  
Mcl-1 (Wang et al).

5.2.2 Inhibitors of the Akt Pathway

Relatively few studies have been carried out with inhibitors of this pathway. PX-866 
is a specific inhibitor of PI3K which was shown to have single agent activity and to 
enhance chemotherapy and radiation in preclinical studies.109 Heat shock protein 90 
(HSP90) is a chaperone for a number of signal proteins, including Akt and RAF. 
A geldanamycin derivative (17AAG) was shown to deplete Akt and cyclin D1 in 
melanoma lines.110,111 Phase I studies have been conducted in patients with advanced 
malignancies and phase II studies on melanoma patients in the Memorial Sloan 
Kettering Institute are in progress. A more soluble preparation, referred to as 
KOS-953, is about to enter clinical trials (Kosan Biosciences, Inc.). A nonpeptide 
small-molecule compound API-59-OME was shown to inhibit Akt activity in ovarian 
carcinoma lines, but not a wide range of other kinases. Studies were in vitro.112

CCI-779, a rapamycin analogue, was tested in 33 patients with melanoma. Only one 
partial response was seen113 but studies in combination with apoptosis-inducing agents 
may be needed. Rapamycin was found to inhibit activation of NF-κB by Doxorubicin 
but the mechanism of action appeared independent of P13K.114 Specific inhibitors of 
NF-κB activation do not appear to have been clinically evaluated, but proteasome 
inhibitors such as PS-341/Bortezomib have been thought to act by inhibiting activation 
of NF-κB and account for its effects in potentiating chemotherapy115 and radiotherapy116

(also see Chapter 12). Nevertheless, proteasome inhibitors affect a wide range of apop-
tosis regulators. One study in fact found no effect on NF-κB activity, but instead apop-
tosis appeared to be due to upregulation of Noxa.20 A number of agents inhibit NF-κB
activation in vitro, such as Curcumin,117 but are yet to be tested in vivo.

5.2.3 Protein Kinase C Inhibitors

PKC as a target for anticancer drugs has been recognized for some time. Bryostatin is 
an activator of PKC that has been evaluated in phase II trials in melanoma. No 
responses were seen when used as a single agent.118,119 Aprinocarsen is an antisense 
reagent against the PKCα isoform that was tested in patients with ovarian carcinoma. 
But it had no activity as a single agent.120 Some of the difficulty in evaluating such 
agents is the diverse functions of different PKC isoforms and cross talk with other sig-
nal pathways.121 As noted earlier, TRAIL appears to activate the ERK1/2 pathway via 
PKC activation. Similarly, PKC may activate the JNK pathway in the presence of the 
receptor for casein kinase 1 (CK1).122 These two pathways may have opposing effects 
on apoptosis and illustrate the potential difficulty in targeting PKC in treatment.
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5.3 Histone Deacetylase Inhibitors

Histone deacetylase (HDAC) inhibitors may directly induce apoptosis of cancer 
cells, e.g., by activation of Bim or by a number of other mechanisms, as 
reviewed elsewhere.123,124 Some drugs in this class, however, appear to have rela-
tively weak direct cytotoxic effects, but may synergize with other agents such as 
TRAIL to markedly enhance apoptosis.123,102 These drugs are discussed further 
in a Chapter 13.

5.4 Activating the Extrinsic Pathway

The agents discussed earlier are also applicable to attempts to treat melanoma by 
agents such as TRAIL or Fas Ligand. These pathways have several additional 
obstacles that may need to be overcome. Principal among these is the low or 
absent death receptor expression on many melanoma, particularly on fresh 
isolates.125 The main death receptor for TRAIL, TRAIL-R2 (DR5), was shown to 
be transcriptionally regulated by p53 and non-p53-dependent mechanisms as 
reviewed elsewhere126 and also discussed in Chapter 10. In melanoma mRNA for 
the death receptors appeared at normal levels and nontranscriptional events 
appeared more important in regulation.127 It was shown in TRAIL-resistant colon 
carcinoma that TRAIL-R1 appeared located in the Golgi and treatment with 
tunicamycin resulted in upregulation of TRAIL-R1.128 Similarly, tunicamycin was 
shown to upregulate TRAIL-R2 in prostate carcinoma cells.129 These findings have 
been reproduced in cultured melanoma cells143. Further studies are needed to 
investigate their clinical applicability.

5.5 Agents Targeting Antiapoptotic Proteins

Arguably, some of the most exciting new agents are those being developed against 
the antiapoptotic Bcl-2 proteins (also see Chapter 8) and IAPs. A list of these is 
given in Table 6.1. Evaluation of most of these is at an early stage and only one at 
this stage has gone through to phase III clinical trials. This was the antisense mole-
cule against Bcl-2. This particular trial did not reach its primary end point of an 
effect on overall survival when all patients were included but did so when only 
patients with normal lactic dehydrogenase (LDH) levels were included in the analy-
sis. The trial has been criticized on several grounds, but clear benefit was seen in 
some patients. It is hoped that experience gained from this trial will be used to plan 
future trials. In particular, antisense agents against Mcl-1 would appear an attrac-
tive target in melanoma.
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6 Conclusion

The widely held view that the oncogenic process involves deregulated cell division 
as well as resistance to apoptosis has been useful in focusing attention on how can-
cer cells evade cell death induced by the many therapeutic agents available to treat 
cancers. Part of the evolution of this concept is the realization that the selection 
pressures acting against cancer cells generate a variety of defects in the cell death 
pathways. These selection pressures include apoptotic pathways generated by 
oncogenes, neighboring cells, or the immune system. One striking conclusion is 
that information about these resistance mechanisms is still very limited even in 
particular cancer types such as melanoma. In the case of killing by the immune 
system through TRAIL, individual cell lines can be identified with a variety of 
defects in the apoptotic pathway such as absence of caspase-8, loss of Bid, or the 
death receptors. Downregulation of death receptors seems a more general cause of 
resistance to TRAIL that may be a worthwhile target in therapy.

Inactivating mutations in the p53 pathway are well known and common in many 
cancer types, but we suspect this particular pathway may also be inactivated by 
other as yet poorly characterized mechanisms. Whether it will become the focus of 
new therapies is uncertain. Activating mutations in signal pathway intermediaries 
appears common, as discussed earlier, and perhaps provides the best therapeutic 
options with agents targeting such pathways. Experience with BAY-43-9006 
(Sorafenib, Nexator) however indicates that it has a number of unwanted toxicities 
such as skin rashes, diarrhea, hypertension, and hand-foot syndrome. Much remains 
to be learnt about the basis of these toxicities and whether other agents may have 
different toxicity profiles.

Therapeutic agents also become part of the selective process acting to generate 
resistant cancer cells. It is well known that cancer, which recurs after treatment with 
chemotherapy often have increased growth rates and metastatic potential. The tax-
ols also appear to activate antiapoptotic pathways such as the ERK1/2 MAP 
kinases. It is therefore quite possible that such agents will select cancer cells where 

Table 6.1 Agents against anti-apoptotic proteins

Target/action Drug Study reference

Anti-apoptotic Bcl-2 proteins
BH3 mimics ABT-737 (Abbot) 130
  GX015–070, BL-193 131
  Gossypol 132
Bcl-2 antisense Oblimersen (Genta) 133, 134
Bcl-XL antisense  135–137
Mcl-1 antisense  135, 138
Inhibitor of apoptosis proteins
Smac/DIABLO mimics IDN-13389 (Idun Pharmaceuticals) 139–142
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this pathway is dominant over proapoptotic mechanisms. Such insights should 
translate quickly into new protocols and provide optimism that agents for control 
of cancer may already be at hand provided we know how to use them and which 
cancers to use them against.
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Chapter 7
Trail Receptors: Targets for Cancer Therapy

Robin C. Humphreys* and Wendy Halpern

Abstract A human tumor cell’s ability to avoid the normal regulatory mechanisms 
of cell growth, division, and death are the hallmarks of transformation and cancer. 
Numerous novel therapeutic agents currently in preclinical or clinical evaluation 
aim to revive the normal regulation or evade these regulatory defects and induce 
growth arrest and cell death. One of the cell death pathways that has garnered sig-
nificant interest, as a potential target for therapeutic intervention, is the programmed
cell death pathway regulated by the tumor necrosis factor-related apoptosis-inducing 
ligand receptors (TRAIL-RS). Receptor agonist molecules including forms of the 
native ligand and monoclonal antibodies are being developed and tested as therapeutics
in the treatment of human cancer.

Keywords apoptosis, monoclonal antibody, agonist, TRAIL, TRAIL receptor

1 Introduction

This review will focus on the tumor necrosis factor-related apoptosis-inducing 
ligand receptor (TRAIL-R) signaling pathway and the therapeutic agents currently 
in development that activate this cell death pathway as a treatment for cancer. The 
TRAIL receptors are an attractive therapeutic target because of their relatively 
restricted expression on tumor cells, their capacity, when activated, to induce cell 
death in a spectrum of human tumor cells and their ability to act in concert with 
various chemotherapeutic agents to promote tumor cell death. TRAIL agonists, 
including various forms of the ligand and agonist antibodies, have demonstrated 
significant antitumor activity in preclinical studies across a spectrum of different 
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human tumors. Recently, some of these agents have begun evaluation in the clinical 
setting. In addition, emerging molecular therapies are being developed to act on 
specific key regulatory molecules in the TRAIL-R apoptosis pathway to complement
the action of TRAIL-R agonists. The combination of receptor agonist activation 
and attenuation of the anti-apoptotic threshold with targeted molecular therapy 
holds promise as a rational approach to cancer treatment.

2 Trail Receptor Signaling

The ability to induce programmed cell death is mediated in all eukaryotic cells 
through distinct signaling pathways that are responsive to both external and internal 
inputs. A spectrum of sources can induce programmed cell death, including 
secreted and membrane-bound proteins, DNA damage, radiation, Ca+2 stress, viral 
and oncogenic transformation, and serum and growth factor starvation.

The active induction of cell death is effected through a family of related cell 
surface proteins and their cognate ligands. One of these death-inducing ligands, 
TRAIL, can instigate cell death through a cell surface receptor-mediated catalytic 
activation of a series of cysteine proteases, leading to cleavage of key cellular struc-
tural and signaling components. Binding to either of the competent TRAIL-R’s by 
ligand or antibody agonists can activate this protease cascade through two distinct 
but intersecting pathways; an extrinsic receptor-mediated pathway and an intrinsic 
pathway associated with the mitochondria. TRAIL binds to five cognate cell sur-
face receptors, but only two of these receptors TRAIL-R1 and TRAIL-R2, are 
death receptors that have the ability to transmit a complete death signal. TRAIL-R1 
(DR4, TNFSFR10a) and TRAIL-R2 (DR5, TNFSF10b) are members of the TNF 
receptor superfamily (TNFRSF). Only these two receptors possess the capability to 
competently transmit a TRAIL death signal. The other members of this family 
capable of binding to the ligand, TRAIL; DcR1, DcR2, and osteoprotegerin, lack a 
required cytoplasmic signaling domain, known as a death domain (DD) (Table 7.1).

TRAIL-Rs exist as a functional homotrimeric subunit. Members of the TNFSFR 
can form and function as heterotrimers. The TRAIL-Rs have been identified in a 
heteromeric structure in cells transfected with TRAIL-R1 and TRAIL-R2 expres-
sion constructs. It is unclear whether this is a physiologically relevant formation as 
this heterotrimer has not been isolated in immunoprecipitation experiments from 
nontransfected cells. (Kischkel et al., 2000; Schneider et al., 1997). Although initial 
reports suggested that ligand is required for receptor trimerization, studies of 

Table 7.1 TRAIL receptors

Receptor TNFSF Other names Death domain

TRAIL-R1 10A DR4, Apo2 Complete
TRAIL-R2 10B DR5, TRICK, KILLER Complete
TRAIL-R3 10C Decoy receptor 1 None
TRAIL-R4 10D Decoy receptor 1 Truncated
Osteoprotegerin 11B OPG, OCIF, TR1 None
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TNFR1 and Fas have demonstrated the presence of a preligand association domain 
(PLAD) that is required for ligand-independent trimerization. Interestingly, the 
PLAD domains interactions are very specific and only permit homotrimeric forma-
tions (Chan et al., 2000). This data suggests that TRAIL-R1 and TRAIL-R2 only 
form homotrimers. However, a recent report suggested that the TRAIL-binding 
decoy receptor, DcR1, may regulate TRAIL-R2 activity by forming a heterocom-
plex through the PLAD (Clancy et al., 2005). A common structural feature present 
in all TNFSF receptors is a series of extracellular cysteine-rich domains (CRD). 
The number of these domains can vary between different TNFSFRs from 1 to 6. Each 
CRD domain is defined by six highly conserved cysteines that form three intrachain 
disulfide bridges. TRAIL-R1 and TRAIL-R2 possess three such CRD repeats that 
contain seven intrachain disulfide bridges (Hymowitz et al., 1999; Locksley et al., 
2001; Marsters et al., 1992; Mongkolsapaya et al., 1999). The TRAIL- Rs also pos-
sess a structural feature that is unique to death-inducing receptors in the TNFSFR. 
Each of the receptors in this class possesses a short (65–80 aa) cytoplasmic protein–
protein domain that is required for interaction with a key adaptor protein that is 
required for transmission of the death signal. Consequently, this structure is known 
as the DD. Seven members of the TNFSFR, including TRAIL-R1 and TRAIL-R2, 
possess DD. (Igney and Krammer, 2002)

3 Trail Receptor Expression

Two of the most intriguing and attractive features of the TRAIL-Rs are that TRAIL-R1 
and TRAIL-R2 are proapoptotic and that these two receptors are expressed on 
many types of tumor cells. These features make the proapoptotic TRAIL-Rs an 
extremely appealing target for the generation of therapeutic agents.

Surface expression of TRAIL receptors has been reported for both normal 
(Atkins et al., 2002; Dorr et al., 2002; Jo et al., 2000; Leverkus et al., 2000b; Mundt 
et al., 2003) and tumor cells (Arts et al., 2004; Ashkenazi et al., 1999; Bouralexis 
et al., 2004; Clodi et al., 2000; Cuello et al., 2001; Frank et al., 1999; Frese et al., 
2002; Ibrahim et al., 2001; Mitsiades et al., 2000; Odoux et al., 2002; Shin et al., 
2001; Song et al., 2003a; van Geelen et al., 2003; Vignati et al., 2002). Weak but 
detectable TRAIL-R1 and TRAIL-R2 expression has been identified by flow 
cytometry on the surface of a limited number of normal (diploid) cell types, including 
hepatocytes, keratinocytes, astrocytes, and osteoblasts (Atkins et al., 2002; Dorr 
et al., 2002; Jo et al., 2000; Leverkus et al., 2000a; Mundt et al., 2003). However, 
a broad spectrum of tumor cell types has been identified with variable levels of 
TRAIL-R1 and /or TRAIL-R2 including some examples of relatively high expres-
sion. Cells isolated from primary tumors of the lung (Odoux et al., 2002), blood 
(Cappellini et al., 2005; Clodi et al., 2000), skin (Song et al., 2003a), bone 
(Bouralexis et al., 2004), and the brain (Ciusani et al., 2005) have detectable cell 
surface expression of TRAIL-R1 and TRAIL-R2 by flow cytometry. Likewise, 
human tumor cell lines derived from carcinomas of the colon (van Geelen et al., 
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2003), breast (Ashkenazi et al., 1999), ovary (Cuello et al., 2001; Vignati et al., 
2002), thyroid (Mitsiades et al., 2000), lung (Frese et al., 2002), pancreas (Ibrahim 
et al., 2001), and liver (Griffith et al., 1998), as well as from melanomas (Song et 
al., 2003a), sarcomas (Bouralexis et al., 2003), and tumors of the brain (Song et al., 
2003b), have variable and high-level FACS-detectable TRAIL-R1 and TRAIL-R2. 
In many tumor cell lines where resistance to TRAIL-R agonism was observed, the 
relevance of cell surface expression of the TRAIL-Rs was complicated by the fact 
that receptor levels did not have a role in regulating response. A clear relationship 
between receptor expression level and potential for activation of apoptosis through 
proapoptotic TRAIL-Rs has not been established. However, evaluation of receptor 
expression in a tissue context is desirable in understanding more about the TRAIL-Rs 
as targets of systemic therapies.

Antibody reagents specific for linear peptides of the C-terminal, intracellular 
portion of TRAIL-R1 and TRAIL-R2 have been utilized in studies of TRAIL-R 
distribution in tissues (Arts et al., 2004; Koornstra et al., 2003; Reesink-Peters et 
al., 2005; Spierings et al., 2003; Spierings et al., 2004). Arts et al. demonstrated that 
most ovarian tumors expressed one or both proapoptotic TRAIL receptors, and that 
TRAIL-R2 expression was increased after chemotherapy in paired samples col-
lected pre-therapy and post-therapy. Likewise, Koornstra et al. highlighted that 
expression of these death receptors was increased in colon tumors vs normal colon, 
and that both TRAIL-R1 and TRAIL-R2 were detected on all adenomas and carci-
nomas evaluated. In parallel, Spierings et al. (2003) evaluated a large panel of stage 
III non-small-cell lung (NSCL) tumors (n = 87) and related the staining to available 
clinical outcome data. In this study, TRAIL-R1 was identified on essentially all 
specimens (99%), with staining often strongest at the basal cell layers in tumors 
with squamous differentiation. TRAIL-R2 was also identified on the majority of 
the specimens (82%); interestingly, TRAIL-R2 expression was correlated with 
increased risk of death (odds ratio 5.76). A second study by Spierings et al. (2004) 
evaluated distribution of TRAIL and TRAIL-RS on normal tissues from humans 
and chimpanzees. In this study, as with the tumor panels, there was fairly wide-
spread labeling of tissues evaluated for both TRAIL-R1 and TRAIL-R2, but stain-
ing patterns were similar across the two species. Finally, a recent study by 
Reesink-Peters et al. evaluated the distribution of TRAIL-Rs and markers of prolif-
eration and apoptosis in cervical neoplasia. TRAIL-R1 and TRAIL-R2 were each 
identified in >80% of the specimens evaluated, with slightly more staining for 
TRAIL-R2; however, there was no correlation of TRAIL-Rs to either proliferation 
or ongoing apoptosis in these specimens.

Interestingly, in several of the studies listed above, staining was often restricted 
to the cytoplasmic compartment; therefore, it is unclear whether this distribution is 
relevant to the potential activity of therapeutics that target the extracellular portion 
of the receptor. It should also be noted that the peptides used for immunization to 
produce these polyclonal antibodies include considerable homology between the 
published TRAIL-R1 and TRAIL-R2 sequences. Although these antibody reagents 
perform well for specific recognition of the linear peptide in a western blot, it may 
be difficult to demonstrate highly specific staining in an immunohistochemical 
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assay format where the receptor protein has not been denatured and stabilized as a 
linear peptide target.

Others have reported tissue distribution of the proapoptotic TRAIL-Rs using 
monoclonal antibody reagents raised against the extracellular domains of these 
TRAIL-Rs, including use on formalin-fixed tissues (Daniels et al., 2005), frozen 
sections (Strater et al., 2002a), or a fluorescence-based method of quantitative tis-
sue staining (McCarthy et al., 2005). Daniels et al. reported widespread staining of 
TRAIL-R1 and TRAIL-R2 in both tumor and normal tissues, with tumors staining 
more intensely than the adjacent normal tissue, but noted that the staining was often 
patchy in breast carcinomas, and that there was much less staining than expected on 
lymphoid tumors. Strater reported widespread TRAIL-R1 and TRAIL-R2 staining 
in tumors of the colon, but reported also that there was a positive correlation 
between TRAIL-R1 expression and survival. In contrast, McCarthy et al. identified 
a strong negative correlation between TRAIL-R2 expression and survival in breast 
cancer, with TRAIL-R2 expression associated with increased node-positive tumors. 
The TRAIL-R2 specific monoclonal antibody described in these studies can also be 
used for flow cytometry applications for determination of surface receptor levels, 
but is not currently recommended by the manufacturer for immunohistochemical 
studies in tissue specimens.

In evaluating the distribution of potential targets for agonist TRAIL receptor 
antibodies, it was considered critical to focus efforts specifically on detection of the 
extracellular portion of these receptors in order to understand the distribution of the 
part of the receptor recognized by TRAIL-R agonists. Antibodies have been developed
to TRAIL-R1 and TRAIL-R2, respectively and the specificity of these antibodies 
has been tested by western blotting, flow cytometry, and immunohistochemistry 
utilizing fixed and embedded cell pellets and xenografts. These antibodies have 
been utilized for development of sensitive and specific immunohistochemical tests 
for TRAIL-R1 and TRAIL-R2 in formalin-fixed tissue specimens as described 
(Roach et al., 2004). To evaluate TRAIL-R distribution using these tests, approxi-
mately 270 tumor and normal tissue specimens have been evaluated. A summary 
of the expanded results is presented in Figs. 7.1–7.3.

After screening several proprietary and commercially available antibodies selected 
for specificity to TRAIL-R1 or TRAIL-R2, we concluded that, for both TRAIL-R1 
and TRAIL-R2, rabbit polyclonal antibodies represented the best option for 
developing these tests (Roach et al., 2004). These antibodies performed well on 
formalin-fixed paraffin-embedded tissues and had minimal background staining. 
Importantly, staining of sectioned cell pellets or xenografts of cell lines was consistent 
with receptor expression levels identified by other methods such as flow cytometry, 
using different TRAIL-R antibodies, and TaqMan to quantitate RNA levels ((Roach 
et al., 2004) and hierarchical genetic search [HGS] data not shown).

The mean staining scores were determined for the 10 tumor types for which 
there were at least 10 evaluable specimens, and are presented in Figs. 7.1 and 7.2. 
Like the other studies reported, we identified stronger staining for both TRAIL-R1 
and TRAIL-R2 in tumor specimens overall than in normal tissues. In addition, for 
most tumor types, although granular to diffuse cytoplasmic staining was noted, 



132 R. C. Humphreys and W. Halpern

distinct membrane staining was also observed and was often the stronger pattern. 
We identified general patterns of relatively high staining in colorectal carcinomas 
and relatively little staining in most lymphomas, as has been reported by others 
(Daniels et al., 2005; Koornstra et al., 2003). However, we identified less staining 
overall, in both tumor and normal tissues, than in most other reports in the litera-
ture. Instead of >80% staining for each receptor in tumor tissues, an average of 43% 
of tumors scored at least a 2+ for TRAIL-R1 (N = 235), and an average of 64% of 
tumors scored at least a 2+ for TRAIL-R2 (N = 227). These scores were based upon 
both distribution and intensity of receptor staining (Fig. 7.3). It was noted that there 
was often heterogeneous staining of tumor cells within individual specimens, as 
well as occasionally between specimens from a single individual. There was more 
staining identified for TRAIL-R2 than for TRAIL-R1 in both normal and tumor 
tissues using this method. This was in agreement with other nonclinical data sug-
gesting more widespread distribution of TRAIL-R2 than TRAIL-R1 on several 
human tumor cell lines.

Importantly, the potential clinical relevance of TRAIL receptor expression has 
yet to be determined. Agonist monoclonal antibodies specific for TRAIL receptors 
can cause decreases in cell line viability even in cell lines with very low surface 
TRAIL receptor as determined by flow cytometry (HGS data not shown). It is possible

Fig. 7.1 General tumor survey for TRAIL-R1: Tumor types with at least 10 samples. 
Immunohistochemical score for TRAIL-R1 staining, using a subjective scale of 0–4+, is indicated 
for 10 general tumor types for which at least 10 specimens were evaluated. Circles indicate indi-
vidual specimen scores, and the mean score is indicated by a bar for each tumor type. Abbreviations 
in tumor type: carcinoma (Ca), non-small-cell (NSC)
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that immunostaining methodology on formalin-fixed tissues will not be sensitive 
enough to detect functionally meaningful levels of the extracellular portion of the 
receptor, which would be targeted by TRAIL-R agonists. However, this possibility 
cannot be fully evaluated in the absence of clinical outcome data. Therefore, the 
immunohistochemical staining of tumor tissue specimens from subjects enrolled in 
the ongoing clinical trial programs represents a critical next step in the development 
of these tests. In addition, further studies of the downstream signaling pathways 
will likely contribute to our understanding of the appropriate application of TRAIL-R 
agonist therapies.

4  The Extrinsic Pathway and the Death-Inducing 
Signaling Complex

There are two essential pathways for TRAIL-mediated cell death (see also Chapter 
3): one “extrinsic,” which is dependent on the signal from the ligand and activation 
of a TRAIL-R protein complex, which leads directly to cell death; the other, 
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Fig. 7.2 General tumor survey for TRAIL-R2: Tumor types with at least 10 samples. 
Immunohistochemical score for TRAIL-R2 staining, using a subjective scale of 0–4+, is indicated 
for 10 general tumor types for which at least 10 specimens were evaluated. Triangles indicate 
individual specimen scores, and the mean score is indicated by a bar for each tumor type. 
Abbreviations in tumor type: carcinoma (Ca), non-small-cell (NSC)
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“intrinsic,” which is activated by TRAIL binding to the TRAIL-Rs, but initiation of 
cell death is mediated through the mitochondria.

The extrinsic pathway of TRAIL-R cell death mediated through the formation 
of a ligand–receptor complex. Each DD on a TRAIL-R molecule interacts with a 
similar DD on a cytoplasmic adaptor protein, Fas-associating protein with a death 
domain (FADD). FADD acts as a bridge between the ligand–receptor complex and 
the receptor proximal caspase-8, through the death effector domain (DED). 
Transfection of dominant negative forms of FADD, or wild-type TRAIL-R1 or 
TRAIL-R2 into cells lacking FADD, blocks apoptosis demonstrating that FADD is 
a critical component of TRAIL-R signaling. Recently, it has been shown that the 
C-terminal tails of TRAIL-R1 and TRAIL-R2 are required for efficient FADD 
binding, caspase cleavage, and TRAIL-dependent apoptosis. (Ashkenazi, 2002; 
Bodmer et al., 2000a; Kuang et al., 2000; Luschen et al., 2000; Muhlenbeck et al., 
1998; Thomas et al., 2004a; Yeh et al., 1998). The multiprotein complex of ligand, 
death receptor, adaptor, and protease is known as the death-inducing signaling 
complex (DISC). This signaling structure is unique amongst cell surface receptor 
signaling pathways for its threefold symmetry. The formation of this complex is a 
critical regulatory event in the process of apoptosis. Inactive caspase-8 molecules 

Fig. 7.3 Examples of IHC scoring scale for TRAIL-receptors. Panels A–D indicate examples of the 
0–4+ scale used to evaluate TRAIL-R1 and TRAIL-R2 staining, and illustrate some of the typical 
patterns observed. Panel A, illustrating 1+ staining, has weak, but widespread, staining (non-
Hodgkin’s lymphoma); panel B, illustrating 2+ staining, has focally stronger staining of the tumor 
population (cervical carcinoma); panel C, illustrating 3+ staining, has widespread staining with 
variability in intensity (gastric carcinoma); and panel D, illustrating 4+ staining, considered excep-
tional, has uniformly strong staining of the tumor cell population, highlighting membrane areas and 
excluding nuclei (colon carcinoma). The smaller image includes the same field stained with a non-
specific IgG as a control (scored 0). All photomicrographs were taken using a 20× objective
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are recruited into the DISC by FADD and are cleaved into active proteases through 
an unknown mechanism. It has been suggested in the “induced proximity” model 
that inactive initiator caspases brought into close proximity during DISC formation, 
promotes mutual cleavage and activation. (Boatright et al., 2003; Boatright and 
Salvesen, 2003; Muzio et al., 1998; Salvesen and Dixit, 1999). Autocleavage and 
activation of the receptor-associated caspase-8 leads to its release from the DISC 
and formation of heterodimeric active subunits. The initiator caspase is now able to 
target the “effector caspases” 3, 6, and 7. These terminal caspases, once activated, 
cleave key structural and signaling components of the cell and begin the physical 
destruction of apoptosis. This relatively short signaling cascade emphasizes the 
potential for rapid induction of cell death. Various apoptosis assays have demon-
strated cellular and molecular changes associated with apoptosis appearing within 
30 min after TRAIL-R engagement (Houghton, 1999; Walczak and Sprick, 2001). 
Importantly, the TRAIL-R pathway can activate cell death independently of p53, a 
primary target for apoptosis regulation by tumor cells (Galligan et al., 2005; Igney 
and Krammer, 2002; Wang and El-Deiry, 2003). Interestingly, p53 regulates 
expression of TRAIL-R2, suggesting p53 can increase sensitivity to TRAIL-R 
agonists in response to other apoptotic stimuli (Sheikh and Fornace, 2000).

5 The Intrinsic Pathway

The bridge from the DISC to the intrinsic pathway is formed through an intervening 
catalytic event. One of the cytoplasmic targets for the TRAIL-R-activated initiator 
caspases is the cytoplasmic protein Bid. Bid is a member of the Bcl-2 family of 
proteins responsible for regulating the mitochondrial pathway of apoptosis. In addi-
tion, the intrinsic pathway is also activated through several molecular monitors of 
cellular health such as p53 and AKT. In response to apoptotic stimuli from various 
metabolic and structural insults, including DNA damage, serum starvation and 
radiation, there is a loss of mitochondrial membrane integrity that precipitates the 
activation of another initiator caspase, caspase-9, and subsequently the effector 
caspases. Here, at the mitochondria the two pathways of apoptosis intersect empha-
sizing the importance of the regulation of this intersection.

The cleavage of Bid by caspase-8 creates a truncated form of Bid (tBid) that can 
translocate to the mitochondrial membrane (Srivastava, 2001). Bid is thought to 
form a heteromeric complex with other apoptosis-promoting molecules, Bax and 
Bak (Luo et al., 1998; Wei et al., 2000). Bax is liberated from its complex with the 
antiapoptotic protein Bcl-2 in response to apoptotic stimuli. This translocation of 
Bax or Bid to the mitochondrial membrane disrupts membrane integrity and 
induces release of cytochrome c and the formation of a protein complex known as 
the apoptosome (Adams and Cory, 2002). The apoptosome is comprised of cyto-
chrome c, pro-caspase-9 and a scaffolding protein, apoptotic protease activating 
factor (APAF1). APAF1 forms a heptamer after binding cytochrome c and recruits 
several molecules of pro-caspase-9 through reciprocal caspase recruitment domains 
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(CARD) present in APAF1 and caspase-9 (Pan et al., 1998). This recruitment and 
oligomerization leads to caspase-9 activation and suggests again a role for the 
induced proximity model of caspase activation. Deletion of APAF1 demonstrates 
its necessary role in caspase-9 activation (Yoshida et al., 1998). Active caspase-9 
can now cleave and activate the executioner caspase-3, caspase-6, and 
caspase-7.

The intrinsic pathway can be activated independent of the TRAIL-R pathway 
through other signals such as those transmitted by p53. One of the dominant mech-
anisms of chemotherapeutic resistance in cancer cells is the gene deletion or acqui-
sition of inactivating mutations in TP53. Conversely, the ability of the TRAIL-R 
pathway to bypass the loss or inactivation of p53, via Bid cleavage, and still induce 
apoptosis through the mitochondria is one of the distinct advantages of targeting the 
TRAIL-Rs. Therefore, there are two pathways, extrinsic and intrinsic, for activa-
tion and execution of the TRAIL-R-mediated signals that lead to cell death.

6 Regulation of Death Signaling

Not surprisingly, given the activation of the death signal and its resulting dire con-
sequences for the cell, the apoptotic pathway is highly regulated at several key 
points. Importantly, tumor cells have exploited these normal regulatory check 
points through acquired or induced modifications to attenuate the activity of cas-
pases, alter the formation or composition of the DISC, or alter the interaction of 
intrinsic apoptosis regulatory proteins Bcl-2 and Bax, or their family members 
(Igney and Krammer, 2002).

FLICE-like inhibitory protein (FLIP) is a dominant negative form of caspase-8 
that competes with caspase-8 for binding in the DISC. FLIP plays an important role 
in regulating sensitivity to TRAIL signaling (Griffith et al., 1998). Chemotherapy 
or FLIP siRNA can modify FLIP levels in tumors and promote TRAIL-induced 
apoptosis (Chawla-Sarkar et al., 2004; Galligan et al., 2005; Kang et al., 2005; 
Song et al., 2003a; Xiao et al., 2005). Interestingly, in support of the data that FLIP 
receptor complexes exist prior to ligand binding, a peptide sequence at the COOH 
terminus of FLIP (L) and TRAIL-R2 interact preventing FADD binding to TRAIL-
R2. Upon ligand binding, FLIP is dislodged and a competent DISC is formed (Jin 
et al., 2004). The intimate interaction of FLIP with the receptor makes it an attrac-
tive target for pharmacologic intervention (Roth and Reed, 2004).

All of the apoptotic caspases described are regulated not only by a requirement 
for death receptor- or mitochondrial-mediated cleavage, but also by endogenous 
inhibitory proteins as well. These caspase-inhibitory proteins contain a protein 
interaction domain that classifies them as inhibitor of apoptosis proteins (IAPs). 
Their baculovirus IAP repeat (BIR) domains are zinc-binding folds that play a role 
in forming binding grooves for the active caspase. Once bound within the groove, 
caspase-9 cannot self-activate. Several members of this family are overexpressed 
in tumors (Igney and Krammer, 2002). Interestingly, the protein SMAC/DIABLO 
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is released from the mitochondria and antagonizes the binding of caspase-9 to the 
IAP family member, X-linked IAP (XIAP), thereby promoting apoptosis (Ng and 
Bonavida, 2002). A summary of the known modifications of proteins involved in 
regulating apoptosis found in tumor cells is described in Table 7.2.

Table 7.2 Tumor modifications of the extrinsic and intrinsic pathways

  Modification and  
Location Target consequence References

Upstream of  AKT AKT constitutive  Bortul et al. (2003); Cenni et al. 
mitochondria activity promotes (2004); Chen et al. (2001); 

Bad phosphorylation Whang et al. (2004)
Upstream of  PTEN Loss of PTEN  Deocampo et al. (2003); 

mitochondria yields an inability to Nesterov et al. (2001)
dephosphorylate AKT

Upstream of  Bcl-2 Overexpression,  Nencioni et al. (2005)
mitochondria blocks apoptosis 

Upstream of  Bcl-XL Overexpression,   Dole et al. (1995); Foreman et al.
mitochondria blocks apoptosis (1996); Nagane et al. (1998)

Upstream of  Mcl-1 Overexpressed in AML,  Kaufmann et al. (1998); Taniai 
mitochondria blocks apoptosis et al. (2004); Yu et al. (2005)

Downstream of  Survivin Overexpressed in  Adida et al. (2000); Kim et al. 
mitochondria neuroblastoma (2005); Wang et al. (2005);   

     blocks apoptosis Yamaguchi et al. (2005b)
Downstream of  cIAP2 Gene rearranged Dierlamm et al. (1999)

mitochondria in MALT 
Downstream of  ML-IAP Overexpressed  Vucic et al. (2000)

mitochondria in melanoma
Downstream of  APAF1 Loss of APAF1 Soengas et al. (2001); Soengas

mitochondria  Blocks Caspase 9 et al. (2006)
Downstream of  XAF Binds to XIAP Leaman et al. (2002)

mitochondria
Receptor  Caspase-8 Methylation of gene  Ashley et al. (2005); Poulaki

complex  represses expression,  et al. (2005); van Noesel et al. 
blocks cytoplasmic (2003); Zuzak et al. (2002)
apoptosis signal

Receptor  TRAIL-R1,  Point mutations and  Fisher et al. (2001); Kuraoka
complex TRAIL-R2 genetic deletion et al. (2005); McDonald et al. 

   (2001); Ozoren et al. (2000); 
   Pai et al. (1998); Wolf et al. 
   (2006)
Receptor  Decoy Occasional elevated  Meng et al. (2000)

complex receptors, expression 
DcR1,
DcR2

Upstream of  Bax Inactivating mutation  Rampino et al. (1997); Zhang
mitochondria prevents apoptosis et al. (2000); Ionov et al. (2000)

Upstream of  c-Myc Represses FLIP  Ricci et al. (2004)
mitochondria expression

Downstream of  SMAC/ Reduced release  Zhang and Fang (2005)
mitochondria  Diablo of SMAC/Diablo
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7 Agonists of the Trail-R Apoptotic Pathway

7.1 Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand

Members of the tumor necrosis factor (TNF) superfamily have demonstrated 
the ability to induce apoptosis in virally and oncogenically transformed cells, 
human tumor cell lines and activated lymphocytes, NK, and monocytes 
(TRAIL, TNFα, TNFβ, and FASL). The ability to induce cell death, 14 other 
TNF ligands possess a diverse array of immunomodulatory and growth-stimu-
latory capabilities, including stimulation and proliferation of B-cells (BLyS) 
and T-cells (CD40L, LIGHT, OX40L, and 4–1-BBL) and regulation of bone 
metabolism (RANKL) (reviewed in Locksley et al. (2001) and Ashkenazi 
(2002)). TRAIL is a type II membrane-bound protein which exists as a self-
assembling homotrimeric molecule that possesses apoptotic activity in a mem-
brane bound or soluble form. The membrane form can be cleaved from the cell 
surface by an extracellular cysteine protease (Lawrence et al., 2001; Mariani 
and Krammer, 1998). TRAIL exists as a trimer in solution and requires ele-
mental Zn+2 and a cysteine residue to coordinate and properly organize the 
trimeric structure. (Hymowitz et al., 2000) TRAIL that is generated in the 
absence of zinc permits the formation of cysteine disulfide bonds that result in 
an asymmetric molecule, which is less stable and insoluble in solution 
(Ashkenazi, 2002; Lawrence et al., 2001). Crystal studies of the ligand bound 
to TRAIL-R2 have revealed that the inverted pyramid-shaped trimeric ligand 
binds in the pocket between three receptor molecules (Hymowitz et al., 2000; 
Mongkolsapaya et al., 1999).

Cell surface expression of the ligand TRAIL has been observed on a variety of 
immune cells including IL-15- or IL-2-activated NK cells, virally infected T-cells, 
interferon gamma-activated monocytes, and dendritic cells, as well as CD4+ and 
CD3+ T-cells. TRAIL can confer tumoricidal activity to monocytes and NK cells 
and plays a role in immune surveillance against tumor development (Kayagaki 
et al., 1999a, b; Mariani and Krammer, 1998; Nieda et al., 2001; Takeda et al., 
2002). Recently, a “window of TRAIL sensitivity” was observed in CD34 erythroid 
progenitor cells that is promoted initially by the expression of TRAIL-Rs and then 
inhibited by intercellular expression of Bcl-2 (Mirandola et al., 2006a). TRAIL has 
also been detected on the surface of colonic epithelium (Strater et al., 2002b). The 
soluble and membrane-bound form of TRAIL-induced apoptosis in a wide variety 
of human tumor cells both in vitro and in vivo without affecting the viability of 
normal cells.

Several forms of recombinant TRAIL have been generated to evaluate the 
ligand in preclinical studies. Histidine-tagged (Pitti et al., 1996), leucine zipper 
(Walczak et al., 1999), Flag-tagged (Bodmer et al., 2000b; Schneider and 
Tschopp, 2000), and Zn+2-stabilized versions (Ashkenazi and Dixit, 1999; 
Kelley et al., 2001) have all been generated and tested for activity against tumor 
and normal cells in preclinical studies. These different forms of the ligand have 
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displayed a spectrum of antitumor activity in human cell lines in vitro, in 
xenograft models and primary tissues transplanted into nude mice. TRAIL, 
either alone or in combination with chemotherapeutic agents, has demonstrated 
apoptosis activity in tumor cell lines derived from a broad array of human 
tumors including colon, brain, uterus, ovary, liver, breast, prostate, kidney, liver, 
lung, thyroid, and blood (Asakuma et al., 2003; Ashkenazi et al., 1999; Bouralexis 
et al., 2003, 2004; Chen et al., 2003; El-Zawahry et al., 2005; Jazirehi et al., 2001; 
Jeon et al., 2003; Keane et al., 1999; Kelly et al., 2002; LeBlanc and Ashkenazi, 
2003; Miao et al., 2003; Mitsiades et al., 2001a; Muhlethaler-Mottet et al., 2004; 
Nagane et al., 2001; Naka et al., 2002; Ohtsuka et al., 2003; Pitti et al., 1996;
Secchiero et al., 2002; Singh et al., 2003; Srivastava, 2001). TRAIL can overcome 
chemoresistance or radioresistance when administered in combination with 
chemotherapy in adriamycin-resistant myeloma, radio-resistant lymphoma, and 
taxane- and platinum-insensitive breast and osteosarcoma cell lines (Belka et al., 
2001; Clayer et al., 2001; Cuello et al., 2001; Evdokiou et al., 2002; Frese et al., 2002; 
Jazirehi et al., 2001; Johnston et al., 2003; Keane et al., 1999; Liu et al., 2001; 
Mitsiades et al., 2001b; Nagane et al., 2000, 2001; Voelkel-Johnson, 2003).

While the epitope-tagged forms of the ligand assisted the isolation and purifica-
tion of the recombinant protein, and in many instances enhanced the activity of 
TRAIL, they also enhanced the toxicity on normal cells. HIS-tagged, leucine-zip-
per or Flag-tagged antibody cross-linked forms of TRAIL-induced apoptosis in 
normal hepatocytes in vitro(Jo et al., 2000; Lawrence et al., 2001). Conflicting 
results were obtained when no apoptosis was observed with soluble TRAIL admin-
istered to normal primary cells from the lung, bone, liver, endothelium, breast, 
brain, and kidney (Ashkenazi et al., 1999). Safety studies of Zn2+-stabilized 
TRAIL administered in short-term treatment of mouse, monkey, and chimpanzees 
showed no detectable toxicities (Lawrence et al., 2001). Additional studies with 
soluble TRAIL were performed in chimeric mice whose livers were reconstituted 
with human hepatocytes. Repeated injection of soluble nontagged form of TRAIL 
did not generate any hepatotoxicity (Hao et al., 2004). These conflicting results 
suggested that nonphysiologically or inappropriately aggregated forms of TRAIL 
can be toxic. Whereas a soluble, correctly organized Zn2+-stabilized TRAIL was 
not toxic. It is important to note that there is a role for native TRAIL in response to 
inflammation or infection. Acute bacterial or viral infection of the liver or pancreas 
or in mouse models of hepatitis or pancreatitis TRAIL can induce apoptosis (Mundt 
et al., 2003; Hasel et al., 2003). Membrane-bound TRAIL has been shown to induce 
liver damage in adenoviral-transfected hepatocytes in vivo (Ichikawa et al., 2001). 
These types of responses coincide with the predicted role for TRAIL in mediating 
an immune surveillance response to acute bacterial- or viral-induced infection or 
inflammation.

The substantial preclinical antitumor data observed with the ligand implied that 
TRAIL-R agonism could potentially yield significant clinical antitumor activity. In 
fact, a recombinant form of the TRAIL ligand is currently is phase 1 clinical devel-
opment. Nonetheless, this optimism should be tempered with the knowledge that 
certain versions of the TRAIL ligand, albeit in nonphysiological forms, did induce 
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severe cytotoxicity of normal cells. Therefore, clinical development should be 
prudently conducted with awareness toward potential indicators of toxicity.

7.2 Antibodies

A spectrum of mouse and human monoclonal and polyclonal antibodies has dem-
onstrated the ability to agonize the TRAIL-Rs and induce death in tumor cells. 
They have proven to be valuable tools to explore mechanism of action, define 
chemotherapeutic combinations agents that enhance apoptosis, and describe 
functional differences between the TRAIL-R1 and TRAIL-R2 pathways. 
Importantly, human monoclonal antibodies selected for high-affinity binding and 
maximal agonism have been advanced into clinical development as therapeutic 
cancer agents.

Experiments using antibodies, which target the TRAIL-Rs, revealed that only 
TRAIL-R1 and TRAIL-R2 were capable of inducing apoptosis and not the decoy 
receptors TRAIL-R3 (DcR1) and TRAIL-R4 (DcR2) (Griffith et al., 1999). 
TRAIL-R2 specific antibodies when cross-linked, generated a distinct activation of 
NF-κB, apoptosis, and Jun NH2 kinase (JNK) activation compared to the NF-κB
activation and apoptosis induced by cross-linking of TRAIL-R1 antibodies 
(Muhlenbeck et al., 2000). Mouse monoclonal antibodies against TRAIL-R1 were 
potent agonists in vivo but minimally active in vitro. In vitro activity was enhanced 
by secondary cross-linking antibodies, presumably through multimerization of 
receptor complexes. These antibodies, however, were very active against human
xenografts when administered in vivo (Chuntharapai et al., 2001; Griffith et al., 
1998). This result suggested that the mouse contributed a cross-linking function pos-
sibly through Fc receptors on immune cells. However, the use of agonist antibodies 
of immunoglobin isotypes that preferentially bind to Fc receptors or have the ability 
to fix complement were not significantly more active in vivo suggesting that this is 
not the mechanism that enhances these antibodies in vivo.

Receptor-specific antibodies selected for high-affinity binding and their TRAIL-R 
agonism have been identified and generated from phage display libraries, hybridomas, 
and transgenic mice containing human immunoglobin genes (Dobson et al., 2002; 
Ichikawa et al., 2001; Motoki et al., 2005; Pukac et al., 2005).

TRA-8, an agonist mouse monoclonal antibody to the human TRAIL-R2, was 
generated by immunization of mice with the extracellular domain of human 
TRAIL-R2 fused to the Fc portion of human IgG

1
. TRA-8 bound to TRAIL-R2 

specifically induced apoptosis in human T-cell leukemia, B-cell lymphoma, and 
glioma lines, and enhanced antitumor activity in combination with chemotherapeu-
tic agents including Adriamycin (doxorubicin hydrochloride) and cisplatin. In 
TRA-8-resistant glioma lines sensitivity was restored after overexpression of Bax 
mediated by adenoviral transfer. Importantly, TRA-8 was also tested against hepa-
tocytes in vitro and did not display any evidence of apoptosis (Choi et al., 2002; 
Ichikawa et al., 2001; Kaliberov et al., 2004; Ohtsuka et al., 2003).
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Human Genome Sciences in collaboration with Cambridge Antibody Technology 
generated a series of fully human monoclonal antibodies, which target TRAIL-R1 
or TRAIL-R2. The most active of these candidates were selected for evaluation in 
preclinical studies and are now advancing through clinical development. HGS-
ETR1 (mapatumumab) an antibody specifically targeting TRAIL-R1, demonstrated 
potent in vitro apoptotic activity against human tumor cell lines derived from colon, 
lung, pancreas, ovary, uterus, renal, and hematologic malignancies. This in vitro 
activity was achieved in the absence of cross-linking agents. HGS-ETR1 enhanced 
the cytotoxicity of chemotherapeutic agents (camptothecin, cisplatin, carboplatin, 
or 5-fluorouracil) even in tumor cell lines that were not sensitive to HGS-ETR1 
alone. In preestablished colon, NSCL, and renal xenografts, HGS-ETR1 treatment 
resulted in rapid tumor regression or repression of tumor growth. Addition of 
chemotherapeutic agents like topotecan, 5-fluorouracil, and irinotecan in colon 
xenograft models enhanced antitumor efficacy and in some models a synergistic 
antitumor activity was observed (Pukac et al., 2005).

Phase 1 trials of HGS-ETR1 have been conducted in advanced solid tumor 
patients and have demonstrated the safety and tolerability of single agent HGS-
ETR1 up to 20 mg/kg. Single agent phase 2 studies were conducted in colorectal 
cancer, non-small-cell lung carcinoma (NSCLC), and non-Hodgkin’s lymphoma 
(NHL). While stable disease was the best response observed in the two solid 
tumor studies, objective responses, including one complete response, were 
observed in the NHL study. Further, phase 1b studies have demonstrated that 
HGS-ETR1 can be safely administered in combination with standard doses of 
chemotherapy agents, such as carboplatin and paclitaxel. Additional phase 2 
studies are planned to assess the activity of HGS-ETR1 in combination with 
chemotherapy.

HGS-ETR2 (lexatumumab), a fully human antibody identified via screening of 
phage display libraries for high-affinity, single-chain antibodies to TRAIL-R2, has 
been evaluated in similar human tumor cell lines for apoptotic activity. HGS-ETR2 
produced potent apoptotic activity in a spectrum of human tumor cell lines including 
NSCL, colon, renal, and ovarian in the absence of cross-linking agents. (Alderson 
et al., 2003; Humphreys et al., 2003; Johnson et al., 2003, 2004). HGS-ETR2 has 
demonstrated the ability to enhance the activity of chemotherapeutic agents from 
various classes including taxanes and platinums (Georgakis et al., 2003; Humphreys 
et al., 2003; Johnson et al., 2004; Zeng et al., 2006). HGS-ETR2 induced cell death 
in two human RCC cell lines and nine human primary RCC cell cultures. This in vitro 
effect was enhanced with addition of a cross-linking antibody. In a renal xenograft 
model using primary renal carcinoma tumor cells HGS-ETR2 was able to induce 
tumor regression (Zeng et al., 2006). HGS-ETR1 and HGS-ETR2 were effective in 
cell lines from multiple myeloma, acute lymphoblastic leukemia (ALL), NHL, and 
chronic myelogenous leukemia and in primary hematological tumor cells from NHL, 
chronic lymphocytic leukemia, and multiple myeloma patients (Georgakis et al., 
2003; Johnson et al., 2003). Phase 1 trials of HGS-ETR2 have been conducted in 
advanced solid tumor patients. This agent has demonstrated that it can be safely and 
repetitively administered up to 10 mg/kg. The results of the phase 1 studies support 



the additional study of HGS-ETR2 in phase 2 trials to evaluate its potential for use 
in the treatment of cancer.

Another TRAIL-R2 mAb (HGS-TR2J, KMTR2) was identified in collaboration 
between Human Genome Sciences and Kirin Brewery, Inc. This agonist antibody, 
derived from transchromosomal mice expressing human Ig locus, showed in vitro 
and in vivo activity against human tumor cell lines. Importantly, HGS-TR2J gener-
ated significant apoptotic activity without cross-linking and was active in many 
human tumor cell lines. It was also shown that ligation of HGS-TR2J to cell surface 
receptors induced clustering of TRAIL-R2 (Motoki et al., 2005). HGS-TR2J is cur-
rently in phase 1 clinical development.

7.3 Agonist Signaling

Receptor oligomerization is potentially a key event in TRAIL-R signaling. In 
vitro and in vivo experiments have shown that cross-linking TRAIL-R agonists, 
including various forms of the recombinant ligand and antibodies, altered antitu-
mor activity. Antibodies, because of their bivalent binding, have the potential to 
oligomerize receptor molecules, which could lead to activation of TRAIL-R sig-
naling, DISC formation and cell death. The recombinant ligand, generated in 
several forms that permitted cross-linking or aggregation, demonstrated potent 
antiapoptotic activity. Additionally, chemotherapeutic treatment has been able to 
induce TRAIL-R1 and TRAIL-R2 receptor aggregation and enhance apoptosis 
(Bergeron et al., 2004; Delmas et al., 2004). Experiments have shown that cross-
linking an agonist, including the ligand and antibodies, can improve apoptosis 
in vitro. Even in those experiments where cross-linking was required for activity in 
vitro, agonists were readily effective in vivo without cross-linking. In addition, 
some agonists can achieve maximal apoptosis activity without any enhancement 
from in vitro cross-linking. This conflicting data suggests several possible mech-
anisms of killing by TRAIL-R agonists.

Conceivably, both cross-linking-dependent and cross-linking-independent 
mechanisms may exist for TRAIL-R agonists. Where cross-linking is involved in 
vivo this function may be provided by the host through immune cells that can cross-
link IgG molecules, i.e., Fc receptors. Alternatively, in the absence of cross-linking 
a TRAIL-R agonist could bind to the trimerized receptor and induce a conforma-
tional change similar to the alteration that is theorized to occur with the native lig-
and. Conformational change in the receptor could expose relevant binding domains 
on FADD and induce the apoptotic cascade. In fact, the ability to expose different 
protein-binding domains of FADD has been observed with TRAIL-R agonist anti-
bodies (Thomas et al., 2004b). The ability to cross-link cell surface receptors with 
antibodies induces capping and increases agonistic activity that has been shown in 
other signaling systems including those within the TNFSFR. (Cremesti et al., 2001; 
Liu et al., 2003; Ludwig et al., 2003; Miller et al., 2003). While the precise nature 
of the interaction between TRAIL-R agonists and the formation of the DISC 
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remains to be determined, their ability to activate this pathway and induce tumor 
cell death has been proven in preclinical studies and is being validated in the 
clinical setting.

8 Agents Targeting the Apoptosis Pathway

The availability of human tumor cell lines that are refractory to TRAIL-R agonism 
has allowed exploration of potential mechanisms of resistance (Igney and Krammer, 
2002; Wang and El-Deiry, 2003). Both extrinsic and intrinsic regulatory proteins 
have been blamed for this resistance, including FLIP (Griffith et al., 1998; Kim 
et al., 2000; Leverkus et al., 2000a), XIAP, survivin (Kim et al., 2004) Bcl-2 (Fulda et al.,
2002a), and Bax (Deng et al., 2002; He et al., 2003; Kandasamy et al., 2003; 
LeBlanc et al., 2002). Genetic alterations have been identified in TRAIL-R1 and 
TRAIL-R2 in NSCLC, colon cancer, head and neck cancer, and lymphoma. Some 
of these modifications induced a loss of apoptotic signaling. Unfortunately, their 
role in TRAIL resistance in the clinic has not been validated. (Arai et al., 1998; 
Fisher et al., 2001; Jeng and Hsu, 2002; Lee et al., 1999; Ozoren et al., 2000; Pai 
et al., 1998; Wolf et al., 2006; Wu et al., 2000). Changes in the level of cell surface 
receptor expression, caspase-8/FLIP ratio and loss of caspase-8 have all been dis-
covered as mechanisms of resistance to TRAIL-R agonism (Poulaki et al., 2005; 
Van Geelen et al., 2004; Wachter et al., 2004).

Consequently, many strategies have been evaluated for their ability to enhance 
sensitivity or maximize responsiveness to TRAIL-R agonism. Early obvious strate-
gies involved combining standard, approved chemotherapeutic agents with 
TRAIL-R agonists. Chemotherapy agents or radiation improved response in 
breast, colorectal, and NSCLC cell lines that displayed resistance to TRAIL-R 
agonism (Adams and Cory, 2002; Ganten et al., 2005; Kondo et al., 2006; Wendt 
et al., 2005; Zhang et al., 2005). The use of chemotherapy agents modified levels 
of specific molecules including TRAIL-R1, TRAIL-R2, FLIP, XIAP, or the proa-
poptotic protein Bad and restored TRAIL-R responsiveness (Fesik, 2005; Galligan 
et al., 2005; Mirandola et al., 2006b; Xiao et al., 2005; Yamaguchi et al., 2005a). 
Other strategies have targeted specific molecules known to regulate the pathway 
at important catalytic or survival signaling steps. For example, many new com-
pounds have targeted the ubiquitous, antiapoptotic protein Bcl-2, or related family 
members, through antisense or small molecules (Chawla-Sarkar et al., 2004; 
Sinicrope et al., 2004; Zhu et al., 2005a) (Table 7.3) (also see Chapter 8). Oblimersen 
sodium (Bcl-2 antisense) as a single agent or in combination with chemotherapy 
has shown some clinical activity. (Marcucci et al., 2005; O’Brien et al., 2005; 
Tolcher et al., 2005). Many strategies are focused on the elimination or reduction 
of inhibitors that block activation of the initiator caspase-8 and caspase-9, namely 
XIAP, survivin, and FLIP. Small-molecule and antisense techniques have yielded 
promising results in preclinical models. FLIP, survivin, and XIAP inhibitors in 
combination with TRAIL-R agonists have significantly enhanced apoptosis across 
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various cancer cell lines. (Amantana et al., 2004; Chawla-Sarkar et al., 2004; 
McManus et al., 2004; Ou et al., 2005; Wang et al., 2005; Yamaguchi et al., 2005a, 
b). There are other compounds that mimic the action of the mitochondrially 
released XIAP inhibitor, SMAC/DIABLO (Bockbrader et al., 2005; Fulda et al., 
2002b; Li et al., 2004; Pei et al., 2004; Roa et al., 2003). There are examples of 
single-agent activity in tumor cell lines and xenografts for many of these targeted 
therapies. More importantly, where they have been evaluated, the apoptosis activity 
of these agents shows a dramatic enhancement in combination with TRAIL-R ago-
nists. These data demonstrate that the use of TRAIL-R agonists and compounds 
that lower hurdles for active apoptosis signaling may be potent therapeutic agents 
and importantly active in TRAIL insensitive cells.

Another avenue that has generated encouraging results has come from the use of 
agents with less direct action on TRAIL-R signaling. The proteosome inhibitor, 
bortezomib, has broad-ranging effects on receptor expression, upregulation of proa-
poptotic proteins such as Bik and Bim, and TRAIL production (also see Chapter 12). 
Bortezomib has also shown activity in combination with the agonist antibodies 
HGS-ETR1 and HGS-ETR2 in hematological cell lines and primary cells from NHL 
and CLL patients. (Georgakis et al., 2005; Lashinger et al., 2005; Matta and 
Chaudhary, 2005; Nencioni et al., 2005; Nikrad et al., 2005; Papageorgiou et al.,
2004; Sayers and Murphy, 2006; Zhang et al., 2004; Zhu et al., 2005b). Histone 

Table 7.3 Apoptosis therapeutics in development

Compound Type Target Institute/company Status

HGS-ETR1 Human agonist mAb TRAIL-R1 Human Genome Sciences Ph2
HGS-ETR2 Human agonist mAb TRAIL-R2 Human Genome Sciences Ph1
HGS-TR2J Human agonist mAb TRAIL-R2 Human Genome Sciences Ph1
TRA-8 Agonist mAb TRA-8 TRAIL-R2 Sankyo Preclinical
APO2L/TRAIL- Recombinant TRAIL  TRAIL-R1  Amgen/Genentech Ph1

PRO1762 ligand TRAIL-R2
Genasense  Antisense Bcl-2 Genta Ph2/3

(oblimersen
sodium)

GX15–070 Small molecule Bcl-2 GeminX Ph1
AT101 Small molecule Bcl-2 Ascenta Ph1/2
ApoGossypol Small molecule Bcl-2 Burnham Institute/NCI Preclinical
EGCG Small molecule Bcl-2 Mayo Clinic Preclinical
ABT-737 Small molecule Bcl-2 Abbott/Idun Preclinical
HA14–1 Small molecule Bcl-2 Raylight Preclinical
CDDO Triterpenoid FLIP Reata Discovery/ Preclinical
   Dartmouth
ISIS 2181308 Antisense Survivin Isis/Lilly Ph1
AG35156 Antisense XIAP Aegera Ph1
Not defined SMAC mimetic peptide XIAP Joyant Pharmaceuticals Preclinical
Not defined SMAC mimetic peptide XIAP Tetralogics Preclinical
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deacetylase (HDAC) inhibitors have demonstrated significant antitumor activity in 
combination with TRAIL-R agonists. Effects with HDAC inhibitors include 
changes in TRAIL-R2 expression, decreasing levels of Bcl-2 and FLIP, and 
increasing the proapoptotic protein Bik. Some early HDAC inhibitors are now 
progressing through clinical trial development and show early signs of activity 
(Ganten et al., 2005; Guo et al., 2004; Kelly and Marks, 2005; Kelly et al., 2005; 
Marks et al., 2004; Yoshida et al., 2005; Zhu et al., 2005b) (also see Chapter 13).

The use of these apoptosis-promoting compounds as single agents or in combi-
nation with standard chemotherapy has, in those agents being advanced into clinical 
development, shown signs of biological activity. These strategies directly targeting 
the apoptosis pathway are exploiting the potential that they will confer greater 
effectiveness to chemotherapy. Alternatively, the elimination or obstruction of 
antiapoptotic molecules may lower the threshold for induction of apoptosis when 
used in combination with a TRAIL-R agonist. This combination strategy of 
TRAIL-R agonists and proapoptotic-targeted therapy has the potential to signifi-
cantly enhance antitumor activity and eliminate the need for nonspecific chemo-
therapeutic agents that elicit toxic side effects. While a broad range of exciting 
preclinical data has verified the activity of this amalgamation, a combinatorial 
apoptotic strategy needs to be validated in a clinical setting.

9 Conclusion

Targeting the TRAIL-R pathway with therapeutic agents provides an opportunity to 
induce apoptosis selectively in tumor cells. In preclinical studies the use of TRAIL-R 
agonists like recombinant TRAIL ligand or monoclonal antibodies have demonstrated 
significant, potent antitumor activity and have enhanced chemotherapeutic agent activ-
ity in a spectrum of human tumor cell lines and xenografts. Several human monoclonal 
antibodies and a recombinant TRAIL ligand have advanced through preclinical evalu-
ation and are now in clinical development. Hopefully, other novel agents that target the 
apoptotic pathway will enter and advance successfully through the clinical arena, 
strengthening, and diversifying the armamentarium against the tumor cell.
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Chapter 8
Rational Design of Therapeutics Targeting 
the BCL-2 Family

Are Some Cancer Cells Primed for Death 
but Waiting for a Final Push?

Victoria Del Gaizo Moore and Anthony Letai*

Abstract A mechanism for circumventing apoptosis prevalent in many cancer cells 
is the overexpression of antiapoptotic BCL-2 family members. Upregulated expres-
sion of BCL-2 may be required to permit ongoing death signaling without a cellular 
response. Therefore, antagonizing BCL-2 function may cause death in many cancer 
cells. The selection for expression of BCL-2 or other antiapoptotic proteins during 
oncogenesis may derive from these proteins’ ability to bind and sequester proapoptotic 
BH3-only proteins. This situation may be advantageous from a therapeutic viewpoint 
because cancer cells may be distinguished from normal cells by being primed with 
death signals. There are several strategies currently under investigation that may lead 
to improved treatment of many cancers by taking advantage of these differences.

Keywords apoptosis, BCL-2, BH3, therapeutics, peptide

1 The BCL-2 Family of Proteins

The BCL-2 family of proteins plays a critical role in controlling death via the intrin-
sic, or mitochondrial, programmed cell death pathway. BCL-2, the namesake of the 
family, was identified at the breakpoint of the t(14;18) translocation common to fol-
licular lymphoma (1–3). More than 85% of follicular lymphomas contain a chromo-
somal translocation involving the fusion of the bcl-2 gene at 18q21 to the 
immunoglobulin heavy chain locus on 14q32 (4). This translocation places the BCL-2
gene under the control of the immunoglobulin heavy chain elements. Thus, overex-
pression of BCL-2 protein is driven in B-cells possessing the t(14;18). BCL-2 was 
credentialed as an oncogene when it was shown that overexpression was linked to the 
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induction of lymphoma in mice (5, 6). Until the discovery of BCL-2, only oncogenes 
that increased cell proliferation, like myc, ras, and src had been described. BCL-2’s 
discovery and characterization opened a new class of oncogenes: inhibitors of cell 
death. The last 20 years have seen the discovery of a family of proteins related to 
BCL-2 by structural homology and by participation in control over the mitochondrial 
apoptotic pathway.

BCL-2 proteins largely interact at the mitochondria, the nexus of events that irre-
versibly commit a cell to programmed cell death via the intrinsic pathway. Some 
BCL-2 proteins are localized to the mitochondria even during normal cellular condi-
tions while many have other subcellular locations. For example, BAK resides as a 
monomer at the mitochondrial outer membrane as well as the endoplamic reticulum 
(7). Prior to activation, BAX exists as a monomer, either in the cytosol or loosely 
attached to the mitochondrial outer membrane. When activated, however, BAX 
undergoes alkali-stable insertion into the mitochondrial membrane. BCL-2 itself is 
found not only at mitochondria, but also at the endoplasmic reticulum where it is 
implicated in calcium homeostasis (8). Many BCL-2 family members have identi-
fied roles outside of control of apoptosis, and it is likely that BCL-2 family members 
are important in other aspects of cellular homeostasis. The extra-apoptotic functions 
of BCL-2 family members remain an area of active investigation (9–11).

BCL-2 family members can be divided into three broad groups: antiapoptotic, 
multidomain proapoptotic, and BH3-only proapoptotic proteins (Fig. 8.1). 
Antiapoptotic proteins include BCL-2, MCL-1, BCL-X

L
, BCL-w, and BFL-1, all of 

which have the ability to oppose cell death. These antiapoptotic proteins possess 
sequence homology in four alpha-helical BCL-2 homology or BH regions. 
Multidomain proapoptotic proteins, including BAX and BAK, promote the pro-
gression of cell death and share homology in the BH1–3 regions. BH3-only proap-
optotic proteins also promote cell death but, as their name implies, have only a BH3 
domain in common. The BH3 domains contain an amphipathic α-helix that is nec-
essary for the proapoptotic function of BH3-only proteins. However, this pro-death 
function requires interaction with multidomain BAX or BAK (12–14).

Upon cellular stress such as oncogene activation, uncontrolled proliferation, 
DNA damage, or growth factor withdrawal, BH3-only proteins become function-
ally upregulated via transcriptional or posttranslational means (15, 16). Proapoptotic 
BH3-only proteins may be further categorized as “activators” or “sensitizers” (17) 

Multidomain Anti-Apoptotic: BCL-2, BCL-XL,

BCL-w, BFL-1, MCL-1

Multidomain Pro-Apoptotic: BAX, BAK

BH3-only Pro-Apoptotic: BID, BIM, BAD, NOXA,

PUMA, HRK, BMF, BIK

BH3 BH1 BH2

BH3

BH3 BH1 BH2BH4

Fig. 8.1 Three classes of the BCL-2 family of proteins. BH3 domains are coded by color
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(Fig. 8.2). “Activator” BH3-only proteins, such as BID or BIM, interact with BAX or 
BAK, inducing an allosteric change. Subsequently, activated BAX or BAK can oli-
gomerize. Oligomerized BAX or BAK, perhaps in complex with other proteins, induce 
mitochondria outer membrane permeablization (MOMP) (14, 18–22). Permeablization 
allows certain mitochondrial factors such as cytochrome c, Smac/Diablo, and AIF, to 
be released into the cytosol (23–28). Once in the cytosol, cytochrome c forms a holoen-
zyme complex with caspase-9 and APAF-1, called the apoptosome, which cleaves pro-
caspase-3, into an active protease (29). Widespread proteolysis ensues, leading to 
cellular dysfunction and death. Consequently, MOMP can be considered the step at 
which commitment to cell death occcurs. Notably, there are recent studies that suggest 
that a key proapoptotic function of p53 is mediated by its ability to act as an activator 
(30–33).

While antiapoptotic proteins like BCL-2 and MCL-1 have been shown to 
directly interact with multidomain BAX and BAK, their interaction with BH3-only 
proteins may be more important to their antiapoptotic function (13, 34). The BH1–3 
domains of BCL-2 form a hydrophobic cleft where the BH3 domain of multido-
main and BH3-only proteins can bind. BCL-2 binding of BID or BIM causes 

sensitizeractivator

caspase activation 

widespread proteolysis 

and cell death 
apoptosome

- activator BH3-only proteins 

   - sensitizer BH3-only proteins 

- cytochrome c

- BCL-2 protein

- BAX/BAK protein

Fig. 8.2 BCL-2 family “activators” vs “sensitizer.” BH3 domain-only activators, such as BID or 
BIM, interact with BAX or BAK to induce their activation, leading to MOMP, caspase activation, 
and apoptosis. BCL-2 may also bind and sequester BID or BIM, preventing activation of BAX or 
BAK. Sensitizers binding to BCL-2 may either block activators from binding or displace them 
from BCL-2
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sequestration of these activator proteins, thereby preventing interaction and 
activation of BAX and BAK and thereby preventing MOMP (13, 17). Not all BH3-
only proteins, however, are able to activate BAX or BAK. BH3-only proteins that 
do not activate BAX or BAK, including BAD, BIK, BMF, NOXA, and PUMA, 
we classify as “sensitizers” (17, 35). In contrast to activators that can activate 
BAX and BAK, these BH3 domains exert their proapoptotic function by binding 
to antiapoptotic BCL-2 proteins. In so doing, they compete with the binding of 
activators, either preventing activator binding, or displacing activators from 
BCL-2. In the presence of sensitizers, displaced activator BH3-only proteins are 
freed from antiapoptotic proteins to activate BAX and BAK and induce MOMP 
(17, 35, 36). While antiapoptotic proteins apparently share the common function 
of inhibiting apoptosis by sequestering activator BH3-only proteins, their binding 
pockets are nonetheless distinct. This is most clearly shown by the fact that each 
antiapoptotic protein has a distinct pattern of interaction with the range of sensi-
tizer BH3 domains (35–37).

In addition to the intrinsic or mitochondrial pathway, apoptosis also can be initi-
ated through the death receptor-mediated, or extrinsic, pathway. The extrinsic path-
way is triggered when ligands, such as TNF, Fas ligand, or TRAIL, are bound by 
cell surface death receptors that cause changes in the intracellular domains of these 
receptors, resulting in assembly of a so-called death-inducing signaling complex 
(DISC) reviewed in (16). Activation of the initiator caspase-8 activation results, 
leading to activation of downstream effector caspases. In some systems, linkage to 
the intrinsic apoptotic pathway is accomplished by caspase-8 cleavage of the acti-
vator BH3-only protein BID, which can then trigger BAX or BAK oligomerization 
and MOMP (38, 39). Even though initiation of the intrinsic and extrinsic pathways 
is different, both converge at the activation of downstream effector caspase-3 and 
caspase-7.

2 The Link Between BCL-2 and Cancer

While elevated BCL-2 levels as a result of the t(14;18) translocation involving the 
BCL-2 gene occurs in 80–90% of follicular non-Hodgkins lymphomas, aberrant 
expression of antiapoptotic expression has been implicated in many other cancers 
(4, 40, 41). 20–55% of diffuse large cell lymphomas have elevated BCL-2, either 
due to t(14;18) translocations, gene amplification, or other mechanisms, which may 
correlate with decreased patient survival (42–44). Many other cancers exhibit high 
levels of BCL-2 protein in the absence of a t(14;18); the mechanism of upregulated 
BCL-2 remains obscure in most of these instances. Examples include 70% of breast 
cancer (45, 46), 30–60% prostate cancer (47), and 90% of colorectal cancer cases 
(41, 48, 49). Chronic lymphoid leukemia (CLL) is largely considered a disease of 
failed apoptosis (50–52), but usually not due to t(14;18) (53). Nonetheless, the 
majority of CLL cells express high levels of BCL-2 (54). Recently, a more common 
chromosomal aberration, deletion, or translocation of 13q14.3, was implicated in 
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elevated BCL-2 in CLL (55). Changes affecting region 13q14.3 downregulated two 
microRNAs (miRNA) mir-15A and mir-16-1, and occurred in >50% of all CLL 
cases. miRNAs are a class of genes involved in tumorigenesis that produce short, 
single-stranded RNAs that bind to specific mRNA sequences and either prevent the 
translation of the mRNA or hasten degradation of the mRNA, thereby lowering the 
levels of the corresponding protein (56, 57). Expression of mir-15A and mir-16-1
inversely correlates to BCL-2 expression in CLL samples and both negatively regu-
late BCL-2 levels (58, 59).

Expression of other antiapoptotic proteins has been detected in many cancers, 
including BFL-1 in diffuse large-cell lymphoma (60), MCL-1 in myeloma (61), 
and BCL-X

L
 in lung adenocarcinoma (62). Both BCL-2 and MCL-1 have been 

implicated as important contributors to melanoma development and maintenance 
(63–65). The oncogenic Epstein-Barr virus (EBV) and human herpes virus-8 
(HHV-8; also known as Kaposi sarcoma herpes virus) encode BCL-2 homologs 
that oppose cell death from multiple stimuli, analogous to BCL-2 (66, 67). EBV has 
been implicated in the causation of HIV-related lymphoma, Burkitt lymphoma, 
nasopharyngeal carcinoma, and posttransplantation lymphomas, and HHV-8 in the 
causation of Kaposi sarcoma, Castleman disease, and body cavity lymphomas. The 
evolutionary selection for BCL-2 homologs in these viruses suggests that blocking 
the intrinsic pathway to programmed cell death is important in viral infection, and 
perhaps also for oncogenesis.

Multiple myeloma (MM) cells have been shown to express BCL-2, BCL-X
L
,

and MCL-1. Clinical and in vitro data suggest important roles for these proteins 
in MM cell survival as well as clinical resistance to therapy (68, 69). Despite 
the lack of chromosomal translocations, protein expression of each of these 
antiapoptotic proteins has been observed in clinical isolates (68–70). Antisense 
oligonucleotides (ASO) have been used with MM cells to determine if BCL-2, 
BCL-X

L
. or MCL-1 expression is critical for the survival of these cancer cells, 

with mixed results (61, 71).
It has been hypothesized that oncogenesis requires an apoptotic defect (72, 

73). One apparent strategy for apoptotic escape exploited by certain cancer 
cells is the overexpression of antiapoptotic BCL-2 family members. These 
proteins can bind and sequester activator BH3-only death signals likely initiated 
by cancer phenotypes including genomic instability, oncogene activation, and 
inappropriate cell contact. Therefore, in cancer cells that adopt such a strategy 
it seems likely that much of the antiapoptotic proteins will be “primed” with 
activator BH3-only proteins (Fig. 8.3). Primed cells are rendered exquisitely 
sensitive to mimetics of the sensitizer BH3 domains, which function as selective 
antagonists of BCL-2 and other antiapoptotic proteins (17, 35, 74) (Fig. 8.4). 
Certain, though probably not all, normal tissues may lack this priming, as 
they do not violate the rules of normal cellular behavior that provoke death 
signals in many cancer cells. Thus, the possibility exists of targeted interven-
tion to exploit the therapeutic window between “primed” cancer cells and 
“unprimed” normal cells by antagonizing BCL-2 family antiapoptotic protein 
function.
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3  Therapeutic Strategies Targeting Antiapoptotic 
BCL-2 Family Members

Efforts have begun to target the expression of antiapoptotic BCL-2 family mem-
bers. One strategy is to downregulate antiapoptotic genes by ASO. An 18-mer 
phosphorothioated oligonucleotide directed against the first six codons of the 
human BCL-2 open reading frame, called Oblimersen or Genasense, was intro-
duced by Genta, Inc. and has advanced through clinical trials (75, 76). Side 
effects have been tolerable, generally limited to thrombocytopenia, fatigue, back 
pain, weight loss, and dehydration (77). However, efficacy has been difficult to 
demonstrate. For example, treatment of metastatic melanoma with dacarbazine 
and oblimersen in a randomized phase III study showed no significant benefit in 
overall survival compared with dacarbazine alone (274 vs 238 days, P = 0.18). 
Even though significant benefit in progression free survival was observed (74 vs 
49 days, P = 0.0003), overall survival was the primary end point, thus an FDA 
panel declared that clinical benefit was not demonstrated. In a phase III trial of 
myeloma, oblimersen plus high-dose dexamethasone was compared with dexam-
ethasone alone; this trial also failed to meet its primary end point, time to disease 
progression. Furthermore, response to oblimersen in another myeloma trial did 

CancerNormal

- activator BH3-only proteins 

- sensitizer BH3-only proteins 

- cytochrome c

- BCL-2 protein

- BAX/BAK protein

Fig. 8.3 Idealized cartoon representation of a normal mitochondrion compared to a cancer mito-
chondrion. Though they express more BCL-2 than the normal mitochondrion, the cancer mito-
chondrion has less antiapoptotic reserve due to significant priming by activator BH3-only 
proteins
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not correlate with reduced BCL-2 protein levels, which provokes the question of 
whether oblimersen has significant off-target activity. In general, ASO has been a 
somewhat disappointing strategy for targeting BCL-2. The cellular effects of the 
lowering of BCL-2 levels by antisense oligonucelotides may not only provoke 

- activator BH3-only proteins

- other BH3-only proteins

- BCL-2 antagonist

- cytochrome c

- BCL-2 protein

- BAX/BAK protein

Fig. 8.4 Model of BCL-2 antagonist inducing death in a “primed” cancer mitochondrion. Cancer 
mitochondria have activator proteins like BIM sequestered by BCL-2 on the outer membrane. 
Upon addition of a BCL-2 antagonist, BIM is displaced and BCL-2 becomes occupied by the 
antagonist. Freed BIM then interacts with BAX or BAK, causing oligomerization and leading to 
cytochrome c release, MOMP, and apoptosis
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undesirable coregulation of other BCL-2 family members but decreasing the 
mRNA is likely very different from functional antagonism of the protein (78). 
Furthermore, BCL-2 protein levels tend to be in the 10–50% range, which is 
unlikely to have a widespread cellular effect. Finally, oblimersen contains 2 CpG 
dinucleotides which may well produce many off-target effects on the immune 
system (78). While some of these off-target effects may be beneficial, others may 
well limit its maximum tolerated dose.

4 Delivery of Therapeutic Compounds into Cells

Delivery of drugs and therapeutic compounds is limited by the ability to penetrate 
the cell membrane. Compounds cross membranes either by passive processes or by 
mechanisms involving active participation of membrane components. In general, 
water, small hydrophilic molecules, and molecules < 200 Da (79) passively diffuse 
through membranes. Therefore, most drugs need to be either small and water solu-
ble, or polar enough for absorption into the body yet lipophilic enough to promote 
passage through the nonpolar lipid bilayer (80). This narrow range of physical char-
acteristics limits the success of many compounds. Additionally, the degree of ioniza-
tion of the compound, the circulation to the site of absorption, and its concentration 
can affect a compound’s ability to reach its site of action. Even if a compound is 
able to circumvent passive passage across membranes by interacting with mem-
brane receptors, there are still stringent criteria that must be met. No matter how a 
drug enters cell, once inside its effects can be terminated by metabolism or excre-
tion. An additional difficulty is that the compound not only has to cross into cells 
rapidly and efficiently, but it then needs to make its way through the cellular milieu, 
which is full of proteases and other proteins, and eventually travel to the desired 
subcellular location to be effective.

While peptides based on sensitizer BH3-domains have been demonstrated to 
function as selective inhibitors of antiapoptotic proteins, unmodified BH3 domain 
peptides are cell impermeant (81). One strategy to augment cell entry is use of pro-
tein transduction domains (PTD) (82). PTDs are generally small (∼10–20 amino 
acids) peptide sequences enriched for positively charged amino acids that rapidly 
and efficiently cross cell membranes. When fused to larger molecules, they have 
been shown to transport into cells a wide variety of cargo along with such large 
proteins (83), liposomes (84), and even metallic beads (85). The transduction proc-
ess is not receptor mediated and is temperature independent, making it unlikely that 
endocytosis or transporter mechanisms are involved (86–88); however, the exact 
mechanism is not known.

To facilitate cell internalization, BH3 peptides have been linked with PTD 
such as a poly-d-arginine or Antennapedia internalization sequence tags (17, 26, 
89, 90). N-terminal poly-d- arginine octomer (r8) linkage to BH3 peptides from 
BAD or BID have been shown to kill a human leukemia cell line that expresses 
BCL-2, while r8BIDBH3 double point mutant did not. Furthermore, r8BADBH3 
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peptide caused no apoptosis on its own but when added with the r8BIDBH3 pep-
tide increased apoptosis, suggesting that the moiety did indeed facilitate internali-
zation and that an intact BH3 domain was necessary for killing (17). In a separate 
study, a 27-amino acid peptide derived from the BH3 domain of BAD was linked 
to decanoic acid (26).

Decanoic acid allows cell permeablization by a different mechanism than PTDs, 
which may involve activation of phospholipase C which causes intracellular stores 
of calcium to be released followed by contraction of calmodulin-dependent actin 
filaments (91). The BAD-decanoic acid compound, called, cpm-1285, but not a 
peptide bearing a point mutation at a residue necessary for BH3 function, induced 
apoptosis in a BCL-2-expressing human myeloid leukemia line, HL-60. Furthermore, 
immunodeficient mice injected with HL-60 cells survived longer when treated with 
cpm-1285. However, these studies do not conclusively demonstrate the mechanism 
of action of the peptide derivatives, and the cytotoxic effects could be independent 
of direct interaction with BCL-2 family members. Such off-target toxicity was 
demonstrated by Schimmer and coworkers where linking the BH3 domain of BAD 
to the Antennapedia internalization sequence had considerable off-target toxicity 
(89). Their compound was toxic to a wide variety of cells, including yeast, wherein 
BCL-2 family members have yet to be identified. Others have demonstrated that 
BH3 peptides derived from BAX and BCL-2 linked to an Antennapedia internaliza-
tion sequence induce MOMP and apoptosis, but overexpression of either BCL-2 or 
BCL-X

L
 did not rescue the cells from apoptosis (92). All of these effects may be 

due to a nonspecific membrane disruption rather than to interaction with the BCL-2 
family pathway. For example, the Antennapedia internalization sequence is mainly 
a positively charged amphipathic α-helix that could interact and disrupt the nega-
tively charged mitochondrial membranes independent of BCL-2 family protein 
interaction, in a manner similar to certain natural antibiotics (93–95). Therefore, 
nonspecific killing due to intrinsic biophysical properties of these internalization 
moieties make interpretation of cell killing by linked, some tagged BH3 peptides 
difficult. Further pharmaceutical development of such molecules would require 
considerable attention to reducing this toxicity.

The α-helix of BH3 peptides is vital for their function, but in aqueous solution 
the α-helical conformation can be less than 25%. Attempts have therefore been 
made to improve peptide function by stabilizing α-helicity. Small improvements 
have been gained by grafting a BAK BH3 domain to a helix-stabilizing miniprotein 
(96) or synthesizing BH3 peptide analogs with covalent molecular bridges, which 
improved affinity for BCL-2 or stabilized the α-helical conformation (97). Perhaps 
the most striking example of the potential of α-helix stabilization was provided by 
a BID BH3 peptide stabilized by an all-hydrocarbon “staple” (81). Not only did this 
modification enhance α-helicity, but it also increased affinity for BCL-2, cell entry, 
protease resistance, as well as leukemia cell line toxicity in vitro and in vivo. Mice 
bearing leukemia cell line xenografts demonstrated statistically significant survival 
improvement after 6 days and normal tissues appeared unaffected as measured by 
histological analysis. Since the molecule was modeled after a BID BH3 domain 
previously shown to be an activator (17), the compound was able to directly induce 
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cytochrome c release in a BAK-dependent fashion in vitro. Even though the 
compound did not behave as a selective BCL-2 antagonist but rather an activator, 
it was still able to exploit an apparent therapeutic window between the tumor 
xenograft and the normal tissues. It remains to be seen whether an analogous sensi-
tizer BH3-based compounds would provide an even greater therapeutic window.

5 Cell-Permeant Small Molecules

Cell-permeant small molecules that bind to antiapoptotic BCL-2 family members 
have been identified through structure-based computer screening. One molecule 
isolated was able to displace the BAK BH3 peptide from BCL-2 with an IC

50
 of 

1–14 µM. Since the Kd for the BAK BH3 peptide is approximately 200 nM, it is 
reasonable to surmise that the Kd for binding of these molecules to BCL-2 may be 
significantly higher. Another molecule identified was toxic to four cell lines tested 
at concentrations of 10–20 µM and toxicity correlated with BCL-2 expression lev-
els (98, 99). Screens of chemical libraries have also been used. Out of 16,320 
screened, Degterev et al. identified two molecules that disrupt a BCL-X

L
/BAK 

BH3 complex, both which had toxicity in the 10–90 µM range in a leukemia cell 
line (100). A screen of a library of natural products allowed the isolation of 
Tetrocarcin A, which is derived from Actinomyces, identified for its ability to counter-
act BCL-2 protection of anti-Fas/cycloheximide-treated HeLa cells at concentrations 
in the micromolar range (101). Antimycin A, an antimicrobial agent with antitumor 
properties in experimental systems and a known inhibitor of electron transport at 
mitochondrial respiratory chain complex III, was identified from a screen for 
inhibitors of mitochondrial respiration in mammalian cells (102). Further charac-
terization demonstrated that antimycin A interacts with BCL-2 and BCL-X

L
, and 

that increasing cellular levels of BCL-X
L
 correlated with increasing toxicity. 

Nuclear magnetic resonance (NMR) spectroscopy used to investigate natural prod-
ucts found certain polyphenols from green tea extracts were able to bind to BCL-X

L

(103). In addition, these compounds displaced a BH3 domain from BCL-X
L
 and 

BCL-2 in the submicromolar range. Another screen of a small library of natural 
products identified two molecules, purpurogallin and gossypol, both of which 
resemble human BAD and inhibit binding of a BH3 domain to BCL-X

L
 (104). 

While chemical modification of purpurogallin did not lower the IC
50

 of peptide 
displacement of the parental compound, a racemic mixture of the (+) and (−) iso-
mers of gossypol displaced the BH3 peptide with an IC

50
 of 0.5 µM. Molecular 

modeling suggested that removal of two aldehyde groups from gossypol might 
reduce steric hindrance in binding the hydrophobic pocket of BCL-X

L
, however this 

modification actually decreased the binding to BCL-2 family members (105).
Small molecules that enter cells and bind the hydrophobic pocket of BCL-2 

analogously to sensitizer BH3 peptides are currently in clinical development. The 
biotechnology company Gemin X has isolated a compound (GX01) that has been 
reported to bind BCL-2 and BCL-X

L
 and displace BH3 domains from their binding 



8 Rational Design of Therapeutics Targeting the BCL-2 Family 169

pockets (106). GX01 was identified from a high-throughput screen of chemical 
libraries and is in phase I clinical trials in both chronic lymphocytic leukemia (at 
the University of California, San Diego [UCSD]) and solid tumors (at Georgetown 
University). Ascenta Therapeutics has an orally administered gossypol derivative 
in an ongoing phase I cancer trial.

Using a strategy of combining high-throughput screening with interactive modu-
lation of chemical structure based on NMR, Abbott Laboratories has developed 
compounds reported to displace BH3 domains from BCL-2, BCL-X

L
, and BCL-w 

with an IC
50

 of not more than 1 nM (74). One lead molecule, ABT-737, is a BAD-
like sensitizer that can antagonize BCL-2 protection but cannot directly cause acti-
vation of BAX/BAK. ABT-737 was reported to have significant activity in primary 
CLL cells and mouse xenograft models of lung cancer and lymphoma. When 
injected into mice ABT-737 was well tolerated with minimal side effects in non-
cancerous tissues except for a reduction in platelets and lymphocytes. Furthermore, 
ABT-737 enhanced the cytotoxicity of paclitaxel against a cancerous cell line 
where single-agent activity was not achieved. Other preclinical studies have shown 
that the toxicity of ABT-737 is due to selective antagonism of BCL-2 in cells that 
require BCL-2 for survival (35). Given its high affinity for BCL-2, the data that 
support its function via its designed mechanism, and its effectiveness across several 
different cancer types in vitro, ABT-737 seems to be a promising lead compound, 
although clinical trials are yet to begin.

6 Conclusions

Our current understanding of the mechanisms by which BCL-2 family members 
control commitment to cell death gives good theoretical backing to strategies aimed 
at manipulating this system for clinical benefit. Certain cancers in which antiapop-
totic BCL-2 is overexpressed and activator BH3-only proteins are upregulated may 
be “primed” for death, needing only a modest, targeted biochemical nudge for final 
execution of apoptosis. Small molecules designed to antagonize BCL-2 and related 
antiapoptotic proteins appear to be useful tools to generate this targeted signal. As the 
binding clefts among proteins like BCL-2, MCL-1, and BFL-1 are demonstrably dis-
tinct, it may be possible to design molecules which selectively antagonize individual 
proteins. Whether such “narrow spectrum” antagonists will be better cancer therapeu-
tics than “broad spectrum” antagonists that might target the entire antiapoptotic group 
remains to be seen. Experimental evidence suggests that the state of protein–protein 
interactions among BCL-2 family members within cancer cells is different from those 
within normal cells. Therefore, even if an antagonizing compound entered all cells, 
induction of apoptosis might selectively be triggered within cancer cells. The promise 
of these molecules as anticancer therapeutics will soon be tested as clinical trials of 
compounds targeting BCL-2 are currently underway. It is exciting to witness the 
emergence of a potentially new class of anticancer drugs, those specifically designed 
to unleash the latent apoptotic potential within cancer cells.
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Chapter 9
Autophagy and Tumor Suppression

Recent Advances in Understanding the Link 
between Autophagic Cell Death Pathways 
and Tumor Development

Shani Bialik and Adi Kimchi*

Abstract Autophagy is a process by which the cell recycles its components 
through self-consumption of cellular organelles and bulk cytoplasm. In times of 
stress, it serves to generate much needed nutrients. When overactivated, however, 
the orderly destruction of organelles can lead to cell death. At times, autophagic 
cell death is used as an alternative to apoptosis to eliminate unwanted, damaged, or 
transformed cells. Consistent with this, tumorigenesis is associated with a down-
regulation in autophagy, and genes that mediate the execution of the process have 
been shown to be tumor suppressors. At the same time, basal autophagy has been 
harnessed by some tumor cells as a survival mechanism to protect against ischemia 
and signals that induce apoptosis. Thus, the relationship between autophagy and 
tumor development is complex. Here, we discuss the basic machinery of mammalian 
autophagy and its regulators, with specific emphasis on those genes that have been 
linked to cancer. Research supporting the divergent nature of autophagy in both 
tumor suppression and tumor progression is presented. We conclude with a survey 
of recent approaches to treating cancer with strategies that modulate autophagy.

Keywords autophagy, programmed cell death, tumor suppressor, DAPk, Beclin 1, 
mTOR

1 Introduction

It is now an accepted dogma that cancer can develop from the imbalance of cells 
which results from disruptions in cell death. This realization gave impetus to analyze 
the molecular, cellular, and genetic mechanisms of programmed cell death, in par-
ticular apoptosis. However, apoptosis is not the only means by which a cell can die 
in a programmed, regulated manner. Different cell death morphologies were long 
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observed in tissue (e.g., Schweichel and Merker, 1973), however, it is only within 
the past few years that these death processes were more precisely classified and 
their molecular aspects deciphered. Of these alternate death pathways, autophagic 
cell death, also referred to as type 2 cell death, has recently been characterized in 
more detail (see, e.g., Gozuacik and Kimchi, 2004). Autophagic cell death results 
from the self-consumption of cellular organelles from within by means of the basic 
cellular autophagy machinery. This involves the de novo formation of double 
membrane- or multimembrane-enclosed vesicles called autophagosomes that 
elongate and surround portions of cytosol, including organelles such as mitochondria
and endoplasmic reticulum (ER) (Fig. 9.1). The mature autophagosome eventually 
fuses with the lysosome, forming an autolysosome, in which its contents are 
degraded by lysosomal enzymes. Autophagic cell death can be accompanied by 
membrane blebbing and partial chromatin condensation, yet DNA fragmentation 
and caspase activation do not have an active part in the process.

One salient question that has emerged from the recent studies on autophagic cell 
death is whether autophagy suppresses tumorigenesis, as does its better known 
counterpart, apoptosis. Although it seems obvious that any block in any cell death 
pathway would promote cancer growth, for autophagy the question is not so simple. 
Unlike apoptosis, autophagy has homeostatic functions as a catabolic process by 
which cellular components are recycled. During times of cell stress, such as starvation,
autophagic degradation of cellular organelles and proteins provides the cell with 
essential nutrients and biochemical building blocks that are not available through 
external supply or de novo biosynthesis. Autophagy can also be used to remove 
damaged organelles, such as depolarized mitochondria, which, rather than killing 
the cell, prevents further damage and release of proapoptotic factors, thereby blocking
cellular demise. In these scenarios, autophagy serves a prosurvival role. There are in 
fact, many examples in which inhibition of autophagy enhances cell death (see 
below for details). However, other scenarios clearly indicate that beyond some 
unknown threshold, too much self-eating and destruction of cellular contents can 
be lethal and contribute to cell death. Furthermore, several death-inducing stimuli 

Fig. 9.1 Stages of autophagosome formation and the protein complexes that regulate them
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have been shown to induce characteristics of autophagy, in addition to, or instead 
of, apoptosis. There is still some debate in the literature whether these signs of 
autophagy are causative to cell death, or merely accompany it, and may actually 
reflect a futile attempt at rescuing the cell. The recent identification of several 
mammalian autophagic genes has enabled researchers to elegantly block the 
autophagic pathway through genetic knockout and RNA interference (RNAi)-
based knockdown experiments. Results of these studies has indicated that in certain 
circumstances (i.e., depending on the type of stimulus and the genetic makeup of 
the cell), autophagy, does in fact, contribute to the death of the cell. This may be 
one reason why several genes which regulate and/or execute autophagy have been 
implicated as tumor suppressors, in much the same way that apoptotic genes have 
been so characterized. These include Beclin 1 and DAP-kinase. In addition, several 
prominent oncogenes and tumor suppressor genes more commonly known to play 
a role in apoptotic signaling, such as p53, PI(3)K, PTEN, Bcl-2, and p19ARF, have 
now been shown to regulate autophagy.

This chapter will briefly present a summary of what is known about the molecu-
lar machinery that mediates and regulates mammalian autophagy, with particular 
emphasis on the components that have been linked to tumorigenesis. It will describe 
research indicating the contribution of autophagy to both cell survival and cell 
death pathways. Furthermore, it will also explore the possibility of harnessing 
autophagy as a means of destroying tumor cells.

2 The Molecular Basis of Autophagy

2.1 The Basic Machinery of Autophagosome Formation

Much of the known molecular mechanisms that control and/or execute autophagy 
were originally deciphered in yeast, although, recently, many of the relevant mam-
malian orthologues were identified (Tsukada and Ohsumi, 1993; Thumm et al., 
1994 Harding et al., 1995). The yeast genes, now referred to by common consensus 
as the ATG genes (autophagy-related genes), encode 27 proteins that are necessary 
for the various stages of autophagic vesicle formation, fusion to the lysosome, and 
degradation of autophagosome contents (Fig. 9.1) (Klionsky et al., 2003). 
Prominent among these are several proteins that form a complex with the class III 
phosphatidylinositol 3-kinase (PI(3)K) Vps34, to produce phosphatidylinositol 
3-phosphate (PI3-P), a lipid signaling molecule that is critical in the early stages of 
autophagosome nucleation (Petiot et al., 2000). Vps34 forms a complex with, and 
is regulated by, ATG6 (Beclin 1 in mammalians) and myristylated serine kinase 
Vps15/p150 (Stack et al., 1995). A fourth component of the yeast complex, ATG14, 
directs the complex to organizing centers of prevacuolar structures known as pre-
autophagosomal structures (PAS) (Kim et al., 2002). The mammalian equivalent of 
ATG14 has yet to be discovered, and the PAS has not been observed in mammalian 
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cells. Yet, in these cells, the PAS may be mimicked by sites on the trans-Golgi net-
work and the ER to which Beclin 1 localizes, which serve as foci of PI3-P forma-
tion (Liang et al., 1998; Kihara et al., 2001; Pattingre et al., 2005). PI3-P is 
necessary for the nucleation of nascent membranes that will form the autophago-
some. The exact mechanism is not yet known, but it presumably involves the dock-
ing to these nucleation sites of autophagy-specific proteins containing the domains 
FYVE (conserved in Fab1, YOTB, Vac1, and EEA1) or PX (Phox homology), 
which have a high affinity for PI3-P (Gillooly et al., 2001; Wishart et al., 2001). 
These proteins are predicted to control membrane formation and elongation.

The next stages of autophagic vesicle membrane recruitment and elongation 
utilize two ubiquitin-like pathways (Fig. 9.2). ATG12, a ubiquitin-like protein, is 
covalently conjugated to ATG5 in a constitutive manner via the sequential E1-
ligase and E2-like activities of ATG7 and ATG10 (Mizushima et al., 1998; Tanida 
et al., 1999; Shintani et al., 1999). The ATG12/ATG5 dimer binds ATG16, which, 
through its ability to homo-oligomerize, leads to the formation of larger complexes 
of 800 kDa in mammals (Mizushima et al., 1999, 2003). This complex associates 
with the outer membrane of the elongating vesicle until completion of the 
autophagosome (Mizushima et al., 2001, 2003). The ATG12/ATG5 conjugation 
system is necessary for the second ubiquitin-like pathway (Mizushima et al., 2001; 
Suzuki et al., 2001). In this pathway, ATG7 and a second E2-like protein, ATG3, 
mediate the conjugation of ATG8 (or its mammalian counterpart, microtubule-
associated protein 1 light chain 3, or LC3), not to a ubiquitin-like molecule, but 
rather to the lipid phosphatidylethanolamine (PE) (Ichimura et al., 2000). This is a 
critical step in the recruitment of lipid molecules for the expansion of the autophagic 
vesicle. The conjugation occurs via an amide bond formed between the amino 

ATG16

ATG16

ATG16

ATG12

ATG8

ATG7

ATG3

ATG5

ATG10
ATG12

ATG12

PE

ATG8 ATG8

E1

E2

E2

ATG12

ATG5

ATG5ATG16 

LC3

ATG8

ATG4

-Gly

ATG5
ATG5

ATG12

Fig. 9.2 Two ubiquitin-like conjugating systems mediate vesicle nucleation



group of the lipid molecule and the carboxyl-terminal glycine residue of ATG8, 
which is exposed following the cleavage of ATG8’s C-terminus by the ATG4 
cysteine protease (Ichimura et al., 2000; Kirisako et al., 2000). Although the prote-
olysis takes place immediately following translation of the protein, its lipidation 
occurs only upon stimulation of autophagy, and converts it from a soluble, cytosolic 
protein of 18 kDa (LC3-I) to a vesicle-associated form that migrates more rapidly 
on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) (LC3-II).
These properties of LC-3 have been used extensively as a marker for autophagy in 
mammalian cells (Kirisako et al., 1999; Kamada et al., 2000).

Once formed, the mature autophagosome fuses with the lysosome, generating 
the autolysosome. An intact microtubular network is required for this fusion step, 
at least in some cell types (Webb et al., 2004; Kochl et al., 2006), while actin micro-
filaments are involved in earlier stages of autophagosome formation (Aplin et al., 
1992). Within the autolysosomal compartment, the engulfed organelles and cytosolic
proteins are degraded by resident lysosomal enzymes, such as cathepsins.

2.2 Regulators of Autophagy Signaling

Many complex signaling pathways regulate the activity of the ATG proteins and 
autophagosome formation (Fig. 9.3). One prime regulator is target of rapamycin 
(TOR) kinase, a sensor of growth factor, nutrient, and energy availability, which 
converts these signals to cell growth and proliferative responses. TOR, whose 
activity is associated with inhibition of autophagy, is active in nutrient-rich con-
ditions and upon growth factor stimulation. The mammalian TOR (mTOR) is 
regulated by several survival signals emanating from signaling molecules such as 
Akt/PKB (Inoki et al., 2002; Hahn-Windgassen et al., 2005), ERK (Ma et al., 
2005), RSK1 (Roux et al., 2004), and the small GTP-binding protein, Rheb (Inoki 
et al., 2003; Fingar and Blenis, 2004). In yeast, TOR phosphorylates ATG13, which 
reduces its affinity to the ATG1 kinase (Kamada et al., 2000; Scott et al., 2000). 
ATG1 kinase activity is necessary for autophagy induction, and this activity 
requires tight association with ATG13. When TOR activity is blocked, such as during 
nutrient deprivation or upon treatment with rapamycin, ATG13 is rapidly dephos-
phorylated and binds to and activates ATG1 (Kamada et al., 2000; Abeliovich et al., 
2003). The precise function of ATG1 and the mammalian counterpart of this 
pathway are not yet known.

mTOR is an important determinant of cell survival vs growth. Two critical 
mTOR substrates are 4E-BP1 and p70S6K. Phosphorylation of 4E-BP1 enhances 
cap-dependent translation. p70S6K in turn phosphorylates proteins that are 
involved in transcription, protein synthesis, and RNA splicing (Fingar and Blenis, 
2004; Wang et al., 2001). For example, p70S6K phosphorylates eEF-2 kinase, 
inhibiting its activity (Wang et al., 2001). The active form of eEF-2 kinase, through 
phosphorylation of the translation factor eEF-2, blocks the elongation phase of 
translation. Thus, activation of mTOR leads ultimately to derepression of eEF-2 
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and the promotion of translation. Under these circumstances, autophagy is repressed.
In scenarios when cap-dependent protein synthesis is turned off, such as during 
amino acid starvation, ER-stress, and viral infection, certain proteins involved 
in the transcriptional regulation of autophagy-related genes are nevertheless upreg-
ulated (Natarajan et al., 2001), and autophagy results.

2.3 Autophagy Regulators Linked to Cancer

The most powerful genetic evidence linking autophagy to cancer development and 
progression is the emerging notion that genes which positively control autophagy 
display tumor suppressive functions when assessed in human tumors or in cancer 
model systems. Examples of such genes include Beclin 1, DAPk, p19ARF (via a 
novel isoform, SmARF [For short, mitochondrial ARF]), p53, PTEN, and TSC1/2. 
Conversely, several oncogenes, such as AKT, ERK1/2, and class I PI(3)K, have 
been shown to antagonize autophagy. This section will discuss these genes and their 
contributions to the promotion and  suppression of autophagy, respectively.
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2.3.1 Beclin 1

The cloning of Beclin 1, the human orthologue of yeast ATG6, provided the 
first link between an autophagic gene and tumor suppression. Beclin 1 was 
originally identified in a screen for Bcl-2-interacting proteins (Liang et al., 
1998). The Beclin 1 gene showed a high incidence of haploinsufficeincy in 
numerous breast cancer cell lines, and was downregulated in more than 50% of 
breast tumors analyzed in one initial study (Liang et al., 1999). In fact, the 
Beclin 1 monoallelic deletion on chromosome 17q21 is common not only to 
breast cancer, but also to ovarian and prostate cancers (Aita et al., 1999). 
Experimental deletion of Beclin 1 in mice confirmed the findings in human 
tumors; heterozygous knockout mice showed an increase in the preponderance 
of spontaneous lung cancer, lymphoma, and hepatocellular carcinoma (Qu et 
al., 2003; Yue et al., 2003). These tumor-suppressive activities of Beclin 1 were 
attributed to its role as an inducer of autophagy. Expression of Beclin-1 in 
MCF-7 breast carcinoma cells induced autophagy and blocked tumor formation 
in nude mice (Liang et al., 1999).

These studies provide strong evidence that autophagy, like apoptosis, is 
tumor suppressive, and that its downregulation provides tumor cells with a dis-
tinct advantage that promotes tumor growth. Furthermore, they may provide an 
additional functional explanation to Bcl-2’s oncogenic properties. Bcl-2 antag-
onizes Beclin 1’s autophagic activity, by binding Beclin 1 and blocking its 
association with Vps34, thus inhibiting PI(3)K activity (Pattingre et al., 2005). 
In this manner, overexpression of Bcl-2, a common occurrence in cancer, may 
lead to tumor growth as a result of its antiapoptotic properties as well as its 
ability to inhibit autophagy (Pattingre et al., 2005; Cardenas-Aguayo Mdel et al., 
2003; Saeki et al., 2000).

A second Beclin 1-binding protein is UVRAG (for UV irradiation resistance-
associated gene), which has the opposite effect on the Beclin 1/PI(3)K complex 
from Bcl-2 (Liang et al., 2006). UVRAG was isolated as part of a multiprotein 
complex containing Bcl-2, Beclin 1, and PI(3)K. Expression of UVRAG in a colon 
cancer cell line in which the endogenous gene is downregulated due to a hetero-
zygous mutation in the UVRAG gene led to increases in both basal and starvation-
induced autophagy. This was dependent on the presence of Beclin 1 and on the 
ability of UVRAG to interact with Beclin 1. Conversely, UVRAG was necessary 
for Beclin 1 and starvation-induced autophagy in MCF-7 cells. UVRAG binding to 
Beclin 1 directly enhanced both the Beclin 1/PI(3)K complex and PI(3)K activity. 
As a consequence of the increased autophagy, UVRAG expression suppressed 
proliferation, anchorage-independent growth, and tumor formation in vivo, but 
paradoxically, did not enhance cell death or otherwise reduce cell number. Thus, 
UVRAG-mediated autophagy is tumor suppressive, but not simply as a consequence 
of increased cell death. UVRAG appears to be a bona fide tumor suppressor; it 
maps to chromosome 11q13, a locus frequently associated with breast and colon 
cancer, and is found to be monoallelically deleted in multiple human cancer cell 
lines and tumors.
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2.3.2 DAPk and Family Members

Death-associated protein kinase (DAP-kinase, DAPk) was isolated as a gene 
whose function was necessary for interferon-γ (IFN-γ)-induced death in HeLa 
cervical cancer cells (Deiss et al., 1995). It was later recognized that IFN-γ
induced a caspase-independent death in these cells that bore evidence of autophagy 
(Inbal et al., 2002). In fact, overexpression of DAPk, as well as its closely related 
family members, DRP-1 (DAPK2) and ZIPk (DAPk3), can induce autophagosome 
formation and cell death in numerous cell lines (Inbal et al., 2002; Shani et al., 
2004). DRP-1, too, was shown to be necessary for autophagic cell death in MCF-7 
cells starved of amino acids or treated with tamoxifen (Inbal et al., 2002). The 
interest in these kinases further increased once it became apparent that they can 
be linked to both apoptotic and autophagic cell deaths, suggesting that they may 
function as molecular switches or integrators of both pathways. Hence, it became 
important to define the exact cellular settings and the underlying molecular mech-
anisms which dictate the choice between apoptosis and autophagy when triggered 
by these kinases.

DAPk is a Ca2+/calmodulin-dependent Ser/Thr protein kinase and the founding 
member of a family of death-associated kinases, all of which share significant 
homology within the common kinase domain (for review, see Bialik and Kimchi, 
2006). The family members’ extra-catalytic domains differ, and reflect their divergent
regulation and cellular localizations. While DAPk, and sometimes ZIPk, localize to 
the actin cytoskeleton, DRP-1 is a soluble protein, which has been found inside 
autophagosomes upon overexpression (Cohen et al., 1997; Bialik et al., 2004; Inbal 
et al., 2002; Page et al., 1999; Vetterkind et al., 2005; Komatsu and Ikebe, 2004). 
Their kinase activity is necessary for both apoptotic and autophagic cell deaths. 
A wide range of death stimuli have been reported to activate these kinases, and 
furthermore, require their activities for completion of the death process (Bialik and 
Kimchi, 2006). The kinases are regulated mostly by posttranslational modifications,
including phosphorylation, and DAPk has also been shown to be regulated at the 
transcriptional level by p53 and TGFβ (Martoriati et al., 2005; and see Bialik and 
Kimchi, 2006).

Several substrates and downstream pathways have been identified over the years 
that may explain some of the death-inducing capabilities of these kinases. For 
example, one substrate common to DAPk, DRP-1, and ZIPk is the regulatory light 
chain of myosin II, phosphorylation of which mediates membrane blebbing in both 
apoptotic and autophagic cells (Bialik et al., 2004; Kuo et al., 2003; Vetterkind et al.,
2005; Komatsu and Ikebe, 2004; Murata-Hori et al., 2001; Inbal et al., 2002). Another
DAPk substrate is syntaxin-1A, a component of the SNARE complex, which mediates
docking and fusion of synaptic vesicles with the plasma membrane (Tian et al., 
2003). This, combined with the fact that RNAi-based knockdown of both DAPk 
and DRP-1 blocked clathrin-mediated endocytosis (Pelkmans et al., 2005), indicates
a potential role in membrane fusion events that may be related to their ability to 
induce autophagy.
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DAPk has been shown to be a tumor suppressor, whose activities have been 
directly linked to its ability to promote cell death. It functions at several stages of 
tumor development. It can block initial cellular transformation by growth-promoting 
oncogenes, by activating a p53/p19ARF-dependent apoptotic checkpoint (Raveh et al., 
2001). Specifically, expression of DAPk in primary mouse embryonic fibroblasts 
suppressed the oncogenic properties of E2F-1 and c-Myc by inducing caspase-
dependent apoptosis, provided that functional p53 and p19ARF were present in these 
cells. Moreover, DAPk expression led to increases in p53 and p53 transcriptional 
activity. The apoptotic response to oncogenes was attenuated in DAPk knockout 
cells, as was the induction of p53 and p19ARF (Raveh et al., 2001). In addition to 
this role in an early apoptotic checkpoint, DAPk has also been shown to block 
tumor metastasis. Highly metastatic lung carcinoma cells lacked DAPk expression. 
Reintroduction of DAPk to these cells at physiological levels resulted in a reduced 
metastatic activity in mouse models of metastasis compared to the parental clones 
(Inbal et al., 1997). This was attributed to the ability of DAPk to sensitize the tumor 
cells to various death stimuli. Significantly, loss of DAPk expression due mainly to 
promoter methylation, but also to loss of heterozygosity, has been documented in a 
wide range of tumors, including B- and T-cell malignancies, breast cancer, lung 
carcinoma, head and neck cancer, gastric cancer, cervical, and prostate cancer (see 
Bialik and Kimchi (2004) for review, and also supplementary Table 9.1 in Bialik 
and Kimchi (2006) for details). In fact, DAPk promoter methylation has been used 
as a diagnostic tool for cancer detection in tumor and blood samples. Furthermore, 
DAPk loss of expression has been associated in some cases with disease progression
and severity, metastatic rates and disease recurrence (Bialik and Kimchi, 2004).

As mentioned earlier, DAPk can modulate both apoptotic and autophagic cell 
deaths. It is not known the degree by which each of these mechanisms contributes 
to its tumor suppressive capabilities. This may very well be dependent on cell type 
and the individual signaling environment present.

2.3.3 The ARF Tumor Suppressor and smARF

The INK4a/ARF locus is commonly deleted in many cancers (Lowe and Sherr, 
2003). It encodes two tumor suppressors: the p16INK4a inhibitor of the retinoblastoma 
gene (Rb) and the ARF protein (p14ARF in human and p19ARF in mouse), translated 
from an alternative leading frame. ARF’s tumor suppressive capabilities stem in most 
part, from its ability to activate p53 by negatively antagonizing its inhibitor, Mdm2. 
Yet, p53- and Mdm2-independent functions have also been ascribed to ARF. These 
include inhibition of rRNA processing in the nucleolus by binding of ARF to nucleo-
plasmin/B23 (Bertwistle et al., 2004; Sugimoto et al., 2003). Recently, it has been 
reported that the p53-independent effects of ARF on cell death may be attributed to a 
short, mitochondrial ARF isoform (known as smARF) that is produced from internal 
translation of both the human and the mouse mRNAs (Reef et al., 2006). This novel 
isoform lacks the N-terminal domains that mediate nuclear localization and Mdm2 
binding. smARF localizes to the mitochondria in a compartment which is resistant to 
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proteinase K and induces mitochondrial depolarization, without causing cytochrome 
C release or caspase activation. At the cellular level, smARF expression led to pro-
nounced autophagy and caspase-independent cell death. smARF-induced cell death 
was partially attenuated by knockdown of Beclin 1 or ATG5, implying that, in this 
case, autophagy was causative to cell death. smARF is an unstable, short-lived protein 
that was upregulated by oncogene expression. This suggests that the autophagic func-
tion of ARF, mediated by its short form, may serve to counteract hyperproliferative 
signals generated by oncogenes. The dual nature of ARF, to induce apoptosis via the 
long p19ARF nucleolar isoform, or autophagy via mitochondrial smARF, may enable 
a choice of death pathways whose execution will depend on the particular genetic envi-
ronment. In cases when p53-mediated apoptosis is blocked, as occurs in many tumor 
cells, smARF may provide a convenient back up plan that ensures cell death and 
maintains ARF’s tumor suppressive function.

2.3.4 Tumor Suppressors and Oncogenes that Regulate the mTOR Pathway

Many of the signaling molecules that regulate the mTOR pathway are known onco-
genes or tumor suppressors (see Fig. 9.3). mTOR activity is controlled by Rheb, a 
small GTPase of the Ras superfamily that activates mTOR in its GTP-bound form 
(see Sarbassov dos et al., 2005 for review). Rheb’s GTPase activity is enhanced by 
a GTP-activating protein complex comprised of TSC1 and TSC2. Thus, TSC1/
TSC2 negatively regulate mTOR by converting active Rheb-GTP to inactive 
Rheb-GDP. Significantly, TSC1 and TSC2 are tumor suppressors, mutations in 
which lead to tuberous sclerosis syndrome, a disease manifested by the occurrence 
of benign tumors in multiple organs, especially in the brain, leading to severe 
neuropathologies (reviewed in Kwiatkowski and Manning, 2005).

The TSC1/TSC2 complex is regulated by phosphorylation of TSC2 by either 
AKT, ERK1/2, or RSK, in response to growth factors, or by the AMP kinase 
(AMPK), which senses energy and nutrient deprivation and is activated by high 
AMP/ATP ratios. AKT/ERK/RSK-mediated phosphorylation serves to inhibit 
TSC’s activity, and thus activates the mTOR pathway, while phosphorylation by 
AMPK has the reverse effects, leading to inactivation of mTOR. AKT, ERK1/2 and 
RSK, and class I PI(3)K, which is an upstream activator of AKT, are all oncogenic 
and are associated with proliferative growth (reviewed in Samuels and Ericson, 
2006). Interestingly, RSK, in addition to its role in activating mTOR through 
phosphorylation of TSC2, was also recently shown to phosphorylate DAPk on a site 
known to antagonize its functions (Anjum et al., 2005). This may suggest a second 
mechanism by which RSK can block autophagy. Conversely, ERK1/2 was shown 
to activate DAPk through phosphorylation, and DAPk, in turn, suppressed ERK 
nuclear functions through its sequestration to the cytoplasm (Chen et al., 2005a, b). 
Whether these inhibitory and activating phosphorylations affect DAPk’s autophagic 
properties has not yet been assessed. Thus, how these events are integrated with 
ERK and RSK’s established roles in suppression of autophagy, through modulation 
of the mTOR pathway, remains to be seen.
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Upstream of the class I PI(3)K lies in the dual protein- and phosphoinositide-
phosphatase PTEN, which antagonizes the PI(3)K/AKT pathway by dephospho-
rylating the second messenger PIP3. PTEN is also a known tumor suppressor, 
located on chromosome 10q23. It is subject to deletion and/or mutation in 
numerous cancers (reviewed in Kim and Mak, 2006). Thus, many of the signaling 
molecules that negatively regulate the mTOR pathway are known tumor suppressors, 
while activators of the pathway have been described as oncogenes. While these 
factors have multiple targets and affect many cellular signaling and survival 
pathways, their modulation of autophagy through regulation of mTOR may 
contribute to their tumor suppressive and oncogenic tendencies.

2.3.5 p53

The p53 tumor suppressor is mutated in 50% of all human cancers. Its antitumor prop-
erties stem from its function as the pivotal controller of cell cycle checkpoints, induc-
ing, as appropriate, cell cycle arrest, cellular senescence, or apoptosis (also see Chapter 
10). Now autophagy can be added to its numerous tumor-suppressive functions, as two 
recent reports have linked p53 to signaling pathways that mediate autophagy.

p53 can modulate autophagy through regulation of the mTOR pathway. 
Activation of p53 by DNA damage resulting from etoposide treatment, or p53 over-
expression, led to inhibition of mTOR and reduced phosphorylation of its down-
stream substrates (Feng et al., 2005). This was accompanied by induction of 
autophagy. p53’s effects were mediated by TSC1 and TSC2; deletion of TSC1 and 
TSC2 blocked p53’s inactivation of mTOR, as did chemical inhibition of AMPK. 
AKT, on the other hand, seemed not to be affected by p53. Inactivation of mTOR 
by p53 may be an important component of its growth-suppressive functions. Upon 
sensing genotoxic or cytotoxic stresses, such as oncogene activation, DNA damage, 
or hypoxia, p53’s first line of defense is to induce cell cycle arrest to enable repair, 
or at the very least, to prevent passage of the damage to daughter cells. Through 
inactivation of mTOR and subsequent suppression of protein synthesis, p53 
achieves a halt not only in cell cycle progression, but also in cell growth. At the 
same time, autophagy is induced. This may provide nutrients and energy to the cell 
in its time of stress, or, in more extreme circumstances, may join p53’s apoptotic 
responses in eliminating the damaged cell once and for all.

p53 has also been recently linked to autophagy through the upregulation of a 
novel transcriptional target, DRAM (for damage-regulated autophagy modulator) 
(Crighton et al., 2006). DRAM has a p53-response element in its promoter, and is 
induced by p53 expression or DNA-damaging agents. Knockdown experiments 
indicated that DRAM is necessary for p53-induced death and autophagy. DRAM 
may be a specific stress-related regulator of autophagy, and not part of the general 
autophagic machinery. This is based on the observation that while knockdown of 
ATG5 inhibits clonogenicity even in the absence of any outside signal, knockdown 
of DRAM enhances clonogenic growth of cells treated with DNA-damaging agents,
but has no effect on basal growth of untreated cells. Interestingly, expression of 
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DRAM alone is not sufficient to induce death, but does lead to enhanced autophagy. 
DRAM localizes to the lysosomal membrane, yet its exact functional activity is not 
yet known. Significantly, DRAM has characteristics of a tumor suppressor. It was 
found to be downregulated at the mRNA level in nearly 50% of primary squamous 
cell carcinomas, but not in breast tumors. CpG island methylation-mediated suppres-
sion of gene expression accounted for 28% of the cases. Suggestively, DRAM
tended to be lost more frequently from tumors with intact p53 compared with 
mutant p53, indicating that the two proteins operate in overlapping pathways to 
suppress tumorigenesis.

These studies suggest several mechanisms by which p53 can induce autophagy: 
transactivation of DRAM and inhibition of the mTOR pathway through AMPK and 
TSC1/2. However, these results are recent and rather preliminary, and require further
investigation in order to fully understand their contributions to the regulation of 
autophagy and to p53’s tumor suppressive activity. Considering the multifaceted 
nature of p53, its numerous transcriptional targets, and transcriptional-independent 
functions, future research is likely to reveal further mechanisms by which p53 
modulates the autophagic pathway.

3  The Cell Death vs Cell Survival Paradox: How Does 
Autophagy Contribute to Malignancy?

It is clear from the abundance of tumor suppressors and oncogenes that serve some 
role in the autophagic process that autophagy has a strong link to the development of 
cancer. Yet, the exact nature of this link has been subject to debate. Autophagy for the 
most part has been shown to suppress tumor growth and cellular transformation, 
and several mechanisms have been proposed to explain this phenomenon. Yet, there 
have also been studies showing that autophagy positively contributes to tumorigene-
sis. This controversy stems from the bifunctionality of autophagy, which can display 
either a cytoprotective or cytotoxic role, depending on the nature of the stress condi-
tions and the genetic milieu of the cells which are exposed to these stimuli.

Autophagy, as a fundamental process that controls protein and organelle 
recycling, has been shown to play an essential cellular survival role. This role is 
particularly apparent in the phenotype of ATG knockout mice. While Beclin 1 
heterozygotes developed spontaneous cancer, homozygous deletion of the gene 
was embryonic lethal (Yue et al., 2003). ATG7 deficiency in the central nervous 
system resulted in death within 28 weeks of birth. Severe behavioral defects and 
neuropathies were observed and the accumulation of inclusion bodies containing 
uncleared ubiquitinated proteins led to the death of cerebral and cerebellar 
neurons (Komatsu et al., 2006). Similar accumulation of abnormal ubiquitinated 
proteins and inclusions were observed in mice deficient for ATG5 in neurons, 
resulting in neurodegeneration and loss of motor function (Hara et al., 2006). 
Thus, in these scenarios, autophagy as a means for normal clearance of cytosolic 
proteins is essential for cell survival.
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Early studies on autophagy were performed in yeast, where it is activated by 
limiting nutrient conditions to provide the cell with energy and amino acids through 
self-catabolism, thereby ensuring cell survival (Huang and Klionsky, 2002). 
Although unicellular organisms like yeast may more frequently face a changing 
extracellular environment that requires autophagic adaptation, multicellular organisms
at times are also subjected to stresses that induce autophagy. An elegant example 
of physiologically relevant starvation-induced autophagy was demonstrated in 
neonatal mice (Kuma et al., 2004). Immediately after birth, neonates undergo an 
adaptation phase to the loss of placental blood supply until they learn to suckle and 
receive nutrients through mother’s milk. During this initial period of starvation, 
autophagy is observed to increase in neonatal tissue, peaking at 3–12 h post-birth, 
and returning to normal low levels within 1–2 days. This autophagic phase is essential
for providing nutrients, and inhibition of autophagy at this stage is lethal. ATG5 
knockout mice, though born healthy, die within 12 h of birth unless force-fed, due 
to the lack of the alternate nutrient source (Kuma et al., 2004). Autophagy is also 
required for the starvation response in adult mice, as demonstrated by the observance
of cell swelling, accumulation of abnormal membrane structures, and damaged 
mitochondria in the liver of starved ATG7 conditional knockout mice (Komatsu 
et al., 2005).

Other studies focused on starvation-induced autophagy in cell culture models. 
For example, removal of IL-3 from cultures of Bax/Bak double knockout bone 
marrow cells resulted in starvation as a result of an impairment in nutrient uptake 
(Lum et al., 2005). In the absence of an intact apoptotic pathway, cells remained 
viable for as long as 24 weeks, but failed to proliferate and showed signs of atrophy 
and autophagy. The phenotype was reversible; restoration of IL-3 growth factor 
until 12 weeks after its removal led to the resumption of glycolysis, and eventually, 
to normal cell growth and proliferation rates. Thus, autophagy in this model was 
not associated with a point of no return. In fact, inhibition of autophagy through the 
knockdown of ATG5 or ATG7 accelerated cell death to 2–3 days. Likewise, blockage
of autophagy through the use of chemical inhibitors or through RNAi-mediated 
knockdown of Beclin 1, ATG5, ATG10, or ATG12 enhanced the apoptotic cell 
death of amino acid- and serum-starved HeLa cells (Boya et al., 2005). In all of 
these examples, autophagy, rather than killing the cell, supports cell survival 
through the provision of otherwise lacking nutrients. Similarly, in tumors, cells 
present in the poorly vascularized tumor core are deprived of oxygen and nutrients, 
and may utilize autophagy-based recycling to offset starvation. In fact, autophagy 
was observed in the ischemic, unvascularized central portions of tumors derived 
from epithelial cells that could not undergo apoptosis due to deletion of Bax and 
Bak (Degenhardt et al., 2006). In such a scenario, autophagy would contribute to 
cell survival, and hence, tumorigenesis (Cuervo, 2004).

The very definitive and elegant studies presented earlier were utilized as proof 
by an adamant school of thought that autophagy is not a death-inducing process. 
However, equally convincing data has recently emerged that questions this 
one-sided approach, and it is now clear, that in certain cellular settings, autophagy 
can, in fact, lead to death. Cell death scenarios have long been observed to be 
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accompanied by signs of autophagy. For example, autophagy was observed in 
developmental cell death such as that which occurs during insect metamorphosis, 
limb bud morphogenesis in birds, and palatal closure in mammals (Schweichel and 
Merker, 1973; Clarke, 1990; Bursch, 2001). As far back as the 1970s, ultrastructural
morphologies that were consistent with autophagic cell death were present upon 
treatment with certain toxins (Schweichel and Merker, 1973). With the rise in 
popularity of autophagic cell death, many researchers have now specifically examined
cell death morphologies for signs of autophagy, and have observed that common 
death stimuli thought previously to induce apoptosis can also induce autophagy 
in certain cell types. For example, both apoptosis and autophagy are observed upon 
lumen formation of acinar MCF-10A cells, and the death ligand TRAIL was shown to 
regulate the autophagic pathway (Mills et al., 2004). Etoposide, a known inducer 
of p53-dependent apoptosis, was shown to induce autophagy in a p53-dependent 
manner in primary mouse embryo fibroblasts (MEFs) (Feng et al., 2005). Ionizing 
radiation, inhibition of platelet-derived growth factor (PDGF) signaling, and 
arsenic trioxide induced autophagy, but not apoptosis, in malignant glioma cells 
(Kanzawa et al., 2003; Takeuchi et al., 2005a, b; Ito et al., 2005). Autophagy 
accompanied apoptosis in response to treatment of bovine mammary gland epithelial
cells with TGFβ, as a model for mammary gland involution (Gajewska et al., 
2005). It was also observed in MCF-7 cells treated with novel analogs of paclitaxel 
(Gorka et al., 2005) and in gastric cancer and glioma cell lines exposed to oncogenic
Ras (Chi et al., 1999).

These basically correlative studies were further supported by results from 
directed intervention experiments which definitively established a causal relationship
between autophagy and subsequent cellular demise in certain scenarios. This latter 
approach included the use of chemical inhibitors of autophagy, such as 3-methyl-
adenine (3-MA) and wortmannin, which block PI(3)K activity, and more elegantly, 
specific genetic inhibition of autophagy through the use of RNAi-mediated knock-
down of autophagy regulators. For example, anti-estrogen treatment of MCF-7 
cells led to death which was accompanied by autophagic vesicle accumulation and 
was blocked by 3-MA (Bursch et al., 1996). Autophagy was evident upon nerve 
growth factor deprivation of primary sympathetic neurons, and again, death was 
blocked by 3-MA (Xue et al., 1999). Treatment of Bax/Bak double knockout 
fibroblasts with etoposide, thapsigargin, or staurosporine killed the cells despite the 
absence of apoptosis, and autophagy was evident. Death was attenuated upon 
addition of 3-MA, ATG5 RNAi, and in Beclin 1 -/- cells, indicating that autophagy 
contributed to death when apoptosis was blocked (Shimizu et al., 2004). Autophagy 
was the cause of cell death upon amino acid starvation of PC12 cells, since 3-MA, 
but not caspase inhibitors, blocked cell death. smARF-induced cell death was like-
wise shown to be a result of autophagy, as RNAi to Beclin 1 and ATG5 blocked 
death (Reef et al., 2006). TNFα induced autophagy in Ewing sarcoma cells in the 
absence of NF-κB signaling, which activates the mTOR pathway. In this system, 
autophagy enhanced apoptotic cell death, since apoptotic morphologies were inhib-
ited when autophagy was blocked through knockdown of Beclin 1 and ATG7 
(Djavaheri-Mergny et al., 2006). A similar phenomenon was observed upon treatment 
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of T-lymphoblast cell lines with TNFα (Jia et al., 1997). Macrophage cell death, 
triggered by lipopolysaccharides (LPS) in the presence of zVAD, showed evidence 
of autophagy and was blocked by chemical autophagy inhibitors and by RNAi to 
Beclin 1 (Xu et al., 2006). Likewise, autophagy was activated upon inhibition of 
caspases in L929 mouse fibroblast cells and U937 monocytes (Yu et al., 2004). Cell 
death, caused by the accumulation of ROS and the selective autophagy-mediated 
degradation of catalase, was attenuated by knockdown of LC3 and ATG7 (Yu et al., 
2006). Furthermore, the involvement of several known death genes in the induction 
of autophagy, such as DAPk and DRP1 (Inbal et al., 2002), and BNIP3, a BH3-only 
member of the Bcl-2 family (Vande Velde et al., 2000), is further proof that autophagy 
promotes death.

In addition to inducing cell death and the removal of unwanted cells, autophagy 
may suppress tumor growth by other means. Even in circumstances when autophagy 
does not lead to cell death, it is counterproductive to cell growth. Cancer cells often 
show lower rates of autophagy and long-lived protein turnover compared to non-
transformed cells (e.g., Gunn et al., 1977; Gronostajski and Pardee, 1984; Knecht 
et al., 1984; Kisen et al., 1993; Toth et al., 2002). Highly proliferative cells require 
a general increase in protein synthesis to keep up with the high demand for cell 
mass that must be divided among the ever-increasing number of daughter cells. 
Blocking the degradation of long-lived proteins through downregulation of 
autophagy helps favor the balance towards increased cell mass, thus providing a 
selective advantage to highly proliferative cells (Ng and Huang, 2005). Basal 
autophagy also serves to eliminate damaged organelles such as depolarized 
mitochondria that are a source of genotoxic free radicals. In the absence of this 
important scavenger mechanism, DNA mutations that may lead to cellular transfor-
mation can accumulate more readily. Thus, in this manner too, the lack of 
autophagy promotes tumorigenesis.

4 Autophagy as a Target for Therapeutic Intervention

In light of the data presented earlier, autophagy presents itself as a target for 
therapeutic intervention in the treatment of malignancies. In fact, several studies 
have demonstrated that use of chemotherapeutic drugs induces autophagic cell 
death, in addition to apoptosis, and even in cells that are resistant to apoptosis. For 
example, the vitamin D analog EB1089 used in cancer treatment induces autophagic 
cell death in MCF-7 cells, which leads to caspase-independent nuclear apoptosis 
(Hoyer-Hansen et al., 2005). The proteasome inhibitor MG132 kills PC3 prostate 
cancer cells by means of a caspase-dependent apoptotic pathway, and at the same 
time, leads to the upregulation of several autophagic genes. In fact, the cell death 
response is attenuated by addition of 3-MA. Autophagy was likewise responsible 
for the toxicity observed in non-small-cell lung cancer cells upon treatment with the 
rare earth element, neodymium oxide (Chen et al., 2005a, b). An innovative ther-
apy involving a conditionally replicating adenovirus that targets telomerase-positive 
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cancer cells was shown to kill malignant glioma, cervical cancer, and prostate cancer 
cells by means of autophagy, most likely through downregulation of mTOR signaling 
(Ito et al., 2006). The adenovirus treatment also slowed the growth of subcutaneous 
gliomas in nude mice and prolonged survival of the mice. Both a rapid apoptotic 
response and a slower autophagic one were observed upon treatment of MCF-7 
cells with camptothecin (Lamparska-Przybysz et al., 2005). When apoptotic death 
was blocked, however, through disruption of Bax and Bid function, autophagy 
increased. Thus, here, autophagy serves as a backup to the disabled apoptotic path-
way. In a similar vein, migrating glioblastoma multiform cells that were refractory 
to apoptosis-inducing drugs were induced to die via autophagy. The AKT/mTOR 
signaling pathway was constitutively active in these cells, providing a significant 
survival advantage. However, inhibition of this pathway with drugs such as temo-
zolomide stimulated autophagy and cell death (Lefranc and Kiss, 2006). 
Temozolomide was also shown to induce autophagy, but not apoptosis, in malignant 
glioma cell lines, leading to cytotoxicity (Kanzawa et al., 2004). Histone deacety-
lase inhibitors, such as butyrate and suberoylanilide hydroxamic acid, can also 
trigger autophagic cell death in cells that have lost the ability to undergo apoptosis 
(Shao et al., 2004).

As stated earlier, however, autophagy can also act as a prosurvival pathway in 
certain cell environments and can thwart the induction of apoptosis. This may be 
especially true in hypoxic regions of tumors, where autophagy may serve as the 
only means to provide nutrients and energy to the starved tumor cell. Furthermore, 
one study of carcinogen-induced pancreatic cancer showed that rates of autophagy, 
although lower in advanced adenocarcinoma, actually were increased in early-stage 
premalignant nodules and adenomas (Toth et al., 2002). In these cases, drug treatments
that affect autophagy may have opposing effects than those described earlier. For 
example, sulforaphane induced pronounced autophagy in prostate cancer cell lines, 
inhibition of which led to the rapid induction of apoptosis (Herman-Antosiewicz 
et al., 2006). Likewise, inhibition of autophagy enhanced the apoptotic response 
and, specifically, cytochrome C release, of the colon cancer cell line HT-29 to 
sulindac sulfide (Bauvy et al., 2001). Crotoxin, a neurotoxin derived from the 
venom of a South American rattlesnake, induced both apoptosis and autophagy in 
chronic myeloid leukemia cell lines (Yan et al., 2006). While caspase inhibition 
blocked cell death, inhibition of autophagy enhanced it. The authors of these papers 
concluded that the autophagic response of these cells to the chemotherapeutic agent 
served to suppress the apoptotic response. Similarly, ionizing radiation induced 
autophagy in breast, prostate, and colon cancer cells, and in malignant glioma cells, 
yet its inhibition sensitized cells to radiotherapy (Paglin et al., 2001; Ito et al., 
2005). These results are consistent with the hypothesis that autophagy actually 
blocks the damaging affects of radiation by eliminating damaged organelles before 
they induce apoptosis. Altogether, it appears that effective treatment of malignancies
in these specific cases would entail the combinatorial use of chemotherapeutic 
drugs that induce apoptosis and inhibit autophagy.

Despite the logic behind this approach, one should be wary of drawing conclusions
based on responses of cancer cells in culture. An important recent paper addressed 
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this limitation by assessing the effects of manipulations of the cell death programs, 
not just on tumor cells in culture, but also in the intact tumor in vivo (Degenhardt 
et al., 2006). In fact, the authors come to the opposite conclusion of those studies 
performed exclusively in vitro. Metabolic stress induced by ischemia was utilized 
to kill epithelial cells. Through genetic manipulation, immortalized baby mouse 
kidney epithelial cells (iBMK) that were defective in apoptosis, autophagy, or both, 
were generated. Cells exposed to metabolic stress died primarily by a rapid 
apoptotic cell death (within 24–72 h). When apoptosis was blocked (i.e., by Bax/
Bak deficiency or Bcl-2/X

L
 expression), autophagy was apparent, but enabled cell 

survival rather than death. Autophagic cells survived for long periods of time in 
culture, with normal proliferation rates initially, but eventually stopped dividing 
and moving, and exhibited signs of cell condensation. These defects, although 
resembling a death phenotype, were reversible upon restoration of oxygen and 
nutrients. When autophagy, too, was deficient (i.e., AKT expression or reduction in 
Beclin 1), cells exhibited a slow, inefficient death defined as necrosis. Significantly, 
the most aggressive, fastest-growing solid tumors developed from those cells that 
were deficient in both apoptosis and autophagy. These tumors contained large 
necrotic areas in ischemic regions, with macrophage infiltration and induction of an 
innate immune response. Necrotic tumors are known to be particularly aggressive, 
possibly due to proliferative signals generated by infiltrating immune cells, which 
encourage cell growth and angiogenesis in regions of the tumor that border the 
necrotic area.

Based on this study, it seems that effective treatment of solid tumors should 
involve strategies that encourage both apoptosis and autophagy. The latter could 
include inhibitors of the mTOR/AKT signaling pathways such as rapamycin and 
PI(3)K inhibitors (Takeuchi et al., 2005a, b). The benefit of triggering autophagy is 
somewhat of a paradox, as here, in contrast to the examples cited in the beginning 
of this section, autophagy enhanced cell survival. Yet, the survival of nonproliferative, 
dormant cells is preferable to the induction of necrosis, which has severe repercus-
sions on overall tumor growth. Furthermore, treatments that activate autophagy 
may overcome the safe threshold under which autophagy promotes survival, and 
actually drive the cells towards autophagic cell death, providing an additional 
advantage to this strategy.

5 Conclusions and Future Perspectives

The dual nature of autophagy, and the dichotomy created by its contradictory 
effects on tumorigenesis, translates itself into a debate on whether one should be 
inhibiting or activating autophagy to treat cancer. More studies on the effects of 
manipulations of the autophagic program, in conjunction with the apoptotic pathway, 
on tumor growth in vivo are necessary. The role that autophagy plays, as either a 
cell survival mechanism or a cell death inducer, may be cancer-type specific, i.e., 
influenced by the genetic makeup of the corresponding tumor cells and the nature 
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of the external stresses to which they are exposed. As a consequence, strategies 
for treatment will require a tumor-by-tumor genetic and environmental analysis. 
In order to accomplish such an analysis, it is necessary to acquire a complete under-
standing of autophagy, its molecular regulation, and its cellular effects. In the past 
several years, the field of mammalian autophagy has advanced in leaps and bounds; 
hopefully, the continued advances will translate to concrete clinical benefits in the 
near future.
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Chapter 10
Regulation of Programmed Cell Death 
by the P53 Pathway

Kageaki Kuribayashi and Wafik S. El-Deiry*

Abstract The p53 pathway is targeted for inactivation in most human cancers 
either directly or indirectly, highlighting its critical function as a tumor suppressor 
gene. p53 is normally activated by cellular stress and mediates a growth-suppressive 
response that involves cell cycle arrest and apoptosis. In the case of cell cycle 
arrest, p21 appears sufficient to block cell cycle progression out of G1 until repair 
has occurred or the cellular stress has been resolved. The p53-dependent apoptotic 
response is more complex and involves transcriptional activation of multiple proa-
poptotic target genes, tissue, and signal specificity, as well as additional events 
that are less well understood. In this chapter, we summarize the apoptosis pathway 
regulated by p53 and include some open questions in this field.

Keywords p53, apoptosis, transcription, TRAIL receptors, p53-dependent cell death.

1 Introduction

The p53 pathway is inactivated in most human tumors. It is inactivated directly as 
a result of mutations, with substitution mutations being common, indirectly by 
binding to viral or cellular proteins, or as a consequence of alterations in proteins 
regulating its functions (Vogelstein et al., 2000). p53 function is usually switched 
off, although when the cells get exposed to stress such as DNA damage induced by 
ionizing radiation or ultraviolet rays, activation of oncogenic signaling, hypoxia, or 
nucleotide depletion, p53 is accumulated in the nucleus in a tetrameric form (Bode 
and Dong, 2004). Upon activation, p53 mediates a growth-suppressive effect on 
cells by blocking the cell cycle or it can lead the cells to undergo programmed cell 
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death primarily by binding to particular DNA sequences and activating transcrip-
tion of specific genes (El-Deiry, 2003).

Programmed cell death, frequently referred to as apoptosis, is induced by either 
intracellular or extracellular stimuli. In addition to the toxic stresses mentioned 
earlier, serum deprivation, ligand–receptor interactions between FAS ligand (FasL)–
FAS/APO1, tumor necrosis factor (TNF)–TNF receptors, and TRAIL–TRAIL recep-
tors will also induce apoptosis (Ozoren and El-Deiry, 2003). In CD95-mediated
apoptosis, there are two cell-type-specific signaling pathways, so-called type I and 
type II pathways (Scaffidi et al., 1998). In the type I (extrinsic) pathway, caspase-8 
activation is sufficient to kill cells as a direct consequence of death receptor ligation 
with subsequent activation of effector caspase-3, caspase-6, and caspase-7. This 
death is independent of the mitochondria and is not blocked by overexpression of 
Bcl-2 or treatment of cells by a caspase-9 inhibitor. On the other hand, the type II 
(intrinsic) pathway amplifies a cell membrane-initiated death signal via the mito-
chondria and this form of death can be blocked by Bcl-2 or treatment of cells by a 
caspase-9 inhibitor.

p53 regulates these classical cell death pathways (Fig. 10.1) by either upregulating 
proapoptotic genes or by associating with proapoptotic genes in a transcription-
independent manner. Understanding of apoptosis is very important as its dysregula-
tion leads to variety of human diseases including cancer, autoimmune diseases, and 
neurodegenerative disorders. Greater insight into the pathways of apoptosis and their 
deregulation in disease in fundamental to understanding pathophysiology and to 
developing novel therapeutic agents.

2 Stabilization and Activation of P53

p53 is normally maintained at low levels in unstressed mammalian cells. The 
amount of p53 is determined by the rate of its degradation rather than its transcrip-
tion, as blocking of its interaction with its main negative regulator Mdm2 (also 
known as HDM2) is sufficient to induce accumulation of the protein in cells 
(Michael and Oren, 2003; Vassilev et al., 2004). The primary structure of the p53 
cDNA can be subdivided into three functional domains. The N-terminal region con-
sists of a transactivation and Src homology 3-like domain, as well as a proline-rich 
domain. The central core consists primarily of the DNA-binding domain, where 
contains hot spots for various missense mutations found in human tumors. Several 
of the hot spots represent contact points between p53 protein and its DNA-response 
element. The C-terminal domain contains a nuclear localization signal, a nuclear 
export signal, and a tetramerization domain. The C-terminus provides a regulatory 
domain whose conformation and acetylation state may impact on p53 DNA binding 
and transactivation activity.

Mdm2 inactivates p53 by binding to its N-terminal transactivation domain to 
inhibit its transcriptional activity and by ligating ubiquitin at its C-terminal 
lysines thereby ultimately targeting p53 for proteasome-mediated degradation 



F
as

D
R

4
D

R
5

D
cR

1
D

cR
2

Pro-caspase-8,10
FADD

F
as

L
T

R
A

IL

t-
B

id
B

ax
B

ak

A
pa

f-
1

C
as

pa
se

s-
9 A

po
pt

os
om

e

C
yt

oc
hr

om
e 

c

P
um

a

N
ox

a

p5
3A

IP
1

A
p

o
p

to
si

s

p5
3

B
cl

-2

B
cl

-X
L

B
id

C
yt

oc
hr

om
e

c

T
yp

e 
I

T
yp

e 
II

U
N

C
5B

N
et

rin
1

M
ito

ch
on

dr
ia

P
E

R
P

?

S
ur

vi
vi

n

B
cl

-2

S
ur

vi
vi

n

P
ro

-a
po

pt
ot

ic
ge

ne
s

N
uc

le
us

D
ep

en
de

nc
e

R
ec

ep
to

r

p5
3

p5
3

p5
3

C
as

pa
se

s-
7

C
as

pa
se

s-
6

C
as

pa
se

s-
3

C
as

pa
se

s-
3

E
ffe

ct
or

 c
as

pa
se

s

ca
sp

as
e-

8,
 1

0

F
ig

. 1
0.

1
A

po
pt

ot
ic

 p
at

hw
ay

s 
re

gu
la

te
d 

by
 p

53
. P

le
as

e 
se

e 
te

xt
 f

or
 d

et
ai

ls
 o

f 
th

e 
ge

ne
s,

 p
at

hw
ay

s,
 a

nd
 m

ec
ha

ni
sm

s 
in

vo
lv

ed
 in

 c
el

l d
ea

th
 r

eg
ul

at
io

n 
an

d 
th

e 
co

m
pl

ex
 s

ig
na

lin
g 

ne
tw

or
ks

 g
ov

er
ne

d 
by

 p
53

 a
ct

iv
ity

10 Regulation of Programmed Cell Death by the P53 Pathway 203



204 K. Kuribayashi and W. S. El-Deiry

(Rodriguez et al., 2000). Recent work by the laboratory of Wei Gu has documented
monoubiquitination of p53 by Mdm2 leading to nuclear export, polyubiquitination,
and degradation. As phosphorylation of N-terminal serines (particularly serine 20) 
blocks the interaction of p53 with Mdm2 and acetylation of C-terminal lysines 
prevent p53 ubiquitination by Mdm2 and subsequent degradation, these phospho-
rylations and acetylations can stabilize and activate p53. DNA damage induced 
by ionizing radiation and ultraviolet light induce p53 phosphorylation by a 
number of protein kinases such as ataxia telangiectasia mutated (ATM), ataxia 
telangiectasia and Rad3 related (ATR), casein kinases, checkpoint kinase 1 
(CHK1), checkpoint kinase 2 (CHK2), DNA-dependent protein kinase (DNA-PK),
extracellular signal-related kinase (ERK), homeodomain-interacting protein 
kinase 2 (HIPK2), c-JUN NH

2
-terminal kinase (JNK), and p38 kinase in a stimulant/

kinase/phosphorylation-site-specific manner (Bode and Dong, 2004). It has also 
been reported and is well known that phosphorylation of serine 46 is associated 
with apoptosis induced by p53AIP1 (Oda et al., 2000a) and that exogenous 
expression of p53 mutant that has defect in serine 46 shows resistance to apoptosis 
(Ichwan et al., 2006). p300/CREB-binding protein (CBP) and p300/CBP-associated
factor (PCAF) acetylate lysines located at carboxyl terminus of p53. Further more, 
Mdm2 mediates PCAF ubiquitination and degradation (Jin et al., 2004), and can 
inhibit acetylation of p53 by CBP or p300 (Ito et al., 2001).

Another pathway to stabilize p53 is distinct from the first two mechanisms that 
involve posttranslational modification of the protein, and rather acts to inhibit the 
activity of the negative regulator Mdm2. This pathway is activated by oncogenic 
signals, for example, from Ras and Myc that in turn activate p14ARF leading to 
inactivation of Mdm2 resulting in p53 activation (Lowe and Sherr, 2003).

3 Type I Pathway

Type I pathway is initiated by ligand binding to its cognate death receptors. Overall 
eight receptors possessing death domains (DD) have been identified and all belong 
to the TNF family of receptors, including TNF-R1, Fas (CD95, APO-1), DR3, 
TRAIL-R1 (DR4), TRAIL-R2 (KILLER/DR5), DR6, p75NTR, and EDAR (Ozoren 
and El-Deiry, 2003). Fas has a secretory decoy receptor (DcR3) that lacks a trans-
membrane domain. There are two decoy receptors for TRAIL, which lack a DD and 
these are known as TRAIL-R3 (DcR1, TRID) and TRAIL-R4 (DcR2, TRUNDD). 
These decoy receptors act as negative regulators of the death pathway. Till date, Fas 
(Muller et al., 1998), DR4 (Liu et al., 2004), KILLER/DR5 (Takimoto and El-Deiry, 
2000), TRID (Ruiz de Almodovar et al., 2004), and TRUNDD (Liu et al., 2005) 
are reported to contain p53-specific binding sequences in intron 1 and are transcrip-
tionally regulated by p53.

p53 target proteins Fas, DR4, and KILLER/DR5 contain cysteine-rich extracellular
domains that bind their cognate ligands and intracellular portions consisting of 
approximately 80 amino acid DDs that transduce apoptosis-inducing signals. 



As death ligands such as FasL or TRAIL exist in a homotrimeric form, binding to their 
respective receptors leads to receptor trimerization. The ligand/receptor interaction 
triggers formation of the death-inducing signaling complex (DISC) which contains 
Fas-activating DD (FADD) and initiator caspases, pro-caspase-8 or pro-caspase-10.
FADD is the adaptor protein which links receptors and pro-caspases through its two 
distinct domains, a DD that binds with the DD of the receptors and a death effector 
domain (DED) which binds with the DED of pro-caspase-8. Association of 
pro-caspase-8 with the DISC generates a p20 fragment from the caspase by cleavage 
and further processing leads to a p10 fragment for its full activation (Medema et al., 
1997). This mature caspase can cleave downstream effector caspase-3, caspase-6, 
and caspase-7 (Riedl and Shi, 2004). The extrinsic pathway can cross talk with the 
intrinsic pathway via BID. When BID is cleaved by caspase-8, truncated BID is 
myristoylated, translocates to mitochondria, releases proapoptotic proteins, and 
further activates death signaling and execution events (Zha et al., 2000).

3.1 Fas (APO-1, CD95)

The Fas receptor is a type I membrane protein expressed abundantly in various tissues.
The Fas gene is located on human chromosome 10q24.1 and on chromosome 11 in 
mice (Nagata, 1999). The human and mouse Fas genes contain a p53 DNA-binding 
site in intron 1 and through this site the expression of the Fas gene can be transcrip-
tionally upregulated by p53 (Muller et al., 1998; Munsch et al., 2000). Fas is also 
transcriptionally regulated by Sp1 and NF-κB (Chan et al., 1999; Xiao et al., 2001). 
The FasL–Fas interaction plays an important role in immune homeostasis, espe-
cially maintaining immune privilege in the eye and testis. As tumor cells can evade 
the host immune surveillance system by overexpressing FasL and can induce apop-
tosis in the T-cells responsible for the immune response, a phenomenon known as 
Fas counterattack, an understanding of the Fas-mediated apoptotic pathway is 
important for understanding tumor biology, It has been reported that CMT93 colon 
carcinoma cell downregulation of FasL has no effect on cell growth in vitro, but 
results in reduced tumorigenicity in vivo, possibly by the mechanism of loss of the 
Fas counterattack (Ryan et al., 2005).

Fas is transcriptionally upregulated by 5-FU and mediates apoptosis in a p53-
dependent manner in MCF7 and HCT116 cells (Longley et al., 2004). It has also 
been reported that p53 relocalizes Fas to the cell surface (Bennett et al., 1998), 
providing a role of p53 in the Fas apoptotic pathway independent of its transcrip-
tional activity. Wild-type p53 transduction in p53-mutant non-small-cell lung 
carcinoma cells induces Fas expression and the cells become susceptible to cytotoxic
T lymphocyte-mediated killing (Thiery et al., 2005). There are certain p53 mutants, 
which can induce cell cycle arrest, but not apoptosis, so-called discriminatory 
mutants. Munsch et al. reported that discriminatory mutants Pro-175 and Ala-143 
have activity to induce Fas transcription, but not apoptosis, suggesting upregulation 
of Fas is not enough to induce apoptosis in some circumstances (Munsch et al., 
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2000). Furthermore, Fas does not appear to be required for p53-dependent apoptosis 
in response to DNA damage by irradiation (Fuchs et al., 1997).

3.2 Trail Receptors

In humans, there are four homologous TRAIL receptors including DR4, 
KILLER/DR5, TRID, and TRUNDD, as well as a fifth soluble receptor osteo-
protegerin (Wang and El-Deiry, 2003a). The extracellular cysteine-rich domains 
of DR4, KILLER/DR5, TRID, and TRUNDD are 52–69% identical to each 
other and the DD of DR4 and KILLER/DR5 are 64% identical to each other 
(Ozoren and El-Deiry, 2003). As these genes are clustered on human chromosome 
8p21–22, they might have arisen from a common ancestral gene (Degli-Esposti 
et al., 1997a). TRAIL seems to be promising for cancer therapeutics as many 
cancer cells are sensitive to TRAIL while normal cells are not (Wang and 
El-Deiry, 2003a).

3.2.1 DR4

DR4 protein is a 445 amino acid-containing type I transmembrane receptor, 
which is generated through the cleavage of a signal sequence of 23 amino acids 
from a primary protein (Pan et al., 1997a). The protein has three cysteine-rich 
repeats in the extracellular domain. The DD of DR4 is 30 and 19% identical with 
that of TNF-R1 and Fas, respectively. It has been reported that nucleotide substi-
tutions in the extracellular domain of DR4 were correlated with increased risk of 
lung, and head and neck cancers (Fisher et al., 2001). Somatic mutations of DR4 
have been found in non-Hodgkin’s lymphoma (Lee et al., 2001), breast cancers 
(Shin et al., 2001), and osteosarcoma (Dechant et al., 2004). The DR4 expression 
level is known to be the one of the determinants to TRAIL sensitivity in many 
cancer cell lines (Kim et al., 2000), and homozygous deletion of the DR4 gene 
has been reported in the FaDu nasopharyngeal cancer cell line and this is associ-
ated with TRAIL resistance (Ozoren et al., 2000). Approximately 20% of the 
normal population carries the polymorphic DR4 variant that contains adenine to 
guanine alteration in the DD (K441R). When a DR4 K441R expressing plasmid 
was transfected into human cells, it acted as a dominant negative TRAIL receptor 
resulting in decreased sensitivity to TRAIL (Kim et al., 2000). From these obser-
vations, DR4 seems to be a major factor determining TRAIL sensitivity. p53 
overexpression by adenovirus-p53 induces upregulation of DR4 and DR5 resulting 
in increased apoptosis by TRAIL treatment in myeloma cells (Liu et al., 2001). 
As, wild-type p53 is not required for TRAIL sensitivity in many cancer cell lines 
(Kim et al., 2000), it is the open question that to what extent p53 is involved in 
DR4-mediated apoptosis.
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3.2.2 KILLER/DR5

KILLER/DR5 is a 411 amino acid containing protein that includes a 51 amino acid 
signal peptide sequence. Other than p53, a recent study demonstrated that NF-κB
can also upregulate KILLER/DR5 transcription in the presence of p53 (Shetty et al., 
2005). Germline or somatic mutations of the KILLER/DR5 gene have been reported 
in head and neck cancer (Pai et al., 1998), non-Hodgkin’s lymphoma (Lee et al., 
2001), and breast cancer (Shin et al., 2001).

Compared to DR4, many studies were conducted to elucidate the role of 
KILLER/DR5 in the p53 pathway, as it was first found as a DNA damage-induc-
ible p53-regulated gene in doxorubicin-treated cell lines (Wu et al., 1997). 
Comparison of the apoptotic response of p53+/+ and p53−/− mice after ionizing 
radiation is a good in vivo model to study DNA damage-induced p53-dependent 
apoptosis in the context of studying p53 target gene tissue specificity. While 
thymus, spleen, and small intestine underwent p53-dependent apoptosis in the 
mouse model, among p21, E124/PIG8, Bax, Fas, and KILLER/DR5, KILLER/
DR5 was the only upregulated gene after γ-irradiation in a p53-dependent 
manner to induce apoptosis in the spleen and small intestine, implicating a 
critical role of KILLER/DR5 in the radiation response (Burns et al., 2001). 
Recent results using DR5 knockout mice further support the importance of 
DR5 in the p53 pathway (Finnberg et al., 2005). DR5-null mice showed a 
slightly larger thymus than wild-type mice. As DR5 is the only known TRAIL 
receptor in mice, the results suggest that negative selection in thymocytes 
might be in part controlled through the DR5 receptor. In these mice, there was 
no evidence of spontaneous autoimmune disease as reported in TRAIL knockout 
mice (Lamhamedi-Cherradi et al., 2003). E1A stabilizes p53 and transactivates 
its target genes. The result that DR5-null mouse embryo fibroblasts (MEFs) 
expressing E1A did not undergo apoptosis after TRAIL treatment suggests that 
there are no other TRAIL receptors in mice besides DR5, which can be transac-
tivated by p53 in mice. DR5-null tissues showed reduced amounts of apoptosis 
compared to wild-type thymus, spleen, Peyer’s patches, and the white matter of 
the brain. However, because gene targeting of DR5 failed to nullify all death in 
these organs, it is likely that DR5 is only one of the several p53 target genes that 
are important in this response. In the colon, DR5 wild type and null mice showed 
approximately the same amount of radiation-induced cell death. However, in the 
human colon cancer cell line HCT116 silencing of DR5 induces accelerated 
growth of tumor xenografts (Wang and El-Deiry, 2004a, b) and also DR5 is 
required for p53-dependent TRAIL sensitivity in mismatch repair deficient 
Bax−/− HCT116 cells (Wang and El-Deiry, 2003b). From these observations, 
even in the colon, DR5 is important in apoptosis within the p53 pathway that 
suppresses tumor formation or progression. Taken together, DR5 seems to play 
a critical role in DNA damage-induced programmed cell death in the p53 
pathway.
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3.2.3 TRID/DCR1 and TRUNDD/DCSR2

TRID and TRUNDD contain extracellular cysteine-rich domains. TRID consists of 
an extracellular TRAIL-binding domain linked to the membrane through a glyco-
sylphosphatidylinositol (GPI) anchor and completely lacks an intracellular domain, 
whereas TRUNDD contains an intracellular domain that has a truncated DD which 
can transduce NF-κB signal (Degli-Esposti et al., 1997b). Over the extracellular 
domain, TRID is 69 and 52% identical with DR4 and DR5, and TRUNDD is 70%, 
57%, and 58% identical with TRID, DR5, and DR4, respectively. TRID mRNA is 
expressed in normal tissues but not in many tumor cells, giving a rationale for 
TRAIL on its tumor-specific apoptosis-inducing activity (Sheridan et al., 1997; Pan 
et al., 1997b).

Although these decoy receptors are regulated by p53, little is known about their 
role in the p53-regulated apoptotic pathway. TRID is overexpressed by genotoxic 
stress in p53 intact cells and is overexpressed in gastrointestinal tumors (Sheikh et al., 
1999). TRUNDD is induced by adenovirus-p53 overexpression and TRUNDD can 
delay TRAIL-, p53-, and KILLER/DR5-dependent apoptosis in colon cancer cells 
(Meng et al., 2000). It has also been reported that silencing of TRUNDD enhances 
doxorubicin-induced apoptosis in HCT116 cells (Liu et al., 2005). It therefore 
seems that these decoy receptors are forming a negative feedback loop to dampen 
p53-mediated apoptotic signaling.

4 Type II Pathway

The type II death pathway is evoked through intrinsic stimuli such as DNA damage, 
cytotoxic drugs, hypoxia, oncogenic signaling, or even extrinsic death receptor sig-
nals in type II cells. Mitochondrial factors are crucial in the efficiency of cell death 
mediated by this pathway. Cytochrome c released from mitochondria assembles a 
cytosolic caspase-activating complex called apoptosome which consists of Apaf-1, 
caspase-9, and cytochrome c, while release of Smac/DIABLO and Htra2/Omi inac-
tivate inhibitor of apoptosis proteins (IAPs), the inhibitors of caspases, enhance 
apoptosis (Danial and Korsmeyer, 2004). Bcl-2 family members are the key com-
ponents in this process. They are categorized into three groups according to their 
function and numbers of Bcl-2 homology (BH) domains. The first group includes 
antiapoptotic members such as Bcl-2, Bcl-X

L
, and MCL-1, which contains four BH 

domains. Their BH1–3 domains are in close spatial proximity and create a hydro-
phobic pocket, which can mask a BH3 domain of proapoptotic members, blocking 
their proapoptotic functions (Muchmore et al., 1996; Sattler et al., 1997). 
Multidomain proapoptotic members of the family are Bax and Bak, which are 
thought to form a pore in the mitochondrial membrane and release cytochrome c 
into the cytosol. These two molecules are thought to be required in the type II path-
way as cells lacking both Bax and Bak, but not cells lacking one of them are com-
pletely resistant to tBid-induced cytochrome c release and apoptosis (Wei et al.,
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2001). The last members of the family are BH3-only proapoptotic proteins, which 
are Bid, Noxa, Puma, Bad, Bik, and Bim. Bid provides the only known connection 
between the extrinsic and intrinsic pathways, while the others are thought to act 
upstream of Bax and Bak. Cartron et al. (2004) showed that Bid and Puma specifi-
cally bind to the first α-helix of Bax leading to its activation. Bad and Bik cannot 
directly activate Bax but promote apoptosis by binding to Bcl-2 to inhibit their 
antiapoptotic functions (Letai et al., 2002).

4.1 Bid

Bid gene is transcriptionally regulated by p53 and contains a functional p53 DNA-
binding site in the first large intron (Sax et al., 2002). Bid−/− MEFs are resistant to 
adriamycin and 5-FU as compared to Bid+/+ MEFs, showing its role as a chemo-
sensitivity determinant (Sax et al., 2002). Recently, Bid was shown to be a sentinel 
for DNA damage, and it was reported to be phosphorylated by ATM (Zinkel et al., 
2005; Kamer et al., 2005). It was also shown that other than the proapoptotic function
of the protein, when it is phosphorylated following exposure to low dose of ionizing
radiation or the DNA-damaging agent etoposide, Bid can block the cell cycle in the 
G2 phase. Even though it does not induce cell cycle arrest in the G1/S phase as is 
brought about by p21, Bid might be one of the regulators that determines cell fate 
after DNA damage, i.e., whether the cells should live or die.

4.2 Puma and Noxa

Puma (bbc3) and Noxa are p53 target genes belonging to the BH-3 only proteins, 
contain p53 DNA-binding sequences in the first intron and can induce apoptosis by 
p53 overexpression or exposure to DNA-damaging stimuli (Oda et al., 2000a; Yu 
et al., 2001; Nakano and Vousden, 2001; Han et al., 2001). Serum starvation and 
glucocorticoid treatment also induce Puma and virus infection and interferon 
induce Noxa expression independent of p53 activation, respectively (Han et al., 
2001; Sun and Leaman, 2005). In hematopoietic progenitor cells, Slug represses 
p53-mediated transcription of Puma in turn protecting the cells from γ-radiation-
induced cell death, and it was also found that Slug itself was upregulated by p53 
(Wu et al., 2005). Furthermore, it was recently demonstrated that p53 family member
p73 transactivates Puma and Noxa expression independent of p53, and the other 
member delta p63 acts as their repressor inhibiting head and neck tumor cells from 
apoptosis (Rocco et al., 2006). Noxa and Puma are tightly regulated genes with 
redundancy in their stimulation and regulation by transcription factors, suggesting 
their important role in apoptosis.

These p53 targets seem to have tissue specificity. By ionizing radiation, Noxa 
was expressed in the red pulp, where as Puma was induced in the white pulp of the 
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spleen in a p53-dependent fashion (Fei et al., 2005). Puma−/− MEFs and Noxa−/− 
MEFs showed increased resistance in apoptosis induced by etoposide treatment or 
γ-irradiation. Although single gene, Puma or Noxa, knockdown could not attain the 
resistant level to that of p53−/− MEFs, it was suggested that Puma and Noxa have 
redundancy in inducing apoptosis in these cells (Villunger et al., 2003). On the other
hand, Puma knockout nullified nearly all of the cell death attributed to p53 in 
primary hematopoietic cells and the developing central nervous system in response 
to γ-radiation or oncogenic signals from c-Myc, i.e., it has indispensable role in 
apoptosis in these tissues (Jeffers et al., 2003). Yu et al. (2003) reported that targeted
deletion of Puma gene in HCT116 cells completely blocked apoptosis induced by 
p53 overexpression, adriamycin exposure, or a hypoxic environment (Yu et al., 
2003). Another important notion of the study is that in the presence of p21, cellular 
stresses lead to cell cycle arrest, whereas deprivation of p21 by gene targeting 
results in enhanced apoptosis induced by the same stimuli. From such observations, 
it has been proposed that cell fate between cell cycle arrest and apoptosis is deter-
mined by the balance between p21 and Puma. Another study showed Noxa and Bax 
doubly knocked out MEFs were more resistant to apoptosis induced by adriamycin 
or oncogenic signals as compared to single knockouts of these genes (Shibue et al., 
2003). It was suggested from the result that Noxa and Bax carry out different functions
in the apoptosis pathway.

4.3 Bax and Bak

The gene-encoding BAX is a transcriptional target of p53 (Miyashita and Reed, 
1995). BAK has also been reported to be upregulated by p53 (Pearson et al., 2000; 
Pohl et al., 1999). Bax and Bak appear to have some overlapping roles in apoptosis, as 
either thymocytes from Bak−/− or Bax−/− null mice do not show radiation-induced 
apoptosis, although thymocytes from Bak and Bax double-knockout mice show 
resistance to γ-radiation or etoposide treatment (Lindsten et al., 2000). Furthermore, 
Bak and Bax doubly deficient MEFs show resistance to multiple intrinsic death-
inducing stimuli such as staurosporine, ultraviolet radiation, and growth factor 
deprivation (Wei et al., 2001). Bax−/− HCT116 cells are resistant to TRAIL treatment,
but etoposide and camptothecin treatment of the cells restores their sensitivity to 
TRAIL by upregulating Bak and DR5 (LeBlanc et al., 2002). However, recent studies
with DR5 or Bak knockdown suggests that this restored sensitivity relies more on 
DR5 upregulation and a conversion of cells from type II to type I signaling, in the 
case of TRAIL and chemotherapy treatment (Wang et al., 2003b).

Recent studies revealed that p53 may have a transcription-independent activity 
in the mitochondrial death pathway involving Bak and Bax. After DNA damage 
induced by irradiation or chemotherapeutic agents, p53 has been reported to 
translocate to the mitochondria and to activate either Bax- (Chipuk et al., 2005) 
or Bak- (Leu et al., 2004) dependent mitochondrial outer membrane permeabilization 
(MOMP) and release of cytochrome c into the cytosol. However, translocation of 
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p53 to the mitochondria is not sufficient to induce cell death (Essmann et al., 2005), 
as p53 is sequestered by Bcl-X

L
 at mitochondria and its activity to induce MOMP 

is blocked (Mihara et al., 2003; Chipuk et al., 2005). Puma has been reported to act 
on the complex of p53–Bcl-X

L
 thereby releasing p53 from Bcl-X

L
 to allow for the 

MOMP-inducing activity (Chipuk et al., 2005). However, whether the p53–Bcl-X
L

or p53–Bcl2 complexes act as positive or negative regulators of cytochrome c release 
is still under study (Mihara et al., 2003; Chipuk et al., 2005; Tomita et al., 2006).

4.4 P53AIP1

The p53AIP1 gene is induced following severe DNA damage associated with p53 
ser-46 phosphorylation and localization of p53AIP1 at mitochondria (Oda et al., 
2000b). Phosphorylation of p53 and subsequent p53AIP1 induction is also regulated
by the p53-inducible protein p53DINP1 (Okamura et al., 2001). p53AIP1 has been 
reported to have potential to release cytochrome c from mitochondria into the 
cytosol and to induce apoptosis, although its precise mechanism and relation with 
other apoptotic factors is not clarified yet.

4.5 Apaf-1

The Apaf-1 gene is a transcriptional target of p53 and it is also transcriptionally 
induced by E2F (Moroni et al., 2001). The study comparing p53−/− and wild-
type mice showed that Apaf-1 expression was p53-dependent in the spleen and 
heart (Ho et al., 2003). Apaf-1−/− MEFs were resistant to p53-dependent cell 
death-induced by oncogenic Myc and Ras signaling (Soengas et al., 1999). Apaf-1 
was found to be silenced in metastatic melanomas by hypermethylation and res-
toration of Apaf-1 expression led to efficient caspase-9 activation and adriamy-
cin-induced cell death (Soengas et al., 2001), supporting its role as a chemosensitivity 
determinant.

5 Dependency Receptor Pathway

There is unique apoptotic pathway called dependency receptor pathway. In the 
absence of ligand, expression-dependent receptors induce apoptosis, whereas binding 
of cognate ligands to their receptors blocks apoptosis and this apoptotic pathway 
seems to be independent of mitochondria (Arakawa, 2004; Bredesen et al., 2004). 
Examples for the receptor/ligand are p75NTR/neurotrophin, UNC5B (p53RDL1)/
Netrin-1, and deleted in colorectal cancer (DCC)/Netrin-1. These receptors are 
involved in axon guidance during neuronal development and among these receptors 
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UNC5B was shown to be a p53 transcriptional target, which is implicated in p53-
dependent apoptosis (Tanikawa et al., 2003). Loss of DCC has been reported in 
many cancers, and binding of Netrin-1 to UNC5B has been reported to repress the 
p53 target genes Bax and p21. This newly found pathway might be also involved in 
p53-related tumorigenesis.

6 PERP

The PERP gene is transcriptionally upregulated by p53 (Attardi et al., 2000) as well 
as p63 (Ihrie et al., 2005). It is a membrane protein involved in apoptosis induced 
by p53 overexpression and Bcl-2 reduces the cell death, suggesting that the mito-
chondria are involved in its signaling (Attardi et al., 2000). PERP localizes specifically
to desmosomes, adhesion junctions important for tissue integrity. Numerous 
structural defects in desmosomes are observed in skin of PERP−/− mice (Ihrie et al.,
2005). It was recently reported that PERP-null mice are not tumor-prone as 
compared to wild-type mice (Ihrie et al., 2006). As p53-null mice are tumor prone, 
whereas single knockout of the other p53 targets such as Puma, Bak, or Bax do not 
produce tumor-prone mice, the observation does not imply that PERP is not important
in the p53 apoptotic pathway.

7 PIGs

The PIGs are “p53-induced genes,” identified by transducing p53 into the human 
colorectal cancer line DLD-1 that undergoes apoptosis in response to p53 expression
(Polyak et al., 1997). As many of these genes were capable of producing or respond-
ing to reactive oxygen species, the importance of reactive oxygen species in the p53 
pathway was suggested. One of the PIGs, EI24/PIG8, has also been identified as the 
gene upregulated by etoposide treatment in murine NIH3T3 cells (Lehar et al., 1996). 
It was recently shown that EI24/PIG8 colocalizes at the endoplasmic reticulum with 
Bcl-2 and loss of EI24/PIG8 is positively related with invasiveness of breast cancers 
(Zhao et al., 2005).

8 Caspase-6

Caspases, the cysteine proteases that cleave after an aspartate residue in their sub-
strate, are the central components of the apoptotic pathway. They are usually 
divided into two classes, the initiator caspase-2, caspase-8, caspase-9, and caspase-10, 
and the effectors, caspase-3, caspase-6, and caspase-7 (Riedl and Shi, 2004). 
Caspase-6 is a transcriptional target of p53 in the apoptotic response (MacLachlan 
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and El-Deiry, 2002). Caspase-1 is also a p53 transcriptional target, although it is 
involved in inflammatory response rather than apoptotic pathway (Gupta et al., 
2001). p53 seems to have potential to activate caspase-6 and sensitize cells to 
chemotherapeutic drugs leading them to apoptosis by the mechanism other than its 
transcriptional upregulation (MacLachlan and El-Deiry, 2002). We have also previ-
ously reported that caspase-10 is directly induced by p53.

9 P53-Dependent Apoptosis Under Hypoxic Conditions

Solid tumors acquire regions of hypoxia as a result of insufficient blood supply. 
Cells containing wild-type but not mutant p53 undergo apoptosis in hypoxic 
regions (Graeber et al., 1996), leading to a powerful selection pressure to promote 
tumor progression and therapeutic resistance (Harris, 2002). p53 shows an altered 
behavior under hypoxia. Under hypoxia, p53 does accumulate in cells, although it 
does not upregulate most of the known p53 target genes such as p21, Bax, GADD45, 
DR5, or Puma (Koumenis et al., 2001; Fei et al., 2004). We have recently identified 
that Bnip3L is playing a role in apoptosis during hypoxia in some human tumor cell 
lines (Fei et al., 2004). Bnip3L was found to be a direct transcriptional target of p53 
as well as hypoxia-inducible factor 1 (HIF1). p53-dependent apoptosis during 
hypoxia was reduced after knocking down Bnip3L. Furthermore, nontumorigenic 
U2OS cells were converted into a tumorigenic state in mouse xenograft experi-
ments following stable Bnip3L knockdown.

10 Transcriptional Repression of Antiapoptotic Genes

IAPs and Bcl2 block apoptosis by inhibiting caspase activation and MOMP. In 
addition to transcriptional activation activity, p53 exerts its apoptosis-promoting 
effects by repressing antiapoptotic gene transactivation (Murphy et al., 1999; Wu 
et al., 2001; Hoffman et al., 2002). Its mechanism appears to involve association of 
p53 with histone deacetylases (HDACs) and its interaction is mediated by corepressor
mSin3a. DNA damage induces the p53–mSin3a interaction and targets HDACs to 
the promoters of the p53-repressed genes, where HDACs deacetylate histones and 
create a chromatin environment that is unfavorable for transcription.

11 P53 as a Therapeutic Target

A number of strategies have been developed to target p53 in cancer therapy. For 
about half of human cancers, which possess wild-type p53, the Mdm2–p53 interaction
could be a major target to prevent p53 from degradation. Nutlin-3 is an example of 
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a small molecule that specifically disrupts the p53–Mdm2 interaction. It was 
recently demonstrated that administration of Nutlin-3 suppressed xenograft growth 
in a dose-dependent manner (Tovar et al., 2006). As Mdm2 downregulation and 
subsequent p53 upregulation is reported to bring lymphocytopenia as a side effect 
in hypomorphic Mdm2 mice, further study may help to compare its benefit to 
disadvantage or advantages over standard chemotherapy.

Histone deacetylase inhibitors (HDACIs) have been shown to exert various 
antitumor effects and they are presently in clinical trials (see Chapter 13). p53 is 
one of the targets of HDACIs, as HDACIs inhibit deacetylation of the C-terminal 
lysines and induce apoptosis in gastric cancer (Terui et al., 2003) and prostate 
cancer cells (Roy et al., 2005). It has also been demonstrated that HDACIs 
enhance the tumoricidal effects of p53 adenovirally transferred gene therapy 
(Takimoto et al., 2005).

The status of an intact p53 pathway positively correlates with the response to 
the majority of chemotherapeutic drugs, most, although not all, of them being 
DNA-damaging agents (Weinstein et al., 1997; O’Connor et al., 1997). However, 
there are some clinically useful agents such as the antimitotic agent taxol, which 
was found to be more effective in tumor cells with mutant p53 (Weinstein et al., 
1997). In this context, we have identified the Polo-like kinase family member 
serum-inducible kinase (Snk/Plk2) as a p53 target and its silencing by siRNA 
leads to mitotic catastrophe after taxol treatment, suggesting p53-dependent 
activation of Snk/Plk prevents mitotic catastrophe following spindle damage 
(Burns et al., 2003).

Much effort has been devoted to overcome mutant p53 by small molecules that 
can restore the wild-type functions to mutant p53. CP-31398, a strylquinazoline, 
was identified from a screen of the library containing more than 10,000 synthetic 
compounds (Foster et al., 1999). The molecule not only promotes the stability of 
wild-type p53, but also allows mutant p53 to maintain an active conformation, 
enabling transcription and subsequent tumor growth suppression. CP-31398 can 
cause either cell cycle arrest or cell death in tumor cell lines carrying mutant p53, 
and combination of CP-3198 with chemotherapy or TRAIL exhibit synergistic 
effects enhancing cell killing (Takimoto et al., 2002). It has been shown that 
stabilization of p53 by CP-31398 involves a mechanism targeting blockade of 
ubiquitination of p53 and its further degradation (Wang et al., 2003). Neither phos-
phorylation of p53 at serine 15, 20, or interaction between Mdm2 was inhibited by 
CP-31398, highlighting a unique mechanism by which it can activate p53. PRIMA-1 
also induces apoptosis in tumor cells (Bykov et al., 2002) and it has synergistic 
effects with chemotherapeutic drugs (Bykov et al., 2005).

A peptide derived from the C-terminus of p53 is known to activate its specific 
binding to DNA including several p53 DNA contact mutants (Hupp et al., 1995). 
Several cationic peptides such as TAT and polyArg can penetrate into the cells 
through a mechanism called macropinocytosis (Wang and El-Deiry, 2004b). 
Utilizing this technology, Snyder et al. (2004) showed that the C-terminal peptide 
of p53 fused with TAT induced cell cycle arrest and apoptosis in a peritoneal 
carcinomatosis model and prolonged survival of the mice.
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12 Future Directions

Already a quarter century has passed since the discovery of p53 and we have learned 
much about its important role as a tumor suppressor gene as well as its complicated 
network governing programmed cell death. However, there are still important prob-
lems left to be solved. There are numerous genes known to be involved in the p53 
pathway, but are they all equally important? Which genes are involved in which tis-
sues? No single gene so far can account for p53-mediated apoptosis alone, and it 
might be possible that there is no such gene. The principle question is that we still 
do not know how p53 determines cell fate. Progress towards this understanding 
as well as efforts to develop therapies targeting this p53 pathway and its family 
members represent important future directions.
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Regulation of Programmed Cell Death 
by NF-κB and its Role in Tumorigenesis 
and Therapy
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Abstract The Rel/NF-κB transcription factors are key regulators of programmed 
cell death (PCD). Their activity has significant physiological relevance for normal 
development and homeostasis in various tissues and important pathological conse-
quences are associated with aberrant NF-κB activity, including hepatocyte apoptosis, 
neurodegeneration, and cancer. While NF-κB is best characterized for its protective 
activity in response to proapoptotic stimuli, its role in suppressing programmed 
necrosis has come to light more recently. NF-κB most commonly antagonizes PCD 
by activating the expression of antiapoptotic proteins and antioxidant molecules, 
but it can also promote PCD under certain conditions and in certain cell types. It 
is therefore important to understand the pathways that control NF-κB activation in 
different settings and the mechanisms that regulate its anti- vs pro-death activities. 
Here, we review the role of NF-κB in apoptotic and necrotic PCD, the mechanisms 
involved, and how its activity in the cell death response impacts cancer development, 
progression, and therapy. Given the role that NF-κB plays both in tumor cells and 
in the tumor microenvironment, recent findings underscore the NF-κB signaling 
pathway as a promising target for  cancer prevention and treatment.
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1 Introduction

The Rel/NF-κB family of proteins is comprised of homologous transcription 
factors that mediate the cellular response to various exogenous or endogenous 
stimuli including infection, inflammation, stress, or injury (reviewed in Bonizzi 
and Karin, 2004; Hayden and Ghosh, 2004). This multimember family consists 
of the vertebrate c-Rel, RelA, RelB, p105/p50 NF-κB1, and p100/p52 NF-κB2 
subunits, the viral oncoprotein v-Rel, Xenopus X-Rell, and the Dorsal, Dif, and 
Relish factors from Drosophila. Rel/NF-κB proteins share a highly conserved 
Rel homology domain (RHD) at their N-terminus that allows them to engage in 
homodimer or heterodimer formation, enter the nucleus, and bind to consensus 
GGGRNNYYCC NF-κB DNA sites. It also enables them to associate with 
inhibitory IκB molecules that act in an autoregulatory feedback fashion to ter-
minate the activation process. The C-terminal domains of NF-κB factors are 
more divergent across the family and impart transcriptional activation proper-
ties to c-Rel, RelA, RelB and v-Rel proteins, or inhibitory properties to p105/
NF-κB1 and p100/NF-κB2 that contain ankyrin-repeats akin to those found in 
IκB proteins.

In resting cells, cytosolic NF-κB dimers are inactive and typically bound to IκB
proteins that prevent their nuclear translocation and binding to consensus NF-κB
DNA-binding sites. Two distinct NF-κB activation cascades that respond to differ-
ent stimuli have been documented (Fig. 11.1). The canonical (or classical) NF-κB
pathway is activated by proinflammatory and mitogenic stimuli such as cytokines, 
bacterial lipopolysaccharides (LPS), interleukin-1 (IL-1), and antigens. This pathway 
commonly converges upon activation of the IκB kinase complex (IKK complex), a 
large multisubunit entity comprised of the catalytic IKKα and IKKβ.   subunits 
and the regulatory subunit IKKγ/NEMO. Phosphorylation of IκBα on serines 32 
and 36 targets it for ubiquitination at lysines 21 and 22 by the E3 ligase SCF-βTrCP. 
Degradation of polyubiquitinated IκBα.   by the 26S proteasome frees NF-κB dimers, 
like the classical p50/p65 complex, enabling their entry into the nucleus where they 
bind to NF-κB DNA sites. This commonly results in the transcriptional activation 
of genes important for immune and inflammatory responses, cell proliferation, 
and/or suppression of apoptosis. Among the many genes that NF-κB regulates, 
transcriptional activation of its inhibitor IκBα generates an autoregulatory feedback 
loop that terminates the activation process. Consequently, activation of the NF-κB
pathway is normally a regulated and transient process that is important for nor-
mal innate and adaptive immunity, inflammatory and acute phase responses 
and for embryonic development, organogenesis, and homeostasis. In contrast, 
sustained activation of the NF-κB pathway is implicated in a wide variety of 
pathological conditions including immune system disorders, chronic inflammation, 
and cancer.

The noncanonical (or alternative) NF-κB signaling cascade is characterized by 
the tightly regulated processing of the p100/NF-κB2 precursor protein into a mature 
p52 subunit and is commonly involved in the preferential activation of RelB/p52 
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dimers (Qing and Xiao, 2005; Senftleben et al., 2001; Xiao et al., 2001, 2004); (Fig. 
11.1). Activation of this pathway occurs predominantly in B cells stimulated with 
BAFF, lymphotoxinβ (LTβ), or CD40L and is important for B-cell function and 
lymphoid organogenesis. In this cascade receptor stimulation leads to activation of 
the NF-κB-inducing kinase NIK that activates IKKα complexes, independently of 

NIK

IKKα IKKα
IKKα IKKβ

IKKγ

IκBα

IκBα

p50 p65 RelB

p50 p65 RelB p52

p100

p100

Complete 
degradation

Processing 
to p52

Activated IKK 
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Fig. 11.1 The canonical (classical) and noncanonical (alternative) NF-κB signaling pathways. In 
the canonical NF-κB pathway, binding of cytokines, LPS, IL-1, or antigen T-cell surface receptors 
leads to activation of the IKK kinase complex that induces phosphorylation of IκBa and promotes 
its ubiquitin-dependent degradation via the proteasome. Cytosolic NF-κB dimers (e.g., p50/p65 
complexes) are then free to translocate to the nucleus where they bind to consensus NF-κB DNA 
sites and activate gene expression. This pathway is commonly involved in the activation of antia-
poptotic genes, inflammatory cytokines and genes that promote cell proliferation, angiogenesis, 
and metastasis. The noncanonical NF-κB cascade is activated in response to cell stimulation with 
BAFF, LTb, or CD40L and leads to activation of the kinase NIK. NIK phosphorylates IKKα to 
induce phosphorylation of the C-terminus of p100/NF-κB2. This targets p100 for ubiquitination 
and partial proteasome-mediated degradation to generate a mature p52/NF-κB2 form. This com-
monly results in nuclear translocation of RelB/p52 complexes, their binding to NF-κB DNA sites 
and the activation of gene expression. This pathway is important for lymphoid organogenesis and 
B-cell function
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IKKβ.   and IKKγ/NEMO, to phosphorylate serines 866 and 870 in the C-terminus 
of p100/NF-κB2 (Liang et al., 2006; Qing et al., 2005). Consequent ubiquitination of 
p100 by SCF-βTrCP results in the cleavage and partial degradation of p100 to the 
mature p52 form via the proteasome (Rape and Jentsch, 2004). Some reported that 
p100/NF-κB2 could also undergo cotranslational processing by the proteasome 
(Heusch et al., 1999). The functional consequences of NF-κB activation via the 
canonical or noncanonical pathways are many, but for the purpose of this review, we 
will focus on those associated with its role in programmed cell death (PCD) via 
apoptosis or necrosis, and on the mechanisms by which it operates in these different 
contexts.

2 Role of NF-κB in Apoptosis and Necrosis

NF-κB can protect cells from apoptosis induced by many different death-inducing 
stimuli including antigen receptor cross-linking in B cells, chemotherapeutic 
agents, radiation, and the proinflammatory cytokine TNFα, although in some 
instances it can behave in a proapoptotic manner (Grumont et al., 1998; Owyang 
et al., 2001; Van Antwerp et al., 1998; Wang et al., 1998; Wu et al., 1996; reviewed 
in Kucharczak et al., 2003). Studies focusing on the activity of NF-κB in cells 
treated with TNFα, UV radiation, or chemotherapeutic agents have provided 
important insights into the mechanisms that underlie its antiapoptotic vs pro-death 
effects and on those that govern this decision, as reviewed below.

2.1  Choosing between Life and Death Downstream 
of Activated TNFR1

Detailed analysis of the signaling cascade initiated by TNFα revealed important 
clues regarding the role that NF-κB plays in the apoptotic response, and recently in 
necrosis (see Section 2.2). These studies also illustrated that NF-κB plays a crucial 
role in tipping the balance in favor of survival following Tumor necrosis factor 
receptor (TNFR) activation.

Although activation of TNF receptor 1 (TNFR1) by TNFα can initiate PCD, 
TNFα is usually not cytotoxic, as concomitant activation of the NF-κB pathway 
confers efficient protection. In fact, cell killing by TNFα is seen only under condi-
tions where NF-κB activity is suppressed, or if RNA or protein synthesis is inhib-
ited. Binding of TNFα to TNFR1 triggers trimerization of the receptor and initiates 
three different cascades that can differentially affect the fate of the cells (Fig. 11.2; 
Micheau and Tschopp, 2003; reviewed in Jaattela and Tschopp, 2003). The first 
involves the cooperative recruitment of the adaptor molecule TNFR-associated 
death domain (TRADD) and the receptor-interacting protein kinase 1 (RIP1), along 
with TNFR-associated factor 2 (TRAF2). This promotes IKK-dependent activation 



11 Rel/NF-κB and Programmed Cell Death 227

of NF-κB and that of antiapoptotic proteins like the cellular FLICE/caspase-8 
inhibitor protein (c-FLIP). Ubiquitination of TNFR1 and TRADD promotes initia-
tion of a second cascade that engages FLICE-associated death domain (FADD) and 
caspase-8/FLICE along with caspase-10, that leads to the cleavage-mediated acti-
vation of the BH3-only protein Bid into tBid. tBid translocates to mitochondria and 
associates with the proapoptotic BH1–3 factors Bax and Bak. This provokes the 
mitochondrial release of cytochrome C and Smac/Diablo, activation of caspase-9, 
and downstream effector caspases resulting in apoptosis. Thus, efficient NF-κB-
dependent synthesis of antiapoptotic proteins like c-FLIP by the first cascade is 
necessary to block apoptosis induced by the second cascade. Consequently, cells 
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Fig. 11.2 Activation of TNFR1 initiates three different signaling cascades that differentially 
affect the fate of the cells. Cooperative recruitment of TRADD, RIP1, and TRAF2 to TNFR1 
promotes IKK-dependent activation of NF-κB and the activation of antiapoptotic genes, leading 
to cell survival (center). Recruitment of TRADD to TNFR1 in absence of RIP1 engages FADD, 
caspase-8, and caspase-10 leading to cleavage-mediated activation of Bid into tBid. Translocation 
of tBid to mitochondria provokes the release of cytochrome C and Smac/Diablo, and activation of 
effector caspases resulting in apoptosis (left). Ligand binding to TNFR1 can also trigger recruit-
ment of RIP1 to the TNFR1 complex in absence of TRADD. This leads to production of reactive 
oxygen species (ROS), activation of the JNK signaling cascade, and results in PCD via necrosis 
or apoptosis (right). Efficient NF-κB-dependent synthesis of antiapoptotic proteins and antioxi-
dant molecules is thus necessary to block apoptosis and necrosis triggered by TNFα
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deficient for NF-κB readily undergo apoptosis in response to TNFα, as do cells in 
which inhibition of RNA or protein synthesis precludes activation of prosurvival 
NF-κB target genes (Yeh et al., 2000).

Ligand binding to TNFR1 can also trigger a third cascade that leads to necrotic 
cell death, a mode of PCD that is morphologically distinct from apoptosis and is 
independent of caspases. This cascade depends on the recruitment of RIP1 to the 
TNFR1 complex, in absence of TRADD, on RIP1 kinase activity and its ability to 
induce production of reactive oxygen species (ROS) and activate the JNK signaling 
cascade (see Section 2.2; Zheng et al., 2006; reviewed in Jaattela and Tschopp, 
2003; Leist and Jaattela, 2001; Papa et al., 2006). While it remains to be determined 
how cells decide to die by apoptosis vs necrosis, their metabolic state appears to be 
an important factor in this decision (Edinger and Thompson, 2004). Furthermore, 
recent evidence that recruitment of RIP1 to TNFR1 precludes engagement of 
TRADD in this cascade suggests that the joint vs exclusive engagement of these 
molecules by TNFR1 may also help to determine whether the cell will take the 
NF-κB survival path, the apoptotic path or will undergo death via necrosis (Zheng 
et al., 2006). An important distinction between cells dying by apoptosis or by 
necrosis is that contrary to apoptosis, cells dying by necrosis trigger a strong inflam-
matory response due to the release of potent proinflammatory factors such as the 
chromatin-associated HMGB1 protein. HMGB1 binds to the receptor for advanced 
glycation end products (RAGE), Toll-like receptors TLR2 or TLR4 on macrophages 
to signal production of proinflammatory cytokines (reviewed in Lotze and Tracey, 
2005; Zeh and Lotze, 2005), although some have recently argued that HMGB1
binds preferentially TLR2 and TLR4, but not RAGE as determined by fluores-
cence resonance energy transfer (FRET) analysis (Park et al., 2006).

2.2  Interplay Between NF-kB and JNK: Additional Insights into 
NF-kB’s Protective Activity Toward Apoptosis and Necrosis

The cross talk between the NF-κB- and JNK-signaling pathways and its impact on 
the outcome of the cells has been the subject of several excellent reviews (Luo 
et al., 2005a; Nakano et al., 2006; Papa et al., 2006). Here, we briefly outline how 
their interplay can result in cell survival, apoptosis, or necrosis.

In addition to promoting activation of NF-κB, binding of TNFα to TNFR1 trig-
gers activation of the MAPK-related stress-activated Jun kinase (JNK), as illustrated 
in the third cascade (Fig. 11.2). Detailed analyses with cells defective for either JNK 
or NF-κB outlined a key role for JNK in TNF-induced cell death and showed that the 
ability of NF-κB to antagonize JNK signaling is an important component of NF-κB’s 
arsenal against the cytotoxic effects of TNFα (reviewed in Luo et al., 2005a; Papa et 
al., 2004b, 2006; see below). Studies showed that NF-κB is responsible for the tran-
sient activation of JNK in response to TNFα, and that suppression of NF-κB activity 
results in sustained JNK activation, aberrant ROS accumulation, and cell death (De 
Smaele et al., 2001; Javelaud and Besancon, 2001; reviewed in Papa et al., 2004, 
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2006; Tang et al., 2001). In turn, ROS can induce sustained JNK activity by inacti-
vating MAPK phosphatases (MKPs), thus allowing TNFα to kill cells in which 
NF-κB is active (Kamata and Hirata, 1999; Kamata et al., 2005; Sakon et al., 2003). 
However, this may not be the only mechanism that activates JNK following ROS 
accumulation, as others showed that ROS activate ASK1/MEKK5 that leads to 
prolonged JNK activation downstream of TNFR1 (Davis, 2000; Matsuzawa and 
Ichijo, 2005).

There is still debate in the field regarding the extent to which NF-κB-mediated sup-
pression of JNK signaling blunts apoptosis vs necrosis (Ventura et al., 2004; reviewed 
in Papa et al., 2006). Differences in the metabolic state of the cells are likely to sway 
which form of cell death will prevail (Ventura et al., 2004; reviewed in Papa et al., 
2006). It was suggested that actively dividing cells that depend on glycolysis are more 
likely to die by necrosis, whereas quiescent cells that undergo oxidative phosphoryla-
tion predominantly die by apoptosis (reviewed in Edinger and Thompson, 2004). 
Clearly, the interplay between the JNK and NF-κB signaling cascades is an important 
factor in dictating the fate of the cells be it survival, apoptosis or necrosis.

3 A Role for NF-κB in Autophagy

Autophagy is a form of PCD distinct from apoptosis and necrosis that has come under 
increasing scrutiny lately, particularly as it relates to cancer (reviewed in Edinger and 
Thompson, 2004; Hait et al., 2006; Levine and Yuan, 2005) (also see Chapter 9). 
Cells undergo autophagy in response to nutrient and growth factor deficiency as a 
temporary means of survival. They do so by undergoing self-digestion under condi-
tions where adequate nutrient supplies are limited, as would be the case for cancer 
cells lacking an adequate blood supply. However, a prolonged state of autophagy 
ultimately results in metabolic cell death. The process itself involves assembly of an 
autophagosome in which a cell’s organelles and cytoplasm are swallowed. Its con-
tents are then degraded by lysosomes, which allow salvation of amino acids and fatty 
acids for energy generation. Although studies are only beginning to explore a possi-
ble role of NF-κB in autophagy, its protective activity in ventricular myocytes was 
recently shown to involve transcriptional repression of the hypoxia-inducible BH3-
only protein BNIP3 that was demonstrated to induce autophagy (Baetz et al., 2005; 
Daido et al., 2004; Kanzawa et al., 2005). Future studies will surely shed more light 
on this subject and on whether it is implicated in NF-κB-associated cancers.

4 Mechanisms that NF-κB Employs to Suppress PCD

NF-κB utilizes several different means to suppress PCD. NF-κB most commonly 
suppresses apoptosis by activating the transcription of antiapoptotic genes 
(reviewed in Kucharczak et al., 2003; Luo et al., 2005b; Papa et al., 2006). Among 
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them are antiapoptotic Bcl-2 family members Bcl-2, Bcl-x
L
, Bfl-1/A1, and NR13 

that antagonize the activity of proapoptotic Bcl-2 family proteins and thus blunt the 
release of proapoptotic cytochrome c and Smac/Diablo from mitochondria. The 
cellular inhibitor of apoptosis molecules XIAP, c-IAP1, and c-IAP2 also contribute 
to its protective activity (reviewed in Wright and Duckett, 2005). While some IAPs 
like XIAP directly block cleavage-mediated activation of pro-caspase-9 and the 
activity of caspases 3 and 7, others are less potent in this regard (Deveraux et al., 
1997; Liston et al., 2003). Recent studies showing that the baculoviral IAP protein 
(OpIAP) promotes ubiquitination of the IAP antagonist Smac/DIABLO uncovered 
a novel mechanism whereby cytoprotective IAPs can block apoptosis in a caspase-
independent manner (Duckett, 2005; Wilkinson et al., 2004). Of late, the zinc fin-
ger protein A20 was shown to suppress cell death by promoting degradation of the 
TNFR1 complex component RIP1, via its deubiquitinating (DUB) and E3 ligase 
activities (Wertz et al., 2004). Other NF-κB-regulated candidates include decoy 
TRAIL receptor 1 (DcR1) (Bernard et al., 2001a) and c-FLIP that interferes with 
activation of pro-caspases 8 and 10 (Kreuz et al., 2004; Micheau et al., 2001). 
cFLIP can also work with caspase-8 to enhance NF-κB activation via the B-cell 
lymphoma 10 (BCL-10) and mucosa-associated-lymphoid-tissue lymphoma-
translocation gene 1 (MALT1) that act as E3 ligases for IKKγ/NEMO, along 
with RIP1 (Zhou et al., 2004; reviewed in Budd et al., 2006). NF-κB-mediated
induction of the serine protease inhibitor 2A (Spi2A), that inhibits cathepsin B, was 
shown to suppress cell killing by TNFα by blocking lysosome-mediated PCD 
(Liu et al., 2003).

In the antagonistic relationship between the NF-κB and JNK signaling cascades, 
GADD45β/Myd118 and XIAP were among the first NF-κB targets proposed to 
block sustained JNK activation (De Smaele et al., 2001; Tang et al., 2001). 
GADD45b associates with and blocks the catalytic activity of the JNK-activating 
kinase MKK7/JNKK2 (Kaur et al., 2005; Papa et al., 2004a, b). How XIAP blocks 
prolonged JNK activation is still not clear, but a recent study suggests that it can 
inhibit TGF-β1-induced JNK activation and apoptosis by ubiquitinating the kinase 
TAK1, leading to its degradation (Kaur et al., 2005). It should be noted, however, 
that homozygous deletion of gadd45b or xiap had no significant effect on JNK 
activation in vivo (Amanullah et al., 2003; Sanna et al., 2002), suggesting that 
compensatory mechanisms may exist or that another NF-κB-dependent inhibitor(s) 
of proapoptotic JNK signaling remain to be identified. Relevant candidates in this 
regard are the antioxidant molecules manganese superoxide dismutase (MnSOD), 
and ferritin heavy chain (FHC) that inhibits JNK by suppressing ROS accumulation 
through iron sequestration (Bernard et al., 2001b, 2002; Delhalle et al., 2002; Pham 
et al., 2004; Tanaka et al., 2002; reviewed in Papa et al., 2004b).

Other means have been described to explain the antiapoptotic effects of NF-κB
in certain contexts. One of them involves NF-κB-induced destabilization of tumor 
suppressor p53 as a result of increased expression of Mdm2 (Egan et al., 2004; 
Tergaonkar et al., 2002). RelA-dependent suppression of caspase-8 and TRAIL 
receptors DR4 and DR5 was shown to confer survival to TRAIL along with induc-
tion of c-IAP1 and c-IAP2 (Chen et al., 2003). The peptidyl prolyl-isomerase Pin1 
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was reported to enhance nuclear accumulation of RelA/p65 by blocking its 
 association with IκBα and to also lead to p65 stabilization by interfering with its 
interaction with the ubiquitin ligase SOCS-1 (Ryo et al., 2003). Although direct 
evidence is still lacking that Pin1 enhances the protective activity of RelA, Pin1 is 
frequently upregulated in breast cancer compared to normal mammary glands 
(Currier et al., 2005; Ryo et al., 2003).

5 Mechanisms that Underlie the Pro-Death Activity of NF-κB

Although NF-κB is best known for its ability to antagonize PCD, it should be 
noted that it can be proapoptotic in certain cells and in response to certain stim-
uli (reviewed in Kucharczak et al., 2003; and see below). Some NF-κB tran-
scriptional targets that were implicated in this effect include factors that 
modulate the mitochondrial and death receptor apoptotic pathways including the 
p53 tumor suppressor, death receptor Fas and its ligand FasL, TNFα, TRAIL 
receptors DR4, DR5, DR6, TRAIL itself, and the proapoptotic Bcl-2 family 
members Bcl-xS and Bax.

Work in recent years uncovered an interesting new way whereby the typically 
antiapoptotic NF-κB subunit RelA can behave as a pro-death factor in response 
to certain stimuli (reviewed in Perkins and Gilmore, 2006). Cell treatment with 
atypical activators of NF-κB such as UV-C radiation or the chemotherapeutic 
drugs daunorubicin and doxorubicin switches RelA from a transcriptional activa-
tor into a gene-specific transcriptional repressor of antiapoptotic genes (like Bcl-
x

L
, XIAP, and A20), but not IκBα by promoting association of RelA with histone 

deacetylase HDAC1, resulting in cell death (Campbell et al., 2004). This occurs 
in a RelA phosphorylation-independent manner. Tumor suppressor alternative 
reading frame (ARF) can also suppress the protective activity of RelA by using a 
slightly different mechanism, i.e., by directing ATR- and Chk1-dependent phos-
phorylation of the RelA transactivation domain (Thr 505). This creates a poten-
tial docking site for HDAC1 to suppress expression of antiapoptotic genes and 
sensitize cells to TNF-induced killing (Rocha et al., 2003, 2005). Lately the DNA 
cross-linking chemotherapeutic drug cisplatin was identified to imitate ARF’s 
activity, by promoting Chk1-dependent phosphorylation of RelA to repress 
expression of Bcl-x

L
 (Campbell et al., 2006). It should be noted, however, that 

not all genotoxic drugs convert RelA into a transcriptional repressor, as etoposide 
promotes RelA-dependent activation of the antiapoptotic genes Bcl-x

L
 and XIAP

(Campbell et al., 2006).
Targeting of RelA to the nucleolus was recently suggested as a novel means to 

antagonize its transcriptional and antiapoptotic activities in colorectal cancer cells 
treated with aspirin, serum deprivation, or UV-C radiation (Stark and Dunlop, 
2005), although others previously reported that aspirin suppresses NF-κB activation 
by interfering with the activity of the IKK complex (Kopp and Ghosh, 1994; 
Yamamoto et al., 1999; Yin et al., 1998).
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6  NF-κB’s Role in PCD has Important Developmental 
and Physiological Consequences

The phenotypes of mice deficient for individual Rel/NF-κB subunits highlighted 
the crucial contribution of NF-κB in the control of apoptosis during development 
and/or homeostasis in the hepatic, epidermal, immune, and nervous systems 
(reviewed in Kucharczak et al., 2003; Li and Verma, 2002). For example, 
homozygous inactivation of RelA or of its upstream activating kinase IKKβ, alone 
or together with IKKα, is embryonic lethal due to massive liver apoptosis (Beg and 
Baltimore, 1996; Li et al., 1999a, b, 2000; Rudolph et al., 2000; Tanaka et al., 
1999). That this phenotype is rescued by concerted deletion of RelA with TNFα,
or of IKKβ with TNFR1, indicates that developing hepatocytes undergo apopto-
sis induced by circulating TNFα (Alcamo et al., 2001; Doi et al., 1999). Although 
RelA is believed to protect developing hepatocytes from TNF-induced killing by 
upregulating the expression of antiapoptotic genes, expression of Bcl-2 recently 
failed to rescue fatal liver apoptosis in RelA-deficient mice (Gugasyan et al., 
2006). It therefore appears that the protective activity of RelA against physiological 
levels of TNF requires activation of other NF-κB targets in developing hepato-
cytes. The protective role of NF-κB in hepatocytes is also evident in cells treated 
with transforming growth factor b (TGF-b), which induces cell death by promoting 
synthesis and stabilization of the NF-κB inhibitor IκBα (Arsura et al., 2003; 
Cavin et al., 2003). Induction of apoptosis in this context coincides with suppres-
sion of the prosurvival NF-κB targets Bcl-x

L
 and XIAP, as well as alpha-fetoprotein 

that suppresses TNF-induced cell death by inhibiting TNFR1 signaling (Cavin 
et al., 2004).

The protective role of NF-κB in the immune system is also well documented. 
NF-κB orchestrates survival and differentiation during early lymphopoiesis, where 
RelA suppresses apoptosis of precursor cells in presence of high levels of TNF 
(Prendes et al., 2003); reviewed in Claudio et al., 2006; Gerondakis and Strasser, 
2003; Siebenlist et al., 2005). Later in development, NF-κB activation via the pre-B-
cell receptor (pre-BCR) is key for suppressing apoptosis and promoting proliferation 
and developmental progression. Combined inactivation of c-Rel and RelA impairs 
maturation to the IgM(lo)IgD(hi) stage and causes premature cell death (Feng et al., 
2004; Grossmann et al., 2000; reviewed in Gilmore et al., 2004). NF-κB activation 
downstream of the BCR is also crucial for survival and proliferation of mature 
peripheral B cells. Homozygous deletion of c-Rel renders primary B cells exquisitely 
susceptible to apoptosis following stimulation with mitogens, as does B-lineage-
specific inactivation of IKKβ or IKKγ/NEMO (Grumont et al., 1998, 1999; Kontgen 
et al., 1995; Leitges et al., 2001; Li et al., 2003; Martin et al., 2002; Owyang et al., 
2001; Pasparakis et al., 2002b; Petro and Khan, 2001; Petro et al., 2000; Tan et al., 
2001; Tumang et al., 1998). The recent analysis of mice deficient for the B-cell 
adaptor for phosphoinositide 3-kinase (BCAP), that signals through c-Rel, is 
consistent with this (Yamazaki and Kurosaki, 2003). NF-κB also reduces 
apoptosis induced by the cytokine BlyS/BAFF that is involved in peripheral B-cell 
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development. Its protective activity in this context coincides with induction of Bcl-2, 
Bcl-x

L
, and Bfl-1/A1 (Do et al., 2000; Hsu et al., 2002; Schiemann et al., 2001). 

Combined, these results highlight a crucial role for NF-κB in B-cell survival, matu-
ration, and function.

NF-κB is also prominent in determining the fate of T cells, in which it serves 
either in an antiapoptotic or a proapoptotic fashion. NF-κB activation following 
T-cell receptor (TCR) engagement together with CD28 costimulation fosters survival 
and proliferation of naïve T cells (Khoshnan et al., 2000). Both p50/NF-κB1 and 
c-Rel were implicated in inducing expression of cell death inhibitors Bcl-x

L
, Bcl-2, 

and Bfl-1/A1 (Verschelde et al., 2003; Zheng et al., 2003). Despite its protective 
role, it appears that only an appropriate dose of NF-κB activity is tolerated as sur-
vival of B and T lymphocytes is compromised in mice deficient for both inhibitory 
subunits IκBα and IκBε in which NF-κB is highly activated, akin to the phenotype 
of mice lacking NF-κB activity (Goudeau et al., 2003). There is also evidence sug-
gesting that NF-κB can be proapoptotic in double-positive thymocytes (Hettmann 
et al., 1999). NF-κB-dependent induction of Fas ligand (FasL) in mature T cells 
undergoing activation-induced cell death (AICD) has also been reported (Kasibhatla 
et al., 1999; Lin et al., 1999; Zheng et al., 2001).

Inhibition of apoptosis by NF-κB is also important for the development of most 
ectodermal appendages, as tissue-specific suppression of NF-κB activity leads to 
impaired development of hair follicles and exocrine glands due to increased apoptosis 
(Headon et al., 2001; Pasparakis et al., 2002a; Schmidt-Supprian et al., 2000; 
Schmidt-Ullrich et al., 2001; Yan et al., 2002). In this regard tumor suppressor 
cylindromatosis (CYLD), whose loss predisposes patients to tumors of hair folli-
cles, sweat, and scent glands acts as a deubiquitinating enzyme for IKKγ/NEMO
and TRAF2, and suppresses NF-κB activation of the TNFR family members CD40, 
XEDAR, and EDAR (Brummelkamp et al., 2003; Kovalenko et al., 2003; 
Trompouki et al., 2003). It thus seems that the antiapoptotic activity of NF-κB may 
contribute to cancer development in these tissues.

In the nervous system too, NF-κB can either block or induce apoptosis depend-
ing on the cell context and the stimulus. It is neuroprotective in response to injury 
as illustrated in experimental models of stroke or seizure, where it induces expres-
sion of the prosurvival genes IAP, Bcl-2, Bcl-x

L
, and MnSOD (reviewed in 

Kucharczak et al., 2003; Mattson and Camandola, 2001). While increased NF-κB
activity is observed in neurodegenerative disorders like Alzheimer’s and Parkinson’s 
diseases, amyotrophic lateral sclerosis, epilepsy, and stroke, it was postulated that 
it helps to protect against oxidative stress and mitochondrial dysfunction (reviewed 
in Mattson and Camandola, 2001). This is supported by the increased susceptibility 
of p50/NF-κB1-deficient mice to neuronal damage following treatment with a 
mitochondrial toxin in an experimental model of Huntington’s disease (Yu et al., 
2000). However, others reported that NF-κB promotes cell death in models of neu-
ronal injury following ischemia/reperfusion and excitotoxic insult in which tumor 
suppressor p53 was implicated as a harmful downstream effector (Crumrine et al., 
1994; Morrison et al., 1996; Xiang et al., 1996). Interestingly, recent work indicates 
that K+ loss in cortical neurons subjected to serum withdrawal leads to increased 
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levels of NF-κB and that apoptosis is associated with upregulation of the pro-death 
factor Bcl-xS (Tao et al., 2006).

The cell type in which NF-κB is activated appears to significantly influence 
whether NF-κB is neuroprotective or neurodegenerative. While its activation in 
neurons is often cytoprotective, NF-κB activation in microglia promotes neuronal 
cell death (Mattson and Camandola, 2001). In this regard, it was suggested that 
NF-κB activation in glial cells might induce neuronal apoptosis by promoting pro-
duction of proinflammatory cytokines, ROS, and excitotoxins (John et al., 2003; 
Mattson and Meffert, 2006). Consistent with this idea, inactivation of astroglial 
NF-κB by transgenic expression of a superrepressor IκBα was recently shown to 
reduce production of proinflammatory cytokines and to dramatically improve 
recovery after spinal cord injury (Brambilla et al., 2005).

7  NF-κB’s Role in PCD Fosters Cancer Development 
and Progression

Constitutive activation of NF-κB contributes to the pathogenesis of a large number 
of human cancers (reviewed in Rayet and Gelinas, 1999; Kim et al., 2006). Many 
tumor cells, including those derived from activated B cell-like diffuse large B-cell 
lymphoma (ABC-DLBCL), primary mediastinal B-cell lymphomas (PMBL), clas-
sical Hodgkin’s lymphoma (cHL), acute lymphoblastic leukemia (ALL), chronic 
myelogenous leukemia (CML), adult T-cell leukemia (ATL), breast, lung, or head 
and neck cancer show constitutively high levels of nuclear Rel/NF-κB factors and 
depend upon them for survival (Alizadeh et al., 2000; Bargou et al., 1997; Davis 
et al., 2001; Hinz et al., 2001; Kordes et al., 2000; Shipp et al., 2002). Suppression 
of NF-κB activity using a degradation-resistant form of IκB blocks tumor cell pro-
liferation and sensitizes them to apoptosis (reviewed in Baldwin, 2001; Barkett and 
Gilmore, 1999; Kucharczak et al., 2003; Sonenshein, 1997). This agrees with the 
acute oncogenicity of the viral NF-κB oncoprotein v-Rel of reticuloendotheliosis 
virus strain T that causes fatal leukemia/lymphoma in animal models (reviewed in 
Fan et al., 2006; Gilmore, 1999). NF-κB activation is also implicated in malignant 
cell transformation by many viruses, as reviewed previously (Fan et al., 2006; 
Hiscott et al., 2001; Kucharczak et al., 2003; Santoro et al., 2003). These include 
Epstein-Barr virus (EBV) implicated in Burkitt’s lymphoma, human Herpesvirus 
8/Kaposi’s sarcoma-associated Herpes virus (HHV8/KHSV) associated with 
Kaposi’s sarcoma, and primary effusion lymphoma (PEL) and human T-cell leuke-
mia virus type-1 (HTLV-1) associated with ATL.

In a majority of human cancers, persistent NF-κB activity results from constitu-
tive activation of the IKK complex, although the mechanisms responsible for IKK 
activation in these tumors have remained elusive. Using an RNA interference 
screen Staudt’s group recently uncovered that CARD11, that signals though 
MALT1 and BCL10, is a key factor responsible for the constitutive activation of 
IKK in ABC-DLBCL (Ngo et al., 2006). In other instances, constitutively high 
levels of nuclear Rel/NF-κB proteins are due to chromosomal rearrangement, 
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amplification and/or overexpression of the rel/nf-kb genes, or in some cases due to 
mutations in IκB (reviewed in Fan et al., 2006; Gilmore et al., 2002; Karin et al., 
2002; Rayet and Gelinas, 1999). For example, c-rel is overexpressed in PMBL, 
certain follicular large cell lymphoma, and in cHL (Barth et al., 1998, 2003; 
Feuerhake et al., 2005; Houldsworth et al., 1996; Joos et al., 1996, 2002; Lu et al., 
1991; Rao et al., 1998; Savage et al., 2003; Wessendorf et al., 2003). In several of 
these cases, this was correlated with accumulation of nuclear c-Rel protein (Barth 
et al., 2003; Savage et al., 2003). There is emerging evidence that NF-κB may also 
contribute to brain cancer, as constitutive NF-κB activity coincides with expression 
of a novel TrkA splice variant (trkAIII) in neuroblastoma cell lines (Tacconelli 
et al., 2004). In addition, reduced expression of the candidate tumor suppressor ING4 
is correlated with increased expression of NF-κB target genes that foster survival, 
growth, and angiogenesis of brain tumors, and ING4 was proposed to regulate NF-
κB activity by directly interacting with RelA/p65 (Garkavtsev et al., 2004).

A large number of studies have delineated a cell autonomous role for NF-κB in 
tumor cell survival, but recent publications provided compelling evidence that 
activation of NF-κB in the tumor microenvironment plays a vital role in promoting 
tumor cell growth (Fig. 11.3; reviewed in de Visser and Coussens, 2005). In a 
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Fig. 11.3 NF-κB plays an essential role in tumor cells and in the tumor microenvironment. 
Activation of NF-κB in tumor cells acts in a cell autonomous fashion to increased cell resistance 
to apoptosis, cell proliferation, and metastatic capacity. Rapidly dividing tumor cells that depend 
on glycolysis can undergo PCD via necrosis under conditions where ATP is depleted. Necrotic 
cells release potent proinflammatory factors like HMGB1, which trigger activation of the innate 
immune response in the tumor microenvironment, resulting in NF-κB-dependent production of 
proinflammatory cytokines that promote tumor cell growth in a paracrine fashion
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mouse model of colitis-associated cancer, abrogation of NF-κB activity either in 
intestinal epithelial cells or in myeloid cells significantly reduced tumor inci-
dence following administration of a carcinogen that promotes colonic tumor for-
mation together with dextran sulfate sodium (DSS) salt to induce inflammation 
and accelerate tumor growth (Greten et al., 2004). Inactivation of IKKβ in intes-
tinal epithelial cells decreased tumor incidence due to increased apoptosis, coin-
cident with decreased expression of antiapoptotic proteins like Bcl-x

L
, but it had 

no effect on tumor cell proliferation. In contrast, ablation of IKKβ in myeloid 
cells decreased tumor incidence by inhibiting epithelial cell proliferation due to 
reduced expression of proinflammatory genes, but had no effect on tumor cell 
survival. Consequently, it seems that NF-κB activation promotes tumor cell sur-
vival, whereas its activation in myeloid cells promotes production of cytokines that 
accelerate tumor cell growth in a paracrine fashion (Greten et al., 2004). A similar 
correlation has emerged between NF-κB activation and inflammation-associated 
tumor growth in a mouse model of chronic hepatitis that evolves into hepatocel-
lular carcinoma (HCC) (Pikarsky et al., 2004). In this system, chronic liver 
inflammation triggers production of TNFα by endothelial and inflammatory cells 
that leads to chronic activation of NF-κB in hepatocytes. While inactivation of 
NF-κB in hepatocytes had no effect on the onset of early neoplastic events, its 
inactivation at later stages increased hepatocyte apoptosis and blunted progres-
sion to carcinoma (Pikarsky et al., 2004).

Further evidence that NF-κB plays a prominent role in inflammation-associated 
tumor growth and metastasis came to light in studies in which administration of 
bacterial LPS induced systemic inflammation and production of TNFα by cells in 
the tumor microenvironment that accelerated the growth and metastasis of colon 
and breast cancer cell lines (Luo et al., 2004) Inhibition of NF-κB in the tumor cells 
themselves prompted tumor regression in response to LPS-induced inflammation, 
where reduced tumor cell proliferation and increased apoptosis resulted from 
induction of TRAIL receptor DR5 on NF-κB-deficient tumor cells and of its ligand 
TRAIL on surrounding immune cells. Together these studies highlight a critical 
role for NF-κB in inflammation-associated tumor promotion, progression, and 
metastasis.

Exposure to carcinogens is an important contributing factor to the onset of spo-
radic human cancer. NF-κB plays an important role in this scenario as well, as evi-
denced in various mouse models of chemically induced cancer. An interesting link 
between inflammation and chemical carcinogenesis was unveiled in a mouse model 
of diethylnitrosamine (DEN)-induced HCC, in which IKK-mediated NF-κB activa-
tion plays a critical role both in hepatocytes and in hematopoietic-derived Kupffer 
cells (Maeda et al., 2005). A surprising finding was that hepatocyte-specific deletion 
of IKKβ noticeably enhanced tumor development, as hepatocyte apoptosis was off-
set by proliferation of surviving hepatocytes, coincident with increased ROS pro-
duction, and JNK activation. Administration of antioxidant or compound inactivation 
of IKKβ in both hepatocytes and hematopoietic-derived Kupffer cells reduced the 
incidence of HCC in this model. Although the mechanism whereby DEN triggers 
this inflammatory response is unclear, it was proposed that hepatocytes undergoing 
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necrosis release factors like HMGB1 that can trigger a strong inflammatory response 
in the microenvironment, that in turn promotes the growth and tumorigenesis of sur-
viving hepatocytes (Scaffidi et al., 2002). This model is supported by: (1) the obser-
vation that supernatant from necrotic hepatocytes can activate NF-κB in primary 
macrophages (Maeda et al., 2005); (2) an increasing number of studies showing that 
inflammation and necrosis support tumor growth (Vakkila and Lotze, 2004; 
reviewed in Lotze and Tracey, 2005; Zeh and Lotze, 2005); and (3) work indicating 
that HMGB1 released from necrotic cells is an important mediator of inflammation 
(reviewed in Lotze and Tracey, 2005; Zeh and Lotze, 2005; Fig. 11.3).

In contrast to its well-documented growth-promoting effects in most cell types, 
NF-κB inhibits cell growth in the epidermis and loss of NF-κB activity promotes 
epidermal cell proliferation and hyperplasia (Seitz et al., 1998, 2000; van 
Hogerlinden et al., 1999). Furthermore, suppression of NF-κB activity in epidermal 
keratinocytes in conjunction with expression of oncogenic Ras promotes invasive 
neoplasia reminiscent of squamous cell carcinoma (SCC; Dajee et al., 2003). The 
growth suppressive effects of NF-κB in epidermal homeostasis were recently 
shown to result from suppression of the G1 cell cycle kinase CDK4 (Zhang et al., 
2005). Suppression of NF-κB in the epidermis was accompanied by upregulation 
of CDK4 in a TNFR1- and JNK-dependent manner and CDK4 was necessary for 
epidermal cell hyperplasia under conditions in which NF-κB activity was inhibited 
(Zhang et al., 2005). This highlights an important tumor suppressor function for 
NF-κB in certain cells.

Interestingly, NF-κB was found to be preferentially activated in epithelial cells 
of ER-negative breast tumors and particularly in ER-negative and ErbB2-positive 
tumors (86%; Biswas et al., 2004). Interestingly, in ER-negative and ErbB2-
negative breast cancer samples, nuclear NF-κB was predominantly found in the 
stroma (Biswas et al., 2004).

8 Approaches for Prevention and Therapy

Many dietary and natural agents that show chemopreventive activity can block NF-
κB activity (reviewed in Yamamoto and Gaynor, 2001). These include the green 
tea polyphenol epigallocatechin-3 gallate, resveratrol, and curcumin that can block 
tumor initiation and progression by suppressing tumor cell proliferation and by 
inducing apoptosis (Hofmann and Sonenshein, 2003; Bharti et al., 2003); reviewed 
in Signorelli and Ghidoni, 2005).

Not only is NF-κB important for the inherent resistance of tumor cells to PCD 
and for promoting tumor cell growth, but it is also a central figure in the resistance 
of many tumors to anticancer treatment. Compounds that interrupt NF-κB signaling 
counteract the growth and survival of many tumor cells in which NF-κB is impli-
cated and can potentiate the efficacy of anticancer drugs (Wang et al., 1996; 
reviewed in Baldwin, 2001; Karin et al., 2002; Yamamoto and Gaynor, 2001). 
Since several signaling molecules and posttranslational modifications are necessary 
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to mediate NF-κB activation, different steps in the pathway can be used as potential 
therapeutic targets. One of them involves suppression of the proteasome-dependent 
degradation of IκBα. The proteasome inhibitor Velcade/bortezomib is currently 
used for the treatment of advanced multiple myeloma (also see Chapter 12) and 
also shows promise in preclinical models of breast, colon, lung, prostate, and pan-
creatic cancer (reviewed in Kim et al., 2006; Richardson et al., 2004). Since the 
proteasome is involved in the turnover of many cellular factors, Velcade’s effec-
tiveness does not solely derive from inhibition of the NF-κB pathway, as illustrated 
by recent evidence that it can also affect mitochondrial function and blunt activa-
tion of JNK (Landowski et al., 2005; Small et al., 2004). Moreover, its proapoptotic 
effects for melanoma cells do not seem to coincide with widespread inhibition of 
NF-κB, suggesting the need to identify more specific inhibitors of NF-κB
(Fernandez et al., 2005).

Another valuable approach is to target phosphorylation events critical for NF-
κB activation. In this regard, there is a growing inventory of compounds that can 
suppress IKK activity and promote apoptosis in tumor-derived cells (reviewed in 
Kim et al., 2006). A few examples include nonsteroidal anti-inflammatory drugs 
(NSAIDs) like celecoxib, sulfasalazine or aspirin (e.g. Ashikawa et al., 2004; Robe 
et al., 2004; Subhashini et al., 2005; Takada et al., 2004). Incidentally, prolonged 
use of NSAIDs has been linked with a decreased incidence of colon cancer 
(reviewed in Li et al., 2005). Thalidomide and arsenic, respectively show efficacy 
in combined therapy for relapsed or refractory multiple myeloma, and in the treat-
ment of acute promyelocytic leukemia (reviewed in Kim et al., 2006; Mathas et al., 
2003). However, since the activity of these agents is not selective for NF-κB, there 
is a great deal of interest in identifying small molecule inhibitors specific for IKK 
subunits. Among them, the β-carboline derivative PS-1145 was shown to specifi-
cally kill ABC- DLBCL and PMBL-derived tumor cell lines that rely on NF-κB for 
growth and survival (Lam et al., 2005). Other specific and potent IKK inhibitors 
are undergoing preclinical testing. These include the quinazoline analogue SPC839 
and the imidazoquinoxaline derivative BMS-345541 (reviewed in Karin et al., 
2004). Their safety and effectiveness in combination therapy is currently under 
investigation (reviewed in Nakanishi and Toi, 2005).

Lately, there has been a significant new development in the quest to identify new 
molecular targets critical for the pathogenesis of NF-κB-associated cancers. Using 
an inducible RNA interference library to identify genes important for tumor cell 
proliferation and apoptosis resistance, Staudt’s group uncovered that CARD11/
CARMA1 is responsible for the constitutive activation of IKK in ABC-DLBCL-
derived tumor cells (Ngo et al., 2006). CARD11/CARMA1 lies downstream of the 
BCR and TCR and engages MALT1 and BCL10 to promote ubiquitination of 
IKKγ/NEMO. This new finding opens the possibility to develop strategies to inhibit 
signaling by CARD11, an approach that may have limited side effects since 
CARD11 expression is restricted to lymphoid cells. Moreover, the work provides 
compelling evidence that RNA interference screens might be particularly useful to 
uncover new therapeutic targets that are crucial for tumor cell survival and prolif-
eration (Ngo et al., 2006).
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Although compounds that suppress NF-κB activity offer promising avenues to 
antagonize tumor development or progression and to enhance the efficacy of exist-
ing therapeutic agents, it is important to remember that NF-κB can be proapoptotic 
in certain cell types and in response to certain stimuli. This suggests that the partic-
ular cell context may be important for the therapeutic outcome. For example, the 
chemotherapeutic drug doxorubicin triggers apoptosis in colon cancer cells by 
activating NF-κB (Ashikawa et al., 2004), but others found that NF-κB protects 
HeLa cells from apoptosis induced by this agent (Baldwin, 2001; Nakanishi and 
Toi, 2005). The tumor suppressor activity of NF-κB in the epidermis is another 
consideration, as a possible adverse effect of long-term inhibition of NF-κB might 
be an increased susceptibility to develop certain tumors associated with suppres-
sion of NF-κB, such as SCC. Lastly, recent work indicating that certain chemo-
therapeutic drugs can convert RelA into a transcriptional repressor of antiapoptotic 
genes suggests that the response of tumor cells to particular chemotherapeutic regi-
mens may differ significantly depending on the tumor type, the status of endog-
enous tumor suppressors, and the stage of tumor development (Perkins, 2004; 
Perkins and Gilmore, 2006). Ongoing efforts to clarify the mechanisms that govern 
the anti- vs pro-death effects of NF-κB in different cell contexts will certainly be 
very informative to help predict the impact of NF-κB inhibition in different tumor 
cell contexts and the outcome of therapy.
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Abstract The Ubiquitin-proteasome pathway (UPP) regulates normal intracellular 
protein degradation processes essential for cell cycle progression, inflammation, 
transcription, DNA replication, and apoptosis. Blockade of UPP using proteasome 
inhibitor Bortezomib (Velcade) is an effective therapy for relapsed/refractory mul-
tiple myeloma (MM). Both oligonucleotide microarrays and proteomic studies are 
delineating the molecular mechanisms mediating Bortezomib-induced cytotoxicity, 
defining targets of sensitivity vs resistance, allowing for the development of next 
generation therapies, and providing the rationale for combination therapies.

Keywords proteasomes, apoptosis, drug resistance, myeloma

1 Introduction

The proteasome is a multisubunit complex with catalytic activities mediating 
 proteolysis of ubiquitinated intracellular proteins (Adams, 2004; Goldberg and 
Rock, 2002) The 26S proteasome complex consist of 19S units flanking a barrel-
shaped 20S proteasome core; the 19S units regulate entry only of those proteins 
marked for degradation into the 20S core chamber (Adams, 2004; Goldberg and 
Rock, 2002). Proteasomal protein degradation is a multistep process: protein is first 
earmarked with a chain of ubiquitin molecules; E1 ubiquitin enzyme then activates 
ubiquitin and links it to the ubiquitin-conjugating enzyme E2 in an ATP-dependent 
manner; E3 ubiquitin ligase then links the ubiquitin molecule to the protein; a long 
 polypeptide chain of ubiquitin moieties is formed; and finally, proteasomes degrade 
the protein into small fragments and free ubiquitin for recycling (Goldberg and 
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Rock, 2002; Pickart, 2004). Protein degradation is predominantly regulated by 
 caspase-like (CT-L) (beta-5), trypsin-like (beta-1), and caspase-like (beta-2) 
 proteolytic activities residing within the 20S proteasome core. Importantly, the 
substrates of proteasomes include many cellular proteins that maintain normal cell 
cycle progression, growth, and survival. Most of the damaged or misfolded, short 
or long-lived, proteins in the cell are eliminated by UPP; conversely, blockade of 
protein degradation by proteasome inhibitors (PIs) causes intracellular accumula-
tion of redundant proteins, resulting in induction of heat-shock response and 
 apoptosis (Adams, 2004; Goldberg and Rock, 2002).

Since the proteasome regulates normal cellular functions, its value as a possible 
therapeutic target was viewed with skepticism due to cytotoxicity to normal cells. 
However, various studies suggest that PIs are more cytotoxic to proliferating malig-
nant cells than quiescent normal cells, thereby providing an acceptable therapeutic 
index (Adams, 2004). The mechanism whereby cancer cells are more susceptible 
to PIs than normal cellular counterparts is unclear. One possibility is that cancer 
cells have altered cell cycle machinery, leading to an increase in their proliferation 
rate. These cells therefore accumulate damaged proteins at a much higher rate than 
do normal cells, which in turn increases dependency on proteasomal degradation. 
In contrast, quiescent cancer cells may be more susceptible to proteasome  inhibition 
than normal cells. PIs also inhibit prosurvival signaling pathways. For example, 
nuclear factor-kappa B (NF-κB) is linked to proliferation and drug resistance in 
cancer cells (Haefner, 2002); conversely, PIs downregulate NF-κB activation, 
thereby enhancing the cytotoxic effects of chemotherapy. Together, these findings 
support the notion of targeting proteasomes in novel therapeutics.

Naturally occurring and synthetic inhibitors of the ubiquitin-proteasome 
 pathway (UPP) include peptide aldehydes, peptide boronates, nonpeptide  inhibitors, 
peptide vinyl sulfones, and peptide epoxyketones (Adams, 2004). All of these PIs 
differentially affect proteasome activities and also show activity against other 
 proteases. For example, peptide aldehydes (MG-132, MG-115, ALLN, or PSI) 
potently, but reversibly, block the chymotrypsin-like (CT-L) (beta-5) activity of 
the proteasome; they also inhibit lysosomal cysteine and serine proteases, as well 
as calpains, thereby limiting their clinical utility. Lactacystin is a natural, irreversi-
ble, nonpeptide inhibitor; the clasto-lactacystin beta-lactone, an analog of its active 
metabolite, is currently in phase I clinical trails. Importantly, studies by Adams et al.
led to the development of peptide boronic acid PIs (Adams, 2004). The  dipeptidyl 
boronic acid Bortezomib/PS-341 is a potent and reversible inhibitor of CT-L (beta-5) 
activity. Moreover, our recent study using radiolabeled active site-directed probe 
specific for proteasome catalytic subunits showed that Bortezomib targets beta-5 
(CT-L activity) and beta-1 (C-L activity), as well as beta-5i and beta-1i catalytic 
subunits of the immunoproteasome (Berkers et al., 2005). Initial NCI screening 
showed remarkable antitumor activity of Bortezomib in a panel of 60 tumor cell 
lines. We have shown that Bortezomib induces MM cell apoptosis, downregulates 
adhesion molecules, inhibits constitutive and MM cell adhesion-induced cytokine 
secretion, and blocks angiogenesis in the BM milieu (Chauhan et al., 2005b). It also 
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inhibits human MM cell growth and prolongs host survival in a severe combined 
immunodeficient (SCID) mouse model of human MM (Chauhan et al., 2005b). 
Phase I trials showed safety and acceptable toxicity, as well as early signs of anti-
MM activity (Richardson, 2004; Voorhees and Orlowski, 2006) Phase II clinical 
trails demonstrated durable responses (including complete responses) with 
 associated clinical benefits, providing the basis for the Food and Drug Administration 
(FDA) approval to treat relapsed refractory MM (Richardson, 2004). A randomized 
phase III trial showed higher responses as well as prolonged time to progression 
and survival in patients treated with Bortezomib vs Dexamethasone (Richardson 
et al., 2005), providing the basis for FDA approval extended to include relapsed 
MM. Although Bortezomib is a major advance, treatment is associated with  toxicity 
and the development of drug-resistance in most patients. Recent studies have there-
fore delineated the mechanisms mediating Bortezomib-induced cytotoxicity and 
drug resistance, in order to design novel therapeutic strategies.

2 Bortezomib-Triggered Signaling Pathways

The proteasome is the primary target of PIs; however, PIs also affect growth/ 
survival and apoptotic molecules. A major mechanism whereby PIs inhibit growth 
and survival of cancer cells is by blocking prosurvival NF-κB signaling (Adams, 
2004). Constitutive activation of NF-κB, associated with growth/proliferation and 
drug resistance, occurs via these sequential events: IκB-a kinase (IKK) activation; 
IκB phosphorylation; ubiquitination and degradation of IκB; and nuclear 
 translocation of p50/65 NF-κB. Nuclear localization of NF-κB induces transcrip-
tion of genes-encoding cytokines (IL-6, TNF-α), survival factors (inhibitors of 
apoptosis proteins [IAPs], Bcl-x

L
), and cell adhesion molecules (intracellular 

adhesion molecule [ICAM], vascular cell adhesion molecule [VCAM], and 
E-selectin). NF-κB activation is also associated with growth and survival of MM 
cells; specifically, adhesion of MM cells to bone marrow stromal cells (BMSCs) 
triggers NF-κB-mediated transcription and secretion of IL-6 and insulin-like 
growth factor-I (IGF-I) (Chauhan et al., 2005b), both of which promote survival 
and conventional drug resistance in MM cells in the BM milieu. Moreover, patient 
MM cells and BMSCs have upregulated NF-κB activity relative to normal cells; 
within the tumor cell population, drug-sensitive MM cells have lower NF-κB
activity than drug-resistant MM cells. Importantly, treatment of MM cells with 
Bortezomib inhibits NF-κB activation and related cytokine production, thereby 
overcoming the survival advantage for MM cells conferred by BMSCs. Our work 
also shows that NF-κB inhibition alone is unlikely to account for the total anti-
MM activity of Bortezomib. Both PS-1145, a specific inhibitor of IκB, and 
Bortezomib block TNF-α-induced NF-κB activation by inhibiting  phosphorylation 
and degradation of IκB-α; in contrast to Bortezomib, however, PS-1145 only 
 partially inhibits MM cell growth (Hideshima et al., 2002).
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Recent oligonucleotide microarray and proteomic studies show that Bortezomib 
affects various signaling pathways (Figure 12.1). For example, Bortezomib-induced 
apoptosis is associated with: (1) activation of stress response proteins such as heat 
shock proteins, Hsp-27, Hsp-70, and Hsp-90 (Chauhan et al., 2003; Mitsiades et al., 
2002); (2) upregulation of proapoptotic c-Jun-NH2-terminal kinase (JNK) (Chauhan 
and Anderson, 2003); (3) alteration of mitochondrial membrane potential (MMP) 
and generation of reactive oxygen species (ROS); (4) induction of the intrinsic cell 
death pathway via the release of mitochondrial proteins cytochrome-c/Smac into 
cytosol, resulting in activation of caspase-9 > caspase-3 cascade; (5) activation of 
extrinsic apoptotic signaling through Bid and caspase-8 cleavage (Mitsiades et al., 
2002); (6) upregulation of ubiquitin/proteasome pathway members (Mitsiades 
et al., 2002); (7) inactivation of DNA-dependent protein kinase (DNA-PK) 
(Mitsiades et al., 2003), which is essential for the repair of DNA double-strand 
breaks; and (8) inhibition of MM cell growth factor-triggered MAPK and PI3-
kinase/Akt signaling (Hideshima et al., 2003). Our studies using dominant negative 
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Fig. 12.1 Identification of Bortezomib/Velcade/PS-341-triggered molecular mechanisms mediat-
ing growth/survival, apoptosis, and drug resistance in tumor cells, including host-BM microenvi-
ronment and angiogenesis (“↑” arrow: induction/upregulation; “↓” arrow: reduction
/inhibition/downregulation). Delineation of the Bortezomib signaling profile allow us to combine 
it with agents that utilize either similar or additional apoptotic pathways to enhance its tumor 
cytotoxicity, reduce toxicity to normal cells, prevent development of drug-resistance, and improve 
patient outcome. Shown are the ongoing therapeutic strategies in MM using the combination of 
Bortezomib with various conventional and novel agents
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strategies and knockout cell line models have established a direct role for JNK and 
Bax/Bak during Bortezomib-induced apoptosis (Chauhan et al., 2005b). Stress 
stimuli that induce mitochondrial outer membrane permeabilization (MOMP) use 
BH3-only proteins to facilitate Bax/Bak translocation to mitochondria; treatment of 
various cell types with Bortezomib induces stabilization of the BH3-only proteins 
Bim and Bik, whereas Bik or Bim and Bik-deficient MEFs are less susceptible to 
Bortezomib-induced killing. Moreover, Ca2+ influx into mitochondria triggers cyto-c 
and caspase-9-mediated apoptosis; conversely, treatment of MM cells with 
 mitochondrial Ca2+ uptake inhibitor abrogates Bortezomib-triggered apoptosis 
(Landowski et al., 2005). These findings suggest that Bortezomib also affects 
 signaling events upstream of mitochondria.

Recent studies link endoplasmic reticulum (ER)-related stress signaling to 
Bortezomib-induced death in MM cells (Landowski et al., 2005; Mitsiades et al., 
2002). Oligonucleotide microarrays show a predominant induction of gene  products 
associated with endoplasmic reticulum secretory pathways in MM cell lines  following 
short-term exposure to high-dose Bortezomib (Landowski et al., 2005). Bortezomib 
triggers: expression of proteins associated with ER secretory pathways; activation of 
ER-resident caspase-12; and dysregulation of Ca2+ homeostasis, thereby resulting in 
cell death. Specifically, Bortezomib activates ER membrane-resident stress kinase 
PERK, accompanied by steady-state levels of ER protein-folding chaperone GRP-78; 
as well as proapoptotic ATF-4 and CHOP/GADD153, coupled with a simultaneous 
decrease in general protein synthesis. Another study in head and neck squamous cell 
carcinoma cells suggests that Bortezomib enhances efficacy of chemotherapeutic 
drugs via activation of the proapoptotic ER stress-ROS pathway (Fribley et al., 2004). 
Both caspase-12 and caspase-4 have been implicated in ER stress-induced apoptosis; 
however, neither caspase-12 nor caspase-4 are required for ER stress-induced 
 apoptosis (Obeng and Boise, 2005), and it remains unclear how ER stress causes 
 caspase activation. Nonetheless, Bortezomib-induced apoptosis involves  activation 
of ER-related stress pathways, including activation of caspase-12. Together, these 
findings suggest that inhibition of growth/survival signaling cascades and concurrent 
activation of apoptotic signaling pathways mediate overall Bortezomib-induced 
 cytotoxicity in MM cells.

Although Bortezomib triggers remarkable antitumor activity in MM cells, intrinsic 
or acquired drug resistance occurs in most cases. Recent studies have therefore 
focused on defining mechanisms mediating Bortezomib resistance. Our study shows 
that treatment with Bortezomib induces apoptosis in SUDHL6 (DHL6), but not 
SUDHL4 (DHL4), lymphoma cells (Chauhan et al., 2003). Microarray analysis 
 demonstrates high RNA levels for heat shock protein-27 (Hsp27) in DHL4 vs DHL6 
cells, correlating with increased Hsp27 protein expression. Blockade of Hsp27 in 
DHL-4 cells using antisense (AS) strategy restores the apoptotic response to 
Bortezomib; conversely, overexpression of Hsp27 renders Bortezomib-sensitive 
DHL6 cells resistant to Bortezomib. These data suggest that Hsp27, at least in part, 
accounts for Bortezomib resistance. MM cells obtained from patient’s refractory to 
Bortezomib treatment show elevated Hsp-27 levels, further supporting this view. Of 
note, Hsp-27 negatively regulates the mitochondrial release of cytoc-c and Smac, 
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thereby preventing activation of intrinsic cell death-signaling cascade. Upregulated 
expression of IAPs, such as XIAP, may also  contribute to Bortezomib resistance 
(Mitsiades et al., 2002); conversely, inhibition of these prosurvival molecules may 
sensitize tumor cells to Bortezomib and even overcome Bortezomib resistance.

3 Therapeutic Implications

It is unlikely that one specific mechanism accounts for Bortezomib-induced 
 cytotoxicity or the development of resistance, suggesting that combinations of 
Bortezomib with other conventional and/or novel agents may enhance its cytotoxicity 
and overcome drug resistance. For example, combined Bortezomib and irinotecan 
treatment triggers apoptosis in pancreatic tumor xenografts and enhances chemosen-
sitivity in colorectal cancer xenograft models (Cusack et al., 2001). Preclinical studies 
in MM demonstrate that combining Bortezomib with conventional agents such as 
Dex, Doxorubicin, Melphalan, or Mitoxantrone induces additive or  synergistic 
 antitumor activity (Mitsiades et al., 2003). Treatment of MM cells with Bortezomib 
and novel agents Relvimid or triterpenoids CDDO-Imidazolide also induces synergis-
tic anti-MM activity and overcomes Bortezomib resistance by targeting both intrinsic 
and extrinsic apoptotic signaling, thereby providing the basis for clinical protocols 
using combination regimens. Importantly, gene profiling  studies show that Bortezomib 
induces Hsp-90 in MM cells; conversely, blockade of Hsp-90 with 17-AAG enhances 
sensitivity and even overcomes Bortezomib  resistance (Mitsiades et al., 2002). 
Clinical trials already show promise of  combined therapy in Bortezomib refractory 
MM. Our laboratory has recently demonstrated the significance of the alternative 
aggresome cascade for protein catabolism in MM cells; identified histone deacety-
lase-6 (HDAC-6) to be essential in the chaperoning of ubiquitinated proteins for 
aggresomal degradation; and validated the preclinical anti-MM activity of HDAC-6 
inhibitor Tubacin (Hideshima et al., 2005). Importantly, dual inhibition of proteas-
omes and aggresomes with Bortezomib and tubacin, respectively, triggers synergistic 
cytotoxicity, setting the stage again for clinical translation of this new class of cancer 
therapeutics. Finally, correlative  science studies of samples from patients on 
Bortezomib treatment protocols show that resistance is associated with upregulation 
of Hsp-27; already preclinical and clinical studies of p38 MAPK inhibitors to down-
regulate Hsp-27 and thereby overcome Bortezomib resistance have been completed.

4  Novel Proteasome Inhibitor Npi-0052 and its Clinical Utility 
Vis-À-Vis Bortezomib

Besides the combination therapeutic strategies, our recent study also shows that a 
novel proteasome inhibitor NPI-0052 can overcome Bortezomib resistance in MM 
cells. NPI-0052 is a small molecule derived from fermentation of Salinospora, a 
new marine gram-positive actinomycete (Chauhan et al., 2005a; Feling et al., 2003; 



12 Proteasome Inhibitors: Mode-of-Action 257

Macherla et al., 2005). NPI-0052 is a nonpeptide PI with structural similarity to 
Omuralide (Feling et al., 2003; Groll et al., 2006; Macherla et al., 2005), a beta-
lactone derived from naturally occurring lactacystin. NPI-0052, in contrast to 
Omuralide, possess a uniquely methylated C3 ring juncture, chlorinated alkyl group 
at C2, and cyclohexene ring at C5 (Macherla et al., 2005), which accounts for its 
higher antitumor activity than omuralide. Initial screening of NPI-0052 against the 
NCI panel of 60 tumor cell lines showed GI

50
 of <l10 nM in all cases. Our data 

showed that (1) NPI-0052 triggers apoptosis in MM cells sensitive and resistant not 
only to conventional, but also to Bortezomib therapies; and (2) The IC

50
 of NPI-

0052 for MM cells is within the low nanomolar concentration (Chauhan et al., 
2005a). Importantly, NPI-0052 similarly triggered apoptosis in purified tumor cells 
from several MM patients relapsing after various prior therapies including 
Bortezomib and thalidomide.

The mechanism whereby NPI-0052 overcomes Bortezomib resistance in MM 
cells is unclear; however, this may be due to its differential mode of action than 
Bortezomib. For example, NPI-0052 and Bortezomib differentially affect 20S 
 proteasomal activities: (1) NPI-0052 inhibits CT-L and T-L activities at much lower 
concentrations than Bortezomib, and (2) higher concentrations of NPI-0052 than 
Bortezomib are required to inhibit C-L activity (Chauhan et al., 2005a). Animal 
studies using whole blood lysates showed that NPI-0052 blocked CT-L activity, 
which was recoverable to near basal levels by day 7; whereas inhibition of CT-L 
activity is significantly restored at 24 h after Bortezomib. NPI-0052 inhibits 50% of 
T-L activity, which is restored by day 7; whereas Bortezomib enhances T-L activity, 
which remains upregulated even at day 7. Interestingly, both NPI-0052 and 
Bortezomib inhibited C-L activity, which recovered only at day 7. The comparative 
kinetics of proteosomal activities suggest that NPI-0052, in contrast to Bortezomib, 
triggers a sustained inhibition of CT-L, T-L, and C-L (up to 7 days), which may 
therefore allow for a less-frequent administration schedule in patients. In this 
 context, previous studies showed that CT-L activity is inhibited in peripheral blood 
cells of patients within 1 h of Bortezomib administration, and recoverable before 
the next dose (Adams, 2002; Hamilton et al., 2005).

A recent study showed that simultaneous inhibition of multiple proteasome 
activities is a prerequisite for significant (i.e., >50%) proteolysis (Kisselev et al., 
2006). Another study showed that 50% inhibition of cystic fibrosis  transmembrane 
conductance regulator degradation in reticulocytes extracts required concurrent 
blockade of CT-L and C-L proteasome activities (Oberdorf et al., 2001). Importantly, 
our study showed that MM cells exhibit higher constitutive levels of T-L  proteasome
activity than either CT-L or C-L activities (Crawford et al., 2006). These data, 
together with the results that NPI-0052, but not Bortezomib, efficiently inhibits 
CT-L + T-L activities (Chauhan et al., 2005a), suggest that NPI-0052 may block 
more protein breakdown than Bortezomib in MM cells. Moreover, mechanisms 
conferring Bortezomib resistance may not be effective against NPI-0052. 
Importantly, our study suggests that NPI-0052 is a potent inducer of MM cells 
apoptosis in tumor cells obtained from Bortezomib- refractory MM patients.

Another distinction between NPI-0052 and Bortezomib is their toxicity profile 
against normal cells. NPI-0052 does not significantly decrease normal lymphocyte 
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viability at the IC
50

 doses for MM cells, with only modest effects at higher 
concentrations. By contrast, Bortezomib decreased the survival of  lymphocytes 
at concentrations close to the IC

50
 doses for MM cells. NPI-0052 inhibits CT-L 

activity at doses which does not trigger apoptosis in MM cells. Previous observa-
tions that Bortezomib inhibits 20S proteasome activity in murine WBCs at 1 h 
postinjection, and that a similar degree of proteasome inhibition was noted in 
blood from responders vs nonresponders to Bortezomib therapy (Adams, 2002; 
Richardson, 2004), suggest that inhibition of proteasome activity in blood may 
not correlate to tumor cell cytotoxicity. Nonetheless, the above data suggest that 
(1) NPI-0052, in contrast to Bortezomib, is likely to have less toxic effects than 
Bortezomib on normal cells; and (2) NPI-0052 has a larger therapeutic index, 
which may allow for dose escalation therapy.

In vivo efficacy of NPI-0052 was shown using a human plasmacytoma xenograft 
mouse. Model (LeBlanc et al., 2002). Specifically, NPI-0052 inhibited MM tumor 
growth and prolongs survival of these mice at concentrations which were well tolerated 
and without significant weight loss or any neurological behavioral changes. Analysis at 
day 300 showed no recurrence of tumor in 57% of NPI-0052-treated mice.

Examination of signal transduction pathways showed that (1) NPI-0052 is a 
more potent inhibitor of NF-κB and related cytokine transcription and secretion 
than Bortezomib; (2) NPI-0052-induced MM cell death is predominantly mediated 
by caspase-8; and (3) Bortezomib-induced apoptosis requires both caspase-8 and 
caspase-9 activation. These findings further confirm differential actions of NPI-
0052 vs Bortezomib in MM cells. The mechanistic differences between NPI-0052 
and Bortezomib, i.e., their effect on proteasome activities and their dependence on 
specific apoptotic signal transduction pathway, provide a rationale for combination 
regimens for the treatment of MM. Indeed, the combination of NPI-0052 with 
Bortezomib induced synergistic anti-MM activity, without significantly affecting 
the viability of normal lymphocytes. The mechanisms mediating enhanced cytotox-
icity of the combination regimen may simply reflect higher levels of proteasome 
inhibition with the two-drug regimens and/or activation of differential apoptotic 
signaling pathways. These data provide the framework for clinical trials of com-
bined PIs to improve patient outcome in MM.
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Chapter 13
Histone Deacetylase Inhibitors: Mechanisms 
and Clinical Significance in Cancer

HDAC Inhibitor-Induced Apoptosis

Sharmila Shankar and Rakesh K. Srivastava*

Abstract Epigenic modifications, mainly DNA methylation and acetylation, 
are recognized as the main mechanisms contributing to the malignant pheno-
type. Acetylation and deacetylation are catalyzed by specific enzymes, histone 
acetyltransferases (HATs) and histone deacetylases (HDACs), respectively. While 
histones represent a primary target for the physiological function of HDACs, the 
antitumor effect of HDAC inhibitors might also be attributed to transcription-
independent mechanisms by modulating the acetylation status of a series of non-
histone proteins. HDAC inhibitors may act through the transcriptional reactivation 
of dormant tumor suppressor genes. They also modulate expression of several other 
genes related to cell cycle, apoptosis, and angiogenesis. Several HDAC inhibitors 
are currently in clinical trials both for solid and hematologic malignancies. Thus, 
HDAC inhibitors, in combination with DNA-demethylating agents, chemopreven-
tive, or classical chemotherapeutic drugs, could be promising candidates for cancer 
therapy. Here, we review the molecular mechanisms and therapeutic potential of 
HDAC inhibitors for the treatment of cancer.

Keywords HDAC inhibitors, HAT, SAHA, MS-275, TSA, TRAIL, apoptosis, 
caspase

1 Introduction

Recent years have seen major advances in elucidating the complexity of chromatin 
and its role as an epigenetic regulator of gene expression in eukaryotes. Epigenic 
modifications, mainly DNA methylation and acetylation, are recognized as additional
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mechanisms contributing to the malignant phenotype (Jones, 2002; Plass, 2002). 
Acetylation and deacetylation of histones play an important role in the regulation 
of gene expression (Grunstein, 1997). Histone acetylation is a reversible process 
whereby histone acetyltransferase (HAT) transfers the acetyl moiety from acetyl 
coenzyme A to the lysine; histone deacetylase (HDAC) removes the acetyl groups, 
reestablishing the positive charge in the histones. HATs and HDACs have recently 
been shown to regulate cell proliferation, differentiation, and apoptosis in various 
hematological and solid malignancies (Kouzarides, 1999). Altered HAT or HDAC 
activity is associated with cancer by changing the expression pattern of selected 
genes (Grignani et al., 1998; Lin et al., 1998). Hyperacetylation of histones corre-
lates with gene activation, whereas deacetylation mediates eukaryotic chromatin 
condensation and gene expression silencing (Johnstone and Licht, 2003; Strahl and 
Allis, 2000). Recently, new roles of histone acetylation have been uncovered, not 
only in transcription, but also in DNA replication, repair, and heterochromatin for-
mation (Kurdistani and Grunstein, 2003).

2 Histone Deacetylases

HDACs catalyze the removal of an acetyl group from the ε-amino group of lysine 
side chains of the core nucleosomal histones (H2A, H2B, H3, and H4), thereby 
reconstituting the positive charge on the lysine. Recent studies have revealed 12 
human HDAC enzymes, HDAC1-11 (Emiliani et al., 1998; Gao et al., 2002; 
Grozinger et al., 1999; Taunton et al., 1996; Yang et al., 1996) and HDAC-A 
(Fischle et al., 1999). Based on the structural properties, HDACs can be divided 
into three classes (Gray and Ekstrom, 2001). Class I members (HDAC 1, 2, 3, 8, 
and 11) are transcriptional corepressors homologous to yeast RPD3 and have a sin-
gle deacetylase domain at the N-termini and diversified C-terminal regions (de 
Ruijter et al., 2003). Class II members (HDAC 4, 5, 6, 7, 9, and 10) have domains 
similar to yeast HDA1 with a deacetylase domain at a C-terminal position (Verdin 
et al., 2003). In addition, HDAC 6 contains a second N-terminal deacetylase 
domain, which can function independently of its C-terminal counterpart. Class III 
HDACs are distinct from class I and II and are homologous of the yeast silent 
information regulator 2 (Sir2). All of these HDACs apparently exist in the cell as 
subunits of multiprotein complexes. Class II HDACs translocate from the cyto-
plasm to the nucleus in response to external stimuli, whereas class I HDACs are 
constitutively nuclear and play important roles in dynamic gene regulation 
(McKinsey and Olson, 2005).

Sir2 enzymes (or sirtuins) are NAD(+)-dependent deacetylases that modulate 
gene silencing, aging, and energy metabolism. Previous work has implicated sev-
eral transcription factors as Sir2 targets. Sir2 silences transcription at silent mating 
loci, telomerese, and ribosomal DNA (rDNA), and this also suppresses recombina-
tion in rDNA. Earlier experiments have shown that the overexpression of Sir2 in 
yeast induced the global deacetylation of histones, indicating that Sir2 was an 
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HDAC (Braunstein et al., 1993). Later, it was shown that cobB, a bacterial homologue 
of Sir2, had ribosyltransferase activity, leading to experiments showing that Sir2 was 
also able to transfer adenosine diphosphate-ribose (ADP-ribose) from nicotinamide 
adeninedinucleotide (NAD) (Frye, 1999). Subsequently, it was confirmed that Sir2 
was an NAD-dependent HDAC (Imai et al., 2000). The ADP-ribosylation of an 
acetylated lysine residue is an intermediate state of the enzymatic reaction catalyzed 
by Sir2. Only class III enzymes use NAD as a cofactor. Therefore, they are known as 
NAD-dependent HDACs.

Recently, Sir2 has attracted much attention, because it is related to longevity 
(Bordone and Guarente, 2005). The overexpression of Sir2 extends the life span of 
budding yeast, while its knockout shortens the life span by about 50% (Kaeberlein 
et al., 1999). Sir2 is conserved from bacteria to humans. In the nematodes, the gene 
most homologous to yeast Sir2 gene is Sir-2.1. A duplication containing the Sir-2.1
gene confers a life span that is extended by up to 50% (Tissenbaum and Guarente, 
2001). The mammalian homologues consist of seven members, Sirt1–Sirt7. In 
mammalian cells, Sirt1 downregulates stress-induced p53 and FOXO pathways for 
apoptosis, thus favoring survival under stress. In the absence of applied stress, Sirt1 
silencing induces growth arrest and/or apoptosis in human epithelial cancer cells 
(Ford et al., 2005). In contrast, normal human epithelial cells and normal human 
diploid fibroblasts seem to be refractory to Sirt1 silencing. Further studies have 
revealed that the Sirt1-regulated pathway is independent of p53, Bax, and caspase-2. 
Alternatively, Sirt1 may suppress apoptosis downstream from these apoptotic fac-
tors. FOXO4 (but not FOXO3) is required as proapoptotic mediator. Caspase-3 and 
caspase-7 act as downstream executioners of Sirt1/FOXO4-regulated apoptosis. 
These data suggest that Sirt1 as a novel target for selective killing of cancer vs 
noncancer epithelial cells. Upregulation of Sirt1 may be a double-edged sword that 
both promotes survival of aging cells and increases cancer risk in mammals.

Histones are part of the core proteins of nucleosomes. The recruitment of HATs 
and HDACs plays an important role in proliferation, differentiation and apoptosis 
(Glass and Rosenfeld, 2000; Kouzarides, 1999). Altered HAT or HDAC activity is 
associated with the development of cancer by changing the expression of several 
genes (Grignani et al., 1998; Lin et al., 1998). Treatment of malignant cells with 
HDAC inhibitors regulates only a small number (1–2%) of genes, as examined by 
DNA microarray studies (Van Lint et al., 1996). HDAC1 interacts directly with 
other transcription repressors, including all three of the pocket proteins, Rb, p107 
and p130, and YY1. HDAC1 causes transcription repression by locally deacetylat-
ing histones, leading to a compact nucleosomal structure that prevents transcription 
factors from accessing DNA to promote transcription. Furthermore, HDAC1 
knockout mice were embryonic lethal, possibly due to a proliferative defect upon 
unrestricted expressions of the cell cycle inhibitors p21WAF1/CIP1 and p27KIP1 (Lagger 
et al., 2002). Overexpression of HDAC I confers resistance to sodium butyrate-
mediated apoptosis in melanoma cells through a p53-mediated pathway 
(Bandyopadhyay et al., 2004). We and others have shown that inhibition of HDAC 
activity induces apoptosis in various types of cancer (Fandy et al., 2005; Fang, 
2005; Marks et al., 2003; Rosato et al., 2001; Singh et al., 2005).
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Stability of HDACs is an important factor in determining the biological activity. 
HDAC4 is unusually unstable, with a half-life of less than 8 h (Liu et al., 2004). 
Consistent with the instability of HDAC4 protein, its mRNA was also highly 
unstable (with a half-life of less than 4 h). The exposure of cells to ultraviolet 
(UV) irradiation resulted in the degradation of HDAC4. This degradation was not 
dependent on proteasome or CRM1-mediated export activity but instead was 
caspase-dependent and was detectable in diverse human cancer lines. Of two 
potential caspase consensus motifs in HDAC4, both lying within a region con-
taining proline, glutamic acid-, serine-, and threonine-rich (PEST) sequences, 
Asp-289 as the prime cleavage site was identified by site-directed mutagenesis 
(Liu et al., 2004). Notably, this residue is not conserved among other class IIa 
members, HDAC5, HDAC7, and HDAC9. Finally, the induced expression of 
caspase-cleavable HDAC4 led to markedly increased apoptosis. These results 
therefore link the regulation of HDAC4 protein stability to caspases, enzymes 
that are important for controlling cell death and differentiation.

3 Histone Deacetylase Inhibitors

It is well established that hyperacetylation of the N-terminal tails of histones H3 and 
H4 correlates with gene activation, whereas deacetylation mediates transcriptional 
repression (Strahl and Allis, 2000). Revived interest in these enzymatic pathways 
and how they modulate eukaryotic transcription has led to the identification of mul-
tiple cofactors whose complex interplay with HDAC affects gene expression. 
Concurrent with these discoveries, screening of natural product libraries yielded 
new small molecules that were subsequently identified as potent inhibitors of 
HDAC. While predominantly identified by using antiproliferative assays, the bio-
logical activity of these new HDAC inhibitors also encompasses significant antipro-
tozoal, antifungal, phytotoxic, and antiviral applications. During the past decade, a 
number of HDAC inhibitors have been shown to induce growth arrest, differentia-
tion, and/or apoptosis in cancer cells (Boyle et al., 2005; Fandy et al., 2005; Kwon 
et al., 2002b; Marks et al., 2004; Singh et al., 2005), and inhibit tumor growth in 
various xenograft models (Bordin et al., 2004; Butler et al., 2000; Park et al., 2004; 
Sakajiri et al., 2005; Shao et al., 2004; Takimoto et al., 2005; Tang et al., 2004; 
Zhang et al., 2004c). HDAC inhibitors induce expression of cell cycle regulatory 
(e.g., p21/WAF1/CIP1) and apoptotic proteins (e.g., Bax, PUMA, and Noxa), downregu-
late survival signaling pathways (e.g., Raf/MAPkinase/ERK), and disrupt cellular 
redox state (e.g., reactive oxygen species, ROS). Therefore, HDAC inhibitors are 
considered candidate drugs in cancer therapy (Johnstone, 2002; Marks et al., 2001b; 
McLaughlin and La Thangue, 2004).

Seven classes of HDAC inhibitors have been characterized and include short-
chain fatty acids (e.g., sodium butyrate and phenylbutyrate); hydroxamic acids (e.g., 
suberoylanilide hydroxamic acid [SAHA], LAQ824, and trichostatin A [TSA]); ben-
zamides (e.g., MS-275, CI994); cyclic tetrapeptide containing a 2-amino-8-oxo-9,
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10-epoxy-decanoyl (AOE) moiety (e.g., trapoxin A); cyclic peptides without the 
AOE moiety (e.g., FK228/depsipeptide, apicidin); and epoxides (e.g., depudecin). 
These inhibitors induce a dose-dependent inhibition of either class I or class II 
HDACs, or both. Newly characterized HDAC inhibitors are now available that 
preferentially inhibit specific HDAC classes, including SK7041 (inhibits class I 
HDACs) and splitomicin (inhibits class III HDACs). A wide variety of HDAC 
inhibitors of both natural and synthetic origin has been reported. Except for dep-
sipeptide (FK228), natural HDACs (TSA, depudecin, trapoxins, and apicidins), as 
well as sodium butyrate, phenylbutyrate, and SAHA, while effective in vivo, are 
marked by instability and low retention. Subsequently, synthetic analogs isolated 
from screening libraries (oxamflatin, scriptaid) were discovered as having a com-
mon structure with TSA and SAHA: a hydroxamic acid zinc-binding group linked 
via a spacer (5 or 6 CH2) to a hydrophobic group. Second-generation HDAC 
inhibitors such as LAQ824 and PDX101 are currently under clinical trials. 
Synthetic benzamide-containing HDAC inhibitors (e.g., MS-275 and CI-994) are 
also being evaluated in the clinics.

3.1 Short-Chain Fatty Acid

Butyrate inhibits HDAC activity at micromolar concentrations. It is generated by 
the fermentation of dietary fibers in the lumen of the large intestine. The aromatic 
fatty acids phenylbutyrate and phenylacetate, which has been used to treat patients 
with disorders of urea metabolism, also inhibits HDAC activity and possess anti-
cancer activity (Appelskog et al., 2004; Boivin et al., 2002; Pili et al., 2001; Sowa 
and Sakai, 2000; Warrell et al., 1998; Zhang et al., 2004a). Valproic acid (VPA), 
an anticonvulsant, has been shown to have HDAC inhibitory activity at relatively 
high concentrations (Catalano et al., 2005; De Felice et al., 2005; Facchetti et al., 
2004; Sakajiri et al., 2005; Shen et al., 2005; Takai et al., 2004a). VPA also inhibits 
angiogenesis, but displays no toxicity in endothelial cells (Michaelis et al., 2005). 
VPA increases extracellular signal-regulated kinase 1/2 (ERK 1/2) phosphorylation 
in human umbilical vein endothelial cells. Moreover, the combination of VPA with 
PD98059, a pharmacological inhibitor of the mitogen-activated protein kinase 
kinase 1/2, synergistically inhibited angiogenesis in vitro and in vivo.

3.2 Hydroxamic Acids

Essential characteristics of hydroxamic acid-based inhibitors are the polar hydroximic 
group – a six-carbon hydrophobic methylene spacer, a second polar site, and a ter-
minal hydrophobic group. TSA from Streptomyces hygroscopicus was initially 
identified as an antifungal agent (Tsuji et al., 1976). TSA and SAHA act as noncom-
petitive inhibitor of HDAC by mimicking the lysine substrate as well as chelating a 
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zinc atom crucial for enzymatic activity (Yoshida et al., 1990b). TSA and SAHA 
inhibit both class I and II HDACs. Simple analogs of cyclic tetrapeptides that con-
tain suberic acid linkers and hydroxamate, instead of epoxyketone or ketone func-
tional group, inhibit HDAC activity (Hoffmann et al., 2000). The structurally 
related hybrid polar compounds (HPCs) were shown to induce differentiation in a 
wide variety of transformed cells (Marks et al., 1996). The first representative was 
hexamethylene bisacetamide (HMBA) which induced differentiation of trans-
formed cells in millimolar range (Marks and Rifkind, 1988). HMBA regulates 
genes that control G1-to-S phase transition, leading to G1 arrest and inhibition of 
DNA synthesis. Among the inducer-mediated changes, suppression of cyclin-
dependent kinase cdk4, which may be required for phosphorylation of the retino-
blastoma protein pRB and perhaps p107, is critical in the pathway of terminal 
differentiation. HMBA induces an increase in the level of p21WAF1/CIP1 which inhib-
its cyclin-dependent kinase activity and, in turn, may cause cells to arrest in G1. 
p107 complexes with transcription factor E2F, which may alter E2F-dependent 
gene transcription. HMBA has also been shown to induce differentiation of neo-
plastic cells in patients. Furthermore, a second generation of HPCs have been syn-
thesized which are up to 1,000-fold more potent than HMBA. Second-generation 
HPCs such as oxamflatin, SAHA, suberic bishydroxamic acid (SBHA), and 
m-carboxycinnamic acid bishydroxamide (CBHA) inhibited HDAC activity and 
induced cancer cell differentiation and apoptosis (Richon et al., 1998; Shankar et al., 
2005b). Polyaminohydroxamic acids (PAHAs) represent an important new chemi-
cal class of HDAC inhibitors and appear to be more specific than SAHA, TSA, and 
MS-275, because they are selectively directed to chromatin and associated histones 
by the positively charged polyamine side chain. Several other analogs of 
hydroxamic acids are being developed (Hoffmann et al., 2000; Qiu et al., 2000).

These HDAC inhibitors inhibits proliferation, causes cell cycle arrest, and 
induces differentiation and/or apoptosis in numerous models of lymphoma, leuke-
mia, multiple myeloma, and solid tumors (Fandy et al., 2005; Fronsdal and 
Saatcioglu, 2005; Inoue et al., 2002; Monneret, 2005; Shankar et al., 2005b; 
Taghiyev et al., 2005; Toth et al., 2004; Tsatsoulis, 2002; Vanhaecke et al., 2004a; 
Vanhaecke et al., 2004b; Wang et al., 2002; Yamashita et al., 2003). TSA is also 
effective in xenograft models (Canes et al., 2005; Touma et al., 2005). TSA attenu-
ates the development of allergic airway inflammation by decreasing expression of 
the Th2 cytokines, IL-4 and IL-5, and IgE, which results from reduced T-cell infil-
tration, suggesting that HDAC inhibition may attenuate the development of asthma 
by a T-cell suppressive effect (Choi et al., 2005). Other analogs of TSA such as 
oxamflatin, scriptaid, and amide derivatives have been reported to have anticancer 
activity (Jung et al., 1999; Kim et al., 1999c; Monneret, 2005; Su et al., 2000). 
Scriptaid induces reticulocytosis and human gamma-globin synthesis (Johnson 
et al., 2005), suggesting its potential as a treatment option for sickle cell disease. The 
suppressed RARβ expression in head and neck carcinoma (HNSCC) can be reacti-
vated by TSA (Wang et al., 2005). Additionally, TSA alone or in combination with 
5-aza-2′-deoxycytidine (5-AzaC) increases lysine-9 (Lys-9) acetylation and Lys-4 
methylation of the first exon at the RARβ gene, while decreasing the methylation 
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of Lys-9. Similarly, treatment of gastric carcinoma with 5-aza-C, and/or TSA 
resulted in reexpressed caspase-1 mRNA (Jee et al., 2005). DNA methylation-
mediated repression of eNOS promoter activity was partially reversed by TSA 
treatment, and combined treatment of TSA and 5-AzaC synergistically induced 
eNOS expression in nonendothelial cells (Gan et al., 2005). Furthermore, TSA 
downregulates DNMT3B mRNA and protein expression in human endometrial 
cancer cells (Xiong et al., 2005). This decrease in DNMT3B mRNA results in a 
significant reduction in de novo methylation activities, suggesting that TSA may 
not only modify histone acetylation, but also potentially alter DNA methylation. 
The above findings suggest that epigenetic events such as DNA methylation and 
histone deacetylation play important roles in the regulation of cancer-related 
genes.

3.3 Benzamides

Several benzamides have been found to inhibit HDAC activity in the low micromo-
lar range. A 2′-hydroxy or amino function seems to be essential for the optimum 
activity (Suzuki et al., 1999). A newly synthesized benzamide derivative with 
HDAC inhibitory activity, MS-275 is believed to enter the catalytic site and bind 
the active zinc, inhibits HDAC at micromolar concentrations. MS-275 is the first 
HDAC inhibitor discovered with oral anticancer activity in several animal models. 
Pretreatment of human leukemic cells with MS-275 significantly enhances the 
abrogative capacity of an established nucleoside analogue, fludarabine (Maggio 
et al., 2004). The study indicates that apart from promoting acetylation of histones 
and regulation of genes involved in differentiation and apoptosis, MS-275 also 
induces multiple perturbations in signal transduction, survival and cell cycle regu-
latory pathways that increase the fludarabine-mediated cell death. CI-994 (N-acetyl
dinaline), originally synthesized as an anticonvulsant, does not seem to directly 
inhibit HDAC, but causes accumulation of acetylated histones by an unknown 
mechanisms. MS-275, acetyldinaline, and CI-994 are in clinical trials for the treat-
ment of several cancers (Monneret, 2005; Ryan et al., 2005).

3.4 Cyclic Tetrapeptides Containing AOE Moiety

Hydrophobic cyclotetrapeptides contain common amino acid (S)-2-amino-9,10-
epoxy-8-xodecanoic acid (l-Aoe) and have been reported to inhibit HDACs 
(Brosch et al., 1995; Kijima et al., 1993). The epoxyketone was first thought to be 
essential for activity, as reduction or nucleophoilic attack resulted in inactivation of 
compounds (Brosch et al., 1995; Kijima et al., 1993). Trapoxin A, a microbially 
derived cyclotetrapeptide, is an irreversible inhibitor in the low nanomolar range 
(Kijima et al., 1993). Trapoxin A irreversibly inhibits histone deacetylation in vivo 
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and causes mammalian cells to arrest in the cell cycle (Taunton et al., 1996). On 
the other hand, related HC toxin (host-selective toxin of Cochliobolus carbo-
num) inhibits maize enzyme activity reversibly (Brosch et al., 1995). K-trap (an 
analogous of trapoxin A) inhibited HDAC1 activity. A number of derivatives, 
such as 9-acyloxyapicidins and 9-hydroxy, have been prepared and are under 
investigation. Trapoxin analogs that combine cyclotetrapeptide and hydroxamic 
acid moieties have been prepared. The inhibitors of quinolone analogs and the 
hydroxamic acid analogs of apicidin yielded promising results (Meinke et al., 
2000; Meinke and Liberator, 2001). Depudecin, a natural epoxide derivative 
isolated from the fungus Alternaria brassicicola, induces hyperacetylation of 
histones and morphological reversion in v-ras-transformed NIH 3T3 cells 
(Kwon et al., 1998).

3.5 Cyclic Peptides that do not Contain an AOE Moiety

Cyclic peptides such as depsipeptide (FR901228/FK228) isolated from 
Chromobacterium violaceum inhibits HDAC activity at nanomolar concentrations. 
Depsipeptide induces differentiation, growth arrest and apoptosis, and inhibits 
metastasis and angiogenesis (Aron et al., 2003; Doi et al., 2004; Khan et al., 2004; 
Klisovic et al., 2003a, b, 2005; Kwon et al., 2002a; Mie Lee et al., 2003; Sasakawa 
et al., 2002, 2003; Sato et al., 2004; Sawa et al., 2004; Vanoosten et al., 2005). 
Depsipeptide is also very promising antitumor agent against osteosarcoma, induc-
ing apoptosis by the activation of the Fas/FasL system (Imai et al., 2003). A novel 
fungal metabolite, apicidin (cyclo(N-O-methyl-l-tryptophanyl-l-isoleucinyl-d-
pipecolinyl-l-2-amino-8-oxodecanoyl)), exhibits potent, broad spectrum antiproto-
zoal activity in vitro against apicomplexan parasites (Darkin-Rattray et al., 1996). 
Apicidin’s antiparasitic activity appears to be due to low nanomolar inhibition of 
HDAC, which induces hyperacetylation of histones in treated parasites. Since api-
cidin and apicidin A possess only a ketone functional group and are active in the 
low nanomolar concentrations, it appears that the presence of the epoxy group is 
not essential for activity. Apicidin induces differentiation, cell cycle arrest and 
apoptosis, and inhibits metastasis and angiogenesis in several cancer models 
(Cheong et al., 2003; Han et al., 2000, 2001; Hong et al., 2003; Kim et al., 2001a, 
2004b, c; Kouraklis and Theocharis, 2002; Kwon et al., 2002b). It promotes histone 
acetylation and gene transcription. Its activity is enhanced by DNA methyltrans-
ferase inhibitors in AML1/ETO-positive leukemic cells (Khan et al., 2004). 
Preclinical studies with depsipeptide in chronic lymphocytic leukemia (CLL) and 
acute myeloid leukemia (AML) have demonstrated that it effectively induces apop-
tosis at concentrations at which HDAC inhibition occurs. A dose-dependent 
increase in H3 and H4 histone acetylation was noted in depsipeptide-treated 
AML1/ETO-positive Kasumi-1 cells and blasts from a patient with t(8;21) AML 
(Klisovic et al., 2003b). A phase I and pharmacodynamic study of depsipeptide in 
CLL and AML have yielded promising results (Byrd et al., 2005).
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Opening of the disulfide bridge leads to a thiol that may be able to enter the 
active site and complex the zinc ion. In this regard, garlic constituents and their 
metabolites such as diallylsulfide and allylmercaptan inhibited HDAC activity. 
Diallyl disulfide caused increased acetylation of H3 and H4 histones in DS19 
mouse erythroleukemic cells and K562 human leukemic cells (Lea et al., 1999), 
suggesting that differentiation in erythroleukemic cells by diallyl disulfide and allyl 
mercaptan may be mediated through induction of histone acetylation. Acetylation 
was also induced in rat hepatoma and human breast cancer cells by diallyl disulfide 
or its metabolite, allyl mercaptan. Diallyl disulfide increased histone acetylation 
and p21WAF1/CIP1 expression in human colon tumor cell lines (Druesne et al., 2004).

3.6 Epoxides

The naturally occurring epoxide depudecin (a microbial metabolite containing two 
epoxide groups) irreversibly binds to HDAC and inhibits its activity at micromolar 
concentration. Depudecin inhibited embryonic angiogenesis, involving the chorio-
allantoic membrane of growing chick embryo (Oikawa et al., 1995). It also affected 
the growth of vascular endothelial cells, a key event in the process of angiogenesis in 
vivo. Depudecin reverts the rounded phenotype of NIH 3T3 fibroblasts transformed 
with v-ras and v-src oncogenes to the flattened phenotype of the nontransformed 
parental cells (Kwon et al., 1998). These data suggest that depudecin could be 
promising as an antiangiogenic agent and that its antiangiogenic action involves an 
inhibitory effect on vascular endothelial cell growth.

3.7 Psammaplins

Psammaplins, isolated from a marine sponge Pseudoceratina purpurea, inhibited 
HDAC and DNA methyltransferase activities (Pina et al., 2003). Psammaplin A 
(PsA) contains an α-oximatoamide functional group, which inhibits the HDAC 
activity at the catalytic site. The disulfide group is also an essential feature for 
HDAC inhibition. PsA showed a potent cytotoxicity against several cancer and 
endothelial cells (Jiang et al., 1995, 2004; Kim et al., 1999a, b; Nicolaou et al., 
2001; Park et al., 2003; Pham et al., 2000; Shim et al., 2004). PsA-induced cyto-
toxicity may correlate with its inhibition on DNA replication (Jiang et al., 2004). 
Furthermore, PsA was found to inhibit mammalian aminopeptidase N (APN) that 
plays a key role in tumor cell invasion and angiogenesis (Shim et al., 2004). 
Interestingly, the antiproliferative effect of PsA was dependent on the cellular 
amount of APN expression. PsA suppressed the invasion and tube formation of 
endothelial cells stimulated by basic fibroblast growth factor. Several synthetic 
analogs of PsA are currently being developed as antiangiogenic and anticancer 
agents.
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4 Mechanism of Actions of HDAC Inhibitors

HDAC inhibitors regulate several biological events including cell cycle, differenti-
ation, and apoptosis in vitro and in vivo (Donadelli et al., 2003; Fandy et al., 2005; 
Fang, 2005; Fenic et al., 2004; Fronsdal and Saatcioglu, 2005; Henderson and 
Brancolini, 2003; Hu and Colburn, 2005; Imai et al., 2003; Mai et al., 2005; Marks 
et al., 2001a; Marks and Jiang, 2005; Nome et al., 2005; Sasakawa et al., 2003; 
Strait et al., 2005; Takimoto et al., 2005; Yoshida et al., 1990a, 2003). The mecha-
nisms by which these inhibitors induce cell cycle arrest, differentiation, and apop-
tosis appear to involve multiple genes. In addition to inducing growth arrest and 
apoptosis, they also inhibit metastasis and angiogenesis (Deroanne et al., 2002; 
Kim et al., 2001b, 2004c; Sasakawa et al., 2003; Sawa et al., 2002; Williams, 2001; 
Zgouras et al., 2004). These biological processes are described in this section.

Inhibition of ErbB signaling pathway has been an attractive target for cancer 
therapy. Several studies have shown that HDAC inhibitors decreased expression of 
ErbB1 and ErbB2 in DU145 and ErbB2 in SKBr3 cancer cell lines (Chinnaiyan et 
al., 2005b). HDAC inhibitors also inhibited caveolin-1 and hypoxia-inducible fac-
tor 1α (HIF-α), and upregulated gelsolin, p19 (INK4D) and Nur77 expressions in 
DU145 cells (Chinnaiyan et al., 2005b). Synergistic effects of HDAC inhibitor and 
ErbB blockade have been shown on cell proliferative, apoptosis, and signaling 
pathways in cancer cells. Thus, anti-ErbB agents and HDAC inhibitors may offer a 
promising strategy of dual-targeted therapy. The beneficial effects of these agents 
may not derive solely from modulation of ErbB expression, but may result from 
effects on other oncogenic processes including angiogenesis, invasion, and cell 
cycle kinetics.

The ability of HDAC inhibitors to deactivate Akt through the reorganization 
of PP1 complexes not only provides a unique mode of Akt regulation, but also 
represent first example of modulating specific PP1-protein interactions by small-
molecule agents. HDAC inhibitors have been reported to lower the apoptotic 
threshold of several molecularly targeted agents in cancer therapy. This therapeutic 
strategy is illustrated by the synergistic combination of HDAC inhibitors with other 
therapeutic agents, Hsp-90 antagonist 17-AGG (George et al., 2005; Rahmani et al., 
2005), including the Bcr-Abl kinase inhibitor imatinib (Kim et al., 2004b; 
Nimmanapalli et al., 2003), the purine analog flutarabine (Maggio et al., 2004), the 
HER2 antibody trastuzumab (Fuino et al., 2003), the receptor tyrosine kinase FLT-
3 inhibitor PKC412 (Bali et al., 2004), the proteosome inhibitor Bortezomib (Yu 
et al., 2003), and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) 
(Shankar et al., 2005b; Singh et al., 2005). These chemosensitization effects may 
be mediated through both histone acetylation-dependent and acetylation-independent 
effects of HDAC inhibitors, of which the underlying mechanism warrants 
investigation.

MS-275 upregulates TGFβ signaling pathway via transcriptional activation 
of the TGFβ type II receptors (TβRII) (Lee et al., 2001), as a result of PCF 
recruitment to the NF-Y complex on the type II receptor promoter and selective 
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hyperacetylation of histones associated with the TβRII promoter (Park et al., 2002). 
Thus, MS-275induces TβRII promoter activity by the recruitment of the PCAF 
protein to the NF-Y complex, interacting with the inverted CCAAT box in the 
TβRII promoter. TβRII is often inactivated by mutation or transcriptionally 
repressed in many cancers, and is therefore a potential candidate for reactivation by 
HDAC inhibitor treatment.

HDAC inhibitor may also enhance tumor-cell immunogenicity through tran-
scriptional activation of MHC class I and II genes, costimulatory molecules 
(CD40, CD80, and CD86), intercellular adhesion molecule ICAM1, and type I and 
II interferons (Johnstone, 2002). These proteins play important roles in host 
defense mechanisms and cell signaling.

Nonepigenic mechanisms of HDAC inhibitors have recently been described. 
A number of tumor-associated proteins that mediate cell cycle, growth and/or 
apoptosis, including Ku70 (Cohen et al., 2004a, b; Subramanian et al., 2005), 
FOXO1 (Yang et al., 2005), p300 (Bouras et al., 2005), androgen receptor (Fu 
et al., 2003; Gaughan et al., 2002, 2005), Smad7 (Simonsson et al., 2005), Stat3 
(O’Shea et al., 2005; Yuan et al., 2005), p53 (Juan et al., 2000; Langley et al., 
2002; Luo et al., 2001; Vaziri et al., 2001), Hsp90 (Kovacs et al., 2005), NF-κB/
RelA (Greene and Chen, 2004; Quivy and Van Lint, 2004; Yeung et al., 2004), and 
SRY (Thevenet et al., 2004) have been identified as substrates for various HDACs 
isoforms. Targeting the acetylation status of these signal mediators might underlie 
the antiproliferative activities of HDAC inhibitors in cancer cells. Furthermore, 
various HDACs have been shown to form complexes with cellular proteins includ-
ing 14-3-3 proteins, α-tubulin, ubiquitin, and PP1(Brush et al., 2004; Canettieri 
et al., 2003; Grozinger and Schreiber, 2000; Hook et al., 2002; Kawaguchi et al., 
2003; Yang and Gregoire, 2005). These protein–protein complexes may be respon-
sible for altering the biological functions. HDACs 1 and 6 formed complexes with 
PP1 (Brush et al., 2004; Canettieri et al., 2003), of which the combined deacety-
lase/phosphatase activities underlie the ability of HDAC1 to modulate transcrip-
tional activity of the cAMP-responsive element-binding protein (CREB) and that 
of HDAC6 to regulate microtubule dynamics. These studies provide new insight 
into the mechanism by which HDAC inhibitors elicited coordinate changes in cellular 
protein phosphorylation and acetylation and suggested that changes in these protein 
modifications at multiple subcellular sites may contribute to HDAC inhibitor’s 
effects to suppress cell growth and transformation.

4.1 Cell Cycle Regulation by HDAC Inhibitors

During the cell-division cycle, chromosomal DNA must initially be precisely dupli-
cated and then correctly segregated to daughter cells. Cell cycle control of tran-
scription seems to be a universal feature of proliferating cells, although relatively 
little is known about its biological significance and conservation between 
organisms.
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Given the key role of cell cycle integrity in tumor suppression and cancer 
therapy, a lot of attention has focused on the ability of HDAC inhibitors to alter 
the levels of cell cycle regulatory proteins. HDAC inhibitors induce growth arrest 
at both the G1 and G2/M phases of cell cycle and induce differentiation and/or 
apoptosis of various types of tumor cell lines (Acharya and Figg, 2004; Donadelli 
et al., 2003; Duan et al., 2005; Fandy et al., 2005; Fang, 2005; Lavelle et al., 
2001; Marks and Jiang, 2005; Myzak et al., 2004; Nome et al., 2005; Rocchi 
et al., 2005; Rosato et al., 2003b; Sakajiri et al., 2005; Sato et al., 2004; Shankar 
et al., 2005b; Strait et al., 2005). HDAC inhibitors induced both p21WAF1/CIP1 and 
p27KIP1 at protein levels, and caused hypophosphorylation of Rb (Fandy et al., 
2005; Mitsiades et al., 2005; Nome et al., 2005; Shankar et al., 2005b). Other cell 
cycle inhibitors that participate in the proliferative arrest elicited by HDAC inhibitors 
are p15INK4b, p18INK4c, and p19INK4d (Hitomi et al., 2003; Yokota et al., 2004). 
Moreover, positive regulators of proliferation, such as cyclins D1 and D2, cMyc, 
or c-Src, are downregulated by HDAC inhibitors (Dehm and Bonham, 2004; 
Heruth et al., 1993; Lallemand et al., 1996; Souleimani and Asselin, 1993; Takai et al., 
2004b). p53 is activated both by inhibitors of HDACs class I/II, as well as by inhibitors 
of the Sir2 family (Juan et al., 2000; Luo et al., 2000, 2001; Vaziri et al., 2001). 
Transcription factor Sp1 regulates p21WAF1/CIP1 expression in a p53-independent fashion 
(Han et al., 2001; Sasakawa et al., 2002; Savickiene et al., 2004; Varshochi et al., 
2005). Furthermore, p21WAF1/CIP1 expression is also transcriptionally regulated by p53 
(Parker et al., 1995).

4.2 Apoptotic Induction by HDAC Inhibitors

HDAC inhibitors induce apoptosis in several types of cancers including breast, 
prostate, lung and thyroid carcinoma, leukemia, and multiple myeloma (Amin 
et al., 2001; Chen et al., 2005; de Ruijter et al., 2003; Donadelli et al., 2003; Fandy 
et al., 2005; Fandy and Srivastava, 2006; Kim et al., 2003; Mitsiades et al., 2005; 
Mori et al., 2004; Papeleu et al., 2005; Rosato et al., 2003a; Sakajiri et al., 2005; 
Singh et al., 2005; Vigushin and Coombes, 2002; Zhang et al., 2004d). In addition 
to TRAIL-R1/DR4 and TRAIL-R2/DR5 receptors, the regulation of Bcl-2 family 
members is also important for inducing sensitivity by HDAC inhibitors. We and 
others have shown that HDAC inhibitors selectively induce proapoptotic mem-
bers such as Bax, Bak, Noxa, Bim and Puma and inhibit antiapoptotic Mcl-1, Bcl-X

L

and Bcl-2 expression (Fandy et al., 2005; Fandy and Srivastava, 2006; Khan et al.,
2004; Mitsiades et al., 2003; Neuzil et al., 2004; Shankar et al., 2005b; Singh 
et al., 2005; Zhang et al., 2003, 2004b). Bcl-2 family members mainly exert their 
apoptotic effects by acting at the level of mitochondria and play a crucial role in 
cancer development (Green and Reed, 1998). HDAC inhibitors cleave poly(ADP-
ribose) polymerase (PARP) and caspase-8, caspase-9, caspase-3, caspase-7, and 
caspase-2. Transfection of Bcl-2 cDNA partially suppressed SAHA-induced cell 
death. HDAC inhibitors can also induce TRAIL, suggesting the activation of 
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death receptor pathway without the requirement of exogenous TRAIL. Thus, HDAC 
inhibitors can induce apoptosis by linking both death receptor and mitochondrial 
pathways of apoptosis.

Dysregulation in apoptosis has been associated with the development of cancer 
(Johnstone et al., 2002). Recent studies have shown the involvement of mitochon-
dria in many apoptotic signaling pathways (Kandasamy et al., 2003; Wei et al., 
2000). Members of the Bcl-2 family of proteins that regulate apoptotic signaling 
through mitochondria are key regulators of apoptosis in mammalian development, 
and their deregulation is associated with disease, particularly cancer (Grimm et al., 
1996; Gross et al., 1999). There are three classes of Bcl-2 family members: apoptosis 
promoters (e.g., Bax and Bak); apoptosis inhibitors (e.g., Bcl-2, Bcl-X

L
, and adeno-

viral E1B 19K); and the BH3-only Bcl-2 family members (e.g., Bid, Puma, Noxa, 
Bad, and Nbk/Bik) (Gross, 2001). BH-3 only proteins may function as death sen-
sors that mediate activation of the mitochondrial apoptosis pathway in response to 
oncogenic stress signals or DNA damage. Noxa and PUMA are transcriptionally 
induced by p53 and mediate apoptosis induced by p53. These proapoptotic activi-
ties of certain BH3-only proteins essentially depend on the presence of Bax and 
Bak. Inactivation of both Bax and Bak was required for tumor growth and was 
selected for in vivo tumorigenesis (Degenhardt et al., 2002a, b). Bax−/− and Bak−/−

double knockout mouse embryo fibroblasts (DKO MEFs) were resistant to death 
signaling pathway, indicating that they are the required downstream components of 
mitochondrial signaling pathways (Kandasamy et al., 2003). Bim has been impli-
cated in modulating lymphocyte homeostasis in immune cells. Bim−/− mice succumb 
to autoimmune kidney disease, accumulation of lymphoid and myeloid cells, and 
perturbed T-cell development (Bouillet et al., 2002; Bouillet and Strasser, 2002). 
Therefore, the regulation of Bcl-2 family members by HDAC inhibitor may play 
important roles on apoptosis by inducing a death activity or by antagonizing a 
survival activity. Furthermore, HDAC inhibitors can disrupt cellular redox state 
(e.g., ROS), and damage mitochondria in cells undergoing apoptosis.

Direct inhibitor of apoptosis protein (IAP)-binding protein with low pI/second 
mitochondrial activator of caspases, HtrA2/Omi and GstPT/eRF3 are mammalian 
proteins that bind via N-terminal IAP-binding motifs (IBMs) to the baculoviral IAP 
repeat (BIR) domains of IAPs. These interactions can prevent IAPs from inhibiting 
caspases, or displace active caspases, thereby promoting cell death (Deveraux and 
Reed, 1999). IAPs (cIAP-1, cIAP-2, NIAP, Livin/ML-IAP, survivin, and XIAP) 
protect cells against apoptosis by acting as caspase inhibitors (Deveraux and Reed, 
1999). IAPs bind to and directly inhibit caspase-3, caspase-7, and caspase-9 
(Deveraux and Reed, 1999; Deveraux et al., 1999). IAP proteins are regulated by 
interactions with the mitochondrial proteins (e.g., Smac/DIABLO), which may be 
released into the cytosol upon apoptotic stimulation and through IAP sequestration 
results in elevated caspase activity (Du et al., 2000; Verhagen et al., 2000). Some 
IAP proteins are also regulated by proteolysis via the ubiquitin-proteasome path-
way and caspase-dependent cleavage of XIAP in cells undergoing apoptosis. The 
inhibition of XIAP, cIAP1, and cIAP2 expressions by HDAC inhibitors may con-
tribute in sensitization of cells to TRAIL. In this context, we have shown that 
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TRAIL inhibits the expression of IAPs in breast and prostate cancer cells (Shankar 
et al., 2005b; Singh et al., 2005). The combination of HDAC inhibitors and TRAIL 
may further inhibit the expression of some of the IAPs and contribute to the 
synergistic induction of apoptosis by these agents.

HDAC inhibitors activate the p53 molecule through acetylation of 320 and 373 
lysine residues, upregulate PIG3 and NOXA, and induce apoptosis in cancer cells 
expressing wild and pseudo-wild-type p53 genes (Terui et al., 2003). SAHA induced 
polyploidy in human colon cancer cell line HCT116 and human breast cancer cell 
lines, MCF-7, MDA-MB-231, and MBA-MD-468, but not in normal human embry-
onic fibroblast SW-38 and normal MEFs (Xu et al., 2005a). The polyploid cells lost 
the capacity for proliferation and committed to senescence. The induction of poly-
ploidy was enhanced in HCT116 p21WAF1–/– or HCT116 p53–/– cells than in wild-type 
HCT116. The development of senescence of SAHA-induced polyploidy cells was 
similar in all colon cell lines (Xu et al., 2005b). The present findings indicate that the 
HDAC inhibitor could exert antitumor effects by inducing polyploidy, and this effect 
is more marked in transformed cells with nonfunctioning p21WAF1/CIP1 or p53 genes.

In chronic myelocytic leukemia (CML) the activity of the Bcr-Abl tyrosine 
kinase is known to activate a number of molecular mechanisms, which inhibit 
apoptosis (Nimmanapalli et al., 2003; Xu et al., 2005b). SAHA markedly decreases 
protein expression levels of Bcr-Abl, c-Myc, and HDAC3 in CML, suggesting that 
SAHA exerts its biological activity by inhibiting survival pathway (Xu et al., 
2005b). Differential expression of HDAC has been reported in various cancers. To 
explore the mechanisms of disease-specific HDAC activity in AML, the expression 
of HDAC in primary AML blasts and in four control cell types (namely CD34+ 
progenitors from umbilical cord, quiescent or cycling (postculture) cells, cycling 
CD34+ progenitors from GCSF-stimulated adult donors, and peripheral blood 
mononuclear cells) was characterized. Only Sirt1 was consistently overexpressed 
in AML samples compared with all controls, while HDAC6 was overexpressed 
relative to adult, but not neonatal cells (Bradbury et al., 2005). HDAC5 and SIRT4 
were consistently underexpressed. HDAC inhibitors (valproate, butyrate, TSA, and 
SAHA) caused hyperacetylation of histones in AML blasts and cell lines (Bradbury 
et al., 2005). Such treatment also modulated the pattern of HDAC expression, with 
strong induction of HDAC11 in all myeloid cells tested, and lesser, more selective, 
induction of HDAC9 and SIRT4. The distinct pattern of HDAC expression in AML 
and its response to HDAC inhibitors is of relevance to the development of HDAC 
inhibitor-based therapeutic strategies and may contribute to observed patterns of 
clinical response and development of drug resistance.

4.3 Antiangiogenic Properties of HDAC Inhibitors

Tumor growth requires the development of new vessels that sprout from preexisting 
normal vessels in a process known as “angiogenesis” (Folkman, 2002). These new 
vessels arise from local capillaries, arteries, and veins in response to the release of 
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soluble growth factors from the tumor mass, enabling these tumors to grow beyond 
the diffusion-limited size of approximately 2 mm diameter. Tumor growth and 
metastasis depend upon the development of a neovasculature in and around the 
tumor (Folkman, 2002, 2003a, b, d; Folkman and Kalluri, 2004; Liotta et al., 1991). 
Angiogenesis is regulated by the balance between stimulatory (e.g., bFGF, IL-8, 
MMP-2, MMP-9, TGFβ1, and vascular endothelial growth factor [VEGF]) and 
inhibitory (e.g., angiostatin, IL-10, and interferon) factors released by the tumor 
and its environment (Folkman, 2003b, c). For example, overexpression of bFGF 
(Allen and Maher, 1993; Ravery et al., 1992) and VEGF (Brown et al., 1993a, b; 
O’Brien et al., 1995) has been found in the tissue, serum, and urine of patients with 
bladder cancer and has been associated with cancer progression, suggesting a direct 
involvement of these proteins in angiogenesis.

HDAC inhibitors also modulate angiogenesis in a potentially therapeutic man-
ner. HDAC1 downregulates expression of p53 and the von Hippel–Lindau tumor 
suppressor gene and stimulates angiogenesis of human endothelial cells. HDAC 
inhibitors prevent endothelial cell proliferation and angiogenesis by downregulating 
angiogenesis-related gene expression (Bapna et al., 2004; Caponigro et al., 2005; 
Chinnaiyan et al., 2005b; Deroanne et al., 2002; He et al., 2005; Kim et al., 2001b, 
2004c; Kwon et al., 2002a; Liu et al., 2003; Michaelis et al., 2004, 2005; Mie Lee 
et al., 2003; Momparler, 2003; Murakami et al., 2004; Nam and Parang, 2003; Pili 
et al., 2001; Qian et al., 2004; Rossig et al., 2002; Sasakawa et al., 2003; Sawa et al., 
2002; Takimoto et al., 2005; Wang et al., 2003; Wiedmann and Caca, 2005; 
Williams, 2001; Zgouras et al., 2004). Phenyl butyrate, LBH589, LAQ824, and 
TSA have antiangiogenic activity both in vitro and in vivo (Pili et al., 2001; Qian 
et al., 2004, 2006; Williams, 2001). Other HDAC inhibitors such as SAHA, FK228, 
VPA, and apicidin also have antiangiogenic acitivity (Kim et al., 2001b; Kwon 
et al., 2002a; Michaelis et al., 2004). Angiogenesis inhibition induced by HDAC 
inhibitors was associated with modulation of angiogenesis-related genes both in can-
cer cells (e.g., inhibition of HIF-1α and VEGF) and in endothelial cells (inhibition of 
Tie-2 and survivin), and inhibition of endothelial cell migration and proliferation 
(Kim et al., 2001b; Kwon et al., 2002a; Michaelis et al., 2004; Williams, 2001). 
Furthermore, LBH589 inhibited endothelial tube formation and matrigel invasion 
(Qian et al., 2006). These data suggest that the effects of HDAC inhibitors on 
angiogenesis can be further enhanced in the presence of TRAIL.

HDAC inhibitors upregulate p53 and von Hippel–Lindau expression (Kim et 
al., 2001b). The combination of adenoviral vector carrying wild-type p53 (Ad-
p53) gene therapy with sodium butyrate resulted in a complete regression of 
xenografted human gastric tumor (KATO-III) cells in nude mice (Takimoto et al., 
2005). Tumors treated with the combination showed higher numbers of TUNEL-
positive cells and lower CD34 staining than those treated with a single modality 
(Takimoto et al., 2005). This was further supported by the finding that the brain-
specific angiogenesis inihibitor-1 (BAI-1), an inhibitor of vascularization, was 
induced by sodium butyrate treatment in cells transfected with Ad-p53 (Takimoto 
et al., 2005). These data suggest that HDAC inhibitors can be combined with p53
gene therapy for the treatment of cancer. The HDAC inhibitors have shown the 
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dual function of targeting both tumor cells and proliferating endothelial cells and 
to inhibit tumor angiogenesis by gene modulation. Rational clinical testing of 
these agents either alone or in combination with angiogenesis inhibitors is 
warranted.

5 Combination of HDAC Inhibitors with Trail/Apo-2L

HDAC inhibitor either alone or in combination with TRAIL can be used in cancer 
therapy. We and others have shown that several HDAC inhibitors can enhance the 
apoptosis-inducing potential of TRAIL in TRAIL-sensitive cells and sensitize 
TRAIL-resistant breast, prostate, and lung cancer cells, and malignant mesotheli-
oma, leukemia, and myeloma cells (Facchetti et al., 2004; Fandy et al., 2005; 
Goldsmith and Hogarty, 2005; Inoue et al., 2004; Nebbioso et al., 2005; Rosato 
et al., 2003a; Shetty et al., 2005; Singh et al., 2005; Vanoosten et al., 2005). The 
sensitization of TRAIL-resistant cells appears to be due to downregulation of the 
antiapoptotic protein Bcl-2, Bcl-X

L
, and Mcl-1, and upregulation of proapoptotic 

genes Bax, Bak, TRAIL, Fas, FasL, DR4, and DR5, and activation of caspases. 
HDAC inhibitors upregulate proapoptotic genes in cancer cells but not in normal 
cells (Insinga et al., 2005a, b). Sodium butyrate and TSA enhanced TRAIL-mediated 
apoptosis to a greater extent than depsipeptide, MS-275, and oxamflatin (Vanoosten 
et al., 2005). Both sodium butyrate and TSA treatment also increased mRNA and 
surface expression of TRAIL-R2/DR5 that was dependent on the transcription fac-
tor Sp1, thus providing a possible mechanism behind the increased sensitivity to 
TRAIL. These results show that sensitivity to HDAC inhibitors in cancer cells is a 
property of the fully transformed phenotype and depends on activation of a specific 
death pathway. Since HDAC inhibitors sensitize TRAIL-resistant cancer cells to 
undergo apoptosis by TRAIL, they appear to be promising candidates for combination 
chemotherapy.

Several studies have demonstrated the engagement of mitochondria during activa-
tion of death receptor pathway (Debatin and Krammer, 2004; Sartorius et al., 2001; 
Shankar et al., 2005b; Suliman et al., 2001). Cross talk between the death-receptor 
(extrinsic) and mitochondrial (intrinsic) pathways requires caspase-8/caspase-10-
dependent cleavage of Bid (Fandy et al., 2005; Shankar et al., 2005b; Singh et al., 
2005; Suliman et al., 2001). tBid activates Bax and Bak to release cytochrome c 
and other mitochondrial proteins (Luo et al., 1998; Wei et al., 2000). Since 
HDAC inhibitors induced cleavage of Bid, the truncated Bid may trigger activa-
tion of mitochondria in the absence of ligand TRAIL. We have shown that the 
pan-caspase inhibitor z-VAD-fmk completely inhibited TRAIL-induced apoptosis 
in the presence of HDAC inhibitor (Fandy et al., 2005; Shankar et al., 2005b; 
Singh et al., 2005). The caspase-8 inhibitor z-IETD and DN-FADD completely 
inhibited the synergistic interaction between HDAC inhibitor and TRAIL. 
Furthermore, in the presence of HDAC inhibitors, TRAIL induced caspase-3 and 
caspase-9 activation and caused cleavage of their substrate poly(ADP-ribose) 
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polymerase (PARP). Antiapoptotic proteins Bcl-2 and Bcl-X
L
 inhibit HDAC 

inhibitors and/or TRAIL-induced apoptosis by blocking cytochrome c release. 
The phosphorylation deficient mutant of Bcl-2 and Bcl-X

L
 also blocked HDAC 

inhibitors and/or TRAIL-induced apoptosis. In cell-intrinsic pathway of apop-
tosis, mitochondria amplify the apoptotic signals leading to activation of 
caspase-9 (Kandasamy et al., 2003). Caspase-9 in turn activates downstream 
caspases and the cleavage of apoptotic substrates that finally kill cells. The 
synergistic effects of HDAC inhibitors and TRAIL on apoptosis occur through 
activation of downstream caspase-3, which can be activated by both extrinsic 
and intrinsic pathways (Fandy et al., 2005; Shankar et al., 2005b; Singh et al., 
2005).

The sensitization of cancer cells to HDAC inhibitors appears to be p53 independent. 
We have recently shown that chemotherapeutic drugs (Singh et al., 2003) or irradi-
ation (Shankar et al., 2004a, b) can sensitize breast and prostate cancer cells by 
upregulating death receptors DR4 and/or DR5 in cells harboring wild-type 
(MCF-7) and mutated (MDA-MB-231 and MDA-MB-468) p53. Recent studies 
have shown that HDAC inhibitors induce apoptosis in leukemia in a p53-independent 
manner but not in normal hematopoietic progenitors (Insinga et al., 2005b; 
Nebbioso et al., 2005). Other transcription factors such as NF-κB and SP1 have 
been shown to regulate the expression of death receptors (Chen et al., 2003; Keane 
et al., 1999; Nagane et al., 2000; Ravi et al., 2001).

Treatment of nude mice with HDAC inhibitors resulted in acetylation of his-
tone H3 and H4, and downregulation of hypoxia-inducible factor 1-alpha and 
VEGF expression in tumor cells. Furthermore, control mice demonstrating 
increased rate of tumor growth had increased numbers of CD31-positive or von 
Willebrand Factor (vWF)-positive blood vessels, and increased circulating vas-
cular VEGFR2-positive endothelial cells compared to HDAC inhibitor and/or 
TRAIL-treated mice. Sequential treatments of athymic nude mice with HDAC 
inhibitors followed by TRAIL cause a synergistic apoptotic response through 
activation of caspase-3 and caspase-7, which is accompanied by regression of 
tumor growth, inhibition of angiogenesis, and enhancement of survival of 
xenografted nude mice. Together with our previous studies showing that cancer 
chemotherapeutic drugs and irradiation upregulate DR4 and/or DR5 expression, 
thereby enhancing TRAIL-induced apoptosis in vivo (Chinnaiyan et al., 2000; 
Shankar et al., 2004b, 2005a; Singh et al., 2003), these studies demonstrate the 
antitumor interactions of HDAC inhibitors with the TRAIL death-receptor path-
way. Similarly, several recent studies including ours have demonstrated the addi-
tive or synergistic effects of HDAC inhibitors and TRAIL on apoptosis in vitro 
(Facchetti et al., 2004; Fandy et al., 2005; Goldsmith and Hogarty, 2005; Inoue 
et al., 2004; Nebbioso et al., 2005; Neuzil et al., 2004; Rosato et al., 2003a; Shankar 
et al., 2005b; Shetty et al., 2005; Singh et al., 2005; Zhang et al., 2003). The ability 
of HDAC inhibitors to sensitize cancer cells to TRAIL suggests that HDAC inhibi-
tors can reduce the minimal effective dose or side effects of TRAIL. Thus, these 
data provide the framework for clinical evaluation of HDAC inhibitors and TRAIL 
for the treatment of human cancer.
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6 Combination of HDAC Inhibitors with Irradiation

HDAC inhibitors have been shown to radiosensitize prostate, breast, and glioma 
cell lines (Camphausen et al., 2004; Kim et al., 2004a; Nome et al., 2005). TSA 
has been shown to radiosensitize human glioblastoma U373MG and U87MG cell 
lines in a dose- and time-dependent manner (Kim et al., 2004a). VPA enhanced 
the radiosensitivity of brain tumor SF539 and U251 cell lines in vitro and U251 
xenografts in vivo, which correlated with the induction of histone hyperacetyla-
tion (Camphausen et al., 2005). Similarly, MS-275 can enhance radiosensitivity of 
DU145 prostate carcinoma and U251 glioma cells suggesting that this effect may 
involve an inhibition of DNA repair (Camphausen et al., 2004). The combination 
of HDAC inhibitors with irradiation may be useful for the treatment of cancer and 
merit further investigation. Given the limited efficacy of standard treatments for 
patients with cancer, these data provide support for clinical trials integrating 
HDAC inhibitor with radiation therapy.

Caspase-2 and caspase-3 cleave HDAC4 in vitro, and caspase-3 is critical for 
HDAC4 cleavage in vivo during UV-induced apoptosis (Paroni et al., 2004). 
After UV irradiation, GFP-HDAC4 translocates into the nucleus coincidentally/
immediately before the retraction response, but clearly before nuclear fragmen-
tation. Together, these data indicate that caspases could specifically modulate 
gene repression and apoptosis through the proteolytic processing of HDAC4. 
Among molecular cell cycle-targeted drugs currently in the pipeline for testing 
in early-phase clinical trials, HDAC inhibitors may have therapeutic potential as 
radiosensitizers.

7  Combination of HDAC Inhibitors 
with Chemotherapeutic Drugs

Chemotherapeutic treatment with combinations of drugs is frontline therapy for 
many types of cancer. Combining drugs which target different signaling pathways 
often lessens adverse side effects while increasing the efficacy of treatment and 
reducing patient morbidity. It has recently been shown that HDAC inhibitors facili-
tate the cytotoxic effectiveness of the topoisomerase I inhibitor camptothecin in the 
killing of tumor cells (Bevins and Zimmer, 2005). SAHA has been shown to act as 
a chemopreventive agent in mammary tumors in the rat (Cohen et al., 1999) and 
inhibited the growth of established tumors (Butler et al., 2000; Chinnaiyan et al., 
2005a; Cohen et al., 1999). SAHA and sodium butyrate interacted synergistically 
with camptothecin in inducing apoptosis of breast and lung cancer cell lines. 
Experiments have shown that cells arrested in G2-M by camptothecin were most 
sensitive to subsequent addition of HDAC inhibitor. In camptothecin-arrested cells, 
sodium butyrate decreased cyclin B levels, as well as the levels of the antiapoptotic 
proteins XIAP and survivin. Overall, these findings suggest that reducing the levels 
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of these critical antiapoptotic factors may increase the efficacy of camptothecin in 
the clinical setting if given in a sequence that does not prevent or inhibit tumor cell 
progression through the S phase.

MS-275 also synergistically interacted with fludarabine in inducing apoptosis of 
human lymphoid and myeloid leukemia cells (Maggio et al., 2004). Prior exposure 
of Jurkat lymphoblastic leukemia cells to MS-275 increased mitochondrial injury, 
caspase activation, and apoptosis in response to fludarabine, resulting in highly 
synergistic antileukemic interactions and loss of clonogenic survival. Simultaneous 
exposure to MS-275 and fludarabine also led to synergistic effects, but these were 
not as pronounced as observed with sequential treatment. Similar interactions were 
noted in the case of (a) other human leukemia cell lines (e.g., U937, CCRF-CEM); 
(b) other HDAC inhibitors (e.g., sodium butyrate); and (c) other nucleoside ana-
logues (e.g., 1-beta-d-arabinofuranosylcytosine, gemcitabine). Potentiation of 
fludarabine-induced apoptosis by MS-275 was associated with acetylation of his-
tones H3 and H4, downregulation of the antiapoptotic proteins XIAP and Mcl-1, 
enhanced cytosolic release of proapoptotic mitochondrial proteins (e.g., cyto-
chrome c, Smac/DIABLO, and AIF), and caspase activation. These events were 
accompanied by the caspase-dependent downregulation of p27/KIP1, cyclins A, E, 
and D1, and cleavage and diminished phosphorylation of retinoblastoma protein. 
Prior exposure to MS-275 attenuated fludarabine-mediated activation of MEK1/2, 
extracellular signal-regulated kinase, and Akt, and enhanced c-Jun NH(2)-terminal 
kinase phosphorylation; furthermore, inducible expression of constitutively active 
MEK1/2 or Akt significantly diminished MS-275/fludarabine-induced lethality. 
Combined exposure of cells to MS-275 and fludarabine was associated with a 
significant increase in generation of ROS; moreover, both the increase in ROS and 
apoptosis were largely attenuated by coadministration of the free radical scavenger 
l-N-acetylcysteine. Finally, prior administration of MS-275 markedly potentiated 
fludarabine-mediated generation of the proapoptotic lipid second messenger 
ceramide. Taken together, these findings indicate that MS-275 induces multiple 
perturbations in signal transduction, survival, and cell cycle regulatory pathways 
that lower the threshold for fludarabine-mediated mitochondrial injury and apoptosis 
in human leukemia cells.

A synergistic interaction of retinoic acid and CBHA was shown in a mouse 
model of neuroblastoma. DNA hypomethylating agents have been found to have 
synergistic effects with HDAC inhibitors. The combination of TSA with azacyti-
dine caused a dramatic potentiation in the activation of silenced genes (Baylin and 
Bestor, 2002; Baylin et al., 2001; Chen et al., 1997). Depsipeptide and TSA 
induced apoptosis in human lung cancer cells. HDAC inhibitor-induced apoptosis 
was greatly enhanced in the presence of the DNA methyltransferase inhibitor, 
5-aza-2′-deoxycytidine, suggesting the DNA methylation status plays an important 
role on the effectiveness of HDAC inhibitors (Zhu et al., 2001). Furthermore, 
HDAC inhibitors enhanced paclitaxel-induced cell death in ovarian cancer cell 
lines independent of p53 status (Chobanian et al., 2004). Similarly, commonly used 
anticancer drugs doxorubicin and decitabine have been reported to have synergistic 
effects with HDAC inhibitors (Blagosklonny et al., 2000; Gozzini and Santini, 2005).
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Thus, the combination of anticancer drugs with other epigenetic therapies provides 
potentially safer therapeutic options.

8 Chemoprevention by HDAC Inhibitors

In recent years, the use of naturally occurring chemopreventive agents have 
attracted many investigators because of their nontoxic effects. The preclinical data 
on selected chemopreventive agents have been very promising. Evidence indicates 
that a diet high in fresh fruits and vegetables decreases risk of certain cancers 
because they contain fiber, folate, and vitamins with antioxidant activity (Howe 
et al., 1992; Janne and Mayer, 2000). Studies have shown that the dietary fiber 
provides a protective effect against colon cancer (Howe et al., 1992; Trock et al., 
1990). It appears that the fermentation of dietary fiber in the lumen of the colon 
produces the short chain fatty acid n-butyrate, which has anticarcinogenic activity 
on a variety of cellular functions, including differentiation, motility, invasion, 
adhesion, proliferation, and apoptosis. There is a positive correlationship between 
high fecal butyrate levels and decrease tumor incidence and tumor growth (Cassidy 
et al., 1994; Hylla et al., 1998; McIntyre et al., 1993). Butyrate is a physiological 
regulator of colonic epithelial cell proliferation, differentiation, and survival; and it 
induces histone hyperacetylation and inhibits methylation (de Haan et al., 1986; 
Riggs et al., 1977). Butyrate induces expression of p21/WAF1/CIP1 through a process 
involving histone hyperacetylation and recruitment of Sp3 to the proximal p21 
promoter (Sowa et al., 1999), and p21 is required for butyrate-mediated growth 
arrest in colon carcinoma cells (Archer et al., 1998). Although p21 is a p53 target 
gene, p21 induction by butyrate and other HDAC inhibitors is p53-independent 
(Xiao et al., 1997). Thus, HDAC inhibitors can induce p21-associated growth arrest 
in the absence of wild-type p53 function.

Sulforaphane (SFN), a compound found at high levels in broccoli and broccoli 
sprouts, is a potent inducer of phase 2 detoxification enzymes and inhibits tumori-
genesis in animal models. SFN also has a marked effect on cell cycle checkpoint 
controls and cell survival and/or apoptosis in various cancer cells. SFN dose-
dependently increased the activity of a β-catenin-responsive reporter, without alter-
ing β-catenin or HDAC protein levels (Myzak et al., 2004). SFN inhibits HDAC 
activity in colon and prostate cancer cells (Myzak et al., 2005). The inhibition of 
HDAC was accompanied by an increase in acetylated histones. SFN caused 
enhanced interaction of acetylated histone H4 with the promoter region of the p21/

WAF1/CIP1 gene and the bax gene. SFN induced cell cycle arrest and apoptosis through 
caspase activation. These findings provide new insight into the mechanisms of SFN 
action in benign prostate hyperplasia, and they suggest a novel approach to chemo-
protection and chemotherapy of prostate cancer through the inhibition of HDAC.

In summary, several reports have described butyrate, diallyl disulfide, and SFN 
as HDAC inhibitors, and many other dietary agents likely will be discovered to 
attenuate HDAC activity. Dietary HDAC inhibitors, as weak ligands, regulate the 
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expression of genes involved in cell growth, differentiation, and apoptosis. An 
important question is the extent to which dietary HDAC inhibitors, and other die-
tary agents that affect gene expression via chromatin remodeling, modulate the 
expression of genes so that cells can respond most effectively to external stimuli 
and toxic insults.

9 Clinical Trials with HDAC Inhibitors

Phase I and II clinical trials indicate that HDAC inhibitors from several different 
structural classes are very well tolerated and exhibit clinical activity against a vari-
ety of human malignancies; however, the molecular basis for their anticancer selec-
tivity remains largely unknown. Furthermore, HDAC inhibitors have also shown 
preclinical promise when combined with other therapeutic agents, and innovative 
drug delivery strategies, including liposome encapsulation, may further enhance 
their clinical development and anticancer potential. An improved understanding of 
the mechanistic role of specific HDACs in human tumorigenesis, as well as the 
identification of more specific HDAC inhibitors, will likely accelerate the clinical 
development and broaden the future scope and utility of HDAC inhibitors for 
cancer treatment.

Several HDAC inhibitors (SAHA, MS-275, CI-994, and depsipeptide) are cur-
rently undergoing clinical trials (Blanchard and Chipoy, 2005; Hess-Stumpp, 2005; 
Kelly et al., 2005). HDAC inhibitors represent a relatively new group of targeted 
anticancer compounds, which are showing significant promise as agents with activity 
against a broad spectrum of neoplasms, at doses that are well tolerated by cancer 
patients. SAHA is most advanced in development, currently in phase I and II clinical 
trials for patients with both hematologic and solid tumors (Kelly et al., 2005). 
Clinical trials on depsipeptide alone have shown low toxicity and evidence of anti-
tumor activity (Sandor et al., 2002). Additionally, the compound has potential for 
synergism with radiotherapy, chemotherapy, and biologicals. Second-generation 
HDAC inhibitors, such as LAQ824 and PDX101, are currently under phase I clinical 
trials. Simultaneously, synthetic benzamide-containing HDAC inhibitors, CI-994 
and MS-275, have reached phase I and II clinical trials, respectively.

10 Conclusions

Epigenetic modifications causing gene transcriptional repression have been associ-
ated with malignant transformation and are intriguing new targets in the treatment 
of cancer. In contrast to genetic deletions causing irreversible loss of gene function, 
epigenetic gene silencing mediated by DNA methylation and histone deacetylation 
can be reversed via pharmacologic inhibition of DNA methyltransferases and 
HDACs, respectively. When this occurs, normal patterns of gene expression, cell 
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differentiation, and apoptosis may be restored and disease response obtained. The 
HDAC has been considered an attractive target molecule for cancer therapy. The inhi-
bition of HDAC activity by a specific inhibitor induces growth arrest, differentiation, 
and apoptosis of several cancer cells.

Our studies have shown that HDAC inhibitors upregulate proapoptotic mem-
bers of Bcl-2 family and death receptors (TRAIL-R1/DR4 and TRAIL-R2/DR5), 
and downregulate antiapoptotic genes of Bcl-2 family; thus it is possible that 
sensitization of cancer cells to chemotherapy, irradiation, or TRAIL by HDAC 
inhibitors may occur at various stages of apoptotic pathways. Furthermore, the 
ability of HDAC inhibitors to inhibit angiogenesis may further affect tumor 
growth by regulating angiogenesis-related signaling pathways. Preliminary stud-
ies in animal models have revealed a relatively high tumor selectivity of HDAC 
inhibitors, strengthening their promising potential in cancer chemotherapy. Some 
of these inhibitors are undergoing phase I and phase II clinical trials. Furthermore, 
the combination of HDAC inhibitors with commonly used anticancer drugs, irra-
diation, or TRAIL will be useful for cancer therapy. Since the HDAC inhibitors 
are frequently used in epigenetic studies and are considered to be promising anti-
cancer drugs, these findings will have implications in both laboratory and clinical 
settings.
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Chapter 14
RNA Interference and Cancer: Endogenous 
Pathways and Therapeutic Approaches

Derek M. Dykxhoorn, Dipanjan Chowdhury, and Judy Lieberman*

Abstract The endogenous RNA interference (RNAi) pathway regulates cellular 
differentiation and development using small noncoding hairpin RNAs, called 
microRNAs. This chapter will review the link between mammalian microRNAs 
and genes involved in cellular proliferation, differentiation, and apoptosis. Some 
microRNAs act as oncogenes or tumor suppressor genes, but the target gene net-
works they regulate are just beginning to be described. Cancer cells have altered 
patterns of microRNA expression, which can be used to identify the cell of origin 
and to subtype cancers. RNAi has also been used to identify novel genes involved 
in cellular transformation using forward genetic screening methods previously only 
possible in invertebrates. Possible strategies and obstacles to harnessing RNAi for 
cancer therapy will also be discussed.

Keywords RNA interference, microRNA, cancer, microarray, tumor profile, 
siRNA, therapy, prognosis

1 Introduction

RNA interference (RNAi) is an endogenous, ubiquitous, and evolutionarily conserved 
pathway for regulating gene expression. Noncoding stem-loop RNAs, encoded within 
exons or in intergenic regions, are processed by specialized intracellular RNase III 
enzymes into small RNAs, called microRNAs or miRNAs.1–4 The microRNAs are 
taken up by a multiprotein cytoplasmic complex, called the RNA-induced silencing 
complex (RISC), which directs the posttranscriptional silencing of a partially comple-
mentary mRNA target. Silencing of highly complementary mRNAs can occur 
through mRNA degradation, but for less complementary targets, gene silencing 
occurs by inhibiting translation. Most mammalian microRNAs work by the latter 
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pathway. The rules for identifying silenced target genes are still poorly defined; 
therefore, only a handful of mammalian genes have been clearly shown to be regu-
lated by the endogenous RNAi pathway. However, current bioinformatic estimates 
suggest that the expression of a third or more of all genes may be regulated by 
microRNAs. In other species, such as plants, worms, and flies, RNAi regulates 
critical genes involved in cellular differentiation and survival. In fact, the first iden-
tified endogenous microRNAs regulated the progression from one larval state to 
another in Caenorhabditis elegans development.

There is increasing evidence of a role for microRNAs in cancer.5–8 This should 
not be surprising since malignant transformation results from abnormally regulated 
cell differentiation and survival – processes regulated by microRNAs in other 
organisms. Here, we review how microRNAs are processed within mammalian 
cells and then describe the evidence for microRNA regulation of genes implicated 
in cancer and apoptosis. Recent studies provide examples of emerging networks 
that regulate the expression of microRNAs and transcription factors to control ter-
minal differentiation in a variety of cell types, a step that is aberrant in cancer. We 
will discuss how microRNA expression profiles are altered in cancer and might be 
used for diagnosis and prognosis. We will also discuss recent examples of RNAi-
based screens to identify tumor-promoting and suppressor-coding genes and micro-
RNAs. Lastly, we will discuss the therapeutic prospects for harnessing RNAi to 
silence oncogenes or other genes involved in cell proliferation and survival or for 
interfering with microRNAs that play a role in tumorigenesis.

2 microRNA Biogenesis and the Endogenous RNAi Pathway

Most microRNAs are transcribed within coding mRNAs or as independent tran-
scripts by RNA polymerase II as long precursor primary transcripts that are capped 
and polyadenylated (Fig. 14.1).4,9–11 microRNA transcripts are highly structured 
with an elongated hairpin that contains frequent mismatches, bulges, and non-
Watson–Crick base-pairings. In some cases, several microRNAs are coordinately 
expressed as polycistrons from the same primary transcript.12–16 The microRNA 
precursors, called pri-miRNAs, have a characteristic fold-back structure that is rec-
ognized in the nucleus by an RNase III-type enzyme, Drosha, and its binding part-
ner, variously called DiGeorge syndrome critical region gene 8 (DGCR8) protein 
in mammals and partner of Drosha (Pasha) in Drosophila and C. elegans.15,17–21

Drosha cleaves the pri-miRNA into a ∼70 nt fold-back structure, termed the pre-
miRNA, which is exported into the cytoplasm by exportin 5.22–25 The pre-miRNA 
is then recognized by Dicer and cleaved into a small dsRNA intermediate that con-
tains both the mature microRNA and the accompanying complementary strand.26–31

The strand whose 5′-end is less tightly bound to its complementary strand is incor-
porated into the effector RISC or miRISC.32,33 The complementary strand is rapidly 
lost when the microRNA is taken up into RISC.34,35 In some cases, presumably 
when both ends are comparably paired, microRNAs can be found that correspond 
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to both strands of the microRNA precursor. The exact composition of the RISC is 
still unknown. (In fact, this term probably refers to several complexes that may 
have some core components in common but have additional factors that determine 
their individual function.) A key component of the RISC is an Argonaute family 
protein, often Ago 2, which is the RISC endonuclease.36

(A)N

Drosha/Pasha

Exportin 5

Dicer(A)N

miRISC

Transcription

Nucleus

Cytoplasm

 pri-miRNA

pre-miRNA

microRNA

Translational repression

Fig. 14.1 RNA interference pathway. microRNAs that direct the posttranscriptional silencing of 
gene expression are derived from longer primary transcripts that are expressed from RNA polymer-
ase II promoters.4,9–11 These primary transcripts, termed pri-miRNAs, can range from several hun-
dred to thousands of nucleotides long with the microRNA sequence encoded in a highly structured 
RNA hairpin that contains frequent bulges and mismatches.4 These long hairpins are recognized and 
cleaved into shorter (∼70 nt) hairpin RNAs, pre-miRNAs, in the nucleus by Drosha in conjunction 
with the double-stranded RNA recognition protein, termed Pasha in Drosophila and Caenorhabditis 
elegans and DGCR8 in mammalian cells.15,17–21 pre-miRNAs are exported from the nucleus into the 
cytoplasm by Exportin 5 where they are recognized and cleaved into the ∼22 nt microRNA by Dicer 
in conjunction with another dsRNA-binding protein, called Loquacious in Drosophila and TRBP in 
mammals.22–25,28–30 The miRNA is taken up by the effector complex, miRISC, and the passenger 
strand is lost, leaving the mature microRNA to guide the recognition of the microRNA-binding sites 
on the target mRNA, leading to silencing of target gene expression.34,35 Originally, mammalian 
microRNAs were thought to mediate target gene silencing by binding to sites on the mRNA that had 
incomplete complementarity with the microRNA and inducing translational repression, in contrast 
to small interfering (si)RNAs which have complete (or nearly complete) homology and direct 
mRNA cleavage.2,4 However, microRNAs with partial complementarity can facilitate some mRNA 
degradation, in addition to inducing translational repression177
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Regulation of gene expression by microRNAs operates through several mecha-
nisms including two that work posttranscriptionally – degradation of the targeted 
mRNA by cleavage and inhibition of translation.2,4 The first mechanism has a more 
potent effect on gene expression, probably because the same RISC-incorporated 
small RNA can be used repeatedly to guide the degradation of multiple target 
mRNAs.37 It is controversial whether the other mechanism (translational inhibition) 
involves blocking the initiation of translation or a more distal step in translation, 
and possibly multiple mechanisms may operate in different circumstances. A less 
well-understood mechanism of gene silencing by noncoding RNAs involves inhibi-
tion of transcription by the formation and maintenance of regions of silenced chro-
matin.38 In fact, Dicer-deficient cells are impaired in heterochromatin formation.39

The specificity of posttranscriptional silencing is determined by complementarity 
of the microRNA to the target mRNA, usually at sites in the 3′ untranslated region 
(UTR) of the message. The 5′-end of the guide strand is buried into a pocket of the 
Ago protein, while nucleotides 2–8 are exposed on the surface of the molecule 
forming a seed sequence that directs target mRNA recognition.40,41 How strongly 
base-pairing of the remaining nucleotides of the typical 19–23 nucleotide sequence 
of the microRNA to the target sequence influences gene silencing is uncertain. 
Other properties of the target mRNA that might influence gene silencing (such as 
lack of secondary structure of flanking sequences) are not well understood, making 
prediction of microRNA gene targets still a challenge.

mRNAs undergoing microRNA-induced translational inhibition appear to be 
sequestered in distinct cytoplasmic foci.42–47 These sites, referred to by a variety of 
names including processing (P)-, cytoplasmic-, GW-, Dcp-, or Lsm-bodies, serve 
as foci for the accumulation of mRNAs that are destined for degradation.48–50 In 
addition to the mRNA, these sites contain essential components of the mRNA deg-
radation pathway, the mRNA decapping enzymes (Dcp1/Dcp2), as well as the 5′-3′
exonuclease Xrn1, Dhh1p, and Pat1p, and in mammalian cells, GW182.51 The first 
hint of the interaction of the microRNA machinery with these sites of mRNA 
turnover was the demonstration that the mammalian Ago proteins implicated in 
RNAi colocalize with components of mammalian P-bodies.43,46 Another family of 
Argonaute proteins, the Piwi family, that have not been found to be associated with 
microRNAs, do not colocalize.46 A direct physical interaction between Ago1 and 
Ago2 with Dcp1 and Dcp2 was also shown by co-immunoprecipitation, even in the 
absence of RNA or using Ago2 protein, mutated in the Piwi Argonaute Zwille 
(PAZ) domain required for small RNA binding.46 However, Ago2 localization to 
P-bodies is a microRNA/siRNA-dependent process.45 This was further confirmed 
by following the fate of reporter mRNAs containing multiple MS2-binding sites 
that can be visualized with a fluorescently tagged MS2 protein and sites for either 
an endogenous microRNA or an exogenously introduced siRNA that mimics 
microRNA function by binding to multiple imperfectly complementary sites on 
the mRNA.45 The tagged mRNAs, but not reporter mRNAs that lack the micro-
RNA-binding sites, localize in P-bodies only in the presence of their respective 
microRNA. A functional link between P-bodies and RNAi-mediated silencing 
was shown by silencing GW182, which disrupts the formation of P-bodies and 
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significantly impairs gene silencing by both translational repression and mRNA 
cleavage.44,45

The physical and functional link between the sites of mRNA turnover and 
microRNA/siRNA-mediated silencing raises questions about the potential role of 
the RNAi machinery in other translational regulation mechanisms. P-bodies are 
increasingly thought to be sites for the storage of translationally repressed mRNAs, 
with mRNAs being able to move between the active and inactive pool as needed. 
One hypothesis put forward by the Parker and Hannon groups is that microRNAs 
may mediate their repressive function by selectively transporting and possibly even 
maintaining their mRNA targets in these sites of translational repression, segre-
gated from the translational machinery. It is possible to envision a variety of poten-
tial mechanisms by which the RISC could inhibit translation, including impairing 
various steps in translation (e.g., blocking the processivity or binding of ribosomes 
along the mRNA) or “tagging” newly formed proteins for degradation, in addition 
to sequestering the target mRNA from the translational apparatus. The interaction 
of RNAi components with other sites of mRNA storage and translational regulation, 
such as stress granules, which are distinct structures that interact with P-bodies, 
remains to be clarified.

3 Changes in microRNA Expression in Cancer

Mammalian microRNAs were first predicted using RNA-folding algorithms that 
identified evolutionarily conserved sequences that form into energetically favora-
ble short hairpins that are structurally similar to microRNAs identified in other 
organisms.52,53 These algorithms identified about 200 predicted microRNAs in 
mammalian genomes. A substantial subset of the predicted microRNAs was then 
verified by cloning small RNAs from a variety of cells. However, when the require-
ment for evolutionary conservation was relaxed, additional microRNAs were pre-
dicted (and the actual number may well exceed 1,000) and some of these have been 
cloned.54 These less conserved microRNAs may regulate specialized functions 
(such as immune responses) that have evolved recently. The makeup and size of the 
universe of functional mammalian microRNAs is still uncertain, but will soon be 
more accurately defined using recently available methods for efficiently cloning 
small RNAs.

microRNAs are expressed in temporally regulated patterns during cell differen-
tiation with distinct expression patterns in different cell types and tissues.55–62 The 
total number of microRNAs in a cell can also vary during differentiation and typi-
cally constitutes about 1% of the total cellular RNA. Highly expressed microRNAs 
can be present at as many as 104 copies/cell. Highly efficient cloning has enabled 
researchers to identify microRNAs in rare cell types that are expressed at fewer 
than 100 copies/cell.54,63 The functional significance of these rare microRNAs on 
gene expression is unclear. Figuring this out will be challenging because the gene 
targets of most microRNAs are unknown, and current target gene prediction 



304 D. M. Dykxhoorn et al.

algorithms are poor at identifying them. Moreover, the effect on gene expression 
of a single microRNA binding to an mRNA may be small, particularly when silenc-
ing is via translational inhibition. In fact, when single microRNAs are genetically 
deleted or inhibited, it is rare to find any significant difference in cellular function 
or fate.64 However, binding of multiple microRNAs to different sites in the 3′ UTR of 
a gene can coordinately have an impact on its expression.65 This model of cooperative 
regulation is reminiscent of models of transcriptional regulation by groups of tran-
scription factors binding to promoter sites on the DNA.

microRNAs have been associated with the regulation of a variety of biological 
processes from fat metabolism and insulin secretion to cell proliferation, apoptosis, 
and developmental timing.66–70 Since microRNAs play such an important role in the 
regulation of invertebrate development and differentiation, it is not surprising that 
dysregulation of microRNA expression would be associated with oncogenic trans-
formation in mammals. microRNAs might function as either tumor suppressors or 
oncogenes depending on their target genes and could contribute to cancer either by 
enhanced or reduced expression in tumor cells (Fig. 14.2). The first hint that micro-
RNAs might be associated with the development of cancer was the identification 
of two microRNAs, miR15 and miR16, encoded in a small region of chromosome 
13 that is frequently deleted in B-cell chronic lymphocytic leukemia (CLL).71 These 
two microRNAs were later found to suppress the expression of bcl-2, an antiapop-
totic protein that is frequently overexpressed in B-cell lymphomas and other malig-
nancies. Similarly, expression of miR143 and miR145 is significantly decreased in 
colorectal cancer specimens compared to matched normal tissue.72 Expression of 
these microRNAs is also reduced in a variety of colorectal, breast, prostate, lym-
phoid, and cervical cancers. In addition, miR26a and mir99a, expressed from 
regions associated with loss of heterozygosity in lung tumors, have reduced 
expressed in lung tumors and lung cancer cell lines. Bioinformatic analysis of the 
regions encoding microRNAs found that most microRNA genes (98 of 186 micro-
RNAs examined) are encoded in regions of the genome associated with cancer, 
including regions associated with loss of heterozygosity, gene amplification, com-
mon break point regions, and fragile sites.73 Importantly, one of these breakpoint 
region translocations (t(8,17)) associated with aggressive B-cell lymphoma places 
the MYC oncogene downstream of the miR142s gene promoter leading to MYC 
overexpression.74 Although these studies correlate decreased microRNA expression 
with the development of cancer, they do not generally identify targets of the micro-
RNAs that can explain their role in tumorigenesis.

Other microRNAs are overexpressed in specific malignancies. A conserved 
noncoding RNA termed BIC was first identified as a site of insertion of avian leu-
kosis retroviruses, and enhanced expression in chicken B-cell lymphomas.75

Recently, BIC was found to encode for miR15574 and was found to be upregulated 
in human diffuse large B-cell lymphomas (DLBCL) with an activated B-cell phe-
notype. miR155 overexpressing tumors have poorer prognosis than B-cell lympho-
mas of the germinal center phenotype.76–78

Cancers result from the accumulation of multiple spontaneous and/or inherited 
mutations that lead to dramatic changes in the pattern of gene expression, particularly
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Fig. 14.2 microRNAs can act as either tumor suppressors or oncogenes depending on their 
targets. (A) microRNAs as oncogenes. microRNAs that target a tumor suppressor gene and are 
overexpressed because of gene amplification (e.g., the miR17–92 polycistron),86 inappropriate 
expression of factors that upregulate transcription of the miRNA (e.g., c-Myc upregulation of the 
miR17–92 cluster)94 or translocation into a genome locus that alters microRNA expression73 can 
lead to cellular transformation, dysregulated proliferation, and tumor formation. (B) microRNAs 
as tumor suppressors. Tumor formation can be induced by the loss or decreased expression of a 
microRNA whose normal function would be to suppress expression of an oncogene. Inappropriate 
expression of the oncogene would then lead to cellular transformation. In either case, tumor for-
mation could be a result of increased proliferation, angiogenesis or invasiveness, decreased levels 
of apoptosis, or alteration of the state of cellular differentiation
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in pathways that control cell proliferation and cell cycle regulation, cell signaling, 
angiogenesis, apoptosis, protein degradation, transcriptional regulation, and the 
immune response. The assessment of changes in gene expression profiles in spe-
cific cancers by mRNA microarrays can be used to some extent to enhance defini-
tion of tumor subtypes and improve diagnosis and prognosis. However, a better 
understanding of the changes that are necessary for oncogenic transformation is 
seen when the mRNA microarray data are analyzed for changes in groups of related 
molecules, “molecular modules.” This allows for the identification of specific path-
ways and biological processes that are disrupted in particular cancers. Changes in 
microRNA expression in different tissues, developmental and differentiation states 
were initially assessed using a cloning strategy that took advantage of the unique 
structure and size of Dicer cleavage products to isolate and sequence microRNAs.13

Cloning microRNAs, however, is not suitable for high-throughput analysis and 
often does not provide reliable quantitative comparisons of expression. Until 
recently, low-abundance microRNAs were not readily detected by cloning. To 
address some of these concerns, microarray technologies used for profiling mRNA 
levels have been adapted to analyze microRNA expression79–84 in a variety of nor-
mal and cancerous tissues, including CLL85,86 and solid tumors, including lung, 
breast, stomach, prostate, colon, and pancreatic cancer.87,88

To begin to explore the role of microRNAs in CLL, Calin and colleagues com-
pared the microRNA profile of CLL patient samples with that of normal CD5 + B 
cells.85 The CLL samples fell into two distinct clusters of microRNA expression. 
Some microRNAs were upregulated in both groups compared to CD5 + B cells 
(e.g., miR183, miR190, and miR24–1) and some downregulated (e.g., miR213 and 
miR220). CLL patients can be grouped into two major subtypes according to 
whether their tumor cells express high levels of the signaling molecule ZAP70 and 
unmutated immunologlobulin heavy chain (more rapid disease progression) or low 
or undetectable ZAP70 and mutated immunoglobulin (slower disease progression). 
Expression of 13 microRNAs differed between the two groups.89 When patients 
were classified by the interval between diagnosis and initiation of therapy (another 
indication of tumor grade), expression of 9 of the 13 microRNAs identified the 
slower progressing tumors. Eight of the nine differentially expressed microRNAs 
were overexpressed in the more rapidly progressing tumors. Some of the changes 
in microRNA expression could be linked to mutations within or near the micro-
RNA sequences.

Microarray analysis also found that microRNA expression differed between 
normal and cancerous tissue in solid tumors, as well as between solid tumors aris-
ing from different organs.90 microRNA expression by prostate, colon, stomach, and 
pancreatic adenocarcinomas tend to cluster together. On the other hand, lung and 
breast cancer samples have distinct patterns of microRNA expression. A few 
microRNAs (miR21, miR17–5p, and miR191) are overexpressed in a majority of 
solid tumors. One would expect that these common microRNAs might be involved 
in dysregulating cellular processes, such as cell proliferation, that are aberrant in all 
malignancies, while the tissue-specific microRNAs might be involved in oncogenic 
or differentiation events relevant to specific tissues.91
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To facilitate microRNA profiling in human cancers, Lu et al. developed a highly 
effective and specific bead-based solution hybridization procedure.90 This tech-
nique uses oligonucleotide-capture probes linked to polystyrene beads impregnated 
with a variable combination of fluorescent dyes, a specific combination for each 
microRNA that is being tested, to analyze rapidly the microRNA composition of 
large numbers of samples. By binding the oligomer-capture probes to the microRNAs 
in solution, as opposed to on a solid support (e.g., glass slides), microRNA fam-
ily members that differ from one another by only a single nucleotide can be dis-
tinguished without much cross-reactivity. This method has a robust dynamic 
range with linear detection over a 100-fold range of microRNA expression. It 
was used to analyze the microRNA profile from 334 primary tumors represent-
ing a variety of tumor types and tissues of origin. Tumor samples showed 
decreased overall microRNA expression. Tumors of related lineage (i.e., epithe-
lial, endodermal, and hematopoietic) clustered together, and expression patterns 
differed between tumors and their normal cellular counterparts. Moreover, 
tumors whose histology was not diagnostic could be assigned based on their 
microRNA expression profile with much more assurance than would be possible 
from mRNA profiling.

Early indications suggest that microRNA expression patterns will be more 
informative than mRNA microarrays in characterizing cancer cells.90 It is likely that 
microRNA profiling will soon be used to refine diagnosis and subtype tumors to 
improve prognostic information and guide the choice of therapies. As the targets of 
the microRNAs whose expression is altered in various cancers are elucidated, this 
information will hopefully shed light also on the key events that contribute to the 
development and progression of cancers. It would not be surprising, for example, 
if alterations in microRNA genes might underlie poorly understood processes, such 
as metastasis.

4 microRNAs as Oncogenes or Tumor Suppressor Genes

Recently, a few pathways for microRNA regulation of genes implicated in cellular 
transformation have begun to be uncovered, but it is clear that this is just the begin-
ning (Table 14.1). let-7, one of the first identified and most well-conserved microR-
NAs, regulates developmental timing in C. elegans. Upregulation of let-7 is necessary 
for the terminal differentiation of seam cells in adult animals by facilitating their exit 
from the cell cycle. In worms that lack let-7 expression, seam cells continue to divide 
and fail to differentiate, similar to cancer cells. In fact, let-7 is downregulated in lung 
cancer cells and cell growth of a lung cancer cell line is inhibited by overexpression 
of let-7.92 These results suggest that let-7 acts as a tumor suppressor. This was demon-
strated to be the case when the RAS oncogene was identified as a let-7 target in 
mammalian cells.93 In C. elegans as well, the RAS homolog, let-60/RAS, is inhibited 
by the let-7 family members, let-7 and miR84, which bind to multiple target sites in 
the 3′ UTR of the let-60/RAS mRNA. Overexpression of miR84 in vulval cells 
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(vulval development being a good model for let-60/RAS function) leads to abnormal 
vulval development and precocious seam cell terminal differentiation. In addition, 
miR84 overexpression suppresses the effects of activating mutations of let-60/
RAS. Similar to the C. elegans let-60/RAS, the human RAS homologues, HRAS, 
KRAS, and NRAS, contain multiple putative let-7 family member binding sites in 
their 3′ UTRs. The introduction of a let-7a siRNA that mimics the let-7a microRNA 
suppresses RAS expression in a liver cancer cell line. Reciprocally, inhibiting let-7a 
in HeLa cells by transfection of complementary 2′-O-methyl antisense oligomers 
increases RAS expression (Fig. 14.3). Of note, several of the human let-7 family 
members, let-7a, let-7c, and let-7g, are encoded in chromosomal locations that are 
commonly deleted in lung cancer samples,73 and let-7 expression is reduced in lung 
tumor samples relative to normal adjacent tissue. In fact, the extent of let-7 reduc-
tion is an important independent prognostic indicator; patients with the most drastic 
reductions in let-7 have the poorest prognosis after potentially curative tumor resec-
tion. Moreover, reduced let-7 expression is inversely correlated with the level of 
NRAS protein. These experiments suggest that let-7 family members are tumor 
suppressors.

Table 14.1 Validated microRNA targets in mammalian cell proliferation, differentiation, 
and apoptosis

microRNA Target gene Function Reference

let-7 family Ras and its homologues Cell proliferation 93
miR17–5p E2F1 Transcription and cell proliferation 94
miR20a E2F1 Transcription and cell proliferation 94
miR181 Hox A11 Hematopoiesis 99
   Skeletal myoblast differentiation 108
miR223 Nuclear factor I-A  Granulopoiesis 100

(NFI-A)
miR221 c-kit receptor Erythropoiesis 101
miR222 c-kit receptor Erythropoiesis 101
miR130a Transcription factor  Platelet physiology 102

MAFB
miR10a HoxA1 Megakaryocyte differentiation 102
miR196a HoxB8 Limb development 106,107
miR1 Histone deacetylase 4  Skeletal myogenesis 112

(HDAC 4)
  Hand2 Cardiac development 111
miR133 Serum response factor  Myoblast proliferation 112

(SRF)
miR134 Lim-domain-containing  Dendritic spine development 115

protein kinase 1 (Limk1)
miR375 Myotrophin Insulin secretion 66
miR143 ERK5/BMK1 Adipocyte differentiation 117
miR15a bcl-2 Antiapoptosis 120
miR16–1 bcl-2 Antiapoptosis 120
miR372 LATS2 Tumor suppressor (germ cells) 135
miR373 LATS2 Tumor suppressor (germ cells) 135
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Fig. 14.3 Potential therapeutic approaches to inhibit tumorigenesis associated with altered 
microRNA expression patterns. (A) Tumor cells resulting from the overexpression of a micro-
RNA that functions as an oncogene can be treated with cleavage-resistant single-stranded RNA 
molecules (e.g., chemically modifying the RNA by replacing the 2′-hydroxy groups on the sugar 
backbone with 2′-O-methyl groups)178 that are complementary to the mature miRNA. These RNA 
molecules can effectively bind to the microRNA, preventing the association of the microRNA 
with its target gene(s) and thereby restore expression of the tumor suppressor gene and inhibit 
tumor growth. (B) Tumors that result from the loss of expression of a microRNA that acts as a 
tumor suppressor can be treated by reintroducing the microRNA into the cells. This can be

(continued)
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In some instances, multiple microRNAs are encoded as polycistrons from a sin-
gle common transcript. One of these microRNA clusters, the miR17–92 microRNA 
polycistron, maps to a region of chromosome 13 (13q31–q32) that is frequently 
amplified in B-cell lymphomas.86 microRNA microarray analysis of several B-cell 
tumor lines that carry known amplifications of this region show increases in five of 
the six microRNAs in the miR17–92 cluster, compared to normal B cells and leuke-
mia, and lymphoma cell lines lacking amplification of this region. In fact, expression 
of these microRNAs correlates with the copy number of the amplified region. 
Expression of the primary miR17–92 transcript is elevated in DLBCL and follicu-
lar lymphomas, suggesting that increased expression of this microRNA cluster 
might contribute to tumor formation. To test this hypothesis, He et al. over-
expressed the first five of the microRNAs (miR17–19b), in the context of c-myc 
overexpression from the immunoglobin heavy chain enhancer (Eµ-myc), a well-
established mouse model of B-cell lymphomas. While Eµ-myc transgenic mice 
typically develop B-cell lymphomas by 4–6 months of age, tumor formation was 
accelerated in Eµ-myc mice overexpressing miR17–19b, with a mean age of tumor 
formation of 51 days. Overexpression of each of the microRNAs in the miR17–19b 
cluster separately failed to enhance the rate of tumor formation. These tumors were 
particularly aggressive, invading visceral organs outside the lymphoid compart-
ment, including liver, lung, and kidneys. One potential clue to the oncogenic nature 
of this microRNA cluster was reduced apoptosis in the miR17–19b/Eµ-myc tumors 
compared to control tumors.

The choice of the Eµ-myc transgenic mouse to test the oncogenic potential of 
miR17–92 may have been especially apt since O’Donnell et al. (2005) showed that 
the miR17–92 promoter contains c-Myc E-box binding sites and c-Myc activates 
the expression of this miR cluster.94 This study also identified the transcription fac-
tor gene E2F1, which regulates progression through G1/S, as a target of two mem-
bers of the miR17–92 polycistron. c-Myc is known to activate transcription of 
E2F1, and E2F1 activates c-Myc expression, suggesting a positive feedback loop 
to enhance cell proliferation. c-Myc induction of miR17–92 then serves to dampen 
this loop by suppressing c-Myc-induced E2F1 expression. This study illustrates the 
potential of microRNAs to fine-tune gene expression patterns for important genes 
that regulate cell cycle progression. It is likely that other genes involved in regulat-
ing cell proliferation will also be targeted by this microRNA cluster. These studies 
provide an example of how dysregulating microRNA expression might disrupt the 

Fig. 14.3 (continued) achieved either by (1) introducing a DNA-based microRNA expression 
construct (e.g., using an oncoretroviral or lentiviral vector) that stably expresses the microRNA or 
(2) by directly introducing a chemically synthesized duplexed form of the microRNA that can 
enter the microRNA pathway and direct the silencing of the target oncogene. Alternatively, 
therapeutic benefit could be achieved by introducing siRNAs that silence expression of the dys-
regulated oncogene or any gene that will inhibit tumor growth (e.g., genes involved in cell cycle 
progression or angiogenesis) or make the tumor more sensitive to radiation or chemotherapy
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fine balance that regulates cell growth, disrupted during oncogenic transformation. 
However, these regulatory networks may be more complicated than this story sug-
gests; although the miR17–92 cluster is amplified in some B-cell lymphomas and 
clearly promotes tumor formation in the Eµ-myc mouse, the same region is associ-
ated with loss of heterozygosity in some hepatocellular carcinomas.

5 microRNAs and Differentiation in Mammalian Cells

Cancer cells are sometimes considered to be “frozen” in an undifferentiated or par-
tially differentiated state. Until recently, differentiation research primarily focused 
on transcriptional regulation by regulatory DNA sequences (promoters, enhancers, 
and locus control regions) that are proximal to protein-coding sequences, paying 
little attention to the “noncoding” genomic DNA. The discovery of microRNAs has 
focused attention on mechanisms of posttranscriptional regulation of differentia-
tion. As a general rule, total microRNA expression is higher in terminally differen-
tiated cells than in less-differentiated cells and is higher in adult tissues than in 
embryos. Moreover, microRNAs have well-defined and distinct expression pat-
terns in different tissues, particularly in cells of different developmental lineages. 
These findings suggest that microRNAs might play an important role in regulating 
terminal differentiation in different lineages. In fact, several recent studies provide 
compelling examples of regulatory networks (or the beginnings of networks) 
involving microRNAs, discussed below, that hint at an important role for microRNAs 
in controlling terminal differentiation, a step that is aberrant in cancer. These 
emerging regulatory circuits often involve intimate connections between transcrip-
tion factors and microRNAs with, on the one hand, microRNA gene expression 
being regulated by transcription factors known to be important in lineage determi-
nation and, on the other, microRNAs suppressing the expression of key transcrip-
tion factors.

The first evidence that microRNAs play a role in the differentiation of mamma-
lian cells came from the conditional deletion of Dicer1. (Loss of Dicer1 is lethal 
early in development.95) Conditional deletion of Dicer1 in embryonic stem cells,39

T cells,96 limb mesoderm,97 and skin98 showed gross defects in differentiation in all 
these lineages. The logical inference is that impaired production of microRNAs in 
the absence of Dicer1 interferes with cellular differentiation.

microRNAs in hematopoiesis Much of the initial work in studying the role of 
microRNAs in mammalian cell differentiation has been elucidated in hematopoie-
sis, probably the best-studied system of mammalian cellular differentiation. The 
first example implicated miR181, whose expression is increased in thymus, lym-
phoid tissues, and bone marrow, in promoting B-cell differentiation. Ectopic 
expression of miR181 in mouse hematopoietic precursor cells leads to a dramatic 
increase in B lineage cells.99 Another microRNA, miR223, expressed in the bone 
marrow, is important in granulopoiesis.100 An elegant network involving miR223 
and two competing transcription factors, C/EBPα and NFI-A, appears to control 
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the differentiation of promyelocytes into granulocytes. During in vitro and in vivo 
retinoic acid-induced differentiation of leukemic promyleocytes, miR223 expres-
sion is upregulated. The miR223 promoter contains overlapping sites for C/EBPα
and NFI-A binding. C/EBPα upregulates and NFI-A inhibits miR223 expression. 
Upon retinoic acid treatment, NFI-A expression declines, while C/EBPα is upregu-
lated. C/EBPα then binds and displaces NFI-A from the miR223 promoter to 
enhance miR223 expression. This molecular circuit is complete when miR223 
binds the 3′ UTR of NFI-A transcripts, blocking further expression of NFI-A. The 
importance of miR223 in regulating granulocyte differentiation was shown by 
inducing differentiation of promyelocytes by ectopic expression of miR223 without 
retinoic acid and by blocking retinoic acid-induced differentiation by inhibiting 
miR223.

Two clustered microRNAs, miR221 and miR222, abundantly expressed in 
CD34 + hematopoietic precursor cells, are downregulated upon in vitro differentia-
tion into the erythroid lineage.101 One likely target of these microRNAs is the kit 
receptor, required for proliferation and erythroid differentiation in response to kit 
ligand. Overexpressing either of these microRNAs reduces kit expression, cell pro-
liferation under erythroid-promoting conditions, and engraftment of CD34+ cord 
blood cells into immunodeficient mice. Because constitutively activated c-kit has 
been implicated in leukemias and gastrointestinal stromal tumors, inducing expres-
sion or transducing cells with these microRNAs (or their siRNA analogues) might 
have therapeutic benefit.

Another study that looked at in vitro differentiation of CD34+ progenitor cells 
into megakaryocytes found a group of downregulated microRNAs, one of which 
might be involved in targeting the transcription factor MAFB, upregulated during 
megakaryopoiesis and involved in activating transcription of the megakaryocyte-
specific gene GPIIB.102 Another downregulated microRNA miR10a is embedded in 
the HOX gene cluster and potentially targets HoxA1.

HOX gene microRNAs miR10 and miR196 microRNA families are embedded 
within the four HOX clusters of mammalian homeobox transcription factor 
genes,103 which play an important conserved role in determining the identity of cells 
in the developing embryo. The intricate expression pattern of HOX genes persists 
in adult tissues, but their roles are modified according to specific cellular needs 
(reviewed in104). The embryonic expression of the HOX-embedded microRNAs 
closely follows that of their “host” HOX cluster genes.105 Moreover, the HOX-
embedded microRNAs have been shown in a few examples to regulate the expres-
sion of HOX genes. miR196a binds to the HOXB8 3′ UTR and inhibits HOXB8 
expression by cleaving the HOXB8 transcript.106 HOXB8 and miR196a also have 
complementary expression patterns during embryogenesis, supporting the idea that 
miR196a regulates the expression of HOXB8 during development.103 miR196a is 
overexpressed in embryonic mouse hindlimbs compared to forelimbs, while the 
expression pattern of HOXB8 is the opposite. At least in chickens, miR196a 
appears to impede the retinoic acid-induced expression of HOXB8 and sonic 
hedgehog (Shh) in forelimb development to establish anterior–posterior pattern-
ing.107 However, loss of microRNAs in Dicer-deficient hindlimbs does not induce 
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HOXB8 expression. This result suggests that the primary regulation of HOX gene 
expression might not be via microRNAs or that multiple microRNAs might be 
involved in more complicated regulatory networks.107

Another illustration of HOX gene regulation by microRNAs is the regulation of 
HOXA11 in differentiating myoblasts by miR181.108 miR181 is upregulated in dif-
ferentiating muscle cells during development or during regeneration in response to 
injury, but is not expressed in undifferentiated myoblasts or fully differentiated 
muscle cells. Its target HoxA11, which inhibits myoblast differentiation,109,110 is 
reciprocally expressed in myoblasts and (at low levels) in adult muscle cells, but 
turned off during differentiation. Inhibiting miR181 interferes with myoblast dif-
ferentiation, but does not completely restore HoxA11 expression, suggesting that 
multiple microRNAs or other pathways contribute to this process.108 Moreover, the 
ectopic expression of miR181 does not induce myoblast differentiation, again sug-
gesting a more complex regulatory network. Nonetheless, the involvement of 
miR181 in both B-cell and myoblast differentiation suggests that miR181 might be 
involved in regulating common pathways activated during the terminal differentia-
tion of cells of mesodermal origin.

microRNAs and muscle development The miR1 family and miR133 genes are 
specifically and highly expressed in adult skeletal and cardiac muscle tissues and 
to a lesser extent during development of these tissues. Expression of miR1 genes is 
activated in the heart by the serum response factor (SRF) transcription factor and 
its cofactor myocardin and in skeletal muscle by the Mef2 and MyoD transcription 
factors. One of the targets of miR1 is the Hand2 transcription factor that promotes 
proliferation of cardiac muscle precursor cells. Cardiac embryonic development is 
activated when Hand2 begins to be expressed. Although Hand2 mRNA persists in 
adult cardiac tissue, Hand2 protein is downregulated coincident with miR1 expres-
sion. Precocious expression of miR1 in the developing heart leads to severe defects 
in heart formation because of decreased cell division.111 Therefore, miR1 controls 
terminal differentiation of myocardiocytes.

Another microRNA (miR133) is clustered with miR1-1, and they are transcribed 
as a single transcript beginning late in embryonic development.112 However, miR1 and 
miR133 have opposing effects on myoblast fate – as it does for the heart, miR1 
promotes skeletal myoblast differentiation, whereas miR133 promotes myoblast 
proliferation and inhibits differentiation.112 One of the targets of miR1 in skeletal 
muscle is HDAC4, which globally represses transcription, including transcription 
of the muscle-specific transcription factor MEF2C.113 One way that miR133 inhib-
its differentiation is by suppressing expression of SRF, which activates myoblast 
differentiation.114 Recall that SRF activates expression of miR1 (and thus miR133). 
This negative feedback loop indicates a complicated microRNA-transcription factor-
regulated mechanism for controlling muscle cell differentiation. Likely, there will 
be more to this story.

microRNAs also regulate the function of terminally differentiated cells microRNAs 
are especially abundant in terminally differentiated cells compared to their precur-
sors, suggesting that they may not only suppress the genes required for proliferation 
and progenitor cell pluripotency, but may also regulate their effector functions. 
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Regulating the function of terminally differentiated cells might not be directly 
related to cellular transformation and cancer. However, a few instructive examples 
of tissue-specific microRNAs and their role in differentiated cell function will be 
briefly described. miR375 appears to be exclusively expressed in pancreatic β cells 
and regulates insulin response to glucose.66 Increasing miR375 in β cells suppresses 
glucose-induced insulin secretion, while inhibiting miR375 has the opposite effect. 
This effect is mediated by the effect of miR375 on Myotrophin (Mtpn), a protein 
previously not know to play a role in insulin secretion. Silencing Mtpn by siRNA 
reproduces the miR375-suppressive effect on insulin secretion.

Another interesting example involves the role of miR134, highly expressed in 
brain, in regulating dendritic spine development of neurons in response to synaptic 
stimulation.115 miR134 inhibits translation of Lim-domain-containing protein 
kinase 1 (Limk1) which regulates dendritic spine formation.116 miR134 is localized 
near synapses where Limk1 synthesis takes place. The authors speculate that 
miR134 might bind to Limk1 mRNA as it is being transported from the cell body 
to the dendrites and be responsible for suppressing Limk1 translation during trans-
port and before synaptic stimulation. In response to activating stimuli, such as 
brain-derived neurotrophic factor (BDNF), the inhibitory effect of miR134 on 
Limk1 translation is reversed.115 A surprising observation is that even after BDNF 
stimulation when Limk1 mRNA is being translated, miR134 continues to associate 
with the Limk1 transcript. How BDNF stimulation might interfere with miR134-
mediated silencing of Limk1 translation or bypass it remains a puzzle.117

6 microRNAs and Apoptosis

Deregulation of cell death is an important feature of many cancers (reviewed in118).
Highly conserved caspase-dependent pathways are often inactivated in transformed 
cells, principally by overexpression of inhibitors of apoptosis, including antiapop-
totic bcl-2 family members, survivin, and other IAP family members. The first 
example of a role for microRNAs inhibiting apoptosis was in Drosophila, where 
expression of the proapoptotic factor hid is repressed by the microRNA bantam.67

Bantam not only blocks apoptosis, but also directly increases cell proliferation.67 In 
flies, miR14, the miR2 gene family and miR278 also act as potent cell death 
suppressors.68,119,120

In mammals the first evidence for a role of microRNAs in regulating apoptosis 
comes from conditional deletion of Dicer, which in embryonic limbs causes exten-
sive apoptosis.97 Deletion of Dicer in the T-cell lineage reduces the numbers of 
mature T cells, which both proliferate more slowly and are more prone to apoptosis 
in response to stimulation.96 Expression of antiapoptotic Bcl-2 in B-cell lymphomas 
is a likely target of miR15a and 16-1, which are deleted in many high-grade B-cell 
malignancies.121 Not only is bcl-2 expression tightly correlated with expression of 
these microRNAs, but transfection of bcl-2+ leukemia cells with an expression 
plasmid for either or for both of these microRNAs leads to downregulation of bcl-2 
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and induction of apoptosis. Glioblastoma cells and some other tumors strongly 
overexpress miR21.122 Depletion of miR21 in cultured glioblastoma cells activates 
caspases and leads to increased apoptosis through an unknown mechanism. 
Interestingly, another study using antisense microRNA inhibitors in cervical adeno-
carcinoma HeLa cells identified miR21 as an inhibitor of cell growth with no direct 
effect on apoptosis.123 The biological effects of any particular microRNA, including 
miR21, in different cells are likely to vary depending on the cell-specific repertoire 
of expressed target genes. Although these studies support a role for microRNA 
regulation of apoptosis, understanding the target genes and pathways in mamma-
lian cells awaits further research.

7  RNA Interference-Based Screens to Identify Novel Tumor 
Suppressor Genes and Oncogenes

RNAi has provided new opportunities to identify novel genes implicated in a vari-
ety of diseases by forward genetic screens. Before the discovery that RNAi worked 
in mammalian cells, the power of unbiased screens to identify unexpected partici-
pants in biologically important pathways was only available in invertebrates. 
Libraries of retroviruses encoding short hairpin RNAs (shRNAs) or arrays of siRNAs 
mixed with a transfection reagent, designed to silence a large proportion of human-
expressed genes or functionally related subsets of genes (i.e., all kinases and phos-
phatases, all known ubiquitin ligases), can be used to identify genes involved in 
cellular transformation, susceptibility to apoptosis, or drug resistance. Similarly, 
libraries of retroviruses encoding microRNAs can be used to identify microRNAs 
involved in cancer. Identifying a gene candidate in any screen is only the first step 
to validating its role in a biological pathway or disease. Some illustrative examples 
of RNAi-based cancer screens are given below.

Cancer cells are especially sensitive to apoptosis induced by the tumor necrosis 
factor (TNF)-related apoptosis-inducing ligand (TRAIL). To identify genes that 
might enhance or suppress TRAIL-mediated apoptosis, TRAIL was added to HeLa 
cells transfected in microtiter plates with a panel of siRNAs targeting 510 genes, 
including 380 kinases.124 This screen was able to identify several unknown genes 
whose silencing either sensitized or desensitized cells to TRAIL-induced apoptosis 
and to identify several signaling pathways (WNT, MYC) required for maintaining 
TRAIL sensitivity, since silencing multiple genes in these pathways differentially 
affected cell survival in response to TRAIL. Another siRNA-based loss-of-function 
screen surveyed hundreds of kinase and phosphatase genes to identify those that 
enhance or suppress apoptosis of HeLa cells either on their own or in conjunction 
with chemotherapeutic drugs.125 A large proportion of these enzymes (i.e., more than 
one third of the phosphatases) affected cell survival by at least twofold. The large 
number of “hits” suggests that more refined screens or biological verification would 
be needed to winnow through these leads to identify attractive targets for drug devel-
opment. For example, identifying kinases or phosphatases that are preferentially 
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needed for survival of different types of cancer cells vs normal cells or are only 
required for survival in the face of radiation or chemotherapy would be a first step.

Another screening approach uses libraries of DNA or viral vectors to express 
shRNAs, processed intracellularly into active siRNAs. Most libraries have used 
retroviral vectors because of the transduction efficiency and stability of gene 
expression afforded by these vectors. Brummelkamp et al.,126 examining what 
effect silencing the expression of 50 deubiquitylating enzymes had on TNFα acti-
vation of NF-κB, singled out the cylindromatosis (CYLD) tumor suppressor gene, 
which is linked to a familial proliferative skin disease. With this lead they were then 
able to pinpoint a role for CYLD in deubiquitinating TRAF2, which activates IKK 
and consequently NF-κB. By interfering with NF-κB activation using sodium sali-
cylate, they could enhance apoptosis of CYLD-silenced cells. This result was rap-
idly translated to show that topical aspirin derivatives could be used to treat this 
rare disfiguring disorder.

Although this study screened a small set of genes, large-scale plasmid and ret-
roviral shRNA expression libraries targeting a large proportion of the human and 
mouse genome have been constructed and validated by several groups.127,128–133

Some of these vectors express the shRNA within a microRNA sequence to enhance 
its processing and increase the efficiency of silencing.129 In screens for tumor sup-
pressor genes, cells at the brink of transformation because of expression of combi-
nations of oncogenes are transduced to express shRNAs and then selected for 
outgrowth of transformed cells. One retroviral-based RNAi screen took advantage 
of a conditionally transformed cell line that expresses the catalytic subunit of 
telomerase (hTERT) and a temperature-sensitive allele of SV40 large T antigen 
(tsLT), which allows cells to proliferate at 32°C (the temperature at which tsLT is 
functional and can inactivate pRb and p53), but not at 39°C at which growth arrest 
occurs, to identify novel factors that modulate p53-dependent proliferation arrest.133

After infection with the library, positive colonies, containing cells able to prolifer-
ate at 39°C, were selected and sequenced to identify the gene being silenced. shRNAs 
targeting six genes were pulled out of the screen, including the p53 gene, as well 
as five novel genes – RPS6KA6 (ribosomal S6 kinase 4, RSK4), Tip60 (histone 
acetyltransferase), HDAC4 (histone deacetylase), KIAA0828 (putatitive S-adenosyl-
l-homocysteine hydrolase, SAH3), and CCT2 (T-complex protein 1, β-subunit). 
These novel genes were validated by showing that shRNAs targeting each of the 
genes selected in the screen were able to inhibit growth arrest induced by ionizing 
irradiation or p19ARF overexpression. In a similar manner, Westbrook et al.134 used 
another shRNA expression library to look for potential tumor suppressor genes that 
inhibit transformation of human mammary epithelial cells (HMECs) expressing 
hTERT and SV40 large T antigen. Colonies of cells that demonstrated anchorage-
independent growth after infection with the shRNA library were isolated. The 
silenced genes were identified by DNA sequencing and bar code (a sequence 
identifier specific for each shRNA construct) microarray analysis. This 
approach identified several previously known tumor suppressor genes, including 
TGFBR2 and PTEN, as well as a gene that had not been previously shown to 
have tumor suppressing properties, REST/NRSF (RE1-silencing transcription 
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factor/neuron-restrictive silencing factor). The role of REST as a tumor suppressor 
was confirmed by expressing a dominant negative REST gene. The tumor suppres-
sor activity of REST was then found to be mediated by its ability to suppress 
PI(3)K-dependent signaling. REST is often deleted in colorectal cancer cell lines.

In a similar assay system, a retroviral shRNA-expressing library was used to 
screen for potential tumor suppressor genes whose silencing could substitute for over-
expression of a constitutively active form of RAS (RASV12) and permit anchorage-
independent growth in fibroblasts that overexpressed the catalytic subunit of 
telomerase (hTERT), SV40 small t antigen, and had silenced p53 and p16INK1A130.
The homeodomain pituitary transcription factor PITX1 was identified and con-
firmed as a tumor suppressor gene by showing that inhibiting PITX1 expression 
activates the RAS pathway by activating the promoter of RASAL1, a RAS-GTPase 
activating protein that connects Ca2+ signaling to RAS activity.

These previously described screens could identify tumor suppressor genes 
whose silencing promotes cellular proliferation or anchorage-independent growth, 
but they could not be used to identify potential oncogenes, whose silencing would 
cause growth arrest or cell death. To identify putative oncogenes, Staudt and 
colleagues135 used an inducible shRNA retroviral library to identify by microarray 
analysis shRNAs that were depleted in abundance when transduced and induced 
DLBCL lines were cultured for 3 weeks. All of the depleted shRNAs silenced NF-
κB pathway components, including IKBKB, CARD11, MALT1, and BCL10. 
Interestingly, these genes were required for the proliferation of only activated-type 
DLBCL and not germinal center-type DLBCL, suggesting that they might be good 
selective drug or siRNA targets.

Another type of screen was used to identify microRNAs that act as oncogenes. 
Using a retroviral library to express many of the known human microRNAs, 
Voorhoeve and colleagues136 identified two microRNAs, miR372, and 373, which 
share the same seed sequence, that cooperate with a constitutively active form of 
RAS (RASV12) to transform primary human fibroblasts that express wild-type p53. 
miR372 and 373 expression was elevated in testicular germ cell tumors, which 
mostly contain functional p53, but not in normal testes or in samples from breast, 
colon, lung, and brain tumors. Expression of a putative tumor suppressor gene, 
large tumor suppressor homolog 2 (LATS2), predicted to contain two potential 
miR372/373-binding sites, is decreased in cells overexpressing these microRNAs, 
and its silencing may be contributing to the oncogenic effect of these 
microRNAs.

8  Harnessing RNA Interference for Cancer 
Target Validation and Therapeutics

Although we are just beginning to understand the role of microRNAs in cancer, 
many investigators are already exploring the possibility of exploiting the power of 
RNAi for cancer therapy and drug target validation in animal models. (A discussion 
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of this extensive body of work is beyond the scope of this review [see, e.g.,137,138]). 
RNAi has become a standard tool to identify the importance of any particular 
gene in diverse biological pathways, including those implicated in cellular trans-
formation. siRNAs can be highly (but not completely) specific and can distin-
guish a single nucleotide polymorphism, as was first demonstrated by targeting 
the point mutation that constitutively activates a RAS oncogene, leaving wild-
type RAS unaffected. RNAi can be used effectively to silence the expression of 
any gene in any cell in vitro.139 Transgenic mice expressing shRNAs can also be 
used to identify the importance of particular genes or microRNAs in cancer for-
mation in vivo.140

Cleavage of the target mRNA is likely the most potent RNAi mechanism to har-
ness for therapy, because the same RISC-incorporated small RNA can direct the 
cleavage of many transcripts and because the transcript is eliminated, not merely 
repressed. (The relative effectiveness of mechanisms in which chromatin is silenced 
to inhibit transcription is unknown. This mechanism is too poorly understood to use 
as the basis for therapy at present.) The RISC-stabilized small RNA is highly stable 
within the cell – probably with a half-life of 1 week or more. The major determinant 
of durability of silencing is the rate of cell proliferation, where small RNAs are 
diluted with each cell division.141 In terminally differentiated nondividing cells 
silencing can last for weeks, while in rapidly dividing cell lines silencing peaks 3 
days after transduction and is gone by 1 week. For cancer cells, frequent and repeti-
tive dosing will likely be required for siRNA-based drugs. However, less rapidly 
dividing precancerous lesions or potentially cancer stem cells might be particularly 
effective targets requiring infrequent treatments. In addition to silencing transcripts 
for oncogenes, RNAi could be used either to mimic microRNAs identified in pro-
moting differentiation, inducing apoptosis or reducing proliferation or to inhibit 
cancer-promoting microRNAs. If the studies reviewed here that suggest that micro-
RNAs may be master regulatory switches for terminal differentiation hold up, then 
transducing cells with siRNAs that mimic such microRNAs may be a highly attrac-
tive strategy for cancer therapy.

RNAi-based therapy for cancer could be used to target more than oncogenes. 
Genes implicated in cell cycle progression142–146 and angiogenesis147–150 would be 
good targets. Particularly, if siRNAs can be targeted preferentially to tumor cells, 
then any gene required for viability is a potential target, although genes needed 
only for cell division are particularly attractive since they will cause less toxicity to 
the majority of nondividing cells. Growth factors or their receptors required for 
tumor growth are also possible targets.151–154 Targeting viral oncogenes encoded by 
EBV,155–157 HPV,158,159 and other oncogenic viruses also provides an opportunity for 
specificity. RNAi-based therapy could also be used in conjunction with chemo-
therapy or radiation to make cells more susceptible to these agents, particularly by 
silencing genes involved in drug resistance (i.e., transporters that efflux drugs), 
DNA repair, or metabolic pathways targeted by these drugs.160–166 It may also be pos-
sible to target cells involved in either supporting the growth of the tumor or eliminat-
ing it rather than the tumor itself. For example, tumor infiltrating lymphocytes are 
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largely incapacitated in their ability to destroy tumor cells; by targeting inhibitory 
receptors or regulatory cells, these tumor-specific immune cells might be activated 
to eliminate residual tumor cells.138

Two strategies can be used to harness RNAi for therapy – one is gene therapy 
(transducing cells with viral vectors that encode for shRNA precursors processed 
intracellularly like endogenous microRNAs); the other is to develop siRNAs as 
small molecule drugs.167,168 The latter is more suitable for cancer therapy and closer 
to clinical application. siRNAs can be chemically modified to enhance their phar-
macokinetics and reduce potential off-target effects caused by binding to Toll-like 
receptors, immune sensors of pathogenic double-stranded RNAs. The main obsta-
cle to using siRNAs is delivering them into the cytoplasm of cells, where they 
work. Cancer cells can be transfected in vitro, but except for superficial sites, this 
is not a viable strategy for treating most cancers, particularly micrometastases and 
macrometastases. Although most cells do not readily internalize siRNAs, mucosal 
surfaces appear to be especially susceptible to topically applied siRNAs.168 Initial 
siRNA phase I and II studies targeting the eye and lung (to treat age-related macu-
lar degeneration and respiratory syncytial virus infection, respectively) have not 
met with any unexpected toxicity. Therefore, malignancies that are located at these 
sites or spread locally are good initial targets. Attractive examples for initial studies 
might include HPV-related cervical cancer (targeting the E6 and E7 oncogenes), 
EBV-related nasopharyngeal cancer, lung squamous cell carcinomas, retinoblast-
oma, or head and neck cancer.

However, for most cancers a method for effective systemic administration is 
needed and is the major obstacle to using siRNAs for cancer therapy. Recently, 
several systemic siRNA delivery strategies have begun to be described in animal 
models. These involve covalently coupling the passenger strand of the siRNA to a 
targeting molecule (e.g., cholesterol),169 incorporating the siRNA into lipo-
somes,170,171 lipoplexes,172–174 or nanoparticles,149,175 or mixing the siRNA with 
fusion proteins, capable of specific targeting by binding to cell surface receptors.176

This latter approach was used to target and inhibit the outgrowth of a subcutaneous 
mouse melanoma cell line by intravenous injection of 1 mg/kg of a cocktail of 
siRNAs. siRNA delivery was highly specific since adjacent normal tissues did not 
take up the siRNAs.

As for other cancer therapies, drug resistance caused by mutating the target 
site sequence is an anticipated problem. This may be more of an obstacle for 
siRNAs than for other types of drugs, since conservative mutations that do not 
alter the encoded protein may interfere with gene silencing. However, dealing 
with drug resistance to siRNAs is a much simpler problem than for other small-
molecule drugs, which usually work by targeting a single active site on a 
protein. Since multiple sequences can be used to target any gene, alternate siR-
NAs can readily be designed. Combinations of siRNAs that target more than one 
sequence in a gene or multiple genes at once are likely to work synergistically 
to enhance tumor suppression and reduce the likelihood of emerging drug 
resistance.141
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Chapter 15
Cancer Stem Cells and Impaired Apoptosis

Zainab Jagani* and Roya Khosravi-Far

Abstract For more than 100 years scientists have fervently sought the  fundamental 
origins of tumorigenesis, with the ultimate hope of discovering a cure. Indeed, 
these efforts have led to a significant understanding that multiple genetic and 
 molecular aberrations, such as increased proliferation and the inhibition of apop-
tosis,  contribute to the canonical characteristics of cancer. Despite these advances 
in our knowledge, a more thorough understanding, such as the precise cells, which 
are the targets of neoplastic transformation, especially in solid tumors, is currently 
lacking. An emerging hypothesis in the field is that cancer arises and is sustained 
from a rare subpopulation of tumor cells with characteristics that are highly similar 
to stem cells, such as the ability to self-renew and differentiate. In addition, more 
recent studies indicate that stem cell self-renewal pathways that are active prima-
rily during embryonic development and adult tissue repair may be aberrantly acti-
vated in various cancers. This chapter introduces the cancer stem cell hypothesis; 
explores evidence for the presence of cancer stem cells, particularly in leukemia; 
and discusses various classical stem cell self-renewal pathways in relation to can-
cer. Investigating the role of cancer stem cells in the context of the major character-
istics of cancer, especially impaired apoptosis, offers great promise for the design 
of superior tumor-selective and apoptosis-inducing therapies.
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1 Introduction

The inability of conventional chemotherapeutic drugs and even various targeted 
therapies to produce complete remissions demands a more in-depth understanding 
of the key cellular events underlying tumor formation, maintenance, and  progression, 
and the molecular pathways that dictate such processes. It has become increasingly 
apparent that the tumor, rather than consisting of a uniform population of rapidly 
proliferating cells, is actually composed of a heterogeneous population of cells with 
variable cellular and molecular characteristics (Foulds, 1965; Heppner, 1984). 
Therefore, one possible explanation for the failure of chemotherapy is that it cannot 
eliminate this entire mixed composition of tumor cells, thus necessitating multiple 
treatment approaches. Along these lines, it has been proposed that a rare group of 
cells with stem cell-like properties lies within the tumor and gives rise to the hetero-
geneous tumor cell population (Reya et al., 2001). The existence of these cells 
indicates that while our current anticancer therapeutics may be successful in 
debulking a tumor, they remain ineffective in targeting the minute, yet crucial, pop-
ulation of tumor cells that ultimately sustains the tumor. While the “cancer stem 
cell hypothesis” is supported by seminal findings from hematopoietic cancers, 
especially acute myeloid leukemia (AML) (Warner et al., 2004), its importance and 
application in other types of cancers are not clearly understood.

1.1 The Cancer Stem Cell Hypothesis

One intriguing and emerging area of cancer research concerns the striking parallels 
between cancer cells and stem cells. Both of these cell types have the capacity to self-
renew and differentiate. Unlike the highly regulated self-renewal and differentiation 
decisions of normal stem cells, however, it has been proposed that cancer cells 
undergo uncontrolled self-renewal and abnormal differentiation. Coincidently, the 
pathways that regulate stem cell self-renewal and differentiation, such as Notch, 
Hedgehog (Hh), Wnt, and Bmi1 are dysregulated in various cancers (Reya et al., 
2001). In addition, key findings revealing the presence of leukemic stem cells and 
providing evidence for a stem cell origin for AML are in support of the hypothesis 
that cancers arise from a small population of tumor-initiating cells known as cancer 
“stem cells” (Bonnet and Dick, 1997; Buick and Pollak, 1984; Jordan and Guzman, 
2004; Lapidot et al., 1994; Mackillop et al., 1983; Reya et al., 2001). These cancer 
stem cells give rise to the clinically observed, phenotypically diverse tumor popula-
tion consisting of cells displaying varied capacities for abnormal differentiation, 
uncontrolled proliferation, and a reduced rate of apoptosis. While the precise identity 
of a cancer stem cell is difficult to pinpoint, it is possible that cancer stem cells can 
arise either from the malignant transformation of a stem cell, or the abnormal 
re-activation of self-renewal pathways in a more committed progenitor cell (Al-Hajj 
et al., 2004; Burkert et al., 2006; Reya et al., 2001).
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1.1.1 Cancer Stem Cells in Leukemia and Other cancers

Since the cellular and developmental biology of the hematopoietic system is well 
understood, the cancer stem cell hypothesis has been most thoroughly tested in the 
context of hematopoietic malignancies (Fig. 15.1), such as AML (Dick, 2005). 
AML is characterized by the uncontrolled growth and accumulation of abnormally 
differentiated blood cells, or leukemic blasts, which rapidly overwhelm normal 
blood cell function. Initial studies using various in vitro systems, such as the clono-
genic; suspension culture-initiating cells (SC-IC); and long-term culture-initiating 
cells (LTC-IC) quantitative stem cell assays revealed that only a minor fraction of 
AML cells are capable of supporting growth in vitro (Warner et al., 2004). These 
studies were followed by key experiments performed in vivo using the NOD/SCID-
leukemia xenotransplantation model. In this model, transplantation of leukemic 
cells from AML patients into mice can produce leukemic disease resembling 
human AML (Bonnet and Dick, 1997). It was demonstrated that only a minor per-
centage (0.1–1%) of AML cells with primitive CD34 + CD38– surface expression 
was capable of initiating AML in the NOD/SCID mice, thereby providing the first 
evidence for the presence of cancer stem cells (Bonnet and Dick, 1997; Lapidot 
et al., 1994). The discovery of leukemic stem cells thus set the groundwork for an 

Fig. 15.1 Cancer stem cells and leukemia. (a) A simplified demonstration of normal hematopoi-
etic development in which the self-renewing stem cell is highly regulated leading to normal pro-
genitor and mature cell production. In leukemia however, and according to the cancer stem cell 
hypothesis; (b) transformation of a stem cell can lead to uncontrolled self-renewal resulting in an 
abnormal growth and differentiation program; (c) alternatively, transformation of a progenitor cell 
can abnormally reactivate self-renewal resulting in the abnormal growth and differentiation of 
hematopoietic cells

stem cell

progenitor cell

mature cells

a.  Normal               b.  Leukemic Stem Cell            c.  Leukemic Progen itor Cell
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investigation of the existence of cancer stem cells in other types of cancers. While 
the origin of cancer stem cells has not been conclusively defined, recent studies 
have also identified a subpopulation of tumor-initiating cells in solid tumors, such 
as breast (Al-Hajj et al., 2003), melanoma (Grichnik et al., 2006), brain (Singh 
et al., 2003), prostate (Xin et al., 2005), and ovarian (Bapat et al., 2005) cancers. 
Together, these studies raise important questions regarding the target cells of our 
current anticancer therapeutics, and the study of cancer signal transduction path-
ways in the appropriate cellular context.

1.1.2 Targeting Cancer Stem Cells

In the case of the CML-causing oncogene BCR-ABL, accumulating evidence suggests 
that the target cell for transformation is a hematopoietic stem cell (HSC) rather than 
a committed progenitor cell (Elrick et al., 2005; Huntly and Gilliland, 2005; Huntly 
et al., 2004). Unfortunately, research has shown that while the Abl kinase inhibitor, 
Gleevec, can eradicate the majority of proliferating CML progenitors and differenti-
ated granulocytes, it is unable to target the minute population of CML progenitor 
stem cells that can sustain the disease (Bhatia et al., 2003; Elrick et al., 2005; Graham 
et al., 2002). In accordance with the cancer stem cell hypothesis, Gleevec treatment 
can be used continuously to manage chronic phase CML, but not to eliminate leuke-
mic disease, since the remaining cancer stem cells are still able to sustain the disease. 
Further research must specifically target this cancer stem cell population.

It remains important to determine whether abnormal survival and antiapoptotic 
signaling, as has been intensively investigated in primary tumor cells, tumor cell lines, 
and mouse tumor models, actually plays a significant role in the transformation and 
maintenance of the tumor-initiating cell, or, more specifically, the cancer stem cell 
population. One goal of such studies is to determine how to selectively induce 
 apoptosis in leukemic stem cells, but not in normal HSCs. Recent studies have shown 
that the prosurvival pathways, such as NF-κB and PI3-K, are highly activated in the 
leukemic stem cell population in AML (Guzman et al., 2001; Xu et al., 2003; Zhao 
et al., 2004). Interestingly, AML leukemic stem cells preferentially undergo apopto-
sis, unlike normal HSCs, upon combined treatment with the chemotherapeutic agent 
idarubicin and the proteasome inhibitor MG-132 (Guzman et al., 2002). Such treat-
ments lead to the inhibition of NF-κB activity, along with other currently unidentified 
mechanisms, and also activate p53, causing the expression of target genes, such as 
GADD45, p21, and the proapoptotic gene Bax (Guzman et al., 2002).

1.2 The Role of Stem Cell Regulation Pathways in Tumorigenesis

As early as 1855, the scientist Rudolph Virchow recognized elements of 
 dysregulated embryonic development in tumors, proposing his embryonal-rest 
hypothesis. In accordance with these earlier findings, there is now evidence for a 
molecular link between the pathways that regulate stem cell self-renewal during 
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development and tumorigenesis (Fig. 15.2) (Burkert et al., 2006; Reya et al., 2001). 
The major  developmental pathways such as Notch, Hh, and Wnt, which intricately 
control the self-renewal of stem cells during both embryonic development and adult 
tissue repair and homeostasis, are found to be upregulated in various cancers. These 
observations have brought forth important questions as to whether these pathways 
critically contribute to tumor formation and maintenance and whether their inhibi-
tion can be utilized in future anticancer therapeutic strategies. Selective inhibition 
of these developmental pathways in tumor cells may also have the potential to 
eliminate the elusive population of tumor-initiating cells that share common char-
acteristics with stem cells. Furthermore, determining the direct impact of inappro-
priate activation of self-renewal pathways on apoptosis in a tumor cell will lead to 
a better understanding of how to combine therapies that attack upstream self-
renewal pathways, with those that unleash downstream apoptotic cascades.

1.2.1 Bmi-1

The Bmi-1 proto-oncogene was first identified as a target of the Moloney murine 
leukemia viral insertion in the Eµ-myc lymphoma mouse model (Haupt et al., 
1991; van Lohuizen et al., 1991), with further studies suggesting a cooperative role 
with c-myc in inducing murine lymphogenesis (Haupt et al., 1993). Bmi-1 is a 
Polycomb-group gene which functions as a transcriptional repressor and plays a 
role in regulating cellular proliferation and senescence through repression of the 
INK4A locus (Jacobs et al., 1999). Recently, the Bmi-1 gene has been shown to 
play a critical role in the generation of self-renewing adult HSCs, as mice deficient 
in Bmi-1 show reduced numbers of HSCs (Park et al., 2003). In addition, the Bmi-1

Stem Cell

Committed Progenitor Cell

PI3-K
RAS
NF κB
Bmi-1
Notch
Wnt/ β-Catenin
Hedgehog

Target Cell Signaling Pathways Cellular Effects

Proliferation

Apoptosis
p53, Bax, 
Noxa,

Myc, cyclins,
p21

Bcl-2, FLIP, 
IAPs

Fig. 15.2 Cancer stem cells and signaling pathways. A summary of the signaling pathways impli-
cated in the survival of cancer stem cells. In general, these signaling pathways could either be 
aberrantly activated in a stem cell or a committed progenitor cell. Whereas, the outcomes of acti-
vating such pathways are numerous, key cellular effects include increase in cellular proliferation, 
and the inhibition of apoptosis. This figure outlines only a few of the various downstream genes 
that play important roles in proliferation and apoptosis
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gene has not only been implicated in regulating the proliferative activity of normal 
hematopoietic cells, but also of leukemic stem and progenitor cells, in which lack 
of Bmi-1 leads to proliferation arrest and characteristics of differentiation and 
apoptosis (Lessard and Sauvageau, 2003).

1.2.2 Notch Signaling

Notch signaling functions in a diverse set of cellular processes during embryonic 
and postnatal development, including the maintenance of stem cells, cell fate speci-
fication, differentiation, and proliferation (Artavanis-Tsakonas et al., 1999; Kadesch, 
2004). Interestingly, research points to a role for constitutively active Notch signaling 
under certain cellular contexts, such as in tumorigenesis (Callahan and Egan, 2004; 
Hansson et al., 2004; Radtke and Raj, 2003), yet the precise mechanisms underly-
ing this effect remain to be determined. In mammalian  systems, the Notch signaling 
pathway consists of four receptors (NOTCH1–4) and five ligands, Delta-like 1, 3, 
4 (DLL1, DLL3, and DLL4), Jagged 1 and Jagged 2 (JAG1, JAG2) (reviewed in 
Artavanis-Tsakonas et al., 1999; Hansson et al., 2004; Kadesch, 2004). Notch 
receptors are synthesized as precursors, with Notch receptor activation occurring in 
a series of proteolytic cleavages upon interaction with its ligand. While the first 
cleavage is facilitated by TACE (tumor-necrosis factor α-converting enzyme/met-
alloproteinase) (Brou et al., 2000), the second is mediated by the γ-secretase activ-
ity of presenilins, and results in the release of the  intracellular cytoplasmic portion 
of Notch, which then translocates to the nucleus (De Strooper et al., 1999; Mumm 
et al., 2000; Saxena et al., 2001). The known targets of Notch activation are the 
HES (hairy/enhancer of split) and HERP (Hes-related repressor protein) families of 
transcription factors, which regulate the transcription of various genes through 
development (Bailey and Posakony, 1995; Davis and Turner, 2001). The set of tar-
get genes activated by Notch signaling has not been completely defined, and may 
vary with cellular context. In transformed cells,  transcription of the erbB2 (Chen et 
al., 1997) and cyclin D1 (Ronchini and Capobianco, 2001) genes have been 
reported to be upregulated in response to activated Notch.

The earliest evidence for the involvement of activated Notch in human cancers 
arose from the identification of a translocation involving the Notch1 gene in cases 
of T-cell acute lymphoblastic leukemia (T-ALL) (Ellisen et al., 1991). In particu-
lar, the t(7;9) chromosomal translocation fuses a truncated Notch consisting 
mainly of the intracellular domain (NOTCH1-IC) to the TCRβ promoter/enhancer 
locus. The oncogenic property of NOTCH1-IC was confirmed by a murine bone 
marrow transplant model wherein reconstitution with hematopoietic progenitors 
expressing NOTCH1-IC led to the development of T-cell leukemias (Pear et al., 
1996). The presence of activated Notch is not limited to leukemias, as its overex-
pression or gain-of-function mutations, resulting in expression of a truncated 
active Notch, have also been observed in tumors of epithelial origin such as breast, 
cervical, and colon carcinomas (Callahan and Egan, 2004; Callahan and Raafat, 
2001; Gray et al., 1999; Zagouras et al., 1995). A role for constitutive Notch signaling
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in the development of mammary tumors was first found with the discovery that the 
Notch4 gene is a common integration site for the mouse mammary tumor virus 
(MMTV) in about 18% of virus-induced mouse mammary tumors (Gallahan and 
Callahan, 1997; Gallahan et al., 1987). MMTV interruption of Notch4 results in 
the expression of a transcript that encodes the transmembrane and intracellular 
regions for Notch4, but that lacks the extracellular regulatory domain. Transgenic 
mouse models expressing the Notch4 intracellular domain develop mammary 
tumors (Jhappan et al., 1992; Smith et al., 1995), and therefore support a causative 
role for activated Notch signaling in mammary tumorigenesis. The relevance of 
Notch activation in human breast cancers has recently been investigated using 
tissue microarrays of breast tumor samples from various clinical stages. In these 
studies, elevated expression of Notch-1 and the Notch ligand, Jag1, was associated 
with poor survival (Reedijk et al., 2005).

Among the primary mechanisms for Notch-induced tumorigenesis, in addition to 
increased proliferation, is the inhibition of apoptosis. Activated Notch-1 renders T 
cells resistant to Fas receptor-mediated signaling, as well as to drugs including 
 dexamethasone and etoposide, via upregulation of antiapoptotic molecules such as 
Bcl-2, FLIP, and IAPs (Sade et al., 2004). Additional mechanisms for Notch-induced 
survival include inhibition of p53 tumor suppressor expression, and activation of the 
RAS, PI3-K, and NF-κB pathways (Leong and Karsan, 2006).

While the precise value of Notch signaling inhibition in cancer therapy remains 
to be determined, preliminary studies have shown the potential for gamma secretase 
inhibitors (GSI) (Lanz et al., 2004; Wong et al., 2004), which can block Notch 
 proteolytic processing, to induce apoptosis in various tumor cell lines (Curry et al., 
2005; Nickoloff et al., 2005). Treatment of chemoresistant melanoma cells with a 
small molecule, GSI, induced the expression of the proapoptotic BH3 family 
 member, NOXA, and caused apoptotic cell death (Nickoloff et al., 2005). Future 
studies will determine which downstream survival or antiapoptotic pathways play 
a role in the context of Notch activation in leukemias, as well as in solid tumors. In 
addition, the precise role of each of the four Notch receptors in tumorigenesis, and 
the development of specific inhibitors and/or antibodies against these receptors, 
will be crucial for an understanding of the overall role of Notch signaling in cancer 
and for investigating the potential of Notch inhibition in anticancer therapy. Finally, 
it will also be important to perform these studies at the cancer stem cell level in 
order to determine the cellular context in which dysregulated Notch signaling can 
potentially exert its oncogenic effects.

1.2.3 Hedgehog Signaling

The Hh pathway, first discovered in Drosophila (Nusslein-Volhard and Wieschaus, 
1980), is highly conserved across vertebrates, with important functions during 
embryonic development, as well as in adult tissue homeostasis, such as in postem-
bryonic tissue repair and stem cell regulation (Lum and Beachy, 2004; Taipale and 
Beachy, 2001; Zhang and Kalderon, 2001). The mammalian Hh pathway includes 
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three secreted Hh ligands (Sonic, Indian, and Desert), their 12-pass transmembrane 
receptors Patched1 (PTCH1) and Patched2 (PTCH2), and the 7-pass  transmembrane 
signal transducer Smoothened (SMO). Hh ligands activate the Hh pathway by 
inducing the activation of SMO, followed by a signal transduction cascade that 
causes the nuclear translocation of the GLI family of transcription factors (GLI1, 2, 
3), and the subsequent induction of a distinct transcriptional regulatory program 
(Cohen, 2003; Hooper and Scott, 2005; Kalderon, 2005). The targets of Hh path-
way activation include various cell cycle, proliferation, and survival-regulating 
genes such as the cyclins (Kenney and Rowitch, 2000), c-myc (Kenney et al., 
2003), and Bcl-2 (Bigelow et al., 2004; Regl et al., 2004), and also Hh pathway 
genes themselves, such as Ptch1, Gli1, and Hip (Hh-interacting protein), which in 
turn regulate pathway activation (Chuang and McMahon, 1999; Goodrich et al., 
1996; Lee et al., 1997).

Notably, gene mutations within the Hh pathway have been linked with several 
human diseases. Mutations resulting in unrestrained Hh pathway activity have been 
found in Gorlin’s syndrome, which is characterized by developmental defects in the 
brain, spinal cord, and skeleton, and a predisposition for skin and brain cancers, 
such as basal cell carcinomas (BCCs) and medulloblastomas, respectively (Hahn 
et al., 1999). Subsequent investigations have substantiated aberrant Hh signaling in 
BCCs and medulloblastomas (Gailani et al., 1996; Xie et al., 1998). Recent studies 
have revealed that the Hh pathway is also active in more common tumors such as 
those of the lung, breast, pancreas, stomach, and prostate (Berman et al., 2003; 
Karhadkar et al., 2004; Kubo et al., 2004; Pasca di Magliano and Hebrok, 2003; 
Sheng et al., 2004; Thayer et al., 2003; Watkins et al., 2003). Cyclopamine is a 
plant-derived steroidal alkaloid that inhibits the Hh pathway by antagonizing SMO 
(Taipale et al., 2000). Various studies have shown the ability of cyclopamine to 
induce apoptosis in a variety of tumor cell lines, and to inhibit tumor progression 
in medulloblastoma, pancreatic, and lung mouse tumor models (Berman et al., 
2002; Thayer et al., 2003; Watkins et al., 2003).

1.2.4 Wnt/b-catenin Signaling

Similar to the Notch and Hh pathways, the Wnt signal transduction pathway also 
plays a critical role during development. Among several functions, Wnt signals 
 regulate the self-renewal of hematopoietic, epidermal, and intestinal stem cells. The 
canonical Wnt pathway involves signaling through the cytoplasmic protein, β-
Catenin. The binding of a Wnt ligand to a complex of a Frizzled receptor and the 
LRP5/6 receptor leads to a series of signaling events resulting in the inhibition of a 
destruction complex that promotes the proteasomal degradation of β-Catenin.
Therefore, Wnt pathway activity causes the accumulation of β-Catenin and its trans-
location to the nucleus where it binds to the Lef/Tcf family of transcription factors. 
This binding elicits the transcriptional activation of various target genes involved in 
the promotion of cellular proliferation and invasion, and the inhibition of apoptosis 
(reviewed in Fuchs et al., 2005; Reguart et al., 2005; Reya and Clevers, 2005).
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Interestingly, the first Wnt gene was identified in mouse mammary tumors 
induced by the integration of the MMTV (Rijsewijk et al., 1987). Since then, there 
have been numerous studies on the aberrant activation of Wnt signaling in various 
cancers, including those of the colon, ovary, prostate, pancreas, breast, and lung, 
along with melanomas, multiple myeloma, and even leukemias (Fuchs et al., 2005; 
Janssens et al., 2006; Reguart et al., 2005; Reya and Clevers, 2005). While 
 mutations in the Wnt ligands and receptors have not been identified in cancers thus 
far, mutations have been identified in downstream effectors of the Wnt pathway, 
especially in colorectal cancers (CRC). Gain-of-function mutations in oncogenic 
β-Catenin, and loss-of-function mutations in adenomatous polyposis coli (APC) 
and Axin, the latter of which are components of the destruction complex, can all 
lead to uncontrolled β-Catenin-mediated Lef/Tcf target gene expression (Fuchs 
et al., 2005; Janssens et al., 2006). Wnt pathway target genes involved in the inhibi-
tion of apoptosis include MDR1/PGP, COX-2, PPAR-d, and Survivin, each of 
which has been found to be upregulated in CRCs (Fuchs et al., 2005). Considering 
the activation of the Wnt pathway in various cancers, inhibition of the Wnt pathway 
may serve as an attractive and promising therapeutic approach. Recent studies have 
demonstrated the potential for small-molecule antagonists of the TCF/β-Catenin
complex to decrease expression of the Wnt target genes, Myc and Cyclin D, and to 
inhibit cellular proliferation in colon carcinoma cell lines (Lepourcelet et al., 2004). 
In another approach, monoclonal antibodies against Wnt-1 and Wnt-2 ligands have 
shown promise in inducing apoptosis in a variety of tumor cell lines overexpressing 
Wnt ligands, both in vitro and in vivo (He et al., 2004; You et al., 2004a–c; ). 
Interestingly, the Wnt-2 antibody was shown to downregulate the expression of 
Survivin and induce apoptosis in various human non-small-cell lung cancer 
(NSCLC) cells, while failing to induce apoptosis in normal human airway cells that 
do not express Wnt-2. In contrast, primary NSCLC tissues showed elevated expres-
sion of Wnt-2 (You et al., 2004c).

2 Conclusion and Perspectives

Even though the cellular heterogeneity of tumors has long been recognized, the 
exact reasons for this feature have not always been clearly understood. The genomic 
instability that is inherent in cancer cells offers one explanation. Interestingly, 
recent studies, especially in leukemia, have revealed that the abnormal behavior of 
a malignant stem cell can give rise to the abnormally differentiated and diverse cel-
lular hierarchy observed in tumors. The cancer stem cell hypothesis proposes that 
the tumor is actually sustained by a minority of cells, the cancer stem cells. The 
identification of cancer stem cells in leukemia and some solid cancers has yielded 
great insight into the cellular underpinnings of cancer, and will greatly affect the 
consideration of which cells to target critically in future anticancer therapeutics. 
Together, the study of signal transduction pathways that govern the survival of can-
cer stem cells, the precise role of cancer stem cells in different cancers, and an 
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analysis of stem cell regulation pathways in cancer offers great promise for the 
development of more effective treatments in the future.
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