
多

㶪

$$
2-2
$$

■ ■ ■	

\square

\square
\square
\square

$$
\begin{aligned}
& 1 \\
& 1
\end{aligned}
$$

1

1

2

1
I

I
I
＂

1

1

1
1
1

J
」
」
J
\square
\square
\square
\square
\square
\square
\square

$\square \square \square$

v

-
-

■

-
!
!
!

■

■

■

-
-
-
-
\square
∇

I
-
-
-
-
-
-
-
-

I

F

F
\#

V6\%

$$

$$

I
I
I
I


```
|
|
|
I
I
I
I
I
I
I
I
I
```

```
|
|
|
```

1
I
|
I
I
I
I
I

L

$$
\begin{aligned}
& \text { I } \\
& \text { | } \\
& \text { ! } \\
& \text { - } \\
& \text { - } \\
& \text { - } \\
& \text { I }
\end{aligned}
$$

$=$
$=$
$=$
$=$

$$
\pm
$$

\bullet

三
\equiv

\square

Ler

-4

:
|
|

\square
\square
\square
\square
\square
\square

\square

-
$!$
$!$

\square

\square
|

\square
\square
\square
\square \square
\square
■
\square
\square $■$

1

\square

1
$!$
-
$-$
$-$
$-$
-

$=$
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! ! ! !

\square
\square
\square
\square


```
|
|

1

1

I


\section*{\(=\)}

! ! ! ! ! ! ! ! ! ! ! ! ! ! !


I

I

I




-
-
-
-
- ! !

I

I

I
\(\overline{\overline{\underline{\underline{I}}}}\)
\(\square\)

\section*{\(\square\) \\ ■ \\ \(\square\) \\ \(\square\) \\  \\ ■ \\ ■ \\ - \\ \(\square\) \\ \(\square\)}


I
\(----=-\)

1

I
\(\square\)
-

pheris
nex
180
meser

E
n
V
E
"
E
\(\stackrel{N}{V}\)
n
E
E
"
E
"
"






I

I

I

1


\(\uparrow\)


I
I
I



1
\(\vdots\)
\(i\)
\(i\)

I



l



\('\)
\('\)
\('\)
1
\(i\)
\(i\)
\(i\)
\(i\)

I



■


II

I
I
I
\(\square\)
\(\square\)
\(\uparrow\)
\(\uparrow\)

E

1

1

1




-



-
\(\qquad\)



\(\square\)
\[
\begin{aligned}
& \square \\
& \square
\end{aligned}
\]
\(\square\)

\section*{\(\square\)}

【【【】【！】】！

I


\section*{-......}

\[
\begin{aligned}
& \square \\
& \hline \\
& \hline \\
& \hline \\
& \hline
\end{aligned}
\]

\(\qquad\)
- \(\longrightarrow\)
\(\qquad\)

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

MAGILL
\(\qquad\)
\(\qquad\)
"THIS IS THE BEST RUNNING BOOK EVER."BOB ANDERSON, FOUNDER OF RUNNER'S WORLD

\section*{SCHWARTZ}
\(\qquad\)
\(\qquad\)
\(\qquad\)
THE ULTIMATE RUNNING GUIDE

\section*{BUILD}

BREYER
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

A revolutionary fi tness program that targets every
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
component of a well-rounded running body and mind
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
"Build Your Running Body represents something new and needed in sports literature. This is the
'right stuff' for runners who want to get faster, enjoy running more, and stay injury-free for a lifetime."
RUNNING BODY
\(\qquad\)

\section*{A TOTAL-BODY FITNESS PLAN FOR ALL DISTANCE RUNNERS, FROM MILERS}
-BILL RODGERS, four-time winner of both the New York City and Boston marathons
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
TO ULTRAMARATHONERS | RUN FARTHER, FASTER, AND INJURY-FREE
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
"Build Your Running Body is
the most useful, info-packed, and
With more than 150 workouts-from weightlifting and crosstraining to
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
BRAIN
resistance exercises and plyometrics-fi ne-tuned to individual skill levels Y
comprehensive training manual
and performance goals, PLUS:
I've ever read. Coaches will fi nd it

\section*{OUR}

CO
invaluable, and runners of all levels
- 393 photos that make it easy to follow every step of every workout
\(\qquad\)
N
\(\qquad\)

NE
will use it as a complete guide
- 10 training programs to help runners of all levels
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
C
integrate the total-body plan into their daily routines
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{T}
to reaching their goals."
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
IV
—AMBY BURFOOT, 1968 Boston Marathon
- Interviews with leading runners, exercise scientists,
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{SYSTEM}

E
winner and Runner's World editor-at-large
and coaches-learn how elite runners train today
R
\(\qquad\)
\(\qquad\)
\(\qquad\)
Y

G
T
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
R
I
- Race strategy for the crucial weeks leading up to the
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\) S

E
competition and through to the fi nish line
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{S}

Whether you're a miler or an
ultramarathoner, if you want a
UNNING BOD
N
U
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

E
fi \(t\), fast, and injury-resistant running body,
- Exercises to prevent injury and rehabilitate common
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
there's a better way to train than relent-
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
running ailments
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
lessly pursuing mileage. This easy-to-use
- Seasoned insight on barefoot running, the pros and cons
\(\qquad\)
\(\qquad\)
\(\qquad\)
workout manual draws on the latest
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
of stretching, and other hot-button topics

\section*{E}
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
research in running physiology to target
- Nutrition guidance on carbs, proteins, fats, and weight loss
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
all the components that go into every
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
stride-including muscles, connective
- More than 30 recipes to speed recovery and cement fi tness gains
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
tissue, cardiovascular fi tness, energy
- Beginners' guidelines every step of the way
\(\qquad\)
\(\qquad\)
\(\qquad\)
production, the nervous system,

\section*{E}
- Valuable tips on proper apparel, tracking your progress, and more!
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
M
hormones, and the brain. With
\(\qquad\)
\(\qquad\)
\(\qquad\)
U

ST
\(\qquad\)
\(\qquad\)
\(\qquad\)
the breakthrough whole-body S

PETE MAGILL is a senior writer and columnist for Running Times magazine

C
training program in Build Your

L
Running Body, runners will and the 2013 USA Masters Cross Country Runner of the Year. He is the fastest-
ever American distance runner over age 50 in the 5 K and 10K. THOMAS
improve their times, run longer

SCHWARTZ, an exercise physiologist and coach, runs the popular website and more comfortably,

TheRunZone.com. MELISSA BREYER is the coauthor of True Food and is and reduce injury.
a Green Living columnist for Discovery Channel's Treehugger.com.
\$21.95 US SPORTS | RUNNING
Y
S SY

ES
\(\qquad\)
www.buildyourrunningbody.com
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

THE EXPERIMENT ■ NEW YORK
\(\qquad\)
\(\qquad\)

BECAUSE EVERY BOOK IS A TEST OF NEW IDEAS
\(\qquad\)
\(\qquad\)

A 393-PHOTO WORKOUT MANUAL www.theexperimentpublishing.com
\(\qquad\)
\(\qquad\)
\(\qquad\)
Also available as an ebook
\(\qquad\)
\(\qquad\)
\(\qquad\)
PETE MAGILL, THOMAS SCHWARTZ, MELISSA BREYER
\(\qquad\)
\(\qquad\)
\(\qquad\)
FOREWORD BY DR. ARMANDO SIQUEIROS • PHOTOGRAPHS BY DIANA HERNANDEZ
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

BYRB_mech_2ppA.indd 1-3
6/15/14 6:52 PM



\(i\)
-






\(h\)



\(\square\)
\(\square\)
\(\square\)
\(\square\)





\(\square\)
-
\(-\infty-\)


\(1\)






8
8
1

1
1

1


-



\(\theta\)

\(\square\)


\(-5-54 \leq 4\)

-
-
-
——n


」
」
」
」

\[
\square
\]
\(\square\)
\(\square\)

■
\(\square\)
\(\square\)

\(\square\)
\(\square\)
\(\square\)
\(\square\)
\(\square\)
\(\square\)
\(\square\)
\(\square\)
\(\square\)
\(\square\)
\(\square\)
\(\square\)
\(\square\)
\(\square\)
\(\square\)
\(\square\)
\(\square\)






\section*{-}

\(!\)






1

1

1

1
\(\square\)



```

|
|
|
|
|
|
|
|
|
|
|

$$
\begin{aligned}
& 1 \\
& 1 \\
& 1 \\
& \mid
\end{aligned}
$$

$$
\begin{aligned}
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& 1
\end{aligned}
$$

```
|
|
|
|
I
I
I
I
```



```
|
-
-
    ■
    |
    |
    |
    |
    |
    I
    |
```

1
1
1
1
$=$
$=$
$=$

三
ミ

■

\square

■
 \square
 -
 \square
 -
 -
 -

三 \equiv

CTH

Lererer

-
-
:
.
-

```
\(=\equiv\)

merer
man


\(■\)
\(\square\)
\(\square\)
\(\square\)
\(\square\)
\(\square\)


I

1
\[
\begin{aligned}
& 1 \\
& 1 \\
& 1 \\
& \hline
\end{aligned}
\]

\(\square\)
\(\square\)
\(\square\)
\(\square\)
\(\square\)

\(\square\)
\(\square\)
\(\square\)
\(\square\)


I
|

\(\overline{\overline{\overline{\underline{I}}}}\)


I



1
|



-
-
```

I

```




\(\square\)
! ! ! ! ! ! !

-•! ! ! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! ! ! !
\(\vdots\)
\(\vdots\)
\(\vdots\)
\(\square\)

```

I
I

```



■
\(\square\)
\(\square\)
\(\square\)
\(\square\)
\(\square\)
-
\(\square\)
\(\square\)
\(\square\)
\(\square\)
\begin{tabular}{l}
5 \\
\hline
\end{tabular}

```

I
I


```
|
|
1
\
|
|
|
```


-

I
I
I
I
I
I
I

1
1
1
1

I
I
I
I

-
$=$

\square
\square
\square
\square
1
1
,

1

1


```
|
```


\square

\square

\square
\square
\square
\square
\square
\square
\square
\square


```
■
\square
\square
■
■
■
```


\square
\square
\square
\square
\square
\square
\square
\square

\square
\square
\square
\square
\square
\square
\square
\square
LSCR

\square
\square
\square
\square
\square
\square
\square
\square
\square

I

$=$

\square
■ \square \square
\square
\square
\square
\square
\square
\square
\square
\square
\square
-

I

1

\square

MAGILL

"THIS IS THE BEST RUNNING BOOK EVER."BOB ANDERSON, FOUNDER OF RUNNER'S WORLD

SCHWARTZ
\qquad
\qquad
-

THE ULTIMATE RUNNING GUIDE

BUILD

BREYER
\qquad
\qquad
\qquad
-
\qquad
-
\qquad
-
\qquad
-
\qquad

A revolutionary fi tness program that targets every

BUILD YOUR

\qquad
-
\qquad
-
\qquad
component of a well-rounded running body and mind
\qquad -
\qquad
——
\qquad
-
\qquad
-
\qquad
-
\qquad
-
\qquad
-
\qquad
"Build Your Running Body represents something new and needed in sports literature. This is the
'right stuff' for runners who want to get faster, enjoy running more, and stay injury-free for a lifetime."

RUNNING BODY

A TOTAL-BODY FITNESS PLAN FOR ALL DISTANCE RUNNERS, FROM MILERS

—BILL RODGERS, four-time winner of both the New York City and Boston marathons

TO ULTRAMARATHONERS | RUN FARTHER, FASTER, AND INJURY-FREE

\qquad
-
\qquad
——
\qquad
\qquad
\qquad
-
"Build Your Running Body is
the most useful, info-packed, and
With more than 150 workouts-from weightlifting and cross-training to
\qquad
\qquad
\qquad

BRAIN

resistance exercises and plyometrics-fi ne-tuned to individual skill levels Y
comprehensive training manual
and performance goals, PLUS:
I've ever read. Coaches will fi nd it
OUR
CO
invaluable, and runners of all levels

- 393 photos that make it easy to follow every step of every workout
\qquad
\qquad
\qquad
\qquad
\qquad
-

\qquad
-
\qquad
-
\qquad
-
\qquad
\qquad
-
\qquad
\qquad
-
\qquad

N
\qquad
-
\qquad
-
\qquad
-
\qquad

NE
will use it as a complete guide

- 10 training programs to help runners of all levels
\qquad
-

\qquad
\qquad
\qquad

C
integrate the total-body plan into their daily routines
\qquad
-
\qquad
-
\qquad
-
\qquad
\qquad

T

to reaching their goals."
\qquad
-
\qquad
-
\qquad
\qquad

IV
-AMBY BURFOOT, 1968 Boston Marathon

- Interviews with leading runners, exercise scientists,
\qquad
-

\qquad
\qquad

SYSTEM

E
winner and Runner's World editor-at-large
and coaches-learn how elite runners train today
R \qquad
\qquad
\qquad
-
\qquad
-
\qquad

Y

G
T
\qquad
-
\qquad
\qquad

- Race strategy for the crucial weeks leading up to the
\qquad
-

\qquad
-
\qquad
-
-
S
E
competition and through to the fi nish line
\qquad
\qquad
\qquad
-
\qquad
\qquad
-
S
Whether you're a miler or an
ultramarathoner, if you want a
UNNING BOD
N

U

E

fi t, fast, and injury-resistant running body,

- Exercises to prevent injury and rehabilitate common
\qquad
-

\qquad
-
\qquad
-
\qquad
there's a better way to train than relent-
\qquad
-
\qquad
-
\qquad
-
\qquad
running ailments
\qquad
lessly pursuing mileage. This easy-to-use

- Seasoned insight on barefoot running, the pros and cons
\qquad
-

\qquad
-
\qquad
-
\qquad
-
workout manual draws on the latest
\qquad
-
\qquad
-
\qquad
\qquad
\qquad
of stretching, and other hot-button topics

E
\qquad
research in running physiology to target

- Nutrition guidance on carbs, proteins, fats, and weight loss
\qquad
-

\qquad
-
\qquad
-
\qquad
-
all the components that go into every
\qquad
\qquad
\qquad
stride-including muscles, connective

- More than 30 recipes to speed recovery and cement fi tness gains
\qquad
-

\qquad
-
\qquad
\qquad
\qquad
\qquad
\qquad
-
\qquad
-
\qquad
tissue, cardiovascular fi tness, energy

- Beginners' guidelines every step of the way

M
\qquad
\qquad
\qquad
-
\qquad
production, the nervous system,

E

- Valuable tips on proper apparel, tracking your progress, and more!
\qquad
-

\qquad
-
\qquad
\qquad

M
hormones, and the brain. With
\qquad
-
\qquad
-
\qquad
the breakthrough whole-body

S

PETE MAGILL is a senior writer and columnist for Running Times magazine
\qquad
-
\qquad
-
\qquad

C
training program in Build Your
\qquad
-
\qquad

L

Running Body, runners will and the 2013 USA Masters Cross Country Runner of the Year. He is the fastest-
ever American distance runner over age 50 in the 5 K and 10K. THOMAS
improve their times, run longer

SCHWARTZ, an exercise physiologist and coach, runs the popular website and more comfortably,

TheRunZone.com. MELISSA BREYER is the coauthor of True Food and is and reduce injury.
a Green Living columnist for Discovery Channel's Treehugger.com.
\$21.95 US SPORTS | RUNNING

Y

S SY
\qquad
\qquad

ES
\qquad
\qquad
\qquad

www.buildyourrunningbody.com
\qquad
-
\qquad
-
\qquad
-
\qquad
-
\qquad
-
\qquad

AND MORE NERVOU
THE EXPERIMENT ■ NEW YORK
\qquad
-
\qquad
-
\qquad

BECAUSE EVERY BOOK IS A TEST OF NEW IDEAS
\qquad

A 393-PHOTO WORKOUT MANUAL
www.theexperimentpublishing.com
\qquad
\qquad

Also available as an ebook
\qquad
\qquad
\qquad

PETE MAGILL, THOMAS SCHWARTZ, MELISSA BREYER
\qquad
-
\qquad
-
\qquad
-
FOREWORD BY DR. ARMANDO SIQUEIROS • PHOTOGRAPHS BY DIANA HERNANDEZ
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

BYRB_mech_2ppA.indd 1-3
6/15/14 6:52 PM
PRAISE FOR

BUILD YOUR RUNNING BODY

"This is so good. Honestly, I think this is the best running book ever."
-Bob Anderson, founder of Runner's World and of the Double Road Race 15K Challenge and the Double Training Program
"Build Your Running Body represents something new and needed in sports literature. This is the 'right stuff' for runners who want to get faster, enjoy running more, and stay injuryfree for a lifetime."
-Bill Rodgers, four-time winner of both the New York City and Boston marathons
"At last, a running book that shows us how to enjoy running all through life, and that's as interesting as the sport we love so much."
-Kathrine Switzer, first woman to officially run the Boston Marathon and author of Marathon Woman
"Build Your Running Body is the most useful, info-packed, and comprehensive training manual I've ever read. Coaches will find it invaluable, and runners of all levels will use it as a complete guide to reaching their goals."
—Amby Burfoot, 1968 Boston Marathon winner and Runner's World editor-at-large
"I wish I'd had an encyclopedia on running like Build Your Running Body long ago. It's comprehensive-filled with relevant and valuable guidance - and articulated in a way that even the most novice runner can understand."
-Jacqueline Hansen, two-time world-record holder for the women's marathon, Boston Marathon winner, and first woman to run
a sub-2:40 marathon

THEEXPERIMENT

BECAUSE EVERY BOOK IS ATESTOF NEW IDEAS

"A wonderful combination of running science with real-world wisdom for modern runners. When Pete Magill talks, smart runners listen."
-Scott Douglas, Runner's World senior content editor
"Coach Tom Schwartz possesses an understanding of training and racing that is world class.

Utilizing an unconventional approach to training, Tom crafted a program that improved my endurance, my longterm development, and, most importantly, my confidence. Tom made me a champion."
-Kevin Miller, multiple times USA masters age-group and age-graded national champion
"Build Your Running Body is nothing short of the Unified Theory of Running. Packed with delight-fully fun-toread advice and asides, it squeezes a century of technical research and coaching wisdom into a book of bite-sized lessons. Techniques and training, energy systems and recipes, race strategy and injury prevention-this book covers it all."
-Ken Stone, founder and editor of MastersTrack.com
"Pete Magill must have found the fountain of youth. I coach college students, and he consistently outruns half my team! He
must know something the rest of us don't!"
-Steve Scott, former American record-holder in the mile (3:47.69), 3-time Olympian, 10 times ranked \#1 American miler, and world record-holder for most sub-4 minute miles (136) "You will not want to put Build Your Running Body down. It's OK to miss a training day to learn from Pete Magill's knowledge and experience-runners of all ages and abilities will be smarter just by getting this book in their hands. It's filled with good, honest common sense gained from years of experience and results."
-Rod Dixon, winner of the 1983 New York City
Marathon, Olympic Medalist, two-time World Cross Country Championship Medalist, and founder of KiDSMARATHON
"Build Your Running Body masterfully breaks down the essenti als of running-specific training and will help bring you to the starting line of your next race happier, healthier, and faster than ever!

Pete Magill is a master, and that's not just an age group designation! The wealth of knowledge in this book is truly remarkable-it shares much of what has allowed Pete to continue to thrive as an athlete and has something to teach every aspiring runner out there. It's truly a must have!"
-Will Leer, 2013 USA Champion, Indoor Mile \& Indoor 3000 Meters

BUILD YOUR

RUNNING BODY

A TOTAL-BODY FITNESS PLAN FOR ALL DISTANCE RUNNERS,

FROM MILERS TO ULTRAMARATHONERS
RUN FARTHER, FASTER,
AND INJURY-FREE
Pete Magill, Thomas Schwartz,

and Melissa Breyer

PHOTOGRAPHS BY DIANA HERNANDEZ

NEW YORK

Build Your Running Body: A Total-Body Fitness Plan for All
Distance Runners, from Milers to Ultramarathoners-Run
Farther, Faster, and Injury-Free Copyright © Pete Magill, Thomas Schwartz, and Melissa Breyer 2014
Photographs copyright © Diana Hernandez, 2014
All rights reserved. Except for brief passages quoted in newspaper, magazine, radio, television, or online reviews, no portion of this book may be reproduced, distributed, or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or information storage or retrieval system, without the prior written permission of the publisher.
The Experiment, LLC
220 East 23rd Street • Suite 301
New York, NY 10010-4674
www.theexperimentpublishing.com
This book is not intended as a substitute for the medical advice of physicians or other clinicians.

Readers should consult with a physician, dietitian, or other health-care professional before beginning or making any changes to a diet, exercise, or health program. The authors and publisher expressly disclaim responsibility for any liability, loss, or risk-personal or otherwise-which is incurred, directly or indirectly, as a consequence of the use and application of any of the contents of this book.

The Experiment's books are available at special discounts when purchased in bulk for premiums and sales promotions as well as for fundraising or educational use. For details, contact us at info@theexperimentpublishing.com.
Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
those designations appear in this book and The Experiment was aware of a trademark claim, the designations have been capitalized.

Library of Congress Cataloging-in-Publication Data
Magill, Pete.
Build your running body : a total-body fitness plan for all distance runners, from milers to ultramarathoners' run farther, faster, and injury-free / Pete Magill, Tom Schwartz, and Melissa Breyer ; photographs by Diana Hernandez.
pages cm .
Includes index.
ISBN 978-1-61519-102-4 (pbk.) — ISBN 978-1-61519-103-
1 (ebook) 1. Long-distance running-
Handbooks, manuals, etc. 2. Running-
Handbooks, manuals, etc. 3. Running-Training-
Handbooks, manuals, etc. 4. Running-Physiological aspects
-Handbooks, manuals, etc. 5. Runners (Sports)-
Handbooks, manuals, etc. I. Title.
GV1062.M34 2014
$796.42-\mathrm{dc} 23$

$$
2014010816
$$

ISBN 978-1-61519-102-4

Ebook ISBN 978-1-61519-103-1

Cover design by Orlando Adiao
Photograph on page 163 courtesy Roger Sayre
Photograph on page 161 courtesy of AquaJogger
Photographs on pages $295,307,317,325,335$, and 347 courtesy of John Fell Text design by Pauline Neuwirth, Neuwirth \& Associates, Inc.
Manufactured in the United States of America
Distributed by Workman Publishing Company, Inc.
Distributed simultaneously in Canada by Thomas Allen and Son Ltd.
First printing June 2014
10987654321
CONTENTS
Foreword - Dr. Armando Siqueiros vii
Introduction ix
PART ONE: Build Your Running Knowledge

1. Build Your Running Motivation 3
2. Build Your Running History 9
3. Build Your Running Gear 17
4. Build Your Running Vocabulary 25

PART TWO: Build Your Running Body-
Components and Workouts
5. Build Your Running Muscles 35
6. Build Your Running Connective Tissue 79
7. Build Your Running Cardiovascular System 111
8. Build Your Running Powerhouses 137
9. Balance Your Running.pH 151
10. Build Your Running Energy System 165
11. Rewire Your Running Nervous System 191
12. Build Your Running Hormones 221
13. Build Your Running Brain 241
PART THREE: Build Your Running Program-
Principles and Schedules
14. Build Your Running Approach 255
15. Build Your Training Schedule 261
16. Build Your Running Recovery 281
17. Build Your Running Injury Prevention 287
v
PART FOUR: Build Your Running Diet-
Protein, Carbs, Calories, and Nutrition
18. Build Your Running Diet with Real Food 295
19. Build Your Running Carbohydrates 307
20. Build Your Running Protein 317
21. Build Your Running Fats 325
22. Build Your Running Nutrients 335
23. Build Your Running Weight-Loss Program 347
PART FIVE: Build Your Race Strategy.
24. Build Your Race Approach 361
25. Build Your Race 369
Injury Prevention 377
Glossary 387
Further Reading 409
Acknowledgments 415
Index 417
About the Authors 435
vi
FOREWORD
I confess: When I was first asked to write
the lifetime. A reasonable approach to training - one foreword for

Build Your Running Body, I that relies on a longterm plan, patience, and re-
thought, "Oh no, not another training manual."
siliency in the face of unexpected obstacles, such Those of us who have been in the sport for years as injury and illness-is the first habit runners have seen these manuals come and go. I have should develop. It's the wellspring for success. read books that even I-a practicing physician, Would this book offer runners such an approach, avid runner, and coach-have had trouble wading setting them on the path toward goal achievethrough, so burdened were they with complex ment and lifelong fitness? running physiology. As every good physician and Build Your Running Body offers an incredible coach knows, the essence of communication is amount of information, the depth of which getting the message across. Would this book get may at first escape readers, since it's presented its message across?
in a way that's so easy to understand. Part Pete Magill has been a friend of mine for al-Two-the workout manual-presents informamost three decades, going back to when we comtion on running anatomy and physiology that peted for Aztlan, a Southern California running is truly invaluable; I believe most novice and club. I've made it a habit to read Pete's Running veteran runners could avoid the mishaps so Times columns and have often discussed training
many in the sport suffer with the knowledge with him. I continue to be amazed by his running embedded in these chapters alone. But Build prowess and achievements as a masters athlete Your Running Body goes further, teaching runand coach. When my own coaching was under ners how to use this information to develop the microscope-in the years when I coached Jortheir own training schedules and equipping dan Hasay, one of America's all-time high school them with essential nutritional advice and godistance running greats, at Mission College Prepato recipes for fueling their workouts. And lastly, ratory High School—Pete asked me to explain my it puts the whole package together with a praccoaching philosophy in an article for his running tical approach to most runners' ultimate goal: website. I summed it up with the three things I race performance.
tell all my athletes: "Let's be reasonable. Let's not This book is unlike any I have seen. It borrows get greedy. We can have fantastic things happen." from the best and brightest in the sport-one Often, the way we train and race when we're chapter is devoted to the coaches and physioloyoung is the way we'll train and race as we get gists who have made major contributions to curolder. We develop habits that stay with us for a rent training methods. As the book itself
acknowledges, it "stands on the shoulders of ages on the path for a lifetime of running faster, giants." But it packages this information in a forfarther, and injury-free? mat that is unique and informed by decades of I believe it does. Bravo to Pete, Melissa, and personal experience. Because of this easy-to-follow Thomas! format, the material in the book is comprehensible and relevant for both beginners and forty-plus-year Armando Siqueiros, M.D., Internal Medicine veterans like me.

Coach of Cal Poly Distance Club
Does Build Your Running Body succeed in getting USA Track \& Field 2009 National Developmental the message across? And does it set runners of all Coach of the Year

Y

OUR RUNNING BOD
BUILD Y
viii
FOREWORD
INTRODUCTION
You opened this book for a reason.
recognize that every runner is different, that we Maybe you like the cover and wanted to all bring a slightly different body type, exercise see if there were more photos inside-there are, history, and performance goal to our training. So about four hundred of them, comprising the most
instead of being asked to follow a generic precomprehensive photo instruction guide for workscription for mileage and speedwork (the topouts, exercises, and drills available in a running down approach of most training programs), book. That was by design. I've always wished that you'll build your fitness from the ground up, running-with its associated drills, plyometrics, learning to target the individual components of resistance training, stretching, foam rolling, and your running body-your muscles, connective other exercises-had an illustrated training mantissue, cardiovascular system, nervous system, ual like those for weightlifting, aerobics, martial hormones, and more-and to focus on those arts, and practically every other sport on the components that are most relevant to your goals. planet. Now it does.

There is no guesswork. You will never be asked But I'm guessing that you opened this book for to train on faith. more than photos. When I began outlining Build Your Running Body You want to get serious about a new running in the spring of 2012, I envisioned a training manprogram (or improve an old one), and you're wonual for the twenty-first-century runner, a book dering if this book will help you achieve your fitthat treats its readers like members of the fitnessness goals. You also want to know if there's
savvy population we've become. Before 1972, besomething about Build Your Running Body that sets fore Frank Shorter broke the finish-line tape in it apart from other running books. And you want the Munich Olympic Marathon and ignited the to know if you can trust the training program in running boom, running was limited to a handful this book, if you can be confident that the authors of perceived oddballs competing in cross country aren't pushing yet another running fad or get-fitand track. But by 2013, fifty million Americans quick scheme. were lacing up their running shoes, while an The answers are: Yes, yes, and yes. equal number belonged to fitness clubs. And Whether you're a beginner looking to train for these days, we don't just run. We participate in the first time or an experienced runner hoping to weightlifting, aerobics, spinning, Pilates, yoga, improve a 5K or marathon PR, Build Your Running swimming, kickboxing, and more. We utilize perBody's unique training approach will help carry sonal trainers, nutritionists, and physical therayou to your goal. That's because your authors pists. We watch our cholesterol, choose sports ix
drinks based on carbohydrate and protein contraining for all your components into tent, and purchase supplements to the tune of twelve-week programs, with Chapter 15 of-
$\$ 30$ billion a year. We embrace studies on exercise, fering sample training schedules for all levnutrition, health, and longevity, and we expect els of runners (beginner, intermediate, and our training programs to reflect the cutting-edge advanced).
science that drives innovation in the sport. But we also expect those programs to be tempered by the Of course, Build Your Running Body offers more experience of coaches and athletes who've tested than workouts and schedules. As a runner and those innovations, who've embraced the good coach for four decades, I've learned firsthand and weeded out the bad. It's this combination of that running is much more than exercise; it's a science and experience that has fueled my own lifestyle. And successfully building that lifestyle training and coaching. And it's what I wanted this requires practical, real-world advice on all asbook to convey. pects of our sport. That's why Part One of the Build Your Running Body will take you on an book offers chapters on motivation, running's amazing journey through your running body. history (the better to understand and embrace You'll begin with the microscopic fibers that comthe training innovations of the past century), prise your running muscles, and then you'll tour running gear, and running vocabulary-this last \mathbf{Y} every other running-related component of your chapter supplemented by an appendix glossary body-
traveling along the $60,000-$ mile superhigh-defining more than 250 running terms. And that's way of your body's blood vessels-before finally
why Part Three includes a whole chapter devoted concluding your trip in the incorporeal mission to injury prevention, and a corresponding table in control center that resides in your brain. You'll the back of the book that lists exercise-specific learn exactly how each component of your runprevention and rehabilitation guidance for more ning body contributes to your running, and you'll than forty common running injuries. And why be shown how to train those components on Part Four offers six chapters on diet and nutrithree different levels:
tion. And why Part Five gets down to the nittygritty, detailing proper race preparation and
» First, you'll break down each separate comtactics for the competitive runners among us. ponent into its individual parts (e.g., your The book also includes pace tables for every conheart and blood vessels as parts of your carceivable run, calorie-burn charts for most workdiovascular system), and you'll learn speouts, and expert discussion throughout on topics cific training to target those parts in the from running fads to PEDs (performance-enhanc-

OUR RUNNING BOD

"Training Recommendation" sections that ing drugs) to sneaky sugars that manufacturers
appear in each chapter.
slip into your food.
» Next, you'll find a photo instruction section You're encouraged to skim through the book at the end of every component chapter that as a prelude to reading it. Flip through the photo offers a full array of training for the compoinstruction. Read a few training recommendanent as a whole (or lets you know where in tions. Glance at the tables. Check out the recipes BUILD Y the book to find the relevant workouts). in the diet and nutrition chapters. Build Your Run-
» Finally, you'll be advised on integrating ning Body is designed to be a one-stop source for \mathbf{x}

INTRODUCTION
everything a twenty-first-century runner needs to success can be had by filling your training log know about training, the sport, and the running with a certain number of miles or by counting lifestyle. It will guide you from your first purchase your strides per minute or by embracing a fad of running shoes to your ultimate performance diet. But the truth is that your body is an incredachievement.
ibly complex biological machine with hundreds Improved running performance and whole-
of working parts, and good training demands that body fitness aren't unsolved mysteries. Coaches, you target all of them.
athletes, and exercise physiologists have been
Build Your Running Body is dedicated to a simple working on both for decades, and the giant leaps principle: If you want to become a better runner, forward in fitness participation, race results, and you must begin by building a better running body. health awareness speak for themselves. The trick Good luck!
lies in utilizing advances in training to achieve your own fitness goals. It's tempting to embrace

Pete Magill
magic-bullet solutions-to believe that running
January 16, 2014

BUILD Y

OUR RUNNING BOD

Y

xi

INTRODUCTION
PART
1

Build Your

Running

Knowledge

Motivation Build Y

hy do you run? What drives
you to lace up your running
shoes and head for the trails? We all need a reason. The simple motivations - such as better fitness and weight loss-are great for getting you

our Running

out the door once. Or twice. Or for a few weeks.
But to stick with a training regimen, to persevere when it's raining or cold, or you're tired, or (cross your fingers) you've already reached your original goal, you need more than simple reasons. You need great reasons. And this chapter has those to spare. First, you'll see that you aren't just improving your cardio or dropping a couple pounds;
you're rebuilding every cell in your body to be better than it was before. Next, you'll be amazed system or improving elastic recoil or increasing at the lifelong benefits, both physical and psychocardiac output - that may motivate you to try a logical, that accrue with every workout. Finally, few new workouts in the coming weeks. you'll discover what millions of runners have al-Lao-tzu wrote, "A journey of a thousand miles ready found: just how much fun a good running begins with a single step." Your journey began program can be. with the motivation to open this book. It continYou are motivated. You proved that by opening ues with the next step you take.
this book. You crossed the threshold from thinking about a new fitne ss plan to putting that plan

WHAT ARE SOME SPECIFIC SOURCES

into action. That was the hardest step, and now
OF RUNNING MOTIVATION?
that you've taken it, you're already on your way to building a better running body.

The first rule of running motivation is to take it one workout at a time. Successful runners underWHAT'S RUNNING MOTIVATION?
stand two things:
Running motivation is the daily impetus that

1. There is never a perfect time to start a keeps you moving forward in a training program. running program, so don't wait until
\mathbf{Y} There is no single, universal motivation for all you've mustered the motivation for longrunners. Motivation is fluid; it is constantly term training before you begin any type changing. Most runners use whatever works for of training. that day. And then whatever works for the next.
2. The only workout you must perform is Today, you were motivated to open this book. the next one, so that's where your motiTomorrow, what you read in these pages might vation should be focused.
spur you to lace up your running shoes and go for a short walk or jog, or to perform ten minutes of Today, you don't have to generate the motivabody exercises, or to prepare a healthier meal.
tion to accomplish all of your fitness goals. You
For more advanced runners, you may discover don't have to complete an entire twelve-week within these pages some aspect of training that training program. You don't need to lose ten you've overlooked-rewiring your nervous pounds. Or race a 5 K . Or conquer the marathon.

BEGINNER'S GUIDELINE

OUR RUNNING BOD

Use motivation to fuel your training, but don't become fixated on fueling motivation. Too many runners try to jump-start their enthusiasm by training too hard, going on crash diets, or buying expensive gear. Slow down. Fitness is a lifestyle, not a protein shake. The best way to maintain longterm motivation is through steady training success. Don't incinerate BUILD Y motivation with a onetime rocket blast to the moon.

4

Build YOuR Running KnOWIEDge

You only need to complete today's workout. To-
» Runners are half as likely as non-runners to morrow's workout can wait until tomorrow. die early.

At the same time, understanding the enormous benefits of a longterm program will pro-

Running isn't just good for your health; it will vide you with a bountiful source of motivation to trigger a positive transformation of your body bedrink from each day. Would-be runners are often yond anything you dreamed possible. shocked at just how extraordinary the benefits of a smart, well-rounded training program can be.

Weight loss

It's not hyperbole to say that you won't just be Don't believe reports that claim exercise won't building a better running body; you'll be building help peel away the pounds. Running burns apa better you. proximately 100 calories a mile-doesn't matter whether you jog, run, or race that mile. Generally Physical health
speaking, if you burn 3,500 more calories than Every runner has heard the veiled admonition: you eat, you'll lose a pound (see Chapter 23 for "Aren't you afraid you're going to ruin your the ins and outs of weight loss). But here's what's knees?" No, we're not. That's because running is amazing: Running leads to weight loss beyond good for your knees-and just about everything what's predicted by calorie counting. A 2012 study else. "Running improves your blood pressure," from Lawrence Berkeley National Laboratory

BUILD Y

says Dr. James Fries, coauthor of a 2008 study compared the weight loss of 32,216 runners and from Stanford University that tracked 528 run15,237 walkers. Over six years, the runners averners and 423 non-runners beginning in 1984. aged 90 percent more weight loss than walkers "You're less likely to get blood clots and varicose for the same amount of calories burned. And a veins. Bones become stronger and denser. It's a lighter, leaner you isn't the only benefit of weight
treatment for osteoporosis. It prevents fractures
loss. Shedding pounds makes you a faster runner, of the hips and spine. The ligaments get bigger and that's without having to improve any other

OUR RUNNING BOD

and stronger-they protect the joints from wobaspect of your fitness. See Table 1.1 for some exbling, which is one thing that causes joints to amples of just how much time you can drop in wear out. Lungs get stronger. Our physical reserve the 5 K and marathon when you lose extra weight. is greater." Other conclusions from the Stanford study include:
Stress Relief
They say stress kills. But before it kills, it does lots » Runners suffer fewer disabilities. of damage along the way. Stress lowers immunity, » Running delays age-related disabilities by increases inflammation, slows healing, decreases almost two decades.
bone density, decreases muscle mass, increases » Runners are seven times less likely to reblood pressure, increases fat, and intensifies quire knee replacements. blood sugar imbalances. So when we talk about
$»$ Runners are less likely to suffer from cancer. "stress relief," we aren't merely referencing re» Runners have fewer neurological problems. duced anxiety. We're talking about a full-body
» Running doesn't increase hip, back, or knee protection plan. Think of stress as your body's Y
problems.
version of termites. Think of running as
Build YOuR Running MOtivation 5
table 1.1
the influence of Healthy Weight loss on Race times
Starting Weight
Starting 5K Time: 15:00
Starting Marathon Time: 2:30:00
(Pounds)
$-5 \mathrm{lbs}$

- 10 lbs
- 20 lbs
- 5 lbs
- 10 lbs
- 20 lbs

120
14:33
14:01
n/a
2:25:26
2:20:15
n/a
160
14:41
14:17
13:31

2:26:46
2:22:49
2:15:14
200
14:45
14:26
13:49
2:27:34
2:24:23
2:18:13
240*
14:49
14:33
14:01
2:28:07
2:25:26
2:20:15
280*
14:51
14:37
14:10
2:28:30
2:26:12
2:21:43

Starting Weight

Starting 5K Time: 20:00
Starting Marathon Time: 3:15:00
(Pounds)

- 5 lbs
- 10 lbs
- 20 lbs
- 5 lbs
- 10 lbs
- 20 lbs

120
19:24
18:42
n/a
3:09:04
3:02:19
n/a
160
19:34
19:03
18:02
3:10:48
3:05:40
2:55:48
200
19:41
19:15
18:26
3:11:51
3:07:42
2:59:41
240
19:45
19:24
18:42
3:12:32

3:09:04
3:02:19
280
19:48
19:30
18:54
3:13:03
3:10:03
3:04:13
Starting Weight
Starting 5K Time: 25:00
Starting Marathon Time: 4:00:00
(Pounds)

- 5 lbs
- 10 lbs
- 20 lbs
- 5 lbs
- 10 lbs
- 20 lbs

Y 120
24:14
23:22
n/a
3:52:42
3:44:23
n/a
160
24:28
23:48
22:32

3:54:50
3:48:31
3:36:23
200
24:36
24:04
23:02
3:56:07
3:51:00
3:41:09
240
24:41
24:14
23:22
3:56:58
3:52:42
3:44:23
280
24:45
24:22
23:37
3:57:35
3:53:55
3:46:44
Starting Weight
Starting 5K Time: 30:00
Starting Marathon Time: 4:45:00
(Pounds)
$-5 \mathrm{lbs}$

- 10 lbs
- 20 lbs
- 5 lbs
- 10 lbs
- 20 lbs

120
29:05
28:03
n/a
4:36:20
4:26:28
n/a
160
29:21
28:34
27:03
4:38:52
4:31:21
4:16:57
200
29:31
28:53
27:39
4:40:23
4:34:20
4:22:37
240
29:37
29:05
28:03
4:41:24

4:36:20
4:26:28
280
29:42
29:14
28:21
4:42:08
4:37:46
4:29:15
Starting Weight
Starting 5K Time: 35:00
Starting Marathon Time: 5:30:00
(Pounds)

- 5 lbs
- 10 lbs
- 20 lbs
- 5 lbs
- 10 lbs
- 20 lbs

120
33:56
32:43
n/a
5:19:58
5:08:32
n/a
OUR RUNNING BOD 160
34:15
33:19
31:33

5:22:53
5:14:12
4:57:31
200
34:26
33:41
32:15
5:24:39
5:17:39
5:04:05
240
34:34
33:56
32:43
5:25:50
5:19:58
5:08:32
280
34:39
34:07
33:04
5:26:41
5:21:38
5:11:46
This table offers approximate performance improvements typical of healthy weight loss practices (see Chapter 23). For example, a 15:00 5 K runner weighing 120 pounds who loses five pounds can expect to run $14: 33$. Note: In creating this chart's data, the authors used the American College of Sports Medicine formula for calculating VO max.

BUILD Y

*Listed times at these weight are highly unlikely.

6

Build YOuR Running KnOWlEDgE

the exterminator. In addition, running increases the United States alone. And that doesn't include endorphins (the source of the "runner's high"), tens of thousands of local training groups-small improves sleep, and can serve as a time for trangatherings of men and women who meet once or quil reflection and meditation.
twice a week to exercise and socialize. Running is your invitation to one of the healthiest, friendliSmarts
est, most all-inclusive peer groups in existence. Running stimulates the brain. A 2003 review of studies, conducted at the University of Georgia, Nature
concluded that submaximal aerobic exercise (e.g., There are more than six million runners in the easy distance runs) improves people's ability to United States who regularly take to the trails. process information. A 2004 study from UCLA Trails not only reduce impact forces on your lower showed that consistent exercise helps regenerate body, they give you the chance to commune with nerve function in the brain, and a 2011 paper from nature, and to indulge your nomadic instinct the Institute of Biomedical Research of Barcelona while temporarily escaping to a simpler world. found that aerobic exercise can protect against
neurodegeneration. A 2005 study from Sweden Competition
linked running to increased cell growth in the hipIn 2012, there were more than 15 million finishers pocampus, which plays a big role in both memory in American road races. A race provides a focal

BUILD Y

and depression. And for older runners, a 2010 study point for most runners. Whether your goal is to from the Medical University in Vienna found that complete a race distance or to compete against endurance running helps maintain cognitive funcother runners, race goals are a part of most longtion into the golden years. Apparently, not only is it term runners' training agenda. smart to run, but running makes you smart.

Charity
Use it or lose it
Some runners find lacing up their shoes for char-

OUR RUNNING BOD

By age twenty-five, men and women begin to lose ity to be a rewarding return on their training inskeletal muscle mass (skeletal muscles are the vestment. Running for charity raises nearly two muscles that move your body, such as biceps, abs, billion dollars per year, with the American Cancer and hamstrings) at a rate of up to 1 percent per Society's Relay for Life collecting more than four year. That adds up. And once a muscle cell is hundred million dollars by itself.
gone, it's gone forever. The same process occurs with your stride length (the distance each runEating
ning stride carries you), which, barring interven-
It's not true that endurance athletes can eat
tion, will shorten up to 40 percent by the time you whatever they want. Most endurance athletes are reach your seventies. Proper training can drastilean because they watch what they eat. But with cally curtail both these losses.
consistent training, you can indulge in occasional guilt-free, high-calorie splurges without dreading New friends the impact on your waist, hips, or thighs.

There are thousands of running clubs and hunY dreds of thousands of running-club members in

Build YOuR Running MOtivation

 7IT'S GOTTA BE FUN
Along with being fun, a running program must ultimately lead to improvement. Results count. At While discussing all the good reasons for runners some point-hopefully sooner rather than laterto start a training program, let's not forget the two you must get demonstrably fitter, faster, stronger, most important factors in determining whether springier, thinner, healthier, and happier.
runners keep training:
In the long run, it's the combination of fun and
results that keeps your motivation from waning.
» Fun
When you're accomplishing your goals and hav-

» Results

ing a blast, too, chances are good that you'll keep going.

Too many runners forget-or never realizethat training should be fun. If it's not fun, you'll quit. "It's gotta be fun," says Dr. Fries, discussing how the longterm runners in the almost four-decade-old Stanford study maintain their enthusiasm. "It has to really contribute to the evening of that day or to the next day. You've got to really \mathbf{Y} be enjoying it. If you want to do cross-training or something else, do it if it's fun. Running's not a masochistic exercise program."
So how do you keep it fun? Let's count ten ways:

1. Run with friends.
2. Join a running club.
3. Vary the elements of your training.
4. Cross-train.
5. Change sports (e.g., to cycling) if you need a break from running.
6. Pick a goal race and train for it.
7. Volunteer to work at a local race.
8. Volunteer to coach kids, middle school-

OUR RUNNING BOD

ers, or high school runners.
9. Keep a running log.
10. Most important, keep your training volume and intensity manageable.

BUILD Y

8
Build YOuR Running KnOWiEDge

Histor Build Y

unning is the
oldest sport
known to humanity (setting aside our competi-

y

tive embrace of sex and

our Running

fisticuffs). And endurance running is one of the few physical activities in which we humans are demonstrably superior to most earthbound species. In fact, among our bipedal peers, only the os-
trich can run a faster marathon-forty-five minutes versus our top marks of just over two hours. And four-legged competition is limited to sled dogs, camels, and pronghorn antelope. Some researchers even suggest that endurance running drove human evolution, with Australopithecus padding shoeless out of

Africa's forests and into its savannas four

BEGINNER'S GUIDELINE

Know your history. Almost every get-fit-quick scheme in running is rooted in the premise that the sport has never seen anything like it. Of course, almost invar iably the scheme is nothing new. The history of running is a reliable guide to what's new, what's old, what works, and what doesn't. million years ago, hungry for big game to supple-

But that doesn't mean that these adaptations crement a diet of shrubs, ants, and termites.
ated a uniform species of distance runners. The
But let's be honest: Although our mastery of majority of humankind is (take your pick) too tall, distance running is admirable, it doesn't come too muscular, too squat, too big-boned, too fat, or
naturally. Footraces can be traced to ancient simply too uncoordinated to achieve much in the Egypt, yet the majority of human performance way of marathoning without good coaching and improvement occurred during the past hundred lots of training.
Y years. There's a reason for this. For centuries, run-And that's where innovation comes into play.
ners relied on walking and jogging as the centerCompetitive running can be traced to 3800 BC , yet piece of their training. Then twentieth-century most performance improvement has taken place scientists turned their sights to running physiolin recent history, with world records in the mile ogy, and their findings changed the sport forever. and marathon dropping a stunning 20 percent Knowing running's history is key to understandand 30 percent, respectively, during the twentieth ing the workouts you'll find in this book, because century. Evolution didn't create that improvewhat sets us apart from other species isn't hument. Training innovation did-and most of that man evolution; it's our skill at innovation. While innovation continues to echo in the workouts we may have been born to run, we weren't born to you'll find in this book. run well. We learned how to do that.

Finally, without inspirational performances, running wouldn't have garnered enough interest WHAT'S RUNNING HISTORY?
to compile a history. Would anyone run a marathon if Pheidippides hadn't run himself to death

Running history is a mix of three elements:
carrying news of Persia's defeat by the Greeks at

OUR RUNNING BOD

the Battle of Marathon? If Roger Bannister hadn't

» Evolution

broken the four-minute mile in 1954, would more

» Innovation

than 1,300 runners have followed suit? Without

» Inspiration

inspiration, there would be no Olympics, Boston
Marathon, or local 5 Ks . Instead, there are now
There's no question that human evolution pro-
fifty million runners in the United States alone, a
BUILD Y duced adaptations that favor endurance running halfmillion of whom accomplished in 2012 what (we'll look at some important ones in a minute).

Pheidippides couldn't: They survived a marathon.

10

Build YOuR Running KnOWlEDge TRAINING DISCUSSION

"Running fads"

It's human nature to look for shortcuts. Why should runners be different? If someone says there's a way to run better without having to do all the hard work, we'll try it. The following ten fads either were or remain popular shortcuts. And while some of these fads have their place as a part of a good training program, taken alone they won't get you where you want to go.

1. LSD (long slow distance): In 1969, Joe Henderson, former editor-in-chief of Runner's World, introduced the phrase "long slow distance" to tout a regimen of high mileage run at a conversational pace, minus the "pain, torture, and agony" of traditional workouts. Lackluster performances soon led to the realization that LSD just makes you a "long slow distance runner."
2. Barefoot and minimalist running: Christopher McDougall's 2009 book Born to Run made minimalist shoes and no shoes the first great running fad of the twenty-first century. In 2013, however, evidence that injuries persist or increase with minimalism and that running economy declines led to a 30 percent drop in market share for minimalist shoes.

BUILD Y

3. Tabata intervals: This extreme version of HIIT (high-intensity interval training) preaches short, all-out repetitions with even shorter rest periods (see page 145). Advocates claim improvements in VO max. For decades, experienced runners have 2
referred to these types of intervals as "speedwork"-training that leads to quick performance increases for six weeks, then equally quick performance decreases.
4. Core training: Another twenty-first-century magic bullet, core training promises better running through stabilization of the body's core (abs, pelvis, lower back, and OUR RUNNING BOD
other non-limb musculature). Of course, the best workout for core is -and always has been-running (to the tune of one thousand reps per mile). Some core work for muscle balance is great. More is just more.
5. Pose Method and ChiRunning: Pose Method teaches stride technique as a series of perfect "poses." ChiRunning emphasizes core strength, posture, relaxation, a midfoot strike, and the utilization of gravity. Both techniques reduce running economy (see page 27) and ignore the research consensus that the best stride-for performance and injury avoidance-is a "self-selected stride."
6. Low mileage and high intensity: Blame two-time Olympic 1500-meter champion Seb Coe for this one. Coe claimed that intensity, not high mileage, was the key to his success. It was later revealed that Coe didn't include warm-ups, warm-downs, or jogging in his reported mileage. Estimates of his actual mileage range from 70 to 100 miles per week. In other words, high mileage.
(continued)

Y

Build YOuR Running History

11

TRAINING DISCUSSION

7. Ice baths: Edwin Moses won 122 international 400-meter hurdle races in a row, as well as gold medals at the 1976 and 1984
Olympics. When Moses recommended ice baths three times a day to reduce inflammation, three decades of crowded whirlpools and chattering teeth followed. Unfortunately, reducing post-workout inflammation can slow recovery and limit fitness gains.
8. Carbo-loading: Carbo-loading is great for races longer than ninety minutes, the approximate point at which the human body runs low on glycogen (stored carbohydrate). But athletes figured what's good for the marathon must be good for the 5 K , or even the 1500 . Of course, loading up on pasta before short races just means more weight to carry-and potentially slower times.
9. Nasal strips: These small splints spread the nostrils and promise reduced airway obstruction during exercise. Two problems: One, humans breathe through their mouths during exercise; two, breathing more air doesn't affect performance-you already breathe enough air. The trouble lies in extracting oxygen from air, transporting it via blood to muscles, and turning it into energy.

Y

10. Streaking: This wasn't a performance-enhancing fad, but boy was it ever a fad! In 1973, runners and non-runners alike decided en masse to run naked. The term "streaking" was coined following a nude run by 533 University of Maryland students. And Ray Stevens’ song "The Streak" sold five million copies in 1974, spending three weeks atop Billboard's Hot 100 chart.
Other fads have had their moment: ankle weights, motion-control shoes, DMSO (di-
methyl sulfoxide), massages, salt tablets, backward running, holding your breath during intervals, and more. It's been suggested that running itself is a fad-just one that's been going strong for three million years.

RUNNING EVOLUTION

Dennis M. Bramble, a biologist at the University of

Utah, identified some of these traits and the advanRoughly four million years ago, our immediate ancestages they provided, including:

OUR RUNNING BOD tor in the evolutionary tree (Australopithecus) climbed down from trees and began walking on two legs. The
» Better tendons: Reduced energy requirereason for this remains unclear. A couple of million ments by acting like springs years later, Homo habilis and Homo erectus evolved traits
» The arch of the foot: Absorbed and rethat allowed them to pick up the pace from walking to turned energy like a spring jogging. A 2004 study by Daniel E. Lieberman, a profes-
» Longer stride length: Increased speed
BUILD Y sor of human evolutionary biology at Harvard, and
» Bigger butts: Stabilized trunks during exercise

12

Build YOuR Running KnOWIEDgE

» Better shoulder, arm, and hip rotation: Al-records have dropped even more dramatically,
lowed for counterbalancing movements
but curbs on female participation until the latter
while running
twentieth century skew the validity of those com-
" More sweat: Increased dissipation of heat parisons.
through the evaporation of sweat
So how did we get so fast?
» Less body hair: Increased convection rate
It's not like runners prior to 1900 hadn't
(dissipation of heat from the body) trained volume. Or run sprints. Or run barefoot. Or eaten all manner of diets. It's not that outLieberman and Bramble conclude: "It is reasoncomes weren't viewed as important. In ancient able to hypothesize that Homo evolved to travel Egypt, at the Heb Sed Festival, the pharaoh ran a long distances by both walking and running." race around ritual boundary markers to prove That may be true, but a 2008 study by Karen L. his fitness to continue ruling. In ancient Greece, Steudel-Numbers, a zoologist at the University of the winner of the Olympic stade (the single race Wisconsin, Madison, and Cara M. Wall-Scheffler, of the original Games, measuring about 200 mea biologist at Seattle Pacific University, attempted
ters) had his name given to the entire four-year to pin down the speed of locomotion for our calendar period (the Olympiad) before the next distance-running forebears and concluded that, Olympics. And in seventeenth-century England, most likely, Homo was restricted to long periods nobles wagered huge sums on races between

BUILD Y

of walking combined with surges of slow runtheir carriage footmen. Footrace outcomes have ning. Which begs the question: How did a spe-
been important since the time of the pharaohs, cies of walker-joggers become the fifth-fastest yet good high school runners today regularly species on the planet at marathoning? surpass the world records from one hundred years ago!

RUNNING INNOVATION
If you're looking for an explanation, look no further than the twentieth-century embrace of

OUR RUNNING BOD

If you want to get a feel for how quickly running exercise physiology and its methods. Over the performances have improved in recent history, course of a single century, a series of training in look no further than the mile. In 1855, Charles novations transformed our species from just anWesthall of Great Britain posted the first official other plodding mammal into a bipedal endurance mile world record of 4:28. Ninety-nine years later, machine.

Roger Bannister of Great Britain ran 3:59.4 to break the four-minute barrier. Thirty-five years Archibald Vivian Hill, lactic acid, and VO 2 after that, Hicham El Guerrouj of Morocco set the max
current world record of 3:43.12. And the mile isn't Archibald V. Hill was a runner-turned-physiolothe only distance where records have plummeted. gist whose early-twentieth-century experiments Since 1900, the men's world record in the 5000
heralded the age of aerobic and anaerobic trainmeters has dropped from 15:29.8 to 12:37.35. The ing. Hill's experiments linked lactic acid to anmen's world record in the marathon went from aerobic energy production, showed the 2:55:18 in 1908 to its current 2:03:23. Women's importance of VO max in performance, and 2

Y

Build YOuR Running History

13

proved that athletes could not only absorb more increase in cardiac output (the amount of blood training stress than previously thought, they pumped by the heart). Interval training immedicould thrive on it. ately resulted in huge drops in the 400-and 800 -meter world records. In the decades to come, Paavo Nurmi, even-paced racing, and terEmil Zátopek (with workouts of up to 60 repetirace training tions of 400 meters) and Mihaly Igloi (who introPaavo Nurmi, the "Flying Finn," erupted onto the duced multiple sets of intense repetitions with international running scene in 1920. He eventushort rest intervals) used variations of interval ally set twenty-two world records (from 1500 metraining to produce world records and world ters to twenty kilometers), earned nine Olympic record-holders.
gold medals, and won 121 races in a row. Nurmi intuited the benefit of even-paced racing and carArthur Lydiard and periodization ried a stopwatch during training and racing to Arthur Lydiard conducted a famous "experiment stay on pace. He also practiced "terraced training," of one," with himself as guinea pig, that resulted in which he ran various distances (including in a system of training emphasizing aerobic "base sprints) that were alternated with rest periods. training" and periodization. Periodization broke training into phases: a conditioning base phase in Y Gösta Holmér and fartlek which all athletes ran 100 miles per week; a In the 1930s, Gösta Holmér mixed unstructured strength phase (hills); a four-week anaerobic surges and sprints with less-intense continuous phase; and a race phase. New Zealand athletes running in a workout called fartlek (or "speed coached by Lydiard were a dominant force in the play"). Fartlek emphasized both aerobic and an1960s and 1970s.
aerobic elements of training. As coach of the Swedish cross country team, Holmér created this Bill Bowerman and the hard-easy apnew training approach after suffering lopsided proach
losses to Nurmi's Finnish squads in the 1920s.
"Take a primitive organism, any weak, pitiful organism, say a freshman. Make it lift, or jump or

Woldemar Gerschler, Hans Reindell, and
run. Let it rest. What happens? A little miracle. It interval training gets a little better," said Bill Bowerman, as quoted In the late 1930s, German coach Woldemar Gerin Kenny Moore's book, Bowerman and the Men of schler, influenced by cardiologist Hans Reindell, Oregon. "Stress. Recover. Improve. You'd think any introduced a workout that alternated multiple damn fool could do it." Only runners hadn't. With

OUR RUNNING BOD repetitions over short distances (designed to ele-his hard-easy approach to training, Bowerman vate the heart rate to 180 beats per minute) with coached thirtyone Olympic athletes and twenty-
rest "intervals." During the rest interval, pressure four NCAA champions, won the NCAA track and inside the heart increased momentarily from re-
field championship four times, and brought jogturning blood, stretching the heart's ventricles. A ging to the United States. He also handcrafted three-week experiment on three thousand subshoes (using his wife's waffle iron to create the

BUILD Y jects produced an average increase of 20 percent soles), which he marketed with Phil Knight as co-in heart volume, as well as an accompanying founder of Nike.

14

Build YOuR Running KnOWlEDge

be no lack of future stars from all corners of the Jack Daniels and tempo training
globe.
Jack Daniels didn't invent the tempo run, but he
And when Frank Shorter won the 1972 Munich
wrote the book on it-or at least the book that

Olympic Marathon, he started the running boom, popularized it. Daniels'Running Formula (1998) recwhich grew a tiny, niche activity into a sport with ommends "threshold (T) pace" to raise lactate millions of participants, all eager to experience a threshold (the intensity level at which anaerobic level of fitness that had never before been possienergy production begins to negatively affect perble in human history. Joan Benoit's 1984 victory in formance). He suggested running tempo and the inaugural women's Olympic marathon-comcruise intervals (he did introduce the latter workpleting an aggressive quest for female endurance out, even though he borrowed the name from a running equality that had stepped out of the swimming workout championed by Dick Bower) shadows two decades earlier, in 1967, with Kathat a "comfortably hard" effort, representing a pace rine Switzer's first-ever official women's finish at that can be maintained for roughly an hour. the Boston Marathon-confirmed that women would not be left behind in the fitness revolution. RUNNING INSPIRATION

While inspiration won't make Olympians out of all of us, it can make a better runner out of you, as Innovation provided the training breakthroughs long as you're willing to learn from history and em-

BUILD Y

that made better performance possible. But it was brace both the evolution that created your human
inspiration that recruited a talent pool of hungry
form and the innovation that unleashed its potenyoung runners looking to share in the fruits of tial. Better running isn't a guess. And it isn't a gimthose innovations. The influence and star power mick. It's not a fad or a get-fit-quick scheme. To of runners like Nurmi, Zátopek, Bannister, Ron borrow a phrase from Sir Isaac Newton, better runClarke of Australia, Peter Snell of New Zealand, ning is a matter of "standing on the shoulders of Abebe Bikila of Ethiopia, Kip Keino of Kenya, and giants . " The road to your human endurance success

OUR RUNNING BOD

Jim Ryun of the United States ensured that there'd has been paved. Now all you have to do is run it. Y

Build YOuR Running History

Gear Build Y

hen Runner's World recently
performed a minor over-
haul of their website, they eliminated the longtime tool "What to Wear," which offered advice on running outfits based upon temperour Running ature, training intensity, and a number of other factors. The response was immediate. Runners wanted the tool back. Warm-weather runners weren't sure what to wear in cold weather. New runners needed gear advice for racing. Older runners were confused about new fabrics. The tool was quickly returned to the site (runnersworld.com/what-to-wear), averting a rerun of 1970s-type streaking. Running-gear sales for 2013 totaled $\$ 4.5$ billion check out Jeff Dengate's Runner's World reviews for in the United States alone. That's a lot of running up-to-the-minute advice (runnersworld.com/pergear. And it's not just shoes. Runners face a smor-son/jeff-dengate) on this topic.
gasbord of apparel and equipment options every time they enter a sporting goods store, running BASIC GEAR
specialty shop, or online site. It's only natural to wonder, What do I really need? To answer that quesThe first decision runners have to make is what tion: It depends. It depends on where you live, to wear. So before embarking on your first run,
what you do for workouts, how much you're willyou'll need to acquire at least a basic running kit: ing to invest-oh, and how much you love nifty, high-tech gadgets.
» One pair of running shoes
» Two pairs of running shorts
WHAT'S RUNNING GEAR?
» Two running shirts (cotton or technical
fabric)
Running gear is a catchall phrase for any items

» (Women) Sports bra

associated with your training. In this chapter,
however, we'll limit "gear" to items that you can
Beginning and lapsed runners can temporarily
Y wear on your person during a run. With that in stop at this basic kit, as you'll want to make sure
mind, we'll look at five different categories of that both you and your body are committed to
gear:
training before committing your wallet.
"There are so many gear options, it can get re-

1. Basic gear

ally expensive really fast," says Dengate, the shoes

2. Shoes

and gear editor for Runner's World, as well as a life-
3. Environment-specific gear
long runner and gear geek, veteran of two dozen

4. Gadgets

marathons, and lover of mountain runs and

5. Cinderella gear

snowshoes. "Shoes are the one essential piece of gear that you should spend time on. It's the piece
We won't get into brand-name recommenda-
of protective gear that we have. Football players
tions. Running-gear styles and models change so
have pads, we have shoes."
quickly that a book can't keep pace. Instead,
For those runners who feel that buying lots of
OUR RUNNING BOD

BEGINNER'S GUIDELINE

As a beginner, keep your focus on the running. Don't spend all your enthusiasm on a shopping spree. Start with a single pair of shoes and two simple running outfits-shorts and shirts (either cotton T-shirts or Dri-FIT will do). When you're certain the sport's for you, that's the time to add more gear.

BUILD Y

18

Build YOuR Running KnOWIEDge

gear equates to a stronger training commitment, trail shoes. And for competition, you'll need rac-

Dengate offers this advice: "More gear isn't going ing flats for the roads and spikes for the track.
to make you run more often."
Training flats (trainers)
SHOES
A training flat is the shoe you'll use for most (if not all) of your distance runs. It's a sturdy shoe
Almost 50 million pairs of running shoes were
that protects against the excessive impact forces sold in 2013. Dozens of brands. Hundreds of modthat occur when your foot strikes the ground. els. So how do you pick the right shoe for you? This is particularly important during the latter Most runners choose a running shoe by "fit." If it miles of a run, when your muscles are too fafeels good, they buy it. Unfortunately, fit doesn't tigued to absorb the pounding. Some runners prealways translate into function, and not all retailfer to run in lightweight trainers for the majority ers will allow you to take shoes out for test drives. of their runs but utilize a heavier pair for recovery That's where talking to other runners, reading runs. Other runners have serious mechanical isonline and magazine reviews, and learning from sues that require heavier, more stable running experience come into play. You'll also want to stay shoes. It's probably best to train in the lightest abreast of structural changes to your favorite shoe that you can comfortably run in. There's no shoes, as the model you bought last time-and reason to carry around extra bulk.
BUILD Y
loved-might be completely different by the time you're ready to purchase it again.

Minimalist shoes
Minimalism has been a hot topic in running for the
How many pairs do you need? past few years, but it has existed in the sport
"If you're not doing a lot of racing," says Dengate, since the late nineteenth century, when light"have two pairs of shoes. That way, if you run in a weight running shoes with rubber soles and cloth rainstorm one day, you'll have a dry pair for the uppers were first released. Modern minimalist

OUR RUNNING BOD

next."
shoes are lightweight, have reduced disparity in If you do buy two pairs of trainers (see "trainheight between the heel and forefoot, and have a ing flats" to the right), alternate them. They'll wider toe box. Advocates claim that the shoes allast longer that way. Also, buy different brands. low a more natural running stride. "A minimalist Different brands have different designs, creating shoe puts your foot close to the ground," says a slightly different foot strike from day to day. Dengate. "That way you can really feel what's go-
That leads to better muscle balance and dimining on in your foot. You want something that ishes the negative impacts of a particular shoe's doesn't have any foam and stability features. It's shortcomings.
something to fasten to your foot that can protect More ambitious runners will need additional the bottom of your foot from debris." shoes. You'll need lightweight trainers or racing flats for tempo, repetition, and fartlek workoutsTrail shoes
lightweight trainers if you're looking for a little With more than six million trail runners in the more protection, racing flats if you're looking for United States, it's no surprise that sales of shoes

Y

a little faster running. If you like rugged trails, get designed for steep, mountainous terrain have

Build YOuR Running gear

19

surged. Trail shoes have deeper lugs and aggresSHORTS
sive tread patterns; they're designed for traction.
"The first thing you want is to stay on your feet," After shoes, shorts are the one item of your runsays Dengate. "You also want overlays at the front ning wardrobe that you can't do without-mostly and sides of the shoes, so that if you step on a because cities have ordinances against running in stick or rock, it's not going to rip through the shoe your birthday suit. You'll want shorts made from and hurt your foot." Other features can include technical fabrics (e.g., Nike Dri-FIT) that are lightwaterproof liners (think mud-running), protective weight and wick away moisture. While current plates to cushion the impact of sharp rocks and fashion leans toward longer shorts, many runners roots, and minimalist designs.
prefer shorter lengths ("short-shorts") for faster training efforts and races; that's because longer Racing flats and spikes
shorts cling to your legs and impede your stride Racing flats are exceptionally lightweight, with when you get sweaty. Heavier runners often presome models registering only three to four ounces fer longer shorts-or even short tights-to protect per shoe (versus ten to fifteen ounces for most against chafing on their inner thighs. Women trainers). Racing flats fit snugly and have minimal sometimes opt for briefs ("bun huggers") and padding. They're all about speed. It's estimated extra-short tights; they're comfortable, allow Y that you run one second faster per mile for every greater convection (dispersal of heat from your ounce you shed from your shoes. And several body to the air), and can make you feel faster studies have concluded that a four-ounce reduc(never underestimate this psychological advantion in weight can knock about three minutes off tage). Be forewarned that shorts with pockets can your marathon time. catch your thumbs during normal arm swings. Spikes are specialized shoes most often used Also make sure your shorts have a key pocket (or for running on the track. They are lightweight, extra pockets for carrying gels during races and sport low-or no heels, and contain spike plates long runs, if that's important to you). Finally, beneath the forefoot. The spike plates hold "pins" some runners wear underwear with shorts; some (the name for the actual spikes in the shoes), don't. Go with whatever works best for you. which give traction. The number of pins can vary
from as few as three to as many as eight. Distance

SHIRTS

runners generally prefer spikes with a tighter fit, some heel cushioning (since repetition workouts Shirts are usually chosen on the basis of climate. can involve many miles of volume), and four pins.

While runners in Southern California can proba-
OUR RUNNING BOD Sprinters largely eschew heel padding and prefer bly get away with cotton T-shirts year-round, more pins. Most all-weather tracks require the most runners will opt for technical fabrics that
use of pins that are no longer than three six-
both wick moisture away from the skin and help teenths of an inch. For cross country running, loncontrol body temperature by retaining heat durger spikes (three eighths of an inch to half an ing cold weather and dissipating it when the teminch) are often used to combat mud and thick perature rises.

BUILD Y grass.

Build YOuR Running KnOWiEDge SPORTS BRA (FOR WOMEN)

You can get away with a visor (instead of a hat) if you use sunscreen or have a full head of hair. If If you're a woman, you'll need a sports bra. Sports you don't want to hold a water bottle, try a hydrabras come in enough shapes and sizes to accom tion belt with a couple of ten-ounce water bottles. modate all women. There are compression bras, which utilize a solid band of tight, stretchy fabric

Rain running

to hold breasts in place while running. And there
Choosing the correct gear for rain depends on are encapsulation bras, which are more like traditemperature. In warmer weather:
tional bras, providing a separate cup for each breast and support from below. While larger-
» Hat with a brim: This will keep the rain off breasted women seem to prefer encapsulation your face, allowing you to stay relaxed. bras, you should try both. And don't be shy when » Jacket or vest: You'll need one with a ziptrying them on. Jump up and down. Turn from per down the front. That way, when the side to side. Simulate running. Make sure the bra rain stops, you can adjust the zipper to you're trying on will provide the support you're vent your body heat. Use the zipper as your after. Finally, be very careful if you're considering thermostat.
a top with a built-in bra (shelf bra), as these often lack the contouring, cup support, and additional In cold weather, you'll need to add a few items:

BUILD Y

reinforcement of a sports bra.
» Tights or pants: These should have a wa-ENVIRONMENT-SPECIFIC GEAR terproof panel down the front (there probably won't be one on the back) to shield you

Once you've picked your basic gear, you'll want to from the rain.
expand your ensemble to match the specifics of
» Technical running socks: Try to use these your training. What you wear will be largely deall the time, but especially in the rain. Cot-
OUR RUNNING BOD
termined by climate, the time of day you train, ton socks are a recipe for blisters. Merino and how fast you intend to run.
wool keeps your feet warmer and resists
odor.
Warm-weather running
In warm weather, you'll want materials that wick
With the right outfit, there's no reason a rainy away sweat, as well as gear to protect you from day should put a damper on your run.
the sun and help keep you hydrated. Some starter items include:
Snow and extreme cold-weather running
The main mistake people make is to overdress for
» Polyester shirts
snow and cold. They end up overheating. Instead,
» Loose shorts
dress in three thin layers of clothing:
" Hat with a brim
» Sunglasses
» First layer: You want a synthetic layer
» Sunscreen
(some kind of polyester) next to your skin Y
» Handheld water bottles
that will wick away moisture.

Build YOuR Running geaR

 21» Second layer: This is your insulation. It can be the judge, we'll look at three popular gadshould be a little heavier than your typical gets, plus an old low-tech standby.
Dri-FIT shirt. A half-zip design, buoyed by a little spandex, works great.
GPS watch
» Third layer: Top off your outfit with a windWho doesn't want to know exactly how far they've proof jacket (a shell to cover your other layrun, their pace for each mile, their average pace ers). It should have zippers-under the arms overall, and the calories they've burned-all while or full-length-to serve as your thermostat. mapping the run and receiving pacing alerts? GPS watches turn each run into a data-producing You might also consider three layers for your mother lode, which can be dangerous for runners lower body:
who use their GPS less for feedback and more as a video game whose previous scores must be sur-

1. Underwear: Non-cotton, with a wind-
passed. On the other hand, if you can afford a GPS proof panel for men (you'll be grateful for watch, it can be pretty amazing. this).
2. Tights: Classic tights, with a polyester-

Heart rate monitor and-spandex blend.
Heart rate monitors allow you to monitor exercise Y
3. Running pants: Less clingy than tights, intensity based upon your heart rate. Once you they can be used either as your second establish your training zones, a heart rate monilayer or as the third, over your tights, tor tells you when you're training aerobically, at when it's freezing.
threshold, or anaerobically. If you're an elite runner who's been labtested, heart rate monitors

You'll also want a hat (merino wool is good)
help you reliably stick to your training zones. For and gloves, although in really cold weather you beginners and less-advanced runners, however, it might prefer mittens-or, better yet, gloves with might be overkill. "Most runners don't need it," built-in, fold-over mittens. In snowy conditions, says Dengate. "It's a great tool, but most runners look for a hybrid trail shoe with a Gore-Tex-type get bogged down in the data and have no idea upper to keep your feet warm and dry.
what they're looking at."
Altitude running

MP3 player
The one thing you'll absolutely need for altitude No single issue divides the running community training is a water bottle or hydration belt. At allike the use of MP3 players while running. Advo-
OUR RUNNING BOD titude, you'll get dehydrated faster. And as Den-cates embrace music's ability to motivate, reduce gate explains, "It's hard to find water at altitude. perception of fatigue, and fight boredom. OppoWater likes to run downhill."
nents believe it sabotages pace and physiological feedback while also leaving runners dangerously

GADGETS

unaware of their surroundings (including other runners). If you side with music, look for an MP3
BUILD Y Gadget lovers would have you believe that tech-player that's small enough to clip onto your
nology is the key to better running. So that you clothes or stow in a pocket or armband, and

22

Build YOuR Running KnOWIEDge

which comes with a high-quality, sweat-and wabasis. You should also monitor how your legs feel. ter-resistant pair of headphones.
"If you have unexplained aches and pains," says
Dengate, "it might be time to consider getting a
Hydration belt
new pair." And that means throwing away or reIt's not high tech, but it can come in handy. Pick a cycling the old pair. It's footwear, not a trophy. belt that doesn't ride up and put pressure on your belly, which can leave some runners nauseated.

Shorts, sports bras, and pants
You want a belt that sits low on your hips and If the elasticity is disappearing, it's probably time doesn't bounce around.
to retire this apparel. Split seams indicate that a fashion funeral is in order. Shorts used to last a CINDERELLA GEAR few months. Now they can last a few years. Don't confuse that with forever.

In the folk tale that bears her name, Cinderella is warned by her fairy godmother to exit the palace Shirts
ball by midnight. If she's late, the prince will see Like shorts, shirts last a lot longer than they used her coach transform into a pumpkin and her to. A good Dri-FIT shirt can weather the changing coachman turn into a rat. The same advice should of many seasons. Still, at a certain point-hmm, be heeded by runners who hold onto their gear: how to put this?-the shirts start to stink. Den-

BUILD Y

Lose it before the clock strikes midnight, lest you gate notes that companies are trying new treatfind yourself running on dangerously compacted ments to give shirts antibacterial properties. In midsoles and in shorts that slide down to your the meantime, if your shirts come out of the knees. There comes a day when old gear must go. washer smelling the same as when they went in, The trick is to know when that day has arrived.
it's time to replace them.
Shoes
There's no denying that it's fun to collect running

OUR RUNNING BOD

If you see excessive wear or you've burned gear. But keep in mind that what makes you a through the rubber sole, it's time to part ways. better runner is smart training, not shopping. Ditto if the upper is torn. Shoes used to last beThere is something to be said for simplicity. You tween three hundred and five hundred miles. Betneed shoes. You need shorts. You need shirts. If ter manufacturing has made shoes more durable, you're a woman, you need a sports bra. More gear so you'll need to evaluate on a shoe-by-shoe is a bonus, but it won't make you a better runner.

Y

Build YOuR Running gear
23

4
L

V Build Y

et's try a quick test. A runner says, ocabular
"I think I should do some core
work to increase my VO max." Which of the
2
following is the correct response?
A. "What's VO max?"

our Running

B. "Sounds good."
C. 'I don't think VO max is

2
y
as important a performance
indicator as running
economy."
The correct answer is "C." It illustrates your all of your energy is produced this way. But get command of two running terms, and it negates this: It's the same when you run the marathon, having to explain why core work is, in fact, useduring which 99 percent of your energy producless for increasing VO max. Answer "A" scores tion is aerobic. Even sprinting uses aerobic en2
points for honesty. Answer "B" will be taken as an ergy-up to 20 percent for the 100 -meter dash. admission that you don't know the jargon, and See Chapter 10, "Build Your Running Energy Sysyou may end up excluded from future running tem," for more information.
conversations.
All kidding aside, running jargon isn't just a
Anaerobic
grab-bag of fancy terminology. It's the sport's vo-
Anaerobic energy is created within your cells withcabulary. If you want to understand the sport, out using oxygen. This does not mean that there
you'll need to speak its language.
is no oxygen in your cells; there is always oxygen in your cells. Instead, anaerobic energy is proWHAT'S RUNNING JARGON? duced when your body needs energy faster than your aerobic system can produce it. Depending Running jargon includes the terms, phrases, and upon how long it's used, your anaerobic system unique usage of words that you'll speak and hear can create energy between one hundred and two \mathbf{Y} when discussing the sport. While a full compila-hundred times faster than your aerobic system. tion of running jargon would fill many pages, The problem with anaerobic energy production is we'll jump-start your education with twelve of that it's short-lived, fizzling out after about a minthe most commonly used terms.
ute at full capacity. That's perfect for activities
like jumping, lifting weights, or sprinting, but not Aerobic
so good for long runs or sports like soccer, biking, Running "aerobically" means that you're running and swimming. See Chapter 10, "Build Your Runat an effort level (or pace) that is almost entirely ning Energy System," for more information.
fueled by aerobic energy. Aerobic energy is created within your cells and can't be produced without

VO max
2
oxygen. Of course, aerobic energy production isn't
Your VO max is the maximum amount of oxygen
just for exercise. You are constantly producing that your body can "consume" in a minute. In other aerobic energy. When you're sitting down, almost words, it's the maximum amount of oxygen that

OUR RUNNING BOD

BEGINNNER'S GUIDELINE

Embrace running jargon. It may sound complicated and science-y, but that's only because the words and terms are unfamiliar. Once you start using the sport's vocabulary, you'll realize that no other words adequately capture the workouts, concept s , and strategies of running. Jargon is your key to understanding the running world.

BUILD Y

26

Build YOuR Running KnOWlEDgE

your aerobic system is capable of using to create they have different meanings. For most runners, energy. Any oxygen in your blood that isn't used to repetition and interval training both refer to create energy doesn't count when calculating VO workouts in which you run several short seg2
max. You improve VO max by improving your ments (e.g., 8×200 meters, or 3×1 mile) at a 2
body's ability to transport oxygen (your cardiovasgiven pace, separated by recovery periods during cular system) and to use that oxygen at the cellular which you walk, jog, or just stand around. Technilevel. The higher your VO max, the more aerobic cally, the "repetition" is the hard running seg-
energy you can produce. See Chapter 8, "Build Your ment, and the "interval" is the rest after each Running Powerhouses," for more information. repetition. Interval training originated in the 1930s (building off similar workouts from the Running economy 1920s) as a way to increase stroke volume (how Running economy measures how efficiently you use much blood your heart can pump with each beat). oxygen at a given running speed. If one runner See Chapter 7, "Build Your Running Cardiovascurequires less oxygen to run the same pace as anlar System," for more information.
other runner, that first runner is said to have better running economy. It's analogous to a car

Split
getting better gas mileage. There's a debate in the
A split can mean two different things. First, it can running community over what is more important refer to time recorded en route during a race, usu-

BUILD Y

to performance, VO max or running economy. ally at evenly spaced junctures. For example, if 2

The answer is that both are important. See Chapyou're running a 5 K , you might want to know ter 11, "Rewire Your Running Nervous System," for your time at the first mile, which would be your more information.
"mile split." Running "even splits" means you
maintain the same pace for each split. A "negative
Lactic acid
split" means you picked up the pace over the final
Lactic acid has spent almost a century serving as the portion of the race. The second way runners use

OUR RUNNING BOD

bogeyman of running. Long thought to be a by"split" is when dividing a workout into parts. On product of anaerobic energy production, lactic acid distance runs, you might want to check your was blamed for muscle fatigue and pain during splits at each mile using a GPS watch. And during hard running. There's now evidence, however, that an interval workout, you'll record a split for each lactic acid is never formed within muscles. Instead, repetition. Runners often target specific splits two different substances-lactate and hydrogen during repetition training as preparation for up-ions-are created. Lactate is a fuel that muscles use coming races, where they hope to hit the same to create aerobic energy. Hydrogen ions do lead to split times on their way to the full race distance. acidosis, a presumed cause of fatigue, but they See the tables in Chapter 7's photo instruction for aren't a factor in longer races. See Chapter 9, "Balexamples of target splits. ance Your Running pH ," for more information.

Tempo
Repetitions/Intervals
The tempo run is probably the most misunder-

Runners use the terms repetitions and intervals in-stood workout in
running. A tempo run is a sus-
Y
terchangeably, although purists will argue that tained running effort lasting from ten to forty

Build YOuR Running vocabulary

27

minutes (sometimes longer for advanced dis100 percent being the top predicted score. The tance runners) at a pace you could maintain for at maximum performance for each age is deterleast an hour. Coach Jack Daniels popularized the mined by a curve of all age-group world records workout in his book, Daniels' Running Formula, in for the race distance. For example, a forty-yearwhich he described tempo effort as "comfortably old man running a 16 -minute 5 K would earn an hard." Because tempo stimulates training adapta85 percent age grade, but a fifty-year-old man tions that are beneficial for both aerobic energy running the same time would score 92 percent. A production and the removal of the detrimental by-fifty-year-old woman would need to run 18:10 to products of anaerobic energy production, tempo achieve the same 92 percent. In age grading, your is a favorite workout among long-distance runfinish place is determined by your age-graded ners. Unfortunately, many runners treat a tempo percentage, allowing runners of different ages to run as a time trial (simulated race), negating compete against one another.
many of its benefits while leaving themselves exhausted for their next workout. See chapters 7, 8,

Mitochondria
and 9 for more information.
If there's one science-y term you should know, it's
mitochondria. Mitochondria are microscopic struc-
Fartlek
tures within your cells that produce all of your
Y Fartlek is Swedish for "speed play." As a workout, aerobic energy-and around 90 percent of the en-it's an unstructured blend of different paces ergy that you use every day. It's mitochondria that aimed at challenging both aerobic and anaerobic use the oxygen you breathe. Training increases fitness. After an initial warm-up, runners alterboth the number and size of the mitochondria in nate surges with recovery intervals. The surges your muscle cells. The more mitochondria you can last anywhere from seconds to minutes. As have, the more aerobic energy you can produce, initially conceived, fartlek included long repetiallowing you to run farther faster. See Chapter 8, tions, sprints, and hills, all with recoveries at easy "Build Your Running Powerhouses," for more inrunning pace. But fartlek invites innovation. For formation.
example, Coach Joe Rubio of the ASICS Aggies recommends that runners alternate surges and re-

Proprioception
covery periods between telephone poles. Other
Proprioception is a recent entry to popular running runners prefer predetermined time repetitions
jargon. Proprioception refers to your brain's abilover uneven terrain that includes hills, trails, ity to track your body's position in space and to grass, and/or roads, with the recovery improvised then adjust your body's movement accordingly.

OUR RUNNING BOD by feel. See Chapter 5's photo instruction for more The brain receives sensory feedback from a netinformation.
work of nerves located in your muscles, ligaments, organs, and inner ear. Proprioceptive

Age grading
decision-making then guides your body through If you're over age forty, you'll need to know about activities that vary from walking a straight line to age grading. With age grading, each runner's finish reaching for your alarm clock in the dark. As a

BUILD Y time is scored as a percentage of the maximum runner, you use proprioception to negotiate unperformance expected at that runner's age, with even terrain, run through soft sand, and land on

28

Build YOuR Running KnOWIEDgE

your foot in a way that minimizes the possibility then release that energy as your muscles contract, of a sprained ankle. Proprioceptive training imsimultaneously shortening the connective tissue. proves posture, stride length, and foot strike, The best example of this is your Achilles tendon, among other aspects of your running. See Chapwhich is significantly stretched during every stride. ter 11, "Rewire Your Running Nervous System," for Recoil provides up to 50 percent of the propulsive
more information.
force for each running stride. See Chapter 6, "Build
Your Running Connective Tissue," for more inforBonus jargon term: Elastic recoil mation.

Elastic recoil is a term that rarely comes up in running circles, yet it is quite possibly the most impor-

Armed with this simple running vocabulary, you tant single contributor to running success that should be able to understand and contribute to almost no runner knows about. Recoil refers to the most running conversations. For a more extenability of your connective tissue (e.g., tendons, fassive vocabulary list, visit the glossary at the back cia) to store energy each time it's stretched and of this book-or read the chapters that follow.

BUILD Y

OUR RUNNING BOD

Y

Build YOuR Running vocaBulary
29
PART
2

Build Your

Running Body-

Components and

Workouts

The first thing you need to understand about your running body is that everything is connected to everything else.

Muscles are connected to bones by tendons.
Naturally, there will be overlap with workouts.

Your lungs are connected to your cells by your Your goal isn't to completely isolate each compobloodstream. Your brain is connected to your nent from every other. It's to train each compohamstrings, calves, and Achilles tendons by your nent to 100 percent of its potential, then to nervous system. And fascia literally wraps alintegrate it into the working whole that is your most every inch of your body in one continuous running body in motion.
weave.
You'll note that the chapters of Part Two are No part of your running body is an island. further broken down into the physiological parts Instead, your body is the ultimate team. And that make up each component. For instance, runyour team's players are your running "componing muscles will be broken down into slownents": your muscles, connective tissue, cardiotwitch, intermediate fast-twitch, and fast-twitch vascular system, powerhouses (mitochondria), pH muscle fibers (cells). You'll learn a little about the control, nervous system, energy system, horphysiology of each part, including its function in mones, and brain. Each of these components conyour running. This will be followed by a "Training tributes to every stride you take. And to run your Recommendation" section that suggests specific best, you'll need to train each to its maximum poworkouts for targeting that physiological parttential. Unfortunately, there isn't a single workout
all the exercises, stretches, drills, etc. featured in (e.g., a long run) that benefits all of your compothese training recommendation sections will nents equally. Just as you wouldn't train an NFL then appear in the photo instruction for that lineman the same way you'd train a quarterback, chapter (unless they've already appeared in anyou'll have to target each of your components other chapter, in which case you'll be directed to with training specific to its role in your running. the appropriate page number).

33

TRAINING DISCUSSION

Guidelines for 5 K effort and pace

Many times in the coming chapters, you'll be asked to train at 5 K pace or to choose a workout effort level (e.g., your easy-distance-run pace) based on that 5 K pace. " 5 K pace" refers to your most recent 5 K race time. That's because a recent 5 K race time is a v ery good indication of your current fitness. You can then use that time as a starting point for determining the pace for most of your running workouts. Your 5 K race time can't come from your distance-running past. And it can't be a goal pace that you haven't run. If you don't have a recent 5 K time, never fear. There are some simple strategies (not requiring a 5 K time) for picking your pace.

For distance runs, ignore the suggested pace-per-mile recommendations and train at a
"conversational pace"-a pace at which you can carry on a conversation, ensuring you're getting enough oxygen to keep your effort aerobic (manageable).

For repetition/interval workouts, use two guidelines:

1. "Guesstimate" an effort level that is equivalent to the proposed pace. Whether you're targeting 5 K , mile, or some other race pace, pick an effort that you estimate is correct, then ask yourself during the rep, "If this were an actual race and not a rep, could I maintain
this effort for the full distance?" If the answer is yes, maintain the pace. If no, slow down.
2. Use the rule of repetitions: When running repetitions, always finish the workout knowing you could have run one or possibly two more reps if required. You'll keep improving as long as you don't overdo it; running too hard (i.e., to exhaustion) is counterproductive. If you stick to these sensible guidelines, you'll soon find yourself fit enough to race a 5 K and, thereafter, to utilize the pace tables.

For sample training schedules incorporating workouts for all of your components, turn to Chapter 15.

34

Build YOuR Running BODY-cOMpOnEnt sand WORKOuts

Muscles Build Y

ew runners think of themselves as
muscle-bound. That's a term we
equate with football players, bodybuilders, and bullies who kick sand in the eyes of skinny runners at the beach. But the reality is that the our Running
human body has about 650 muscles, and we runners use most of them.

Of course, putting those 650 muscles to work isn't like driving a new car off the lot. With a new car, you turn the key and go. Try the same thing with untrained musclesthrow on some running shorts and shoes and head out the door for a hard trail run-and you'll be spending the next few days on the couch, aching so badly that trips to the kitchen for Tylenol will bring tears to your eyes.

On the other hand, your muscles have a dismuscle fiber types. When we want to build endurtinct advantage over a new car. A new car's parts ance, we train slow-twitch muscle fibers. When we are as good as they're going to get. A four-cylinder want to build speed, we target fast-twitch fibers. engine won't suddenly transform into a V-8. Not Intermediate fibers can go both ways. And since so with your muscles, which get better with trainevery skeletal muscle is comprised of the three ing. If your muscles were a four-cylinder engine, fiber types, training each fiber type ultimately
they could become a V-8. But you can't wish that trains every one of our running muscles, too. transformation into existence. Your body's ability This doesn't mean that runners don't also use to improve through training is a marvel, but it's the term "muscle" the way everyone else does. A not a miracle. It's the result of targeting the corhamstring strain means the same thing to a runrect muscles with the correct training.
ner as it does to a bodybuilder, aerobics instructor, or NFL lineman. And when we stretch or do

WHAT'S A RUNNING MUSCLE?
resistance training, we revert to this more common understanding of muscles.

Your body contains three different types of musBut when we run, it's all about our fibers.
cle. You have cardiac muscle, which is found in your heart. You have smooth muscle, which conMUSCLE FIBERS
\mathbf{Y} trols involuntary functions like digestion and blood pressure. And you have skeletal muscle, A muscle fiber is the scientific term for a muscle cell which moves your body and includes Muscle (i.e., both terms mean the same thing). Muscle fiBeach favorites like biceps, triceps, abdominals, bers are shaped like cylinders and grouped together and pecs-and also includes all your running in columns called fascicles. Think of packaged spamuscles. Skeletal muscle accounts for more than ghetti, and you'll have an idea of how muscle fibers one-third of your body mass.
are stacked within fascicles. Fascicles are then By "running muscles," we mean all the musbanded together to form skeletal muscles. cles you use while running - that's a lot of musWithin each skeletal muscle, there are three cles! Training each individually would be a distinct types of muscle fiber:

Herculean task. But lucky for you, we runners utilize a different strategy. Instead of targeting indi-
» Slow-twitch (Type I): These small muscle fividual muscles when we run, we target our three bers contract more slowly and less forcefully

OUR RUNNING BOD

BEGINNER'S GUIDELINE

When it comes to building your running body, slower is faster. Anyone can run too fast, too far, or too hard. The result is usually injury, sickness, or burnout. Instead, you should gauge your workouts to ensure that you'll be running tomorrow-and the day after, and the day after that. Patience and longterm planning must be your guides. Slo wer gets you there BUILD Y
faster. Faster seldom gets you there at all.

Build YOuR Running BODY-cOMpOnEnt sand WORKOuts

TRAINING DISCUSSION

"What is DOMS?"

DOMS (Delayed Onset Muscle Soreness) is the muscular pain that runners experience in the days following excessive exercise. For experienced runners, DOMS usually results from abrupt changes in training intensity or duration. For beginners, the culprit is training too hard in the first few days of a program.
Typically peaking within twenty-four to seventy-two hours after
exercise, its symptoms vary from slight muscle tenderness to acute, i ncapacitating pain.

DOMS is thought to result from damage caused by eccentric muscle contractions. Less-credible theories blame connective tissue damage and high muscle pH (an acidic state).

There is likely a nervous system component, too, as demonstrated in a 2013 study from Denmark, which found that initial bouts of exercise caused an overreaction in the nervous system, while subsequent bouts triggered "inherent protective spinal mechanisms against the development of muscle soreness."
Eccentric muscle contractions occur when muscles are forced to contract and stretch (i.e., shorten and lengthen) at the same time. For example, when you run, your quadriceps (frontal thigh) muscles contract when your foot touches down. If they didn't contract, you'd BUILD Y
collapse to the ground. But your quadriceps muscles also stretch so t hat your knee can bend. This simultaneous contracting and stretching creates enormous tension within your muscle fibers. If the tension becomes greater than your fibers are trained to withstand, the result is DOMS.

Preventive measures taken post-run might reduce the severity of DOMS. These include cold baths, icing, massage, and electrical stimulation. Ibuprofen and other anti-inflammatories can provide short-term relief, but reducing inflammation interrupts the body's normal healing OUR RUNNING BOD
process and can delay repair of muscle tissue and recovery. For some people, moderate exercise can reduce soreness. If al else fails, try complete rest-or not overdoing it in the first place! Symptoms disappear within five to seven days, and, best of al , episodes of DOMS seem to immunize runners against repeat episodes.
than the other two fibers, but distance runand good speed makes them perfect for ners love them for their aerobic (oxygen-middle-distance racing.
utilizing) endurance potential. Like the

[^0]Energizer Bunny, they just keep going. the speed demons of muscle cells. They
» Intermediate fast-twitch (Type IIa): These contract fastest and most forcefully of the fibers boast tremendous aerobic potential three fiber types. (In the past, type IIx fibers of their own, and they also produce more in humans were misidentified as type IIb; force and contract faster than slow-twitch while type IIb fibers exist in rodents, often

Y

fibers. The combination of good endurance the subjects of scientific studies, fast-twitch

Build YOuR Running Muscles

 37fibers in humans are actually IIx.) Their
You have limited adaptive energy, so it's imdownside is limited aerobic potential. But portant that you use it wisely, targeting areas that they're great for short bursts, such as those need the most improvement. For beginners, this required for sprints and jumps. means muscles. Beginners who ignore the maxim "Walk before you run" do so at their own peril. Although your running muscles contain all Experienced runners returning from injury or three types of fibers, not all runners possess the time off should likewise make basic muscle fitsame percentage of each fiber type. Marathoners ness a priority. And all runners should engage in
have muscles that are mostly slow-twitch fibers training to ensure that their muscular foundation (80 percent or more), while sprinters are equally remains strong.
rich in fast-twitch fibers. Genetics determines the percentage of fiber types in your body, but trainRUNNING ing can alter how those fibers function.

The beauty of running is its simplicity. You put on MUSCLE TRAINING
your running shoes, step out the door, and your sport is on! It doesn't require a basketball or a In spite of runners' best intentions, most training seven-iron. Doesn't require a team. Doesn't re\mathbf{Y} programs end within the first thirty days. Many quire you to memorize a martial arts kata or a don't last a week. Too many runners think the complicated dance routine. Instead, it's a simple first step of a running program is to breathe hard motion, repeated over and over, sometimes at a and get in some "cardio." They want to sweat. faster rate, sometimes slower, sometimes with They want to feel the burn. But training too hard, greater effort, sometimes not, sometimes over a too soon leads to sore legs (see sidebar, "What is smooth plane, and sometimes over uneven terDOMS?" on page 37) and fatigue, not fitness. rain.

Until you've strengthened your muscles, until But just because it's a simple activity doesn't your weak fibers have been fortified and your stride mean that your training can be simplistic.
stabilized and your muscles balanced, you aren't
The rule of specificity requires that you train ready for hard training. Certainly not on the first specific muscle fibers in the exact way that you'll day. Not even during the first week-or two or three want to use them in your sport.
weeks. Running isn't a sport of leaps and bounds. In other words, you can't train to be a runner It's a sport of incremental steps. And the first step is by only swimming. And you can't train fast-twitch to build the foundation, to strengthen the muscles fibers for sprinting by running all slow distance.
OUR RUNNING BOD that will support you in your training.

You can't even train slow-twitch fibers for one In this chapter, we'll explore three ways to sport by training slow-twitch fibers for another. achieve this goal:

Competitors in the Boston Marathon and Tour de
France both rely heavily upon slow-twitch muscle

» Running

fibers, but training for the marathon won't make

» Resistance Training

you a good cyclist, and vice versa.

BUILD Y

» Stretching and Flexibility

The only way to successfully train your muscle
38

Build YOuR Running BODY-cOMpOnEnt s and WORKOuts
 TRAINING DISCUSSION

"How do muscle fibers get stronger?"

Muscles don't magically swell up and get stronger, like a Magic GROW dinosaur toy that expands to 600 percent of its original size when tossed into water. Instead, muscle-fiber training is an incremental process that involves the breakdown and repair-or replacement- of elements within the fibers. Within each fiber, you have rod-like units called myofibrils. And within myofibrils you have sarcomeres, and within sarcomeres you have protein myofilaments, including actin and myosin. During muscle-fiber contractions, actin and myosin work together to shorten (contract) the fiber. Weak actin and myosin filaments become damaged when called upon too often or too forcefully, as occurs during training. This damage, combined with other stresses upon the fibers and associated tissue, signals your
body to increase the size and number of myofilaments. In fast-twitch fibers, this increase mostly results from accelerated protein synthesis (creation of new proteins), while in slow-twitch fibers the process is driven by a decrease in the breakdown of already-existing proteins.

If a
myofibril subsequently gets too big (due to an increase in the size an d number of its myofilaments), it splits. Thus, the creation of new and bigger myofilaments leads to new and BUILD Y
bigger myofibrils, which in turn increase the size of muscle fibers. Unlike myofibrils, muscle fibers don't split; they just grow larger. Finally, these bigger and stronger muscle fibers collectively result in bigger, stronger muscles (hypertrophy).
It's no secret that endurance-trained slow-twitch fibers don't increase in size as much as fast-twitch fibers. Just look at any group of top distance runners. This disparity is made more apparent because any increase in slow-twitch size is often offset by atrophy (shrinkage) of fast-twitch fibers within the same muscle; therefore, the muscle as a whole doesn't OUR RUNNING BOD
increase in size at all (see sidebar, "Why do my muscles get smaller from running?" on page 43 for more on this).

Bottom line: Muscle fibers get stronger when you fortify the myofilaments and myofibrils within the fibers.
fibers for endurance running is to train your mus-
your slow-twitch fibers. The rest, along with your
cle fibers with endurance running!
intermediate and fast-twitch fibers, are like those
To complicate matters even more, your body roadside crews where ten crew members stand
will recruit (call into action) the lowest number of around while two guys do all the work.
muscle fibers necessary to perform an activity.
To train your muscle fibers correctly, you'll
For example, if you're running an easy distance
have to recruit all of them during your running. run to strengthen your slow-twitch fibers,

And to accomplish that, you need to understand chances are good you're only recruiting some of the muscle fiber ladder. Y

Build YOuR Running Muscles 39
chart 5.1 Muscle Fiber ladder
90
80
TYPE
70
60

CH FIBER

50
40
GE OF EAA 30
AILABLE FIBERS) RECRUITEDV 20
PERCENT (A 10
0
Walking
Jogging
Easy Run
Distance Run
Marathon
1/2 Marathon
10k
5k
Mile
Sprints
ACTIVITY

Y

SLOW -TWITCH INTERMEDIATE-TWITCH FASTTWITCH

CHART 5.1 illustates how a hypothetical distance runner (i.e., a runner with mostly slow-twitch fibers) might recruit different fiber types at different paces. At less intense efforts-like walkingalmost all slow-twitch fibers are recruited. At increased efforts, more slow-twitch and some intermediate fibers are added. At halfmarathon pace, the maximum available slow-twitch fibers, half the available intermediate fibers, and a few fast-twitch fibers are recruited. Sprints require 100 percent recruitment of all three fiber types. Of course, different runners have different muscle fiber makeups and will vary in their recruitment of fibers at different efforts and paces.

THE MUSCLE FIBER LADDER

Recruiting up the ladder doesn't relieve slower
When you run, you recruit your muscle fibers in a fibers of duty. Instead, it adds additional fibers to ladder. For low-intensity exercise (e.g., walking), a the ones already working. When you recruit intersmall percentage of your slow-twitch fibers promediate fibers, you're actually using both intermevides all the force you need. That's the bottom rung diate and slow-twitch fibers. Adding fast-twitch of your ladder. As force requirements increase, you fibers means you're using all three fiber types. first add more slow-twitch fibers, and then (at
Chart 5.1 illustrates how this principle applies to
OUR RUNNING BOD about the time you transition from a slow jog to different running efforts. An easy effort like jogging easy running) you begin to add intermediate fibers requires only a small percentage of your slow-
to the mix-you move up the muscle fiber ladder. If twitch fibers, whereas an effort like the half mara-
a combination of slow-twitch and intermediate fithon demands all of your available slow-twitch bers can't get the job done (e.g., mile race pace), you fibers and a large percentage of your intermediate call in the big guns, your fast-twitch fibers. Fastfibers. Running sprints causes you to recruit 100

BUILD Y twitch fibers are the top rung of the ladder. percent of available fibers from all three fiber types.

40

Build YOuR Running BODY-cOMpOnEnt sand WORKOuts

It's important to note that you never use all of $\mathbf{1}$. The first steps of your run
the muscle fibers of any one type. Instead, you
2. Any time you accelerate
recruit "available" fibers-those fibers made ac-
3. Any time you climb or descend, no mat-
cessible by your brain and nervous system. Your ter the duration
body has built-in safety mechanisms, and this is
4. Moments during each stride when one of them. Using all of your fibers would generfaster fibers are required to support ate too much force, damaging or even tearing your force demand muscles.

Having a general idea of the fibers recruited at Still, these are exceptions to the rule. The best different paces is essential for successful training. way to strengthen each fiber type is to design
For example, a runner who prepared for a 5 K race
workouts that recruit a fiber type continuously, by doing only easy-and regular-distance runs thereby maximizing the amount of training that would fail to train the intermediate and fastthe fiber type receives. For example, slow-twitch twitch fibers required for the race-leading to a fibers need lots of endurance training, while fastdisappointing performance and a few days of twitch fibers require shorter, high-intensity DOMS.
efforts-you can't train both fiber types with one In general, movement up the muscle fiber ladapproach. This is a big reason why runners train der is triggered by two factors: at different paces. It's the only effective way to

BUILD Y

train different fiber types to their maximum
» Force: When your legs need to generate potential.
more power, you climb the ladder. Examples would be increasing your pace during
training recommendation
a run or transitioning from flat running to a steep hill.

To strengthen your muscle fibers through
" Fatigue: When one fiber type runs low on running, you'll need a multi-pace approach.

OUR RUNNING BOD

energy (stored carbohydrate), you climb the
For slow-twitch fibers, Distance Runs (see
ladder. For example, during two-to three-
page 50) are your best bet. For intermediate hour distance runs, slow-twitch energy fibers, more intense running that includes stores can become depleted, forcing interStrides (see page 51), hills (see pages 52 mediate fibers to lend support-even fastand 133), or fartlek (see page 49) does the twitch fibers cycle in and out.
trick. And for fast-twitch fibers, nothing beats short Hill Strides (see page 52). You'll You should know that real-world running continue strengthening your muscles as you doesn't follow the strictly linear progression deincorporate workouts from coming chappicted in Chart 5.1. Faster fibers will cycle in and ters, but it's important to develop some out as needed, unrelated to overall pace (although base strength first. your fastest fibers can't stay on for long, because they fatigue easily). Some instances during runs that demand faster fiber input include:

Y

Build YOuR Running Muscles 41

RESISTANCE TRAINING
wait 2-4 weeks before incorporating weights.
Intermediate and advanced runners can utiResistance training increases your muscular lize the full range of resistance training exerstrength by forcing you to work against an oppos-
cises from day one. For weight training (see ing force. Effective approaches include free pages 59-69), choose a routine emphasizing weights, universal machines, and calisthenics full-body fitness and sets/reps that won't (bodyweight exercises). Resistance training overly fatigue your nervous system. If time's builds your running body in five ways: a factor, go with The Runner 360.

1. Improves muscle balance: When you strengthen opposing muscles (e.g., quadSTRETCHING
riceps and hamstrings), creating muscle balance, you reduce your risk of injury. Stretching has recently gotten a bad reputation-
2. Improves your stride: Increased strength a lot of it earned. For instance, a 2012 Croatian generates a longer, more efficient stride. meta-analysis, which reviewed over one hundred
Beginning runners are notoriously defistudies, concluded that static stretching before excient in strength. ercise reduces strength by 5 percent and reduces
Y
3. Improves core strength: A weak core
explosive power by almost 3 percent-a great rea-
leads to instability and decreased power
son to avoid static stretches before hard workouts
production. It's hard to produce force
and races!
when you're wobbling!

But not all stretching is static stretching (and
4. Improves hip strength: Weak hips coneven static stretching performed post-workout retribute to instability and reduced power. duces stiffness for the next day's training). EffecA 2013 Australian research review found tive stretching methods increase your range of that first-time injured runners had sigmotion, strengthen your muscles through that nificantly weaker hips than healthy full range of motion, and reduce your injury risk. runners.

Four types of stretching you'll want to consider
5. Improves neuromuscular control: We'll for your training routine are: cover this in Chapter 11.
" Static stretching: You hold a position that Bottom Line: Resistance training improves stretches a muscle, which reduces lingering your stride, stabilizes your form, increases your stiffness in the muscle.

OUR RUNNING BOD power, and reduces your chance of getting in-
» Dynamic stretching: You perform conjured. What's not to like? trolled leg and arm swings to increase your range of motion and activate your core training recommendation muscles before running.
" Proprioceptive Neuromuscular Facilitation

Beginners should focus on body exercises to
(PNF) stretching: After stretching a muscle

BUILD Y

improve all-around strength and stability (see
to its maximum range of motion, you con-
The Runner 360, pages 53-58)-and should tract that muscle for 5-8 seconds, followed

Build YOuR Running BODY-cOMpOnEnt sand WORKOuts

TRAINING DISCUSSION

" Why do my muscles get smaller from running?"

Most people equate "strength" with bigger muscles. When you think of someone strong, your mind goes to Dwayne "The Rock" Johnson, not Justin Bieber. So if elite distance
runners spend so much time strengthening their muscle fibers, why a re they al so skinny?
Shouldn't all those miles, hills, sprints, drills, and exercises be building Muscle Beach bodies?
In a word: No. And a good thing, too. Otherwise, New York would shake like a Southern California earthquake every time the marathon wound its way through the city's five boroughs. Instead, the world's top distance runners are defined by almost nonexistent upper bodies, slim thighs, and calves that are smaller than the norm.

When you run-and after you've fortified your muscle fibers by weeding out weak myofilaments-your muscle fiber DNA has to make a choice:
» Use the fiber's limited adaptive energy to create bigger muscles
» Harness the fiber's adaptive energy to forge more powerful aerobic power plants BUILD Y
(mitochondria) within the fibers

If you want to be a top competitive distance runner, you can't have it both ways; the
sheer volume of your training triggers a physiological response that shirks the big biceps and embraces increased aerobic power. On the other hand, if you want to be a fit, fast, but far-from-emaciated good runner, there are ways around this physiological roadblock.

For competitive distance runners, the choice is easy: Build those aerobic power OUR RUNNING BOD
plants! Greater volume (mileage) accomplishes that goal, and it also increases the number of capillaries (your smallest blood vessels) around your muscle fibers. More capillaries mean more oxygen and nutrient delivery for your improved power plants. And the combination of more power plants and more fuel means you'll be ab le to produce a lot more energy, which is the key to fatigue resistance. As your muscles budget less energy for maintaining mass, the fast-twitch fibers in your endurance-trained muscles begin to shrink; at the same time, your slow-twitch fibers do get bigger, but not enough to offset the loss of fast-
twitch size. In this battle between fast-twitch atrophy (shrinkage) and slow-
twitch hypertrophy (growth), atrophy wins, resulting in smaller, mor e physiologically efficient muscles.

Then again, you may not want to sacrifice a stronger build for a slightly faster time in your next 5 K or marathon. Never fear. Highintensity training (e.g., weight training or hill sprints) spurs growth in muscle fiber size. As long as the high-intensity training is separated from (continued) \mathbf{Y}

Build YOuR Running Muscles

43

TRAINING DISCUSSION

the endurance stimulus (e.g., instead of doing a weight workout after a distance run, you do it a few hours later) and as long as your endurance training volume isn't too high, you'll be able to live dual roles as road-running warrior and fitness club standout.

None of this means that high-volume competitive runners should skip the weights. Resistance training isn't just about sporting a ripped beach bod. Most strength gains in the first few weeks (sometimes months) of resistance training come
from nervous system adaptations, not muscular growth. So competitive endurance athletes will get stronger regardless of whether they also get bigger.

Returning to the original question, your running muscles get smaller with high-volume endurance training for one simple reason: It's more efficient to run with smaller muscles.

Your body is no dummy. It goes with what works. by a period of relaxation during which the many of the world's top endurance athletes.

Y

muscle exhibits decreased resistance; this Like static and PNF stretching, however, decreased resistance allows you to move longterm use might lead to some decrease the muscle to a position of increased in strength and explosive power. And since stretch. After another 5-8-second contracthe stretch reflex is avoided, you'll need to tion, you can either end the stretch or hold be careful not to overstretch.
it for up to 30 seconds, although the latter has been associated with the same de-

Dynamic stretching is a great way to prepare crease in strength and explosiveness atyour muscles pre-workout (after 10-15 minutes of tributed to static stretching. This is the easy jogging or running). Both AIS and PNF are most popular method for increasing range good choices post-workout if increasing range of of motion.
motion is your primary goal, although PNF works
» Active Isolated Stretching (AIS): AIS uses
best with a partner. Static stretching is an option opposing muscles to move a muscle into a when you're short a rope, a partner, or a flat, dry, stretched position (e.g., contracting your adequate location (e.g., no one wants to lie on a quadriceps to stretch your hamstrings) and rocky trail in the rain for 15 minutes doing AIS).

OUR RUNNING BOD

then increases that stretch for $1-2$ seconds
Static stretching is also a good alternative postby gently pulling with a rope. You never workout for runners who experience decreased "hold" a stretch in AIS, so you don't trigger power or explosive strength from longterm PNF your muscle's stretch reflex (see Muscle Spinor AIS stretching.
dles and the Stretch Reflex below), an involuntary muscular contract ion that protects

Muscle Spindles and the Stretch Reflex
BUILD Y
against overstretching. AIS increases range
Muscle spindles are stretch receptors located
of motion significantly and is favored by
within your muscles and positioned parallel to
44

Build YOuR Running BODY-cOMpOnEnt sand WORKOuts

your muscle fibers. They sense changes in the
table 5.2
length of your muscles. When your muscles changes in Muscle Fibers Due stretch (either through applied stretching or durto training
ing exercise), your muscle spindles send mes-
Untrained

Training

Fibers Post-training

sages to your spinal cord, which responds with
Male
Focus
Slow
Fast
orders for your muscles to contract. This contrac-
800 m
48\%
52\%
tion protects your muscles by ensuring that they
1500m
54\%
46\%
aren't injured through overstretching. Muscle
3K
60\%
40\%
spindles also help define your stride length by
Slow Fibers =
47\%
gauging the optimal amount of stretch your mus-
5K

66\%
34\%
Fast Fibers $=$
cles can endure while running.
10K
72\%
28\%
53\%
Half-Marathon 78\%
22\%
training recommendation
Marathon
84\%
16\%
Untrained
Training

Fibers Post-training

Beginners should start with a few static
Female
Focus
Slow

Fast

stretches post-run (see pages 76-78), then
800m
53\%
47\%
work up to dynamic stretches after two to three weeks. Intermediate and advanced run1500m

59\%

41\%
ners can immediately incorporate dynamic
3K
65\%
35\%

BUILD Y

Slow Fibers =
stretching (see pages 75-76), AIS (Chapter 6,
52\%
5K
71\%
29\%
see pages 104-106, and PNF stretching (see
Fast Fibers $=$
10K
77\%
23\%
48\%
pages 70-75) into their programs. Muscle
Half-Marathon 83\%
17\%
spindle adaptations result from the thousands
Marathon
89\%
11\%
upon thousands of repetitions that occur during normal training.
Runs over uneven terrain
TABLE 5.2 approximates the functional transformation of OUR RUNNING BOD
muscle fibers as a result of training. The left column gives
(e.g., trails and grassy parks) help muscle the average percentage of fiber types in untrained runspindles adapt to variations in stride and diners. The "Fibers Posttraining" columns show how fibers rection, and faster runs during training are a transform after longterm training geared toward the races listed in the "Training Focus" column. Note that "Fast" fibers must so that your muscle spindles can adapt include both intermediate and fast-twitch fibers. to the stride lengths required for racing.

The change in fiber function can be dramatic.

MUSCLE FIBER CONVERSION

For instance, heavy resistance training will cause a majority of fast-twitch (IIx) fibers to behave like There is an ongoing debate as to whether training intermediate (IIa) fibers in as little as a month. If can convert one type of muscle fiber into another you then cease resistance training, the new (e.g., fast-twitch into intermediate). While the pseudo-intermediate fibers not only revert to jury's still out on actual conversion, there is no fast-twitch, but more intermediate fibers begin doubt that faster fibers can be trained to take on (temporarily) to function as fast-twitch-good to Y
the characteristics of slower fibers.
know if you're a sprinter looking to increase your

Build YOuR Running Muscles 45
 percentage of fast-twitch fibers. Conversely, it's

» Walking

theorized that if you'd never trained a day in your

» Jogging

life-so that your muscle fibers represented a

» Easy Running

blank slate-and then you suddenly endurance-

» Beginner's Fartlek

trained your right leg for eight to twelve weeks,

» Distance Runs

while continuing to ignore your left, the fast-

» Strides

twitch fibers in your right leg would end up look-

» Hill Runs

ing and acting quite a bit like the slow-twitch

» Hill Strides

fibers in your left leg.

» Resistance Training

Of course, there's a limit to this type of pseudo-

» Dynamic Stretching

conversion. Usain Bolt, currently the fastest man

» Static Stretching

alive, could run nothing but distance for the rest

» PNF Stretching

of his life and never end up with the slow-twitch function of an elite distance runner. That's beTraining from other chapters that affects muscause you can never fully alter a fast-twitch fiber cle strength gains includes:
so that it acts like a full-fledged slow-twitch fiber (intermediate fibers are more easily swayed). For

» Resistance Band/Tubing Exercises (Chap-

\mathbf{Y} one thing, fast-twitch fibers are controlled by bigter 6)
ger nerves (we'll discuss this in Chapter 11), a

» AIS Stretching (Chapter 6)

physiological fact that can't be changed by train-

» Repetition Workouts (Chapter 7)

ing. Secondly, fast-twitch fibers simply lack many

» Cross Training (Chapter 9)

of the cellular ingredients necessary for endur-

» Plyometrics (Chapter 11)

ance that are plentiful in slow-twitch fibers.
Still, the ability to transform the functional
To see exactly how these workouts can be in-
characteristics of your muscle fibers is a key corporated into your overall training program, weapon in your training arsenal. Table 5.2 gives skip directly to Chapter 15: Build Your Running you an indication of just how much you can alter Schedule, where sample schedules are available the function of your muscle fibers. Keep in mind, for runners of all fitness levels and abilities. however, that this effect won't happen overnight. For most of us, it takes years of training to effect changes of this magnitude.

OUR RUNNING BOD TRAINING RUNDOWN

Stronger muscle fibers are the foundation of any running program. Important training in this chapter's photo instruction includes:

BUILD Y

46

Build YOuR Running BODY-cOMpOnEnt sand WORKOuts

$$
\begin{aligned}
& \hat{\lambda} \\
& \hat{1}
\end{aligned}
$$

RUNNING WORKOUTS

At this stage, you're working to fortify muscle fibers for each muscle fiber type. You'll weed out the weak myofilaments and replace them with stronger ones. Later, you'll use running workouts that target the cardiovascular, neuromuscular, and other systems to develop greater strength - and to develop parts of each fiber that contribute to energy production, balance, fatigue resistance, and more. For full benefits, your weekly training schedule will need to include at least three walking, running, or walking/running sessions -more if your goal is competitive fitness. Grace Padillaa former American women's steeple-chase record-holder and current masters world record-holder-demonstrates the workouts.

Walking

The most fundamental exercise is the best way for beginners with no training background to start building the slow-twitch fibers in running muscles.

BUILD Y

■ SKILL LEVEL: Beginner

k Easy Walking: It was Henry David Thoreau
1 Brisk Walking: Brisk walking recruits a slightly who said, "An early morning walk is a blessing for higher percentage of slow-twitch fibers, and it helps the day." If it's not a blessing, it's at least a good to reset your muscle spindles for longer strides to start. Easy walking prepares your slow-twitch ficome. Whether your walk is easy or brisk, begin

OUR RUNNING BOD

bers for jogging and running.
with $10-15$ minutes and then gradually increase the length of your walk to at least 30 minutes.

Y

Build YOuR Running Muscles

$$
\hat{i}
$$

Walk/Jog

Beginners ready for the next level and experienced runners returning from time off should ease into training with walk/jog
workouts, which strengthen a fuller range of slow-twitch fibers.

- SKILL LEVEL: Beginner
k Walk: Begin with the walk portion
of walk/jog, then use walk breaks as recovery intervals from jogging. The walk
should last as long as it takes to feel fully recovered.

1 Jog: Your jog should be done at a comfortable pace. As soon as your breathing increases noticeably, slow to a walk.

Your combined walk/jog workout should total 20-40 minutes.

Y Jog/Easy Run

Continuous jogging or easy running is a great way for fit beginners (coming from a different sport) or runners returning from time off to build running-specific slow-twitch strength.

- SKILL LEVEL: Beginner

k Jog: For the beginner, it's not
enough to "walk before you run." You
should also jog before you run. Jogging is
simply low-intensity running.
1 Easy Run: Easy running means
what it says-run easy. Resist the urge to
feel the "burn." Before you run hard, you
need to ensure that your muscles are

OUR RUNNING BOD

strong enough to endure more-intense
training. Otherwise, the only result will
be DOMS. Whether you're jogging or running, your workout should last 15-40
minutes. Don't worry about pace. Just
keep the legs moving.

BUILD Y

I
久

Beginner's Fartlek

Alternating easy running with moderately hard surges allows you to recruit more slow-twitch fibers and begin strengthening intermediate fibers, too.

- SKILL LEVEL: Beginner; Intermediate

k Easy Run: Begin by jogging 10-15
minutes, then use the jog/easy run
portion of this workout for recovery intervals. It's essential that you recover
fully from your fartlek surges, so don't
start your next surge until you're
rested and champing at the bit.
1 Fartlek Surge: Fartlek is Swedish
for "speed play." And that's what this
is: Easy running alternates with surges
lasting between 30 seconds and 3 minutes, depending upon your fitness level
and effort. These are not sprints! Aim

BUILD Y

for what coach Jack Daniels calls a
"comfortably hard" effort.

Easy Distance Run

The easy distance run is an extension of easy running, only now you'll base your effort loosely on a OUR RUNNING BOD recommended pace for your fitness. These runs strengthen slowtwitch fibers while calling on a few intermediate fibers, too.

- SKILL LEVEL: All levels

k New runners will explore fresh limits to their endurance at an "easy distance" effort. This effort is a notch above jogging, but still conversational (i.e., you shouldn't be breathing so hard that you can't carry on a conversation with a running partner). Intermediate and advanced runners use this effort for very easy days and for recovery runs. If you've recently raced a 5 K , use Table 5.3 for suggested pace ranges based on your race finish time (the one you ran, not a goal time). If you don't have a current 5 K time, stick with the conversational pace guideline. Either way, let feedback from your body be your final guide; you want to keep easy runs "easy." Y

Build YOuR Running Muscles
49

table 5.3 Easy Run pace guide

24:00
11:07-12:53
6:54-8:00
5K
Pace per Mile
Pace per
24:30
11:19-13:06
7:02-8:09
Time
Kilometer
25:00
11:31-13:20
7:09-8:17
14:00
6:53-8:05
4:17-5:01
26:00
11:55-13:47
7:24-8:34
14:30
7:06-8:20
4:25-5:11
27:00
12:19-14:13
7:39-8:50
15:00
7:20-8:36
4:33-5:20
$33: 00$
$14: 38-16: 46$
$9: 05-10: 25$
$18: 00$
$8: 37-10: 04$
$5: 21-6: 16$
$34: 00$
$15: 00-17: 11$
$9: 19-10: 41$
$18: 30$
$8: 50-10: 19$
$5: 29-6: 25$
$35: 00$
$15: 23-17: 36$
$9: 33-10: 56$
$19: 00$
$9: 03-10: 33$
$5: 37-6: 33$
$36: 00$
$15: 45-18: 00$
$9: 47-11: 11$
$19: 30$
$9: 15-10: 48$
$5: 45-6: 42$
$37: 00$
$16: 07-18: 24$
$10: 01-11: 26$
$20: 00$
$5: 53-6: 51$
9
38:00
16:29-18:48
10:14-11:41
20:30
9:41-11:16
6:01-7:00
39:00
16:51-19:11
10:28-11:55
21:00
9:53-11:30
6:08-7:09
40:00
17:12-19:35
10:41-12:10
Y
21:30
10:05-11:44
6:16-7:17
41:00
17:34-19:58
10:55-12:24
22:00
10:18-11:58
6:24-7:26
42:00
17:55-20:21
11:08-12:39
22:30
10:30-12:12

6:32-7:35
23:00
10:42-12:26
6:39-7:43
TABLE 5.3 offers pace suggestions for easy runs based upon 5 K performance. Find your 5 K time in the left column;

23:30
10:55-12:39
6:47-7:52
paces in the two right-hand columns are given as a range.

Distance Run

A normal distance run requires an effort quicker than an easy run but still conversational. You can exercise your nomadic spirit by covering more ground at this pace, and you'll work slow-twitch fibers and some intermediate fibers, too.

- SKILL LEVEL: All levels

k The majority of your running will be completed at this effort.
Distance runs form the backbone of any successful endurance running OUR RUNNING BOD program. See Table 5.4 for suggested pace ranges based on your best (not goal) 5 K race performance. Don't exceed the fast end of the range, as you'll risk excessive fatigue and an increased risk of injury. Remember that pace suggestions are just a guide. Adjust for variables like weather and fatigue. If you don't have a current 5 K time, then stick to a conversational pace. All runners should let feedback
from their bod-BUILD Y ies be the final guide; distance runs should remain comfortable (i.e., they aren't tempo or time trials).

50

Build YOuR Running BODY-cOMpOnEnt sand WORKOuts

table 5.4 Regular Run pace guide
24:00
9:46-11:07
6:04-6:54
5K
Pace per Mile
Pace per
24:30
9:57-11:19
6:11-7:02
Time
Kilometer
25:00
10:08-11:31
6:18-7:09
14:00
6:00-6:53
3:44-4:17

26:00
10:30-11:55
6:31-7:24
14:30
6:11-7:06
3:51-4:25
27:00
10:51-12:19
6:45-7:39
15:00
6:23-7:20
3:58-4:33
28:00
11:13-12:42
6:58-7:54
15:30
6:35-7:33
4:05-4:41
29:00
11:34-13:06
7:11-8:08
16:00
6:46-7:46
4:13-4:49
30:00
11:55-13:29
7:24-8:23
16:30
6:58-7:59
4:20-4:57

31:00
12:16-13:52
7:37-8:37
17:00
7:09-8:12
4:27-5:06
32:00
12:37-14:15
7:51-8:51
17:30
7:21-8:25
4:34-5:14
33:00
12:58-14:38
8:03-9:05
18:00
7:32-8:37
4:41-5:21
34:00
13:19-15:00
8:16-9:19
18:30
7:44-8:50
4:48-5:29
35:00
13:39-15:23
8:29-9:33
19:00
7:55-9:03
4:55-5:37

36:00
14:00-15:45
8:42-9:47
19:30
8:06-9:15
5:02-5:45
37:00
14:20-16:07
8:54-10:01
20:00
8:18-9:28
5:09-5:53
38:00
14:40-16:29
9:07-10:14
20:30
8:29-9:41
5:16-6:01
39:00
15:01-16:52
9:20-10:29
21:00
8:40-9:53
5:23-6:08
40:00
15:22-17:14
9:33-10:42
21:30
8:51-10:05
5:30-6:16

41:00
15:42-17:36
9:45-10:56

BUILD Y

22:00
9:02-10:18
5:37-6:24
42:00
16:03-17:58
9:58-11:10
22:30
9:13-10:30
5:44-6:32
23:00
9:24-10:42
5:51-6:39
TABLE 5.4 offers pace suggestions for regular runs based upon 5 K performance. Find your 5K time in the left column;
23:30
9:35-10:55
5:57-6:47
paces in the two right-hand columns are given as a range.

Strides

OUR RUNNING BOD

Strides are a safe and fun way for beginners to work intermediate fibers. They're also part of all runners'
warm-ups before hard workouts and races.

■ SKILL LEVEL: All levels

k A stride is a brief acceleration to "fast" running.
Fast doesn't mean all-out; it's not a sprint. Instead, it
should build to the pace you might expect to maintain for
a 5 K race. As a warm-up for hard workouts or races, it should mimic the pace you expect to reach during the harder effort. A stride can cover anywhere from 40 to 150 meters (or yards-you shouldn't worry about exact distance for these), should last about 5-20 seconds, and should be run on flat, even surfaces.

Y

Build YOuR Running Muscles

51

Hill Run

Hill runs are just distance runs that include a significant stretch of uphill.

These runs not only build all fiber types, they also strengthen many other components of your running body.
SKILL LEVEL: Intermediate, Advanced
k The hill portion of the run should include a long stretch of continu ous climbing. Depending upon your fitness-and the availability of hills in your area-this could mean anywhere from a quarter-mile
to 2 miles. It's okay if the hill includes some level and downhill stretches. Just run the hill; don't race it. And always include 12-15 minutes of easy running before you start up the hill.

Downhill Running

Downhill running requires eccentric contractions from your recruited \mathbf{Y} muscle fibers, increasing the load and leading to greater adaptations in strength, as well as protection from quad pain.

- SKILL LEVEL: Intermediate, Advanced

k Running a hill isn't only about the climb. Downhill running at a comfortably hard effort (i.e., Beginner's Fartlek or tempo effort) creates an eccentric load on your quadriceps muscles. Eccentric loads recruit fewer fibers, create a greater training stimulus, and can help immunize you against quad pain. Start with about 3 minutes and then add minutes with each successive run (up to 12-15 minutes total). Always jog or run easy (i.e., warm up) for 12-15 minutes before attempting a downhill run.

Hill Strides

Short hill striding is the quickest and most efficient way to activate a 11 OUR RUNNING BOD your running muscle fibers, including fast-twitch.

- SKILL LEVEL: Intermediate, Advanced

k For these strides, you'll need to find a fairly steep hill, although not so steep that you can't manage a good approximation of your normal running stride. You'll want to run 10-20 seconds at about the effort you'd BUILD Y race for a mile. Walk back down the hill and allow 1-3 minutes total between reps. Start with 4-5 reps your first time out, then build up to 8-10.

52

Build YOuR Running BODY-cOMpOnEnt sand WORKOuts

THE RUNNER 360
The Runner 360 is an all-around strength program for runners who prefer the outdoors or their own living rooms to the weight room. Best of all, fitness motivator and running yoga instructor Angie Stewart Goka, MPH, CSCS, has crafted a workout that can be completed in 12 minutes and that targets every muscle that runners need for strength and balance. Angie models the exercises to ensure proper form and offers a wide variety of workouts for runners who want more at angiestewartfitness.com. First, five quick rules for the workout:

1. Perform each exercise, in order, for one minute.
2. When the workout calls for left and right sides individually, perform each for 30 seconds.
3. Do as many reps as you can while maintaining good form (no cheating on form for more reps!).
4. Keep a log of reps as a way to track improvement.
5. For a more intense workout, repeat the entire set of exercises (up to a maximum of three times).
The following twelve exercises, from the Inchworm Plank to the Supe rgirl/Superman Plank, are all part of the same continuous workout.

- SKILL LEVEL: All levels

BUILD Y

Inchworm Plank

The inchworm plank helps to awaken your muscles, working both flexibility and strength. And if you're not very flexible, it's okay to bend your knees for this exercise.
k Begin in a standing position with your arms straight up. Be prepared to perform OUR RUNNING BOD
this exercise as quickly as you can without losing form.

1 Come into a forward fold, dropping your hands to your feet. m Keep your legs straight (or bend them if you have to) and then walk your hands out into a plank position.
n Perform one push-up. Then walk your hands back to your feet and return to your starting position. Repeat.
Y
Build YOuR Running Muscles
53

Squat-Thrust Climbers

Squat-thrust climbers are a great way to work your glutes (buttocks), quadriceps, and hamstrings.
k Stand with your feet close together
m Keeping your abs tight, jump your
and your arms at your sides.
legs back to assume the push-up position.
1 Squat down to the floor with your
n For 5 seconds, "run" your legs under
knees close together, placing your hands
your chest, bringing your knees high and
flat on the ground, shoulder-width apart.
keeping your hips low. Then jump your legs
back to the squat position, stand, and repeat.
Y

Curtsy Lunge Hop

Curtsy lunge hops are the best calf-strengthener on the menu, so work them! You'll also target your hip abductors, glutes, quadriceps, and hamstrings.
k Start with your feet hip-width apart.
1 Step backward, moving
your right foot diagonally and to
the left of your left hip. Simultaneously drop your right knee and bend your left knee.

OUR RUNNING BOD

m Propel your right knee upward as you come off the ground
with your left foot, and lift your
left elbow by swinging it up and
forward. Repeat for 30 seconds,
then switch legs.

BUILD Y

Build YOuR Running BODY-cOMpOnEnt sand WORKOuts

Scorpion Fighter

The scorpion fighter works your shoulders and core while stretching your obliques and hip flexors.
k Start in the push-up position, with the balls of your feet on a bench or chair.

1 Bring your left knee beneath your body toward your right shoulder.
m Now reverse directions, bringing your left knee back as you rotate your hips up and to the left, stretching your left foot toward
your right shoulder. Repeat for 30 seconds, then switch legs.

BUILD Y

Sidewinder Plank with Leg Lift

This exercise is great for your hip abductors and improving stabilization. It also targets your obliques, back, glutes, quadriceps, and hamstrings.
k Start in the plank position with your arms in full extension.
1 Rotate your body to balance on the heel of your right hand and lift your opposite arm straight up OUR RUNNING BOD
(your wrist is directly beneath your shoulder).
m Lift and lower your top leg, keeping your hips level. Repeat for 30 seconds, then switch legs.

Y

Build YOuR Running Muscles
55

Plank Pups

Plank pups will put the burn into your arms, shoulders, back, and core.
k Begin at the top of the push-up position.
1 Bend your right elbow to lower onto your right forearm.
m Bend your left elbow to lower onto your left forearm.
n Lift your right elbow so that you can place your right hand flat on the ground, then do the same with your left elbow and hand. Return to original position, repeat for 30 seconds, then lead with your left arm for 30 seconds.

Y Lateral Speed Runners

Lateral speed runners work both your hip abductors and hip adductors, plus lots of core.
k Stand with your feet hip-width apart, your arms at your sides.
1 Hop to your right, landing on your right foot while balancing your left foot behind your right leg.
Simultaneously move your left arm forward and your right arm back in a runner's stance.
m Repeat to the other side. Focus on speed and control.

OUR RUNNING BOD

BUILD Y

Build YOuR Running BODY-cOMpOnEnt sandWORKOuts

Windshield Wipers

Windshield wipers target your full range of abs, and they're terrific for improving stability.
k Lie on your back with your arms spread wide, palms down, thighs perpendicular to the floor and knees bent 90 degrees.

1 Maintaining the bend at your hips and knees, swing your legs to one side of your body. Make sure that your upper back maintains contact with the floor. m Bring your legs back to center, then repeat to the other side.

Plank Rotations

This variation on the traditional plank offers good core work while giving your shoulders a workout, too.

BUILD Y

k Begin in the forearm plank position, except stack your forearms horizontally.

1 Rotate onto your left side, elbow beneath your shoulder and right hand on your hip. Your feet should be stacked, your body straight. Rotate back to the center, then repeat on your right side.

OUR RUNNING BOD

Single-Leg Deadlift

Single-leg deadlifts are fantastic for improving balance and stability. They're great for
your core, glutes, and hamstrings.
k Start from a standing position.
1 Keeping your back straight, bend forward at the hips while lifting one leg straight
behind you (in line with your spine) and
reaching your hands toward the
ground. Return to the starting position. Repeat for 30

Y

seconds, then switch legs.

Build YOuR Running Muscles

57

Marching Bridge

This exercise is great for your glutes and also works your hamstrings and lower back (it's often used to help relieve lower back pain).
k Lie on your back with your knees bent and feet hip-width apart.
1 Lift your hips into a "bridge position."
m March your knees toward your chest one at a time. Keep your back straight.

Supergirl/Superman Plank

Y The Supergirl/Superman plank finishes your workout with a tough challenge to your core, shoulders, and back.
k Begin at the top of the push-up position.
1 Simultaneously extend your right arm in
front of you and your left leg behind you. Stay level
while balancing for 3 seconds.
m After bringing your hand and foot back to
push-up position, repeat on the opposite side. (As an easier alternative, perform this exercise from a "down on all fours" position, with hands and
knees on the ground.)

OUR RUNNING BOD

BUILD Y

58

Build YOuR Running BODY-cOMpOnEnt s and WORKOuts

RUNNER'S WEIGHT ROOM ROUTINE

Runners who prefer a traditional approach to resistance training can do a weight room routine. Eddie Andre, a former martial arts national champion who's made running a part of his fitness formula, leads you through some basic resistance training. Start with a few exercises representing different muscle groups (e.g., chest, shoulders, abdominals, quadriceps) and then add more (and more difficult) exercises as your fitness improves. Five quick rules for the workout: 1. Limit yourself to light weights and no more than 1-2 sets of 6-10 reps for new exercises the first two weeks.
2. Unless otherwise stated, limit weight training exercises to $1-3$ sets of 6-12 reps.
3. Train on non-consecutive days (e.g., M, W, F).
4. Allow $2 \frac{1}{2}-3$ minutes of rest between sets.
5. Never lift to exhaustion during a set (or workout) -if you need a spot, go lighter next time.

TRAINING DISCUSSION

Building Your Weight Room Routine

BUILD Y

If you're inexperienced in the weight room, you'll need to be careful choosing your workout routine so that you don't overload your nervous system and muscles.

Beginning runners with no weightlifting experience should spend $2-$ 6 weeks on the following routine (begin with one set per exercise, then add a second set after two weeks and a third set two weeks after that): OUR RUNNING BOD

1. Leg Lifts
2. Heel Raises-Straight Knee
3. Russian Oblique Twist
4. Push-Ups
5. Air Squat
6. Dumbbell Arm Swings
7. Bodyweight Lunge

Runners with some resistance training background can begin with the following exercises and then either add exercises or increase the difficulty of the ones already being performed (e.g., swap air squats for squats with weights, or swap step-ups for stepups with dumbbells): 1. Leg Lifts 6. Step-Ups or Step-Ups with
2. Russian Oblique Twist

Dumbbells
3. Push-Ups or Dumbbell Bench Press
7. Air Squats
4. Dumbbell Row
8. Bodyweight Lunge
5. Dumbbell Arm Swings
9. Heel Raises-Straight Knee
(Continued)
Y

Build YOuR Running Muscles

59

TRAINING DISCUSSION

As you progress in your weight room routine, you'll want to add (or eliminate) exercises based on your training goals. Some general ideas, depending on your personal program: All-around
fitness: After a few sessions, try the other body exercises in this chapter. Eventually, you'll want to integrate weighted squats, lunges, and possibly cleans.

Sprinters and middle-

distance runners: Include advanced lifts such as the squat, lunge, clean, and deadlift. Use fewer reps (3-
5 reps) to target your nervous system and more reps to build muscle.
Distance runners: Many distance runners prefer circuit training to an exercise-by-exercise approach. Use high reps and move quickly from one exercise to the next.

Y Leg Lifts

- SKILL LEVEL: All levels

Leg lifts help strengthen the abdominals, aiding core stability and knee lift.
k Lie on your back with your knees bent, heels on the floor, hands behind your head.

1 Keeping the bend in your knees, raise your feet to 45°. Then lower them until your heels almost touch the floor. Repeat. Start with one set of $10-15$ reps, then build up to $40-50$ reps.

OUR RUNNING BOD

BUILD Y

60

Build YOuR Running BODY-cOMpOnEnt s and WORKOuts

Russian Oblique Twist

- SKILL LEVEL: All levels

This is a great exercise for strengthening your obliques (side abdominals). That means better posture, less lower back pain, and a more stable stride.
k Balance on your glutes, hands together and held in front of you, legs bent and lifted off the floor.

1 Twist to one side, keeping legs steady while touching your hands to the floor.
m Repeat on the other side. Start easy with $10-15$ reps
each side, then build up to 25-30.

Push-Ups

BUILD Y

- SKILL LEVEL: All levels

Push-ups are a great bodyweight exercise for increasing arm and shoulder strength while simultaneously working core, back, and quads for stability.
k Lie facedown on the floor with your hands spread slightly wider than shoulder width.

OUR RUNNING BOD

1 Push against the floor to raise your body. Keep a straight line through your back and legs. Start with $10-15$ reps, then work up to as many as you can do in a minute.

Variation If a full push-up is too difficult, let your knees rest on the floor and perform the exercise as previously
described.
Y
Build YOuR Running Muscles
61

Dumbbell Bench Press

- SKILL LEVEL: Intermediate, Advanced

This is a great exercise for building strength in your chest and triceps. Using dumbbells instead of a barbell allows you to develop balance and work both sides equally.
k Lie on a bench while holding dumbbells at shoulder width. The dumbbells should be to the sides of your chest.

1 Lift the dumbbells, focusing on using your chest, until your arms are straight. Hold for a second, then slowly return to your starting position.

Y

Dumbbell Row

SKILL LEVEL: Intermediate, Advanced

This exercise balances out the work you did with dumbbell bench press, strengthening your back and biceps.
k Place your right hand and right knee on the bench, your left leg angled away from the bench for stability. Grab the dumbbell (beneath your shoulder) with your left hand. Allow a slight arch in your lower back, keeping the rest of your spine straight-no bending your head up or down.

OUR RUNNING BOD

1 Bring the dumbbell toward the outside of your lower rib cage, focusing on pulling your elbow upward. Then lower the dumbbell toward the start position, keeping a slight bend in your elbow. After $8-12$ reps, repeat with the other arm.

BUILD Y

62

Build YOuR Running BODY-cOMpOnEnt sand WORKOuts

$$
\begin{aligned}
& i_{r} \\
& i
\end{aligned}
$$

Dumbbell Arm Swings

SKILL LEVEL: All levels

This simple exercise has been used by runners for decades. It mimics the running motion, which develops the upper body muscles that create balance in your arm swing.
k Stand with your feet hip-width apart. Position your arms as if you were running, while holding light dumbbells in each hand.

1 Pump your arms, mimicking the normal arm swing of running. Stand tall-no slumping. Do at least 15 reps with each arm (there's really no upper limit).

Step-Ups

BUILD Y

- SKILL LEVEL: All levels

Step-ups are a great way to strengthen your quadriceps and glutes.
k Stand one foot away from a step, box, bench, or other platform. Keep your back straight throughout the exercise.

1 Step onto the elevated platform, making sure that your entire foot is on the platform. The bend OUR RUNNING BOD
at your knee shouldn't exceed 90°-if it does, the platform's too high.
m Step up onto the platform, generating force with the muscles of y our bent leg. Use your opposite leg for balance
only. Reverse the motion. After 8-12 reps,
repeat with your
other leg.
Y
Build YOuR Running Muscles
63

$$
\stackrel{6}{6}
$$

Step-Ups with Dumbbells

- SKILL LEVEL: Intermediate, Advanced

Adding dumbbells to step-ups increases the difficulty-and the adaptation.
k Stand one foot away from a step, box, bench, or other platform. Keep your back straight and hold dumbbells (start with
light weights) at your sides.
1 Step onto the elevated platform, planting your entire foot on the platform. The bend at your knee shouldn't exceed 90° if it does, the platform's too high.
m Step up onto the
platform, keeping the
dumbbells at your sides;
generate force with the
muscles of your bent leg.
Use your opposite leg for
balance only-or place
\mathbf{Y} on platform if necessary
to steady balance. Reverse the motion. After
8-12 reps, repeat with
your other leg.

Bodyweight Lunge

- SKILL LEVEL: All levels

Bodyweight lunges are a terrific way to strengthen your quadriceps, hamstrings, and glutes while mimicking a walking/running stride.
k Stand straight with your arms at your sides or

OUR RUNNING BOD

hands on your hips. Your feet should be hip-width apart.
1 Step forward, bending at the knee until your thigh is roughly parallel to the ground. Don't let your forward knee extend beyond the toes of the leading foot. Keep your front foot flat on the floor. Reverse

BUILD Y

your motion to return to your starting position. Start with 3-5 reps, then gradually build up to 10 .

Build YOuR Running BODY-cOMpOnEnt sand WORKOuts

$$
\frac{\pi}{K}
$$

Air Squat

- SKILL LEVEL: All levels

Air squats are the bodyweight version of squats, which are one of the best exercises for strengthening your quadriceps, hamstrings, and glutes.
k Stand straight with your feet hip-width apart, arms at your sides. Your toes should be pointed slightly out (keeps pressure off your knees during the squat).

1 Bend your knees, pushing your hips back until your thighs are parallel to the floor. Simultaneously bring your arms up and extend them straight
in front of your shoulders-this counterbalances the backward motion of your hips. Push upward with your quadriceps to return to your starting position. Start with 5 reps, then build up to $10-15$.

Single-Leg Squat

BUILD Y

- SKILL LEVEL: Intermediate, Advanced

Single-leg squats offer more intensity and a better way to keep your hips and legs in balance than air squats.
k Balance on one leg with the opposite leg extended forward for balance. Hold your arms straight

OUR RUNNING BOD

out in front of your shoulders, also for balance. If your balance is still shaky, it's okay to hold on to a secure object.

1 Slowly lower
yourself into the squat
position (think of sitting in a chair). Keep
your knee aligned over
your foot. Don't squat
so far that you can't get back up! For singleleg squats, partial squats are fine. Do 5-10 reps, then repeat with the other leg.

Variation As an alternative, perform the single-leg squat on a bench. Hold a dumbbell extended in front of you for balance, and drop your non-weight-Y
bearing leg to a level beneath the bench.
Build YOuR Running Muscles
65

Wall Sit

- SKILL LEVEL: All levels

This exercise may look like sitting down on the job, but it'll put the burn into your quads.
k Stand straight against a wall, then lower yourself until your knees form a 90° angle. Hold
the position. Start with 30 seconds, then increase by 15 -second intervals as you get stronger.

Variation For added difficulty, extend your arms
directly out from your shoulders.

Y Heel Raises-Straight Knee

- SKILL LEVEL: All levels

Straight-knee heel raises target your calves, especially the gastrocnemius (your largest calf muscle), and get you up on your toes during races-mandatory for middle-distance runners.
k Place the balls of your feet on a platform, heels
hanging off, feet hip-width apart, while you lean into
a wall or hold onto some other secure object for balance. Lower your heels so that they drop beneath the
edge of the platform. (Just a mild stretch-don't shred
OUR RUNNING BOD your Achilles!) Beginning runners can perform this exercise on the floor, then work up to a platform.

1 Raise your heels as high as you can, coming up on your toes. Pause at the top for $1-2$ seconds, then lower your heels and repeat. $10-15$ reps should do it, though up to 30 is okay.

BUILD Y

66
Build YOuR Running BODY-cOMpOnEnt s and WORKOuts

Heel Raises-Bent Knee

SKILL LEVEL: All levels

Bent-knee heel raises also target your calves, only this version splits the work between your soleus (your deep calf muscle) and gastrocnemius. It also protects against lower hamstring strain. k Place the balls of your feet on a platform, heels hanging off, feet hip-width apart, with your knees slightly bent, mimicking the bend in your leg while running. Lower your heels so that they drop beneath the edge of the platform. Beginners can perform this exercise on the floor, then work up to a platform.

1 Raise your heels as high as you can, coming up on your toes. Keep the bend in your leg. Pause at the top for $1-2$ seconds, then lower your heels and repeat. $10-15$ reps should do it-don't overdo this version of the exercise!

BUILD Y

Squat

SKILL LEVEL: Intermediate, Advanced

Squats are one of the best freeweight exercises for strengthening your quads, hamstrings, and glute s.

Do 6-12 reps for your muscles. Do 5 or fewer reps if your focus is your nervous system.

OUR RUNNING BOD

k Stand straight with a barbell resting on your shoulders.
Your feet should be hip-width apart, your toes pointed slightly outward. (It's best to start by taking the weight from a squat rack, with the bar racked at shoulder height.)
1 Keeping your feet flat, move your hips back and bend your knees, lowering your torso until your thighs are roughly parallel to the floor. Resist arching your back or performing the exercise too quickly.
Reverse the motion until you reach your starting position.

Y

Build YOuR Running Muscles
67

Lunge

SKILL LEVEL: Intermediate, Advanced

Weighted lunges recruit a wider range of muscle fibers (and muscle fiber types) as you mimic the walking/running motion. Do 6-12 reps for muscles, 5 or fewer reps for your nervous system.
k Stand straight with the barbell resting on your shoulders. Your feet should be hip-width apart. Use an overhand grip with your thumbs hooked around the bar for added stability.

1 Take a big step forward, bending at the
knee until your forward thigh is roughly parallel to the floor. Your forward knee shouldn't
extend beyond your toes, and your front foot
should remain flat on the floor. Pause, then reverse the motion until you reach your start position.

Y

Variation As an alternative, hold dumbbells at your sides with your arms fully extended and your palms facing inward.

Clean

SKILL LEVEL: Intermediate, Advanced

Cleans are a fantastic full-body exercise, working muscles from your ankles to your shoulders. Do 6-12

OUR RUNNING BOD reps for muscles, 5 or fewer reps for your nervous system.
k Grab a barbell on the floor with an overhand grip, hands at shoulder width or a little wider. Your back should be slightly arched, toes beneath the bar and shoulders over it.

1 Pull (don't jerk!) the bar upward, keeping it close to your body so that it almost brushes your knees.
m Accelerate the motion by jumping upward, simultaneously shrugging your shoulders.

BUILD Y

n Allow your elbows to angle outward, still keeping the barbell close to your body as you pull it to your shoulders.

Build YOuR Running BODY-cOMpOnEnt sand WORKOuts

$$
\frac{1}{x}
$$

o Move your body under the bar, catch it on your shoulders, and then allow your legs to bend in order to absorb the force. From this semi-squat position (with heavier weights, you'll drop even lower than depicted in the photo), straighten your body. Then lower the bar to the floor in a smooth, controlled motion, and repeat. Begin with light weights for this exercise, since you'll need to get the form down before the weight can go up.

BUILD Y

Deadlift

SKILL LEVEL: Intermediate, Advanced

Deadlifts work the lower back, spinal stabilizing muscles, glutes, quadriceps, hamstrings, and calves-boy, does it work them! This

OUR RUNNING BOD

is a good exercise to finish with, since it's demanding on your central nervous system (see Chapter 11 on the nervous system). Do

6-12 reps for muscles, 5 or fewer reps for your nervous system.
k Use an alternate grip for this exercise-a mixed under-
hand-overhand grip-with your thumbs hooked around the bar.
Start with the bar on the floor. Lower your hips until your thighs are roughly parallel to the floor, then flatten your back and look straight
ahead. Your arms should be outside your knees. Your feet should be hip-width apart, toes angled slightly outward.
1 Lift upward by standing up. Straighten your legs, hip, back, and shoulders at the same time. Don't "pull" with your arms. Bring the bar up straight (no swinging it). Then pause briefly before reversing the motion. Start with light reps, and never attempt a \mathbf{Y} weight so heavy that you forfeit good form.

Build YOuR Running Muscles

69

PROPRIOCEPTIVE NEUROMUSCULAR FACILITATION (PNF) STRETCHING

PNF stretching increases your range of motion and strengthens muscle, but it is best performed with a partner. In the photo
instruction, Bianca Guzman, of CATZ Physical Therapy Institute in Pasadena, California, leads Tanya Zeferjahn, a twotime NCAA Division II national track champion (10,000 meters), through a PNF routine for runners. First, five quick rules for PNF:

1. Perform an easy cardio warm-up (e.g., $10-15$ minutes of jogging) before stretching.
2. When performing a stretch, begin by moving the targeted muscle to its initial maximum range of motion (don't force this; instead, "find" this point).
3. Now contract the muscle you're stretching at $20-30$ percent of maximal effort for $5-8$ seconds.
4. Next, relax the muscle while your partner moves the stretched ext remity to a slightly greater range of motion (small increments only) -or move the extremity yourself with a stretching strap. Now you have a choice: Hold this position for up to 30 seconds, or immediately begin with a new contraction. Holding the stretch is the traditional approach but risks the temporary decrease in strength and power associated with static stretching.
5. Repeat 4-5 times.

Y The following seven stretches, from the PNF Hamstring Stretch to the PNF Hip Flexors Stretch, can be performed individually or as part of one continuous session.

SKILL LEVEL: All levels

PNF Hamstring Stretch
This stretch is a great way to keep hamstrings loose and to avoid nasty hamstring strains-not to mention hamstring tightness during harder efforts.
k Lie down with one leg flat-or, for less-flexible runners, bent at 90° - and the other held straight by your partner at your initial maximum range of motion. Note that this is a gentle stret ch. Once you've reached the end of your range of mo-
OUR RUNNING BOD tion, pull (contract) with your hamstrings for 5-8 seconds at 20-30 percent of maximal effort. (Feel free to use a towel or small pillow under your neck.)

1 Relax as your partner backs off stretching the hamstring to reduce the stretch.
m Your partner moves your hamstring to a new maxi-
BUILD Y mum range of motion-this should only be an incremental 70

Build YOuR Running BODY-cOMpOnEnt s and WORKOuts

improvement! Hold for up to 30 seconds. Repeat steps 1
and 2. Repeat stretch 4-5 times.
Variation As an alternative, perform the stretch solo using a rope or stretching strap.

PNF Calf Stretch \#1: Gastrocnemius

This calf stretch focuses on the gastrocnemius, the big muscle that gives your calves their shape.
k Lie on the floor while your partner rests your targeted leg over his or her thigh. Your partner cups your heel while using a forearm to press against the ball of your foot, moving your gastrocnemius to the end of its full range of motion. Now push your foot against your partner's forearm for 5-8 seconds

BUILD Y

at 20-30 percent of maximal effort.
1 Relax as your partner backs off stretching the gastrocnemius.
m Your partner moves your gastrocnemius to a new maximum range of motion - this should be an incremental improvement. Hold for up to 30 seconds. Repeat steps 1 and 2.

Repeat stretch 4-5 times.

OUR RUNNING BOD

Variation As an alternative, sit on the floor, back straight, nonstretching leg bent to 90°, while you loop a rope or stretching strap around the ball/middle of your foot and perform the stretch solo (pull back on the rope, press against it for 5-8 seconds, relax, find new maximum, hold, and repeat).

Y

Build YOuR Running Muscles

71

PNF Calf Stretch \#2: Soleus

This second calf stretch focuses on the soleus muscle, which lies deeper beneath the skin than the gastrocnemius and runs from below the knee to the heel.
k Lie facedown with a towel supporting the ankle of the leg resting on the ground. Your partner cups the heel of your raised leg (calf perpendicular to the floor) and uses his or her forearm to press down on your foot, finding your soleus muscle's maximum range of motion. Now push your foot against your partner's forearm for 5-8 seconds at 20-30 percent of maximal effort.

1 Relax as your partner backs off stretching the soleus. m Your partner moves your soleus to a new maximum range of motion-this should be an incremental improvement. Hold for up to 30 seconds. Repeat steps 1 and 2. Re-

Y peat stretch 4-5 times.
Variation As an alternative, sit on the floor, back
straight, your working leg bent to 90°, while you loop
a rope or stretching strap around the ball/middle of your foot and perform the stretch solo, using the above instructions as guidelines.

PNF Glute Stretch

This stretch will take the tightness out of your glutes; if you're not very flexible, be careful not to overstretch your glutes, as this can create strain for your lower back.

OUR RUNNING BOD

k Lie on your back while your partner gently moves your knee toward your chest. Your partner controls the motion with one hand below your knee and one on the bottom
of your foot. When you reach your initial maximum range of motion, try to push your raised leg straight ($5-8$ seconds at

BUILD Y

20-30 percent of maximal effort).

72

Build YOuR Running BODY-cOMpOnEnt sand WORKOuts

1 Relax as your partner backs off stretching your glutes.
m Your partner moves your glutes to a new maximum range of motion - this should be an incremental improvement. Hold for up to 30 seconds. Repeat steps 1 and 2. Repeat stretch 4-5 times.

Variation As an alternative without a partner, hug your own knee, repeating the process outlined above.
PNF Hip Adductor Stretch
Hip adductors bring your thighs toward the center of your body. Stretching them not only increases hip adductor range

BUILD Y

of motion but also reduces hamstring pain.
k Lie on your side with your head resting on a pillow and your hands comfortably in front of you. With your hips perpendicular to the floor, your partner raises one of your legs while placing a hand on your hip and the other hand under your knee. Your leg bends at the knee to rest across your part-

OUR RUNNING BOD

ner's thigh. When you reach your initial maximum range of motion, contract your hip adductors (press your thigh down) for $5-8$ seconds at 20-30 percent of maximal effort.

1 Relax as your partner backs off stretching your hip adductors.
m Your partner moves your hip adductors to a new maximum range of motion - this should be an incremental improvement. Hold for up to 30 seconds. Repeat steps 1 and 2. Repeat stretch 4-5 times.

Variation As an alternative without a partner, lie on your back, then loop a rope or stretching strap around the center of your foot. Swing the leg to the side and use pressure from the rope to mimic the stretch-contract-
release-stretch action outlined in the above instructions .
Build YOuR Running Muscles
73

PNF Quadriceps Stretch

This is a great stretch for the quadriceps, but it's important that you limit the "push" when moving the muscle through its full range of motion-you don't want to apply too much pressure to the knee.
k Lie facedown on a mat while your partner moves your heel toward your glutes. Your partner gently pushes with a hand on your ankle while stabilizing your position with a second hand on your hip. When your quadriceps muscles reach their initial maximum range of motion, press backwards against your partner's hand for 5-8 seconds at 20-30 percent of maximal effort.

1 Relax as your partner backs off stretching your quadriceps.
m Your partner pushes gently to move your quadriceps
\mathbf{Y} to a new maximum range of motion-this should be an incremental improvement. Hold for up to 30 seconds. Repeat steps

1 and 2. Repeat stretch 4-5 times.
Variation As an alternative, lie on your side and grasp your top ankle behind you (it's okay to have the lower leg bent also). Perform the exercise to mimic the above instructions.

PNF Hip Flexors Stretch

This hip flexors stretch is also great for relieving mild lower back tension-just don't overdo it!.
k Lie facedown while your partner grasps below your

OUR RUNNING BOD

bent knee (about 90°) with one hand and uses the other hand to press on your hip to stabilize your position. Your partner lifts your thigh to its initial maximum range of motion. Then you press down for $5-8$ seconds at $20-30$ percent of maximal effort.

BUILD Y

74

Build YOuR Running BODY-cOMpOnEnt s and WORKOuts

1 Relax as your partner backs off stretching your hip flexors.
m Your partner lifts your leg a little higher to move your hip flexors to a new maximum range of motion-this should be an incremental improvement. Hold for up to 30 seconds. Repeat steps 1 and 2. Repeat stretch 4-5 times. DYNAMIC STRETCHING

Dynamic stretching is the best way to increase range of motion preworkout or pre-race. Unlike static stretching, pre-run dynamic stretching improves performance! Below are a few simple dynamic stretches, BUILD Y
but many athletes also include a few of the technique drills that you'll be learning in Chapter 11, which double as dynamic stretches. Always warm up for $10-15$ minutes before doing any type of stretching.

The following two Leg Swings stretches can be performed individually or as part of one continuous session.

- SKILL LEVEL: Intermediate, Advanced

OUR RUNNING BOD

Leg Swings: Forward and Backward

Forward and backward legs swings help activate your core and increase your range of motion.
k Balance against a wall, goal post, or other secure object. Standing tall, swing the leg on the same side as the supporting hand forward and backward from the hip.
1 Allow your swinging leg to bend slightly (approximately 10 percent) at the knee and keep your upper body upright. Ten or more repetitions with each
leg will help increase range of motion.
Y
Build YOuR Running Muscles
75

Leg Swings: Sideways

Sideways leg swings create a better range of motion in your hip abductors and hip adductors.
k Use both hands to balance
against a wall, goal post, or other secure object. Lean slightly forward and
swing your right leg across your body, pointing your toes upward as the leg rises. Keep your upper body still to isolate your adductors.

1 Swing your leg back the other way, using your hip abductors to pull the leg as high as it will go. Ten or more repetitions with each leg will help increase range of motion.

Y STATIC STRETCHING

Static stretching has gotten a black eye in recent years. Studies show that it reduces strength and explosive power when performed immediately before a workout. On the other hand, runners who've consistently used static stretching pre-workout incur injuries more frequently if they stop stretching. For most runners, static stretching is best done post-workout and is used to reduce post-run stiffness that might otherwise linger until the following day's run. You should think of static stretching as "loosening"-you don't forcefully lengthen your muscles, you relax them.

The following six stretches, from Hamstring (static stretch) to Iliotibial (IT) Band Stretch (static stretch), can be performed individually or as part of one continuous session.

■ SKILL LEVEL: All levels

OUR RUNNING BOD Hamstring (static stretch)

These are two variations of static hamstring stretching, both of which reduce tension in the hamstrings post-workout.

Variation 1 The seated variation of the hurdler's stretch has you sitting tall with one leg extended in front of you and the

BUILD Y other folded with the bottom of your foot pressed against 76

Build YOuR Running BODY-cOMpOnEnt sand WORKOuts

the opposite inner thigh. Bend forward from the waist (don't hunch your back) and reach toward your toes. Don't overdo this stretch. When you reach the end of your range of motion, stop. Hold for 30 seconds.

Variation

2 Standing, hands on hips, prop the heel of your foot up on a platfor m.

Now bend from your waist, sticking your butt out until you reach the end of your hamstrings' range of motion. Hold for 30 seconds.

Hip Flexor and Quadriceps (static stretch)

This simple stretch loosens your quadriceps and hip flexors.
k Standing straight, balance yourself against a wall (or other
secure object). Bend your leg backward at the knee, grasping the top BUILD Y
of your foot with your same-side hand. Pull back and up gently, until you reach the end of your range of motion for your quadriceps and hip flexors. The key to this exercise is to contract your glutes during the stretch. Hold for 30 seconds.

OUR RUNNING BOD

Quadriceps (static stretch)
This is the most effective static stretch for quadriceps and also doubles as a good hip flexor stretch.
k Kneel with your left knee forward. Rest your left hand on your front knee (or on a secure object if necessary for balance). Now grab your trailing foot with your other hand and lift upward. When you reach your quadriceps' initial maximum range of motion, you can adjust the stretch in either of two ways: You can move forward at the hips, increasing the stretch on your hip flexors, or you can pull up farther on your raised foot, increasing the stretch to your quadriceps.
Hold for 30 seconds. Switch legs and repeat.
Y

Build YOuR Running Muscles

77

Calf (static stretch)

There are many different calf stretches, but the following one works great!
k Assume the push-up position, facedown, arms straight, back straight, legs extended behind you. Now cross one foot over the other as you allow
your weight to move your lower foot into a dorsiflexed (angled toward your shin) position. Keep your knees straight. Hold for 30 seconds.

Lower Back and Hip Abductors (static stretch)

This stretch will loosen both your lower back and your hip abductors, but inflexible runners should be careful not to push beyond their natural range of motion.
k Lie on your back, then let your knee
\mathbf{Y} fall over to the opposite side. Place your hand on your knee-don't push! Keep both shoulders against the floor, and keep your lower leg straight. Try not to pivot your hips in the direction of the stretch. Hold
for 30 seconds.

Iliotibial (IT) Band Stretch (static stretch)

This stretch helps prevent and treat IT band syndrome. The IT band runs along the outside of the leg, from hip to knee, and tightness and inflammation can be felt as pain at either the hip or along the outside of the knee.
k This stretch utilizes a "revised" hurdler's stretch.
Sit on the floor, one leg extended in front of you, one foot
OUR RUNNING BOD tucked back by your hip. Your knees should be separated by 1-2 inches (your thighs are almost parallel). Bring your
head down toward the straightened knee. You should feel
the "pull" along the outside of that leg. Hold for 60 seconds. Repeat with the opposite leg.

BUILD Y

78
Build YOuR Running BODY-cOMpOnEnt sandWORKOuts

6
M

Connective T Build Y

ost runners don't think
about connective tissue until it hurts. We have a general awareness that
our bodies contain support structures like
bones and ligaments to prevent us from col-

our Running

lapsing into blobs of Jell-O, but that's where our curiosity ends.

issue

That's where it ends, that is, until our first case of tissue cells. Examples of connective tissue with

Achilles tendinitis. Or plantar fasciitis. Or IT band densely compacted fibers are tendons and ligasyndrome. Or until we sprain an ankle, tear cartilage ments. An example of gel-like connective tissue in our knee, or suffer a stress fracture. Then we bewith a looser fiber arrangement is fat. come experts. Then we visit doctors or podiatrists, In this chapter, you'll target five types of conlearn about the particular connective tissue we've nective tissue:
injured, begin a lengthy course of physical therapy, and curse the day we overlooked the importance of

" Bone

strengthening this vital tissue. Because here's the

» Tendon

scary truth: Once connective tissue damage is done,

" Ligament

it's difficult- sometimes impossible - to undo.

» Cartilage

" Fascia

WHAT'S CONNECTIVE TISSUE?

Blood, fat, and skin are also connective tissues, Connective tissue is exactly what it sounds like: but we'll save them for later chapters. tissue that connects your body's muscles, organs, blood vessels, nerves, and other parts to one anCT TRAINING \mathbf{Y} other. It supports, surrounds, strengthens, stores energy for, cushions, and protects the compoMost connective tissues adapt to training, but nents of your running body. It's the glue that there's a catch: CT adapts at a much slower rate holds you together. than muscle. When you allow your muscle develConnective tissue is a catchall phrase for tisopment to outpace connective tissue adaptation, sues that take many forms, from the gel-like arethe result can be injury. Runners begin training, olar tissue, which binds skin to muscle, to the and their muscles improve rapidly. Encouraged, rock-solid bones that comprise your skeleton. they increase the intensity and length of their Whether connective tissue is gel-like or more workouts. Next thing they know, they've got solid is determined by the density of fibers in its Achilles tendinosis, tibial tendinitis, or a stress extracellular matrix - the distinctive mix of fibers, fracture in their foot. Their connective tissue proteins, carbohydrates, minerals, salts, fluids, couldn't cope with the increased workload, even
and other elements that surrounds connective
though their muscles seemed fine.

OUR RUNNING BOD

BEGINNER'S GUIDELINE

Connective Tissue (CT) Rule \#1: Do not injure your connective tissue! Seriously, don't do it.

CT adapts more slowly than muscle, so you can't base your training on muscle fitness alone. You must strengthen CT and the muscles that affect it. Once CT damage is done, it BUILD Y can't always be undone.

Build YOuR Running BODY-cOMpOnEnt s and WORKOuts

TRAINING DISCUSSION

"Will running ruin my knees?"

We touched on this subject in Chapter 1, but it bears repeating: No, r unning wil not ruin your knees. In fact, contrary to sedentary America's belief, running is good for your knees.

We previously looked at Stanford University's threedecade study, published in 2008, which found that runners were seven times less likely to require knee repla cement. But that's hardly where the data ends.

A 2013 study, published in Medicine \& Science in Sports \& Exercise, compared the incidence of osteoarthritis (a degenerative joint disease that leads to damage and loss of cartilage in the knees and hips) in runners and walkers. Of the nearly 75,000 runners in the study, 2.6 percent developed osteoarthritis during the seven-year study. Of the almost 15,000 walkers, 4.7 percent were diagnosed with osteoarthritis. Other non-running exercise was determined to increase the risk of developing osteoarthritis by 2.4 percent over running.
In other words, running reduced the incidence of osteoarthritis when compared to less strenuous exercise. The authors speculate that running's beneficial association with weight loss (specifically a reduction in fat) was behind the study's results.

BUILD Y

You're probably thinking, But wait a minute, how can the increased pounding associated with running
reduce knee damage when compared to the less-
forceful impact of walking?
There's a simple reason, one illustrated in another 2013 study publis hed in Medicine \& Science in Sports \& Exercise. Fourteen study participants were monitored during periods of both walking and running. The study found that while running results in more impact force per step, walking an equal distance requires so many more steps that the accumulation of impact force was the same. That's right, your knees get the same overall pounding whether OUR RUNNING BOD
you're running or walking.
Longterm knee damage usually results from osteoarthritis or ligament damage. Since running reduces osteoarthritis-and since it actually strengthens bone and tendon-you'll improve your knees; you won't damage them. So the next time someone asks about your knees, don't get annoyed. Have compassion. After all, their knees are seven times more likely to wear out, and their bodies aren't doing so great, either.

Some connective tissues won't ever improve much with training. For these tissues, such as cartilage and ligaments, your emphasis needs to be on injury prevention. You must strengthen muscles that directly affect the tissues (often smaller muscles overlooked in traditional strength training routines) and utilize stretching and massage to reduce tissue tension.

Most of all, training connective tissue requires patience. Get-fitquick schemes rarely produce fast fitness; they produce injury. You can't get in shape from the couch.

Y

Build YOuR Running connective tissue

81

NUTRITION ADVICE

"10 Foods for Happy Bones"

Most of us know we need calcium and vitamin D for healthy bones, but our skeletons are hungry for more than just a glass of milk. A good set of bones requires a constant and adequate supply of protein, magnesium, potassium, phosphorus, fluoride, and vitamin K. Each
of the following ten foods is unusually abundant in at least several n utrients that give your bones a boost: 1. Almonds
6. Roasted pumpkin seeds
2. Bananas
7. Soy products
3. Canned sardines
8. Spinach or broccoli
4. Orange juice
9. Wheat bran
5. Raisins
10. Yogurt

Y BONE
It's alive!
Lucky for us, bone is a living tissue that under-
Your adult body contains 206 different bones. goes constant renewal. Under normal conditions, These bones form a balanced and symmetrical about 4 percent of your bone is being broken skeletal structure that puts even the best Lego down and replaced through a process called retoys to shame. They're also your primary defense modeling. When you run, this process goes into against gravity, with your femur (thigh bone) alone overdrive. Just as your body strengthens muscle capable of supporting up to 30 times your weight. fibers by replacing damaged myofilaments, it also

Of course, we runners tend to push gravityuses remodeling and modeling - a separate prodefiance to the limit. A single step during a discess that fortifies bone with extra bone tissue-to tance run creates an impact force approximately
create bigger, stronger, better bones.
two to three times your body weight. Let's put But rebuilding and fortifying your bones takes that into perspective. For a reasonably fit male time. At the beginning of remodeling, cells called runner weighing 150 pounds who logs one thouosteoclasts dig out old, damaged bone tissue, leavsand steps per mile, that's 150 to 225 tons of iming tiny cavities in your bones. It then takes three

OUR RUNNING BOD pact force that his skeleton must endure each to four months for other cells called osteoblasts to mile! Add extra tons for faster running (up to fill those cavities with new bone. In the interim,
seven times body weight for sprinting), then mulyou're left with porous bone that's susceptible to tiply by weekly mileage, and it's no surprise that injury. During this phase, runners who push too novice runners suffer injuries when they segue hard for too long often end up with a stress fracstraight from a New Year's Eve resolution to a ture as their reward.

BUILD Y hard run on the roads.
If you do get a stress fracture, the wait begins
82

Build YOuR Running BODY-cOMpOnEnt sand WORKOuts

again. It will take three to four months for your the glistening, white, fibrous cords that eventubody to repair the fracture. Training too soon risks
ally connect to bone.
re-injury.
Tendon injury

training recommendation

The point at which individual muscle fibers meet tendon, the myotendinous junction, is your muscle's

Training bone begins with nutrition (see weak link. It's here that most muscle strains ocsidebar, "10 Foods for Happy Bones").
cur. Powerful eccentric contractions cause dam-
Poor nutrition leads to weak bones. In age either at this junction or directly above it. If fact, deficient calcium in your diet can you're lucky, damage will be limited to a few fiforce your body to mine bones and teeth bers and short-lived soreness. If you're unlucky, a (which contain 99 percent of your body's complete muscle tear might require surgery and stored calcium) for the mineral. In the physical therapy. The good news is that the musevent of a stress fracture, Pool Running cle-tendon zone gets a rich blood supply from (see page 161) is your best cross-training muscle fibers, resulting in a healing rate that albet. Resistance training (Chapter 5) trigmost parallels that of muscle. gers improvements in bone strength, but Achilles tendon injuries, the plague of runners intermediate and advanced runners might (especially runners age forty and over) range from

BUILD Y

need to increase their usual volume of mild tendinitis to complete rupture. Achilles tendireps and sets by $25-50$ percent to con-
nitis is an overuse injury that is accompanied by tinue strengthening their CT. painful inflammation. Achilles tendinosis, on the other hand, involves degenerative damage at the cellular level that produces chronic pain without TENDON
inflammation. Until the late 1990s, almost all Achilles pain was thought to result from tendini-

OUR RUNNING BOD

Tendons connect muscle to bone, transmitting tis. Now, it's understood that most Achilles pain is the force generated by muscles to move your generated by tendinosis. The treatment (and best joints-and hence your body. But tendons are far prevention) for Achilles tendinosis is eccentric more than organic cables. They are active, responHeel Dips (see page 109), a remedy discovered by sive, and vital partners with your muscles, so Swedish orthopedist Hakan Alfredson. Alfredson much so that the two tissues are regularly rewas a recreational runner who developed severe ferred to as a muscle-tendon unit.

Achilles pain. In a podcast with the British Journal Muscles don't end where tendons begin. There of Sports Medicine, he explained that he'd asked his is no line drawn in the sand. Instead, there is a boss to perform surgery on the tendon, only to transition area, the muscle-tendon zone (musculohave his boss reply, "If we operate on you, you tendinous zone), where muscle gradually gives way need to be on sick leave. And we cannot afford
to tendon. In this zone, muscle fibers and tendons that here at the clinic. . . I won't ever operate on merge, operating as a unit. It is only at the outyour Achilles tendon." Desperate to get the operaskirts of this zone that tendons finally emerge as tion, Alfredson attempted to rupture his Achilles Y

Build YOuR Running connective tissuE

 83with a high-volume bout of heel dips. Instead, he when you convert energy stored in your tendons got better. A 2012 study published in the British and fascia (see "Fascia," page 88) into a free push. Journal of Sports Medicine investigated the longAnd not a little push-elastic recoil is more like a term effects of heel dips. Researchers questioned big shove that provides up to 50 percent of the fifty-eight patients who'd previously treated their propulsive force for each running stride.

Achilles tendinosis with 180 heel dips per day for The major driver of recoil is your tendons. Tentwelve weeks. The study reported that almost dons aren't an elastic tissue, but they have elastic forty percent of the patients remained pain-free properties. They're like ropes that stretch under five years later. The researchers also noted that tension. At rest, their tough collagen fibers line up two similar studies on the longterm effect of in parallel wavy lines. Under tension, these wavy heel dips showed even better results, with 88 per-
patterns straighten to allow a stretch of 4-6 percent and 65 percent of those patients reporting cent. Because your tendons are stiff, the act of little or no pain. Interestingly, it's not calf stretching them requires a lot of energy. During strengthening that does the trick. It's stress on runs, this energy is provided by the impact force the tendon itself, and subsequent adaptations, each time your foot hits the ground. The impact that lead to healing.
force stretches your Achilles tendon as well as In the absence of proactive treatment (like fascia in your legs. This impact energy is momenY heel dips), damage done to tendons in the white tarily stored in your tendon and fascia. When fibrous zone-that bloodless stretch preceding your calf muscles contract, the energy is released, the interface with bone-has a gloomy outlook. A creating a catapult effect-elastic recoil-that 2013 study from Denmark tried to determine the multiplies the force produced by muscle alone. tissue turnover rate (the time it takes to regenerWith proper training, it will feel like you're runate completely new tissue) for this zone. Previous ning on coiled springs! estimates ranged from two months to two hundred years. The researchers chose subjects who'd

training recommendation

lived during the nuclear bomb testing from 1955
to 1963, when atmospheric levels of carbon-14
Running and resistance training exerwere highest. They then measured existing levels
cises from Chapter 5 contribute to tendon
of radioactive carbon-14 in the subjects' muscles stiffness-as will the workouts from chapand Achilles tendons. Tested muscle was clear of ters 8 and 11 . Wobble board and resistance carbon-14. In contrast, tested tendon showed levband/tubing exercises (see pages 91-99) els of carbon-14 that hadn't changed in the defurther strengthen the entire kinetic chain

OUR RUNNING BOD cades since atomic testing. So when can you (muscles, connective tissue, and nerves expect damaged tendon tissue to regenerate? Acfrom hip to toe); this helps to prevent tendon cording to this study: Pretty much never. inflammation and damage. Active Isolated Stretching (AIS) (see pages 104-106) is
Elastic recoil
useful for working the muscle-tendon zone
If runners were superheroes, elastic recoil would be (since it sidesteps the stretch reflex that
BUILD Y our superpower. Elastic recoil occurs during runs can lead to strains in this zone).

84

Build YOuR Running BODY-cOMpOnEnt sand WORKOuts

Best of all, elastic recoil costs nothing in terms tell you where you're at; they allow you to get
of oxygen and calories. It's completely fueled by
where you're going.
impact energy.
The amount of recoil depends upon a tendon's

Lax ligaments

stiffness. Stiffness measures the amount of force Runners usually suffer ligament injuries at the it takes to stretch the tendon. The more force apankles and knees.
plied, the greater the recoil. That said, stretching Most ankle injuries involve sprains, which occur a tendon beyond 4-6 percent is dangerous-bewhen your foot lands awkwardly-rolled outward, yond 8 percent risks rupture.
bent inward, twisted, or tweaked by some other unnatural landing position. Sprains overstretch and
tear ligaments, often leading to joint instability.
LIGAMENT
Runners with poor ankle flexibility, inefficient neuromuscular activation, or any combination of weak

Ligaments connect bone to bone, and their prime muscles, tendons, or ligaments are more susceptidirective is to stabilize joints. Tough and flexible, ble to ankle sprains. Running on uneven surfacesthey're composed mainly of collagen fibers. or running steps or trails when overly fatigued-can These fibers are arranged in a crisscrossed patincrease your risk of injury.
tern that improves your ligaments' ability to
This doesn't mean you should never run on unmanage sideways forces. Just as bowling alley

BUILD Y

even surfaces. While too much "wobbling," as ocbumper rails prevent bowling balls from veering curs on trails, grass, and other natural surfaces,
into the gutters, your ligaments guide bonescan lead to excessive stress on your ligaments and and the joints where they meet-through a norjoints, some side-to-side motion can trigger mal range of motion.
strengthening in these same joints. At the oppoLigaments perform another essential function site end of the spectrum, hard flat surfaces (e.g., for your running body: They contain proprioceptive sidewalks and asphalt streets) increase impact

OUR RUNNING BOD

cells that signal the nervous system when the force, which can both stimulate strengthening or, ligament is being overstretched. Not only does in excess, lead to injury. Your best bet is to split this keep you consciously aware of your leg's poyour running between natural and manmade sursition in space (important for landing correctly faces.
and avoiding obstacles), it also cues your nervous
Knee injuries (that aren't cartilage damage)
system when to contract muscles in order to tend to strike two major pairs of ligaments: The lessen stress on your ligaments. A 2011 study anterior cruciate ligament (ACL) and posterior cruciate found that patients recovering from anterior cruci-ligament (PCL), and the medial collateral ligament ate ligament (ACL) surgery regained greater func-
(MCL) and lateral collateral ligament (LCL). The cru-
tional knee stability when ACL remnants were ciate ligaments sit in the middle of the knee, con-
salvaged rather than shaved off during surgery. necting the femur to the tibia (shin bone). They Salvaging ACL remnants allowed patients to recontrol forward and backward motion. The coltain proprioceptive cells, a major contributor to lateral ligaments stretch vertically along the instability. Healthy, functioning ligaments don't just side and outside of your knee, controlling Y

Build YOuR Running connective tissuE

 85sideways motion. Damage to any of these ligafinally the only cartilage left was in your ears, nose, ments can disrupt the stability of your knee.
bronchial tubes, and ribs - and, of greatest impor-
Ligaments are capable of moderate stretching, tance to runners, between your joints. but a prolonged or sudden, forceful stretch can When runners talk cartilage, we usually mean cause ligaments to be overstretched or torn. Since articular cartilage. Articular cartilage forms the ligaments have a poor blood and nutrient supply, smooth coating on the surface ends of bones. This they are slow to heal-just as they are slow to low-friction coating allows bones to glide over adapt. Full repair following injury can take anyone another, and it provides a flexible cushion where from months to years. And even repaired, within the joint. The femur, tibia, and patella the new ligament tissue will be inferior. You'll be (kneecap) all have articular cartilage.
more likely to reinjure the ligament, which can While studies confirm that physically active lead to ligament laxity-"loose" joints (elongated children can increase cartilage thickness, similar ligaments) that create joint instability. It's wise to research on adults shows no difference in thickinclude exercises to prevent injury and imperaness between lifelong athletes and healthy nontive that you do so after injury has occurred. athletes. In contrast, lifelong couch potatoes (and those otherwise immobilized) show decreased cartilage. Athletes tend to have larger knee joint

Y training recommendation

surfaces than non-athletes, but it's unclear if this represents genetics (like height for a basketball Wobble board and resistance band/tubing player) or a training adaptation.
training (see pages 91-99) are important for both prevention and recovery from ligament

Damaged cartilage-just say no!
damage (wobble board training has been
Damage to articular cartilage is bad news. Since
shown to reduce the reoccurrence of ankle cartilage lacks both nerves and blood supply, misprains by almost 50 percent). A good diet nor damage can go unnoticed and, more imporand regular stretching are also important. tantly, unrepaired. If the damage is allowed to Balance drills (Chapter 11, see pages 217progress, it can lead to significant disability. In the 219) help coordinate neuromuscular recase of the degenerative joint disease osteoarthrisponses to avoid missteps that lead to injury. tis, the joint space can narrow to the point of bone-on-bone contact. The joint becomes inflamed, painful, less mobile, and partially disabled.
Most runners know someone who has suffered

OUR RUNNING BOD CARTILAGE

torn cartilage in the knee. This is usually an injury Every bone in your body began as cartilage. In the to the meniscus, not the articular cartilage. The latwomb, this tough connective tissue allowed for a eral and medial menisci are two pads of fibrocartimore flexible skeleton, a huge plus given your lage that provide shock absorption and structural cramped quarters at the time. As you grew, from support for your knee. In adults, treatment genertoddler to teen to adult, most of your cartilage was ally requires surgery to repair or remove the af-

BUILD Y transformed into the rigid tissue of bone, until fected cartilage.

86

Build YOuR Running BODY-cOMpOnEnt s and WORKOuts

TRAINING DISCUSSION

"Does barefoot running reduce injury?"

Barefoot running is nothing new. Track and cross-country runners have made barefoot intervals around grass athletic fields and local golf courses a ritual of spring for decades. And Abebe Bikila of Ethiopia won the 1960 Rome Olympic Marathon running without shoes.
What's new is the claim that barefoot running is better for us than running shod.
In a 2010 study, Harvard anthropologist Daniel Lieberman proposed that our African ancestors' reliance upon persistence hunting (which involved walking and running long distances) created an evolutionary preference for endurance. The stu dy indicated that barefoot runners who landed on their midfoot or forefoot generated smaller collision forces than runners in shoes, who tended to be heel-strikers. His suggestion, taken up as a battle cry by barefoot and minimalist advocates, was that barefoot running, since it causes less impact and is more natural, might reduce injury. But does it?

The
claim that barefoot running reduces injury relies upon the premise th at the 80-85
percent of runners who heel-strike will transition to a mid-toforefoot landing when barefoot.

But the reality is that they don't. In fact, 80 percent of heel-strikers remain heel-strikers, only
now they do it barefoot. As Ross Tucker, Ph.D., coauthor of the pop ular website The Sci-BUILD Y
ence of Sport, points out in a post, "[The] result is an impact
loading rate that is seven times greater than running in shoes with the same landing."
Barefoot and minimalist advocates would claim that these runners need more time to transition. But a ten-week study following
nineteen runners who transitioned as instructed from shoes to Vibram FiveFingers (a minimalist shoe that mimics barefoot running) saw ten
runners develop bone damage, including two stress fractures. Overal l mileage dropped, too.

OUR RUNNING BOD

Dr. Sarah Ridge, who conducted the experiment, suggested they ran less "because their feet hurt."

Barefoot advocates also claim that running without shoes is more economical (uses less oxygen and energy), giving a boost to endurance running performance. But data doesn't seem to support this claim, either.

A 2012 study from the University of Colorado compared the energy cost of running both barefoot and in lightweight running shoes. Twelve runners with "substantial barefoot running experience" alternated running barefoot and shod at the same pace on a treadmill. Running with lightweight shoes proved more economical. Strike one.

A 2013 University of Massachusetts study concluded that both natural rear-foot runners and forefoot runners who were forced to land rear-foot were more economical landing on their heels. Strike two.
(Continued)

Y

Build YOuR Running connective tissuE

 87
TRAINING DISCUSSION

And Dr. Iain Hunter, a biomechanics instructor at Brigham Young University, filmed the 2012 USA 10,000-meter Olympic Trials, and then studied the way competitors landed. They landed heel first, forefoot first, midfoot, twisted foot, and feet all over the place. For the best runners in the country, foot strike simply wasn't a factor. Strike three.

No one denies that runners get injured at an unusually high rate. But blaming either
shoes or bare feet seems a little silly. Both lead to injury, so neither b y itself can be the cause. Perhaps Tucker put it best: "I cannot stress enough that the reason for injury is training."

training recommendation

fascia has recently been nominated for a status upgrade by some researchers. They view fascia as Bottom line: There is no training mechanism a reactive tissue. They believe it contracts and refor increasing the strength of cartilage at a
laxes like muscles (albeit at a slower rate), recoils rate that mirrors our targeted adaptation in like tendons, provides sensory feedback like

\boldsymbol{Y}

other tissues. So remember Connective Tisnerves, and links all 650 muscles into a single sue Rule \#1: Don't injure it in the first place! working unit. Oh, and they blame it for the vast Older runners with chronic knee pain or inmajority of chronic pain and injury in runners. flammation should consider getting an x-ray Robert Schleip, Ph.D., head of the Fascia Reto rule out osteoarthritis.
search Project, in a 2009 interview for Men's Health, described fascia as an instrument for "structural compensation. " In other words, fascia is responFASCIA
sible for posture. When we climb stairs or slouch at our desk, we create alterations in our posture Imagine that a spider with supernatural powers that can become permanent. In this model, fascia lives within you. And imagine that this spider is like a sweater. Tug on one part of the sweater, spends its days spinning a single continuous web and the entire garment moves. Tension in one
that cocoons your body beneath the skin, a web area can therefore affect every aspect of posture. that spreads inward, surrounding and penetratAdhesions that build up between fascial surfaces ing every muscle, nerve, organ, and bone-every due to injury can create chronic pain that radiates

OUR RUNNING

BOD structure, cavity, and tissue in your body. That'd throughout our body. Seen this way, plantar fasci-be one heck of a web! Well, minus the spider, that itis is no longer an injury of the foot; it could just
web-a continuous weave of collagen and elastin as easily be caused by problems with the hips, fibers that grows thicker and thinner and that apback, or shoulders. Schleip and others in the field pears as membrane, sheet, cord, and gristle-is
believe that myofascial release exercises and speyour fascia.
cific stretches can improve posture, reduce pain,

BUILD Y

Once considered the Saran Wrap of the body,
and resolve injury.
88

Build YOuR Running BODY-cOMpOnEnts anD WORKOuts

table 6.1
connective tissue training \& Effectiveness of training Methods
Types of Connective Tissue
Methods for Improvement
Tendon
Bone
Cartilage
Ligaments
(White
Muscle-
Zone)
Tendon
Fascia
Foam Roller
\varnothing
\varnothing
Very Low
Very Low
High
Very High
Nutrition
High
Very Low
Low
Low
High
High
Myofascial Release
\varnothing
\varnothing
Very Low
Very Low
High
High
Running Workouts
(25% above normal routine)
Medium

```
\varnothing
\varnothing
\varnothing
Medium
High
Running Workouts
(50% above normal routine)
Medium
\varnothing
\varnothing
\varnothing
High
Very High
Bodyweight Strength Training
Medium
\varnothing
Ø
Medium
High
High
Stretching
\varnothing
\varnothing
Low
Low
Very High
Very High
Resistance Bands/Tubing
Low
Low
```


Medium
 Medium

High
Very High
Weight Training
(25\% above normal routine)
Medium
\varnothing
\varnothing
\varnothing
Medium
High
Weight Training
(50\% above normal routine)
Medium
\varnothing
\varnothing
\varnothing

High
Very High
Wobble Board
\varnothing
\varnothing
Medium
Medium
High
High

BUILD Y

TABLE 6.1 estimates the effectiveness of different training approaches when it comes to stimulating adaptations in connective tissue. For example, while a foam roller will be very effective in both
strengthening and loosening fascia, it will probably have no effect on bones or cartilage.

training recommendation

training approaches for connective tissues. Where running and weight workouts are listed, the per-

OUR RUNNING BOD

You don't have to be a true believer like centage of increase above normal workout rouSchleip to recognize the value of stretching, tine refers to total volume, not intensity, of single foam rolling (see pages 101-103), and sessions (remember that you have to increase the range-of-motion exercises. These exercises training stress, in this case the volume of weight can range from resistance training to work, in order to trigger improvement in your plyometrics and form drills (the latter two body). Important photo-instruction training for approaches are explained in Chapter 11). CT includes:
» Wobble board exercises
TRAINING RUNDOWN
» Resistance band/tubing exercises
» Foam roller exercises (myofascial release)
When it comes to training connective tissue,

» AIS (active isolated stretching)

sometimes you can and sometimes you can't. See
" "Household props" injury prevention and
Table 6.1 for a breakdown of the value of different
rehab exercises
Y
Build YOuR Running connetcive tissuE
89
Training from other chapters that affects conTo see exactly how these workouts can be in-
nective tissue strengthening includes:
corporated into your overall training program,
skip directly to Chapter 15: Build Your Training

» Running (Chapter 5)

Schedule, where sample schedules are available
» Strength training (Chapter 5)
for runners of all fitness levels and abilities.
» Plyometrics (Chapter 11)
» Technique and form drills (Chapter 11)
» Balance drills (Chapter 11)
Y
OUR RUNNING BOD
BUILD Y
90
Build YOuR Running BODY-cOMpOnEnts anDWORKOuts

Chapter 6: Build Your Running Connective Tissue PHOTO INSTRUCTION

WOBBLE BOARD

This wobble board routine works your entire kinetic chain (the interconnected chain of muscles, nerves, CT, and other structural components of your running body). It helps immunize your lower legs against injuries like shin splints, plantar fasciitis, Achilles tendinosis and tendinitis, patellar tracking syndrome, and IT band syndrome. Wobble boards are supported by a round "ball" projecting from the base. While a smaller ball makes
for easier rocking, the Thera-Band wobble board used in the workouts below features a slightly larger ball, which ensures stability throughout the exercise. Allow 2-3 minutes for recovery between sets. Sean Brosnan, a runner who's clocked 1:48 for 800 meters and 4:00 for the mile, demonstrates the exercises.
Wobble—Forward and Backward

BUILD Y

This is a great exercise for strengthening and stabilizing both plantarflexion and dorsiflexion, which can protect against lower leg injuries and speed recovery from the same.

■ SKILL LEVEL: Intermediate, Advanced

k Hold on to a chair, counter, or other sturdy support

OUR RUNNING BOD

structure. Center your weight
over the middle of the wobble
board (often, the best balance
requires moving your heel
closer to the center of the
board). Rock forward and touch
the front of the wobble board
to the floor (or as close as you
can get). Limit the bend at your
knee. Focus on utilizing the
ankle's range of motion.
l Rock backward until you touch the floor (or as close as you can get). One rep includes both the forward and backward rock. Start with 5-10 reps, then increase by no more than 10 reps per week to a maximum of 100 .
\boldsymbol{Y}

Build YOuR Running connetctive tissuE

$$
\begin{aligned}
& d \\
& d
\end{aligned}
$$

Wobble—Side to Side

This exercise helps to stabilize against inversion and eversion (rotating the foot inward or outward).

- SKILL LEVEL: Intermediate, Advanced

k Begin as you did the
previous exercise. This time,
rock inward and touch the side
of the wobble board to the floor
(or as close as you can get).
l Rock outward until you
touch the floor (or as close as you can get). One rep includes
both the inward and outward rock. Start with 5-10 reps, then
increase by no more than 10
reps per week to a maximum
Y of 100.

Wobble-Around the Clock

Wobbling both clockwise and counterclockwise builds on the strength and stability that you've developed from previous
wobble board exercises.

■ SKILL LEVEL: Intermediate, Advanced

k For this wobble board exercise, rock forward to touch the front of the wobble board to the floor (or as close as you can get), then begin a clockwise rotation, keeping the edge of the wobble board against the floor.

After one full rotation, reverse direction, doing the same exercise counterclockwise. Use the same reps progression as with the previous wobble board exercises. One rep includes both a clockwise OUR RUNNING BOD
and a counterclockwise rotation.

BUILD Y

92

Build YOuR Running BODY-cOMpOnEnts anDWORKOuts

RESISTANCE TUBING LOOP OR RESISTANCE BAND LOOP ROUTINE FOR CT

Resistance tubing (or resistance band) exercises for the hips and lower legs build strength to help runners maintain stability throughout the course of runs and races and provide protection for CT injuries from the hips to the toes. It's important to use tubing or bands that provide the correct resistance for your strength and fitness. The Thera-Band tubing and bands used in these exercises utilize eight color-coded levels of resistance. Always allow at least 2-3 minutes of recovery between exercises.

Side Steps

Side steps are a good workout for strengthening and stabilizing your hip abductors. Most chronic lower-leg connective tissue injuries have their genesis in weak hips. Either resistance tubing or a resistance band can be used for this exercise.

- SKILL LEVEL: All Levels
k Loop the resistance tubing either above your knees (least resistance), below your knees (medium resistance), or around your ankles (greatest resistance, as shown). Bend your knees slightly with your feet hip-width apart.
l

BUILD Y

Step to the side until the tubing provides significant resistance (to the point you can reasonably go). Then slide your pivot foot over to
recreate your original stance. Now repeat this sidestepping movement for 10-20 feet in one direction, and then reverse direction. Do one set for each direction. Gradually add distance. OUR RUNNING BOD
\boldsymbol{Y}
Build YOuR Running connetctive tissuE 93

Monster Walk

Monster walking works your hip flexors, extensors, and abductors, providing a great all-around strengthening workout for your hips. Either resistance tubing or a resistance band can be used for this exercise.

■ SKILL LEVEL: All levels

k Loop the resistance tubing either above your knees for less resistance or below your knees (as
shown) for more resistance. Bend your knees slightly, with your feet hip-width apart. Hang your arms loosely at your sides.
l Step forward and to the side at a 45° angle, keeping the bend in your knees and your arms at your sides. Step forward and to the opposite side at a 45° angle. Keep walking for 10-20 feet, then gradually
build up to longer distances.

Y Walkout/Jogout

Walkouts and jogouts provide good overall kinetic-chain training and are an integral part of knee (especially $A C L$) strengthening.

- SKILL LEVEL: All levels

k Fasten low-resistance tubing to a door anchor, doorknob, or other secure object. Fasten the
opposite ends to a belt looped
around your waist. Face away
from the anchor.
l Walk or jog a few strides
forward, until the resistance in-

OUR RUNNING BOD

terrupts your stride. Then allow
the loop to pull you back as you
walk/jog backward to your starting position. Repeat until fatigued (never push through pain
with this exercise).

BUILD Y

94

```
Build YOuR Running BODY-cOMpOnEnts anDWORKOuts
```

$$
1
$$

Backward Walkout/Jogout

Backward walkouts and jogouts continue the strengthening work for the knee (especially the ACL) begun with forward walkouts/jogouts.

- SKILL LEVEL: All levels

k Fasten low-resistance tubing
to a door anchor, doorknob, or some
other secure object. Fasten the opposite ends to a belt looped around
your waist. Face toward the anchor.
l Walk or jog a few strides
backward, until the resistance interrupts your stride. Facing the same
direction, allow the loop to pull you
back to your starting position. Repeat until fatigued (never push through pain with this exercise).

BUILD Y

Jumpouts

Jumpouts are a more explosive version of walkouts/jogouts. They contribute a greater stimulus to kinetic chain adaptation and knee strengthening (especially the ACL).

- SKILL LEVEL: Intermediate, Advanced

OUR RUNNING BOD

k Fasten low-resistance tubing
to a door anchor, doorknob, or other
secure object. Fasten the opposite
ends to a belt looped around your waist. Face away from the anchor.
l Bound (jump) forward explosively, pushing off one foot and landing on the other. Then hop backward
off your same landing foot, returning
to your starting position. Continue
until fatigued (never push through
pain with this exercise), then switch
sides and repeat.
Y
Build YOuR Running connective tissuE

Jumpouts—Sideways

Sideways jumpouts are a more explosive version of side steps. As with other variations of this exercise, they build kinetic-chain adaptations and knee strength (especially the ACL).

- SKILL LEVEL: Intermediate, Advanced

k Fasten low-resistance tubing to a
door anchor, doorknob, or other secure
object. Fasten the opposite ends to a
belt looped around your waist. Stand
sideways to the anchor.
l Leap sideways (away from the
anchor) off the foot nearest the anchor,
landing on your opposite foot. Then
leap back to your starting
position. Continue until fatigued (never push through
pain with this exercise), then switch
\boldsymbol{Y} sides and repeat.

Hip Adduction

Hip adduction strengthening is often overlooked by runners, but it's important to balance hip abduction strength with adduction training. This exercise will help keep your hips stable through your full stride and during foot strike.

- SKILL LEVEL: All Levels
k Secure a resistance band to
an anchor or other secure object at
ankle level. While standing, loop
the band around your anchor-side
leg, just above the ankle, with your
opposite foot positioned slightly
OUR RUNNING BOD back. Hold on to a secure object for
balance.
l Keeping your knee straight,
pull your leg inward, across your
opposite leg. Slowly return to the
start position. Continue until fatigued (never push through pain with this exercise), then switch sides BUILD Y and repeat.

96

Build YOuR Running BODY-cOMpOnEnts anD WORKOuts

Ankle Dorsiflexion

Ankle dorsiflexion (angling your foot toward your shin) training is great for preventing front shin splints (pain
along the outside of your shins).

■ SKILL LEVEL: All levels

k Sit on the floor with one leg extended in front of you, the other bent at the knee. Attach the resistance band around the top of your foot and anchor to a secure object. If desired, place a towel beneath your Achilles.

Start in the toe-forward position.
l Pull your foot backward toward your shin. When you reach maximum dorsiflexion, slowly return your foot to its original position. Continue until fatigued (never push through pain with this exercise), then switch sides and repeat.

BUILD Y

Ankle Plantarflexion

Ankle plantarflexion (pushing your foot forward) training helps treat and prevent medial shin splints (pain along the inside of your shin, also known as posterior tibial tendinitis).

- SKILL LEVEL: All levels

k Sit on the floor with one leg extended in front of you,

OUR RUNNING BOD

the other bent at the knee. Loop the resistance band around your foot while holding on to the opposite end.
l Push your foot forward until your reach maximum
plantarflexion, then slowly return your foot to its original position. Continue until fatigued (never push through pain with this exercise), then switch sides and repeat.

\boldsymbol{Y}

Build YOuR Running connective tissuE

Ankle Inversion

This is the best exercise for preventing and treating medial shin splints (pain along the inside of your shin).

- SKILL LEVEL: All levels

k Sit in a chair with one end of the resistance band secured to an anchor or other secure object at ankle level. Loop the band's other end around the arch side (inside) of your foot.
l Keep your knee straight as you pull your foot inward, limiting motion to your lower leg. When your foot reaches its maximum range of motion, slowly return to your starting position. Continue until fatigued (never push through pain with this exercise), then switch sides and repeat.
\boldsymbol{Y} Variation As an alternative, cross your non-working leg over the leg being trained, then secure the band both by holding it with your hand and stabilizing it with your non-working foot (as pictured).

Ankle Eversion

Ankle eversion exercises are used to strengthen ankles post-sprain and can also be used as a preventive measure.

■ SKILL LEVEL: All levels

k Sit in a chair with one end of the resistance
band secured to an anchor or other secure object at
OUR RUNNING BOD ankle level. Loop the band's other end around the little-toe side (outside) of your foot.
l Keep your knee straight as you pull outward
with your foot, limiting motion to your lower leg.
When your foot reaches its maximum range of motion, slowly return to your starting position. Con-
BUILD Y tinue until fatigued (never push through pain with this exercise), then switch sides and repeat.

98

Build YOuR RunningBODY-cOMpOnEnts anDWORKOuts

1

Variation As an alternative, secure the band by stabilizing it with your non-working foot and holding the end of
it with your hand (as pictured).

LUNGE WORK

While we included lunge exercises in the muscles chapter, two more lunge workouts serve as the perfect remedy for many hip and knee problems. Like much of our CT work, these exercises also work the whole kinetic chain. Always allow 2-3 minutes (or more, if necessary) of recovery between exercises.

Lunge Walk

BUILD Y

Lunge walks build both endurance and strength, improving your stability during runs.

- SKILL LEVEL: Intermediate, Advanced

k Start from a standing position, arms hanging at your sides.
l Take a big step forward, bending at the knee until your thigh is roughly parallel the ground, keeping your knee lined up over your foot. From this lunge position, step forward into another lunge with OUR RUNNING BOD
the opposite leg. Start with 20-30 feet of lunge walks, then gradually increase the distance (some athletes actually get up to 100 meters!).

Variation As an alternative, hold a medicine
ball in front of you as
you walk. This helps
you to maintain form.
Y
Build YOuR Running connective tissuE 99

Lunge Clock

Lunge clock training provides strengthening and stability in all directions. A lunge clock is best performed on a prepared mat, with tape used as markers to mimic the hours of the clock.

- SKILL LEVEL: Intermediate, Advanced
k Stand straight, arms hanging
loosely at your sides, in the middle of the
lunge clock.
l Step forward toward " 12 o'clock,"
bending at the knee until your thigh is
roughly parallel the floor (performing a lunge).

Y
m Step backward, assuming your original position.
n Now step toward the various "hours"
of the clock, lunging forward and to the side,
sideways, backward and to the side, backward, etc. Never change the direction you're
facing while lunging around the clock. Do
1-2 sets with each leg.

OUR RUNNING BOD

BUILD Y

100

Build YOuR Running BODY-cOMpOnEnts anDWORKOuts

FOAM ROLLER ROUTINE
Foam rolling is about as close as you can get to a deep-tissue massage. It's a way to self-myofascial release-to release tension in the fascia and break down adhesions that are thought to form between fascia, muscle, and skin. All exercises are being performed on Thera-Band foam rollers, which allow gradual increases from extra-cushioned to stiff rollers. Roll each muscle group 60 to 90 seconds, 1-2 reps.
These exercises are safe and effective for all training levels. Tanya shows how it's done.

Hamstring-Foam Roller

Begin your foam rolling with your hamstring, releasing tension that will free up your calves and lower back for better rolling in the next exercise.
k Sit on the floor with the foam roller beneath your knees. Place your hands behind you for support.
l Lift your glutes off the floor, extending your legs straight in front of you.
m Roll all the way up to your glutes and then back toward your knee s.

BUILD Y

Variation As an alternative, increase pressure by stacking your legs. Do
shorter, repetitive strokes in areas of greater tension.

OUR RUNNING BOD

Calf-Foam Roller

This is a great way to relieve the pain and pressure of knots, sore spots, and tension in your calves (both gastrocnemius and soleus muscles).
k Place the foam roller on the floor in front of you, then lay both calves over the roller. Keep your hands on the floor behind you for support.
l Lift your glutes off the floor and roll up toward your knees.
m Reverse direction and roll down toward your ankles.
Variation As an alternative, stack your
legs, then roll back and forth, working
shorter strokes over tight areas. Rotate
your leg outward and then inward to re-
\boldsymbol{Y}
lease different areas of the calf.

BuilD YOuR Running connectivE tissuE

IT Band—Foam Roller

The IT band runs from your hip all the way down the outside of your leg and knee. Many runners experience tightness of the IT band, which leads to pain on the outside of the knee or hip, as well as snapping at the hip. This is a good way to keep the IT band loose.
k Lie sideways with the foam roller beneath your hip. Bend your top leg at the knee and drape it over your target leg; your top-leg foot should be flat on the floor. Your downside forearm and opposite-side hand should also be on the floor.
l Using your foot, elbow, and hand to push and pull, gently roll back and forth over the outside of your leg from hip to knee.

Maintain tight abs and straight alignment throughout.
Variation As an alternative, increase pressure by stacking your legs. Do shorter, repetitive strokes in areas of greater \boldsymbol{Y}
tension.

Quadriceps-Foam Roller

Your quadriceps (thigh muscles) take a beating from hill running (especially downhill running) and speed work. This is a nice way to reward them for all the impact they absorb.
k Lie facedown with your quads resting on your foam roller and your forearms on the floor.
l Use your forearms and elbows to power your roll from the top of your quadriceps to the top of your knees.

OUR RUNNING BOD Variation As an alternative, increase pressure by stacking your legs. Do shorter, repetitive strokes in areas of greater
tension.

BUILD Y

```
BuilD YOuR Running BODY-cOMpOnEnts
anDWORKOuts
```


Rolling your glutes is a good way to relieve pressure on your piriformis (a small muscle in your glutes that sits atop the sciatic nerve), which in turn releases pressure on your sciatic nerve. k Sit on your foam roller with your legs extended in front of you. Place your hands behind you for support.
l Roll back and forth over your glutes.
Variation As an alternative, stack your legs and focus on one side at a time. Use the ridges of the foam roller (if yours has them) to mimic pressure point therapy to your piriformis.

BUILD Y

Lower Back-Foam Roller

For many runners, lower-
back tightness limits stride and stability. Finish your foam rolling se ssion by working out the tension in your lower back.

OUR RUNNING BOD

k Sitting on the floor, lean back until your lower back is resting against the foam roller. Stabilize your position with your hands. Your feet should be flat on the floor.
l Press down with your heels to raise your glutes. Roll back onto your elbows if it helps stabilize your position, and then bend and straighten your knees to control movement as you roll back and forth over your lower back.

\boldsymbol{Y}

Build YOuR Running connective tissuE 103

AIS
Active Isolated Stretching strengthens your muscles and increases your range of motion while avoiding the stretch reflex (a protective contraction that occurs when a muscle is stretched for more than 2-3
seconds), thereby providing a safer and more effective stretch for the muscle-tendon area. The following routine was created by Phil Wharton, who has worked with Olympians and world record holders including Shalane
Flanagan, Bernard Lagat, Mo Farah, Khalid Khannouchi, Meb Keflezighi, and Moses Tanui.

For more information and video demonstrations of stretches, visit Phil's website at whartonhealth.com.

When performing AIS, remember these three rules:

1. Activate: Contract the opposing muscle to the one being stretched. Use that contraction to move the stretched muscle through its range of motion and to trigger relaxation in the muscle being stretched. Only use your rope to aid the final small increment of the stretch.
2. Isolate: Use proper form and technique to stretch the muscle being targeted.
3. Don't Hold: The first part of the AIS motion is usually quick, but the AIS movement slows down as you approach your full range of motion. Since the stretch reflex occurs after 2-3 seconds, it's important not to hold the stretch -release it and return to your starting position.

\boldsymbol{Y}

Ten reps on each side of the body should be enough for all of these AIS exercises, which are safe and
effective for all training levels, although new runners should limit vo lume and intensity for the first 1-2 weeks.

The following five stretches, from HamstringAIS to Trunk Extensors (Lower Back)AIS, can be performed individually or as part of one continuous session.

Hamstring-AIS

Focus on lifting your leg with your quadriceps during this stretch. Your rope should be used to facilitate no more than a small, incremental range-of-motion increase at the end of the stretch.
k Lie on your back with a pillow beneath your head. Bend your non-stretching leg, while keeping your exercising leg flat. Loop your rope around the OUR RUNNING BOD arch of your foot (exercising leg).
l Inhale as you lift your exercising leg using your quadriceps. Keep your pelvis down during the stretch. Slow down as you near your full range of motion and use the rope to help reach that range. Don't
hold the stretch. Exhale as you return your leg to the
BUILD Y start position. Repeat for 10 reps, then switch sides.
104

Build YOuR Running BODY-cOMpOnEnts anD WORKOuts

Calves (Gastrocnemius)—AIS

Increasing range of motion in your calves is vital for preventing Achilles injuries and calf soreness. The gastrocnemius is the large muscle in your calf.
k Sit with one leg extended in front of you, the other bent. Loop the rope around the ball of your foot.
l Using the muscles on the front (outside) of your shins, pull your foot toward your shin (dorsiflexion). Use your rope to aid the last bit of the stretch and reach your full range of motion. Don't hold the stretch. Return to your starting position. Repeat for 10 reps, then switch sides.

Variation

k As an alternative, turn the foot inward to isolate the outer calf and repeat the exercise.
l To continue with this alternative stretching, turn the foot outward and repeat the exercise.

BUILD Y

OUR RUNNING BOD

Quadriceps-AIS

Stretching your quadriceps increases your range of motion with each stride and decreases tension on connective tissue at your hips and knees.
k Lie on your side with your lower leg bent beneath you (stabilize with your rope, as pictured). Bend your lifted leg and grab the base of your shin.
l Use your glutes and hamstrings to pull your lifted leg backward. Use your hand to aid the last bit of the stretch (don't overstretch, as that can lead to lower abdominal soreness). Keep your pelvis forward to protect your back throughout the exercise. Return to the start position. Repeat for 10 reps, then switch sides.
\boldsymbol{Y}
Build YOuR Running connetive tissuE 105

Gluteals-AIS

Tight glutes and hips are two of the biggest impediments to stride length-and two major contributors to injuries up and down your legs. Work this exercise for stability and power.
k Lie on your back with one leg straight and the other bent.
l Use your abdominals to pull your knee toward the opposite shoulder. Grab your bent leg at the base of the outer shin (with your opposite-side arm) and on the outer thigh (with your same-side arm). Use your hands to aid the last bit of the stretch. Don't hold the stretch. Return to your starting position. Repeat for 10 reps, then switch sides.

Trunk Extensors (Lower Back)—AIS

\boldsymbol{Y}

Lower-back tightness will chop your stride, rob you of your speed, and take the joy out of easy distance running. Spend a minute reducing tension to ensure hours of enjoyable running.
k Sit with your knees bent, heels placed a little wider than shoulder width in front of you.
l Slide your hands to your ankles and tuck your chin to your chest as you use your abdominals to pull yourself forward, head aimed between your knees. Use your hands to facilitate no more than a small, incremental range-of-motion increase at the end of the stretch. Don't hold the stretch. Return to your starting position. Repeat for 10 reps, then switch sides.

OUR RUNNING BOD

BUILD Y

106
Build YOuR Running BODY-components and WORKOuts

HOUSEHOLD PROPS POST-RUN INJURY PREVENTION ROUTINE

Some runners have neither the time nor the props for more complex post-run CT exercises. For these runners, the following set of exercises might be the answer. This fast routine provides the ounce of prevention you'll need for plantar fasciitis, Achilles tendinosis, tibial tendinitis, lower back pain, and more. These exercises are safe and effective for all training levels. They're demonstrated here by Christian Cushing-murray, a former sub-four-minute miler and current masters national recordholder (age forty-five to forty-nine) for 1,500 meters.
The following seven exercises, from towel Toe Curls to The Daydrea mer, are all part of the same continuous workout.

Towel Toe Curls

This exercise is a simple way to stave off plantar fasciitis, an injury that's usually felt as pain in your heel (often mistaken for a bruise) or your arch.
k Sit barefoot in a chair with a towel spread on the floor in front of you. Put a shoe or an item of similar weight on the towel's opposite end to create minor resistance. Keeping your

BUILD \boldsymbol{Y}

heels on the floor, pull the towel toward you by scrunching your toes. Bunch the towel beneath your arch (or behind your
heels) until you've reeled in its entire length. Repeat 1-2 times.

Foot Work

These simple foot exercises add stability to your ankles and help prevent both shin splints and plantar OUR RUNNING BOD
fasciitis. This foot work should be fluid and low exertion-don't strain.
k Orbits: Lie on your back with one leg straight, toes pointed upward, and one leg raised and bent 90° at the knee. Prop up the raised leg with your hands, then make circular orbits with your foot, doing 10 rotations clockwise and then 10 counterclockwise. Limit motion to the ankle and foot.
l G as Pedals: From the same position, point your foot away from your shin (plantarflexion) and then pull it toward your shin (dorsiflexion). Perform 10 reps with each foot. As an alternative to both orbits and gas pedals, use your foot to draw the alphabet and write numbers
from 1 to 10 .
\boldsymbol{Y}

Build YOuR Running connetctive tissuE

 107

Big-Toe Taps

Big-toe taps are an easy way to build strength in your arch, which makes this exercise a frontline defense against plantar fasciitis.
k Stand barefoot with feet hip-width
apart. Lift your big toes as you simultaneously press down with the other four toes
of each foot.
l Now reverse the motion, pressing
down with your big toes as you raise your
remaining toes. Start with a few repetitions and work up to 30
seconds or more.

Y Seated Toe Taps

Seated toe taps are a good defense against shin splints.
k Sit in a chair with your legs bent 90° at your knees, feet flat on the floor.
l Lift and lower your toes quickly and repeatedly, keeping your heels on the floor, until you feel
a "burn" in the muscles outside your shins. This
could take from a few seconds to 2-3 minutes. Do
one or more sets.

OUR RUNNING BOD

BUILD Y

108
Build YOuR Running BODY-cOMpOnEnts anDWORKOuts

Step-Downs

This exercise is great for strengthening hip flexors and building stability in the hips and knees. It's also great for preventing and rehabbing knee injuries.
k Balance on one foot, standing on a step
or low platform. Your free leg should be bent
slightly at the knee, with your knees aligned at
the start of the exercise.
l Lower your hips, keeping all your weight
on your front foot. To avoid injury, you must keep
your weightbearing knee in line with your front
foot. The angle of your suspended lower leg
should line up with your spine. Bend down just
far enough to tap the ground behind you.
m Now straighten your weightbearing leg
while bringing your suspended leg
forward, lifting the knee in front of you (mimic the forward drive of y our stride). Keep your down foot flat throughout the exercise. Do 510 reps with each leg.

BUILD Y

Heel Dips

This is an eccentric exercise for the calves, and it's used to prevent and rehabilitate Achilles tendinosis.

Although heel dips strengthen calves, their main benefit derives from creating movement within the tendons themselves (cells rubbing against cells).

OUR RUNNING BOD

k Use the balls of your feet to balance on a platform or step with your heels extending over the edge.

Use a chair or other sturdy support for balance. Put all
your weight on one foot and slowly lower the heel of
that foot through its full range of motion.
l Use both feet to rise back up, then repeat. The
benefit from this exercise doesn't come from rising on your toes; it comes from slowly lowering your heel. Start with 2-5 repetitions for each foot, then build up to 15-20. As an alternative for beginners (or for runners who are experiencing pain at the heel rather than in the midrange of the Achilles tendon), perform heel dips on a flat surface. Fo r treating tendinosis, perform 3 sets of 15 reps (each heel) up to twice per day, up to three months; add weight (a \boldsymbol{Y}
backpack or weights) as your strength increases.

BuilD YOuR Running connectivE tissuE

 109

The Daydreamer

There's no better way to release tension in your lower back than to spend a few minutes in the day-dreamer position. This is a great way to finish your Household Props PostRun Injury Prevention Routine.
k Lie on your back with your arms out to the side,
hands at approximately waist level, with your lower legs and feet propped on a chair. Keep a 90° bend in your knees and try to prop your feet so that they don't roll outward.
Take slow, deep breaths while relaxing. Don't "do" anything else. Hold for 5-10 minutes.

\boldsymbol{Y}

BUILD Y
110
Build YOuR Running BODY-cOMpOnEnts anDWORKOuts

System Cardiovascular Build Y

he term "cardio" has become
synonymous with endurance training. In fact, most runners think it's where
conditioning begins. So you might be per-
plexed as to why we've waited until now to

our Running

address the cardiovascular system. Don't be.
First, you don't build your running body one component at a time; you build components simultaneously. Second, many improvements in cardio don't require you to target your cardiovascular system directly; instead, your cardiovascular system gets fit because you increase your body's demand for fuel, which the exercises in chapters 5 and 6 will certainly help you accomplish.

Cardio is the fuel delivery system for your runthousand gallons of blood. It boasts approxining body. It supplies the steady stream of oxygen, mately sixty thousand miles of blood vesselsenergy (e.g., carbohydrates, proteins, and fats), waenough to circumnavigate the globe two and a ter, and hormones that your body needs to function. half times or to stretch a quarter of the way to the But that's not all. It doubles as the garbage collector, moon. And it utilizes twenty to thirty trillion red carrying away waste products like carbon dioxide, blood cells (RBCs) to carry oxygen to the one hunacidic hydrogen ions, and even heat. dred trillion cells in your body. It should come as no surprise that improved

And that's before you train. If you've played running requires improved fuel service and inMonopoly, you can think of training as like plunkcreased garbage collection. Luckily for you, your ing down houses and hotels on your cardiovascucardiovascular system runs on supply and delar "properties"-you're making an investment mand-if you increase demand from your runthat will provide a substantial return, including a ning body, your cardiovascular system will stronger heart, even more miles of blood vessels, increase supply. It will transform from the equivand a higher volume of RBCs. alent of an ancient Roman aqueduct into a highAs a runner, you should think of your cardioperformance twenty-first-century utility, vascular system as an oxygen transport system. Its complete with a powerful pumping station and number-one job during training and racing is to \boldsymbol{Y} miles of reinforced pipelines. transport oxygen from your lungs to your skeletal and cardiac (heart) muscle cells.

WHAT'S THE CARDIOVASCULAR
In this chapter, we'll discuss three main feaSYSTEM?
tures of the cardiovascular system:
At its simplest, the cardiovascular system is a

" Your heart

blood-distribution network. But that's like saying

» You blood vessels

the government is a rule-distribution network.

»Your blood volume

The truth is that the cardiovascular system comprises a biological supply-and-demand infra-

Because lungs (part of the respiratory system) supstructure of almost unfathomable scope. It has ply the oxygen transported by the cardiovascular your heart as its engine, beating one hundred system, we'll also do a quick drive-by and explore a thousand times per day to pump almost two training strategy for improving their strength.

BEGINNER'S GUIDELINE

OUR RUNNING BOD

You don't improve cardio by running until you're out of breath. You improve your cardiovascular system by increasing the longterm demand from its biggest customer, your muscles.

When you run too hard-looking to feel the "burn"you outrun your cardiovascular system's ability to deliver oxygen. You tire more quickly, and your cardiovascular system gets BUILD Y
less work, meaning you'll see less improvement.
112
Build YOuR Running BODY-cOMpOnEnts
and WORKOuts

TRAINING DISCUSSION

" Will running lower my resting heart rate?"

Everyone knows that distance runners have low heart rates. Rates in the forties and the fifties (beats per minute) are considered normal for longtime runners, with a hearty few dipping into the thirties or upper twenties.

But does everyone's heart rate drop with training?
For most people, the answer is yes, but with a qualification:
Genetics and the type of training you do will affect just how far your heart rate drops.

Compare two of running's all-time greats. Jim Ryun, America's last world-record holder in the mile, had a resting heart rate of sixty beats per minute. In contrast, Ron Clarke, an Australian distance runner who set seventeen world records in the 1960s, had a resting heart rate of twenty-eight. Both men were incredibly fit, but Clarke's heart rate was less than half that of Ryun!

To understand this disparity, you need to understand why your heart rate slows down.

When you run, your heart's left ventricle, the lower-left chamber that pumps blood through your body, gets stronger (the way an aerobics instructor's abs get ripped from doing daily BUILD Y
core work). And because it gets stronger, your heart pumps more blood with each heartbeat.

At rest, everyone pumps about five liters of blood per
minute. But when your heart pumps more blood with each heartbeat, it has to pump less often to move that five liters. While an untrained heart needs sixty to one hundred beats per minute to move that blood, a trained heart only requires forty-five to fifty-five beats.
Of course, you'll pump a lot more than five liters per minute when running. This bring s a new factor into play: Maximum heart rate, the maximum number of times your heart can OUR RUNNING BOD
beat in a minute. The maximum amount of blood your heart can pump in a minute is determined by a simple formula: Take the amount of blood you pu mp with each heartbeat - known as your stroke volume (don't try to calculate this yourself, as you'll need a lab for that, but appreciate the concept)—and multiply it by your maximum heart rate. Or, written out: Stroke volume \times Maximum heart rate $=$ Maximum blood volume per minute Most people have a maximum heart rate equivalent to 220 beats per minute minus their age. For example, a thirty-year-old would have a predicted maximum heart rate of 190 (i.e., 220 minus 30). Maximum heart rate can't be trained; it's genetic. So if two 30-year-olds race each other, the one with the lower resting heart rate (i.e., greater stroke volume) would
theoretically pump more blood, which would transport more oxygen to working muscles, and thereby gain an advantage.

Which brings us back to Ryun and Clarke. Ryun's heart didn't play b y the rules. In his twenties, Ryun's reported maximum heart rate was an astounding 220-230, allowing him to (Continued) \boldsymbol{Y}

Build YOuR Running carDiOvascular sYst E M

113

TRAINING DISCUSSION

pump an enormous amount of blood with an average stroke volume. In contrast, Clarke had a normal maximum heart rate, so he had to increase his stroke volume in order to generate the blood flow necessary for world-class competition-especially since distance races require almost 100 percent aerobically produced energy.
Clarke's heart was forced to adapt, big time. Ryun's, not so much.
Unless you're a genetic freak like Ryun, your heart rate will probably slow down. But unless you're a genetic freak like Clarke, it probably won't drop all the way to twenty-eight beats per minute.
CARDIO TRAINING
Each of these types of training has a specific
effort level (often defined by pace) attached to it.
If you guessed that training your cardiovascular
Increasing the volume or intensity of any workout system involves a lot of running, you're right. And won't result in an advantage; more likely, it will just as you utilized different paces to train differsabotage the desired stimulus and adaptation.

Y ent muscle fiber types in Chapter 5, you'll use multiple paces to target specific areas of cardioTHE HEART vascular fitness.

You actually began your cardiovascular train-
The heart has captured the imaginations of poets
ing with the first runs (or walks) you did while and philosophers since we humans first felt its strengthening your muscles. Now, it's time to beat within our chests. The ancient Egyptians build upon that base. You'll need to elevate both considered the heart to be a receptacle for the volume and intensity. Some of the workouts you soul. Aristotle claimed that it was the seat of incan use to do that are:
telligence and sensation. The Catholic Church, at the Council of Vienna in 1311, dubbed it the well-
" Intervals: Short, faster repetitions with rest spring for emotion, nutrition, and vitality. And a intervals
couple hundred years later, it was redefined as
» 5K/10K Trail and Track Training: Repetithe cradle of love. It took Rene Descartes, the sevtions run at 5 K or 10 K race effort, with rest enteenth-century philosopher and mathematiintervals
cian-"Cogito ergo sum" (I think; therefore, I OUR RUNNING BOD
» Cruise Intervals: Repetitions at a pace you am)-to declare the heart to be nothing more could maintain for an hour, with rest intervals than a mechanical pump.
» Tempo: A single sustained effort (10-40
Modern runners-armed with a few hundred minutes) at around half marathon to marayears of training experimentation-have transthon pace
formed that simple pump, an organ composed of
» Long Run: A distance run that can account specialized cardiac muscle tissue that can beat

BUILD Y

for up to 20-25 percent of your weekly milenonstop for a lifetime, into the engine that's
age
driven the fitness revolution.
114
Build YOuR Running BODY-cOMpOnEnts anD WORKOuts

Your heart is located near the middle of your
table 7.1
chest, tucked between your lungs. About the size
cardiac Output During 5K/10K
of your clenched fist, it has four chambers-two

Cardiac Output

5K Time
10K Time
upper atriums and two lower ventricles-arranged
(Liters/Minute)*
like a duplex. On the right side of your heart, the
At Rest
4.5-5.5

14:00

29:10
30.5-36.5
upper atrium receives deoxygenated blood from
15:00
31:15
28.3-34.0
your body, then transfers it into the lower ventri-
16:00
33:20
26.4-31.7
cle, from which it's pumped to the lungs. On the
17:00
35:25
24.8-29.8
left side of your heart, your left atrium receives
18:00
37:30
23.4-28.0
newly oxygenated blood from the lungs, then
19:00
39:35
22.1-26.5
transfers it to the left ventricle, from where it's 20:00

41:40
20.9-25.1
pumped into the aorta, your largest artery, and
21:00
43:45
19.8-23.8
then to the rest of your body. A normal, adult
22:00
45:50
18.9-22.7
heart beats sixty to one hundred times per min-
23:00
47:55
18.0-21.6
ute, making a "lub-dub" sound with each beat.
24:00
49:60
17.2-20.7

The "lub" is the closing of the valves between the 25:00

52:05
16.5-19.8
atriums and ventricles, after blood has been
26:00
54:10
15.8-19.0
pumped into the ventricles. The "dub" is the
28:00
58:20
14.6-17.6

BUILD Y

sound of the ventricular valves closing after blood
30:00
1:02:30
13.6-16.3
has been pumped toward the lungs and into the

32:00
1:06:40
12.7-15.3
aorta. During your lifetime, your heart will pump
34:00
1:10:50
11.9-14.3
approximately one million barrels of blood,
36:00
1:14:60
11.2-13.5
enough to fill an average-size oil tanker!
38:00
1:19:10
10.6-12.7

Your training goal for the heart is simple: In-
40:00
1:23:20
10.0-12.0
crease its pumping capacity.
OUR RUNNING BOD
42:00
1:27:30
9.5-11.4

Cardiac output
TABLE 7.1 offers estimates of cardiac output associated
The amount of blood your heart can pump in a with $5 \mathrm{~K} / 10 \mathrm{~K}$ times. Find your 5 K or 10 K time in the columns minute is called your cardiac output. The more on the left, then find your predicted cardiac output in the
column on the right. Cardiac output measures the blood
blood you pump, the more oxygen you send to your heart pumps in liters per minute. your muscle fibers. This increases your fibers' *Ranges allow for differences in body weight. ability to work aerobically, which is the key to endurance training and racing. Cardiac output is If you multiply stroke volume by heart rate, the determined by two factors:
result is your cardiac output. At rest, an average person will pump five liters of blood per minute.
" Stroke volume: The amount of blood your
While running, your cardiac output increases sigheart pumps with each beat
nificantly. Table 7.1 estimates the cardiac output
" Heart rate: The number of times your heart required for different $5 \mathrm{~K} / 10 \mathrm{~K}$ race efforts.
beats in a minute
If you want to improve your running performance\boldsymbol{Y}
either for workouts or races-you must improve
Build YOuR Running carDiOvascular syst EM

115
your cardiac output. This means increasing your will increase, although not on the scale stroke volume or heart rate. Unfortunately, your seen in cyclists, rowers, and canoeists). maximum heart rate (the most times your heart can beat in a minute) is determined by genetics and Interval training is the workout of choice for im-
can't be changed. That leaves stroke volume. Forproving stroke volume. First introduced by Dr. tunately, stroke volume can be improved - a lot! Woldemar Gerschler and Dr. Hans Reindell in the 1930s, an interval workout includes short, fast repStroke volume etitions followed by recovery "intervals," during Stroke volume can refer to the amount of blood which you jog or walk. The goal is to increase your being pumped from either ventricle, which in heart rate during the repetition, then allow it to slow healthy adults is roughly equal. As a runner, howdown during the recovery. While increased blood ever, you'll focus on your left ventricle, which flow during the repetition is important, it's the repumps blood throughout your body (the right covery interval that's vital. During recovery, your ventricle pumps blood along a short loop to the heart rate drops more quickly than the correspondlungs and back). When you increase your stroke ing drop in blood flow. This forces the ventricles to volume, you increase the amount of bloodfill more fully, creating a brief increase in stroke volhence, oxygen-that you can transport to your ume. Repeated over multiple reps, this stimulus trig\boldsymbol{Y} muscles. This is accomplished in two ways: gers an adaptation: Increased stroke volume. Stroke volume is one of the greatest determi-
» Enlarged ventricular chamber: When you run,
nants of running performance. Unfit runners you increase the volume of blood filling your reach their maximum stroke volume while left ventricle, which causes it to stretch. The they're jogging. In contrast, trained runners inbigger the stretch, the more your body adapts crease stroke volume up to 5 K pace or faster. by enlarging the ventricular chamber, which That's a huge oxygen advantage. allows you to pump that much more blood When you train your heart, your heart does with each heartbeat. This adaptation occurs to what human tissue does best: It adapts. Cardiac a greater extent in distance runners than muscle fibers get bigger. Your heart's connective middle-distance runners, probably because tissue gets stronger. Your ventricular chambers distance runners spend more time training. grow larger. Your stroke volume goes up. And your
» Increased contraction strength: The greater resting heart rate goes down (see sidebar, "Will the stretch as blood fills your left ventricle, running lower my resting heart rate?" page 113). the greater the contraction strength when

OUR RUNNING BOD

your heart beats. In some ways, this mirrors
training recommendation
the elastic recoil in your Achilles tendon and fascia, with cardiac muscle and con-

Interval training is the best way to improve nective tissue rebounding from the ventricstroke volume. Intervals of 30-90 seconds at ular stretch. But it's not all rebound. There's 1500-meter to $3 K$ pace are very effective, as are a neural component to contraction
slightly longer reps at 3 K to 5 K pace, even up to

BUILD Y

strength, and a muscular one, too (the
10K pace (see pages 124-129). Hill repeats
thickness of your ventricle's muscular wall
(see pages 133) also provide a great stimulus.

116

Build YOuR Running BODY-cOMpOnEnts anD WORKOuts

TRAINING DISCUSSION

" Heart Disease, Inflammation, and the Marathon"

When runners have heart attacks, like running-
boom pioneer Jim Fixx's fatal heart attack following a
training run, it's news. When runners die from heart
attacks during marathons, as happened at the Chicago and
London marathons in recent years, it's big news. And when
a paper like the
Wall Street Journal compares distance running to eating a cheesebur ger, suggesting that "an increased vulnerability to atrial fibrillation and coronary-artery plaque"
makes running a health risk, runners everywhere stand up and take notice. We know we're not immortal, but we like to believe we're healthy!

So how should we react to this latest Chicken Little assault on our sport? Should we
stow our running shoes in the closet? Swear off running and take up less taxing pastimes- like reading the Wall Street Journal? First, let's see what the experts have to say.

A 2012 study published in The New England Journal of
Medicine reviewed the incidence of heart attacks among 10.9 million competitors in marathons and half marathons run between 2000 and 2010. The study revealed that one out of every 184,000 participants had suffered a heart attack, with forty-two out of fifty-nine people dying in those incidents. That's BUILD Y
tragic. But it's also low risk compared to other sports-one fifth the death rate for triathlons and a sixth that of college athletics.
If that doesn't reassure you, then a 2013 analysis by the National Runners Health Study wil .It fol owed 32,073 runners and 14,734 walkers for six years and concluded that runners who logged more than twenty-four miles per week experienced fewer incidents of cardiac arrhythmia than those who exercised less.

The truth is that running makes us 50 percent less likely to experience a serious heart OUR RUNNING BOD
attack. That's because running doesn't cause heart attacks. Heart disease causes heart attacks. And what causes heart disease? While cholesterol has worn the black hat for years, a 2012 meta-analysis (170 researchers pooling data on 190,000 research participants) pinned a large part of the blame on inflammation. A 2006 study from Harvard Medical School and Brigham and Women's Hospital (Boston, MA) reached the same conclusion, declaring that there is "growing evidence that inflammation participates centrally in all stages of [cardiovascular disease], from the initial lesion to the endstage thrombotic complications."

In other words, inflammation- not intervals-causes plaque buildup in arteries. And do you know what fights inflammation? That's right: running. Fast-moving blood shields arteries, staving off atherosclerosis. And a 2011 study from Scandinavia found that better physical fitness was associated with less overall inflammation.

So keep running. And if you're worried about the marathon, stick to 5 Ks and 10 Ks .

Y

Build YOuR Running caRDiOvasculaR sYst EM

117
BLOOD VESSELS
table 7.2

average capillaries per Fiber type

Your blood vessels are your supply lines, allowing
5K
10K
Slow-
Fast-
Time
Time

Intermediate

the 24/7 transport of oxygen, nutrients, hor-
Twitch
Twitch
14:00
29:10
5.6
4.2
2.8
mones, and water to every cell in your body. Large
15:00
31:15
5.4
4.0
2.7
blood vessels called arteries carry oxygen-rich
18:00
37:30
4.5
3.4
2.2
blood away from your heart. This journey begins

21:00
43:45
3.6
2.7
1.8
with your aorta, then branches into smaller arter-
24:00
50:00
2.8
2.1
1.4
ies, then into even smaller arterioles, and finally
27:00
56:15
1.9
1.4
0.9
into the tiniest blood vessels in your body, your
30:00
1:02:30
2.2
1.7
1.1
capillaries. Capillaries are so small that red blood
34:00
1:10:50
1.9
1.5
1.0
cells must pass through them in single file. It's

38:00
1:19:10
1.7
1.3
0.8
your capillaries that bring blood to your muscle
42:00
1:27:30
1.5
1.1
0.8
fibers, offloading oxygen and nutrients while picking up carbon dioxide and other waste prod-

TABLE 7.2 predicts the number of capillaries you'll have associated with each muscle fiber based upon your $5 \mathrm{~K} / 10 \mathrm{~K}$ ucts. Capillaries then guide blood into venules, time. Find your 5 K or 10 K time in the columns on the left, which drain into veins, which finally steer blood then find your predicted number of capillaries for each fiber type in the columns on the right.
\boldsymbol{Y} back to your heart.
The capillary zone
may be good for your heart, but it won't grow cap-
Every warehouse has a loading bay-an area
illaries around non-biking muscle fibers. Simiwhere goods are either loaded or unloadedlarly, if you run all slow distance, you'll develop that's serviced by a steady fleet of cargo trucks. capillaries around slow-twitch muscle fibers but Capillary beds are your muscle fibers' loading bays,
not around faster fibers. There are five ways to with RBCs serving as cargo trucks. These beds are
stimulate capillary growth:
the exchange zone for oxygen and carbon dioxide, for nutrients and wastes.

1. Increase muscle fiber contraction: You

The most important thing for you to rememcan increase the volume (number) of ber about capillaries is this: More is better. contractions, or you can increase the The more capillaries you have serving each rate of contractions (the speed at which muscle fiber, the more oxygen you can bring to your fibers contract)-or you can do that fiber (and the more carbon dioxide and other both. Long runs are an example of a

OUR RUNNING

BOD waste products you can haul away). Table 7.2 esti-workout that includes high-volume mates total capillaries for several runners of varycontractions. Intervals are an example ing ability. You'll note that as runners get faster, of a workout that increases the rate of their predicted capillary density for each fiber contractions. A tempo run would be an type increases. example of increasing both volume and

New capillaries begin to develop during the rate.

BUILD Y first week of training, but they only grow for mus-
2. Increase blood flow: Fast blood flow puts
cle fibers that are being recruited. Riding a bike enormous stress on capillaries. When

118

Build YOuR Running BODY-cOMpOnEnts anD WORKOuts

the stress reaches a critical point, either

training recommendation

your capillaries divide or you sprout new ones.

Training capillaries requires different volume

3. Increase pressure on the capillary walls:

and pace stimulus for different fiber types.
Constant tension against capillary walls
Cruise Intervals (see page 129) and Tempo
can lead to increases in capillary diamruns (see page 130) are great for slow-twitch
eter.
capillaries. Faster intervals and Hill Repeats

4. Increase pace beyond aerobic thresh-

(see pages 124-128 and 133) are equally
old: Running at a pace that demands
effective for faster-fiber capillaries. A bonus of
slightly more energy than oxygen-fueled training capillaries is that your mitochondria processes can provide stimulates capil-
(Chapter 8) respond to exactly the same
lary growth. Effective workouts are 5 K training stimuli-you kill two birds with one pace intervals for advanced runners and stone. All other blood vessels become more 10K pace intervals for beginners.
pliable with almost any type of training.
5. Increase lactate: Raised lactate levels increase capillary growth. We 'll discuss
lactate in chapters 9 and 10.
BLOOD

BUILD Y

Increased capillarization (capillary growth)
Like every other part of the cardiovascular sysis the only way to ensure delivery of the increased tem, your blood improves with training. The first oxygen supply created by improved stroke improvement begins within hours or days of volume.
your first run: Your plasma volume increases. Increased plasma volume reduces your blood's vis-

Easy come, easy go
cosity (resistance), making it easier for blood to
A common complaint among runners is that fitflow through blood vessels, especially the capil-

OUR RUNNING BOD

ness takes forever to improve and no time at all laries.
to lose. Unfortunately, capillaries follow this patWhile all running improves blood volume, a tern. When you stop training, you lose all your 2012 study from New Zealand documented signew hard-earned capillaries in as little as seven nificantly increased plasma volume and perfordays. If you simply lower your training volume or mance following training in the heat, with the intensity, you'll lose all capillary gains associ-
stipulation that mild dehydration (no more than ated with the previous volume or intensity. Sim2 percent) must be allowed to occur to reap the ply put, when you reduce blood flow, you reduce full benefit. Runner's World's Alex Hutchinson capillaries.
noted in his blog, Sweat Science, that studies like There's another thing worth mentioning when this illustrate" the importance of allowing your it comes to capillary growth: Exercising too hard body to undergo training-induced stresses, rather sabotages it. Think of training as baking a cake. than making heroic efforts to cushion your body Putting in twice the flour and triple the salt does from discomfort . . . [Leaving] the water bottle at not a better cake make. Same goes for extra interhome may be a good call." \boldsymbol{Y}
vals and faster paces than prescribed.
Build YOuR Running carDiOvasculaR sYst $\boldsymbol{E} \boldsymbol{M}$

119
table 7.3
total liters of Blood at Rest
Weight
Male
Female
(Pounds)
Untrained

Trained

Elite

Untrained
Trained
Elite
250
8.9
10.5
12.2
6.7
7.8
9.1

225
8.0
9.4
11.0
6.0
7.1
8.2

200
7.1
8.4
9.7
5.3
6.3
7.3

175
6.2
7.3
8.5
4.7
5.5
6.4

150
5.3
6.3
7.3
4.0
4.7
5.5

125
4.4
5.2
6.1
3.3
3.9
4.6

100
3.6
4.2
4.9
2.7
3.1
3.7

75
2.7
3.1
3.7
2.0
2.4
2.7

TABLE 7.3 approximates the total liters of blood in your body based upon your weight and your relative level of fitness. Find the weight
that is closest to your own in the column on the left, then find the associated blood volume based on your gender/
fitness in the columns on the right.
The ABCs of RBCs
production, which is 2 million RBCs per second. A
Y The other big adaptation in your blood is an in-1995 study from the Australian Institute of Sport creased number of red blood cells (RBCs). RBCs suggests that there's a benefit from the shorter carry 98 percent of the oxygen that your body lifespan of RBCs in runners: " [It] may be advantauses (and also participate heavily in the removal geous because young cells are more efficient in of carbon dioxide). Oxygen is picked up at the transporting oxygen."
lungs, where it binds to RBCs' iron-rich hemoglobin molecules-it's iron that gives RBCs (and your

training recommendation

blood) their red color. Increasing your volume of
RBCs allows your blood to transport more oxygen.
Some plasma volume increase occurs in re-
RBC volume expands more slowly than plasma sponse to all running. Greater plasma gains volume, taking weeks or even months to plasma's can be obtained by training in the heat days. Eventual gains in overall RBC volume occur
(Chapter 10, see page 175). For red blood even as exercise-induced damage reduces their cell expansion, diet plays a large role; you expected lifespan from 120 days to approximately need adequate iron intake (see Chapter 22
70. This damage is theorized to occur due to
sidebar, "15 iron-packed food sources,"
OUR RUNNING BOD causes ranging from exposure to oxygen (causing page 340). Aerobic training triggers RBC oxidative stress) to "foot-strike hemolysis," in volume increases, although the mechanism which RBCs are destroyed when your feet pound isn't well understood.
the pavement. Still, few runners end up suffering
from true anemia (not counting the brief period
when plasma expansion outpaces that of RBCs,
BUILD Y sometimes called "sports anemia"), and RBC production soon exceeds its normal rate of
120

Build YOuR Running BODY-cOMpOnEnts anD WORKOuts

TRAINING DISCUSSION

"What is blood doping?"

In blood doping, distance runners receive a transfusion of blood for performance gain. The practice can elevate peak aerobic capacity Traditional blood doping involves two methods. In the first, an athlet e withdraws approximately two pints of his or her blood in the weeks or months before competition. The athlete's body then replenishes the lost blood. One or two days before competing, the athlete reinfuses the previously withdrawn blood, boosting his or her blood volume (including RBCs)—because this thickens the blood and increases blood volume, it increases the risk of blood clot, heart attack, and stroke. The second method is even riskier, involving a blood transfusion from a second athlete. While carrying all the risks of the first method, this method can also lead to viral infections or, worse yet, mismatched blood types. Both methods increase the oxygen-carrying capacity of the blood.
Dominant Finnish runners in the '70s and '80s were widely rumored to employ blood doping, with Kaarla Maaninka confessing, Martti Vainio testing positive for steroids at the 1984 Olympics after supposedly reinjecting tainted blood, and Olympic great Lasse Viren BUILD Y
under suspicion to this day. More recently, disgraced cyclist Lance Armstrong admitted to a blood-doping scheme that included secret hotel-room transfusions, complete with taped-over windows and lookouts stationed in the hallways.

In recent years, synthetic versions of the hormone erythropoietin (EPO) and other RBC-boosting agents have replaced transfusions as the dopers' method of choice.

OUR RUNNING BOD

LUNGS

dioxide for oxygen. The sheer number of alveoli, capillaries, and RBCs in the lungs explains why The lungs are part of the respiratory system, but smokers can destroy so much lung tissue and still they're also the portal through which oxygen enters get oxygen into their blood.
the cardiovascular system - and they're trainable.
You train your lungs by strengthening your reYour lungs are much more than balloons. They spiratory muscles. To inhale, you contract your diaare not two hollow chambers that inflate and dephragm and external intercostal muscles. This flate with each breath. Instead, the interior of expands your chest, which lowers air pressure in your lungs has the consistency of a sponge, filled your chest cavity and ultimately causes your lungs with complex networks of bronchi and bronchito fill with air. When you relax the same muscles, oles (air passageways) that end in tiny air sacs you exhale. When you're running like a maniac called alveoli. How many alveoli? Anywhere from during hard workouts or races-what some runthree hundred million to eight hundred million
ners joylessly refer to as sucking wind-you engage per lung. Alveoli are wrapped in capillaries, and other respiratory muscles (abdominals and inter\boldsymbol{Y}
it's here that your blood exchanges carbon
nal intercostals) to help you exhale faster.
Build YOuR Running carDiOvasculaR sYst E M

121
table 7.4
training Effects of Workouts
Training
Stroke Volume Blood Volume
Red Blood
Lungs
Capillaries
Capillaries
Cells
(Muscles)
(Slow-Twitch) (Intermediate)
1500m Pace
Intervals
Very High
Moderate
Moderate
Very High
Low
Very High
$3 K$ Pace
Intervals
Very High
Very High
High
High
Moderate
High
5K Pace
Intervals
High
Very High
High
High
Moderate
High
10K Pace
Intervals
High
High
Moderate
Moderate
High
Moderate
Cruise
Intervals
Moderate
High
Moderate
Moderate
Very High
Moderate
Fast Tempo

Moderate
High
Moderate
Moderate
Very High
Moderate
Slow Tempo
Moderate
High
Moderate
Moderate
Very High
Moderate
Long Run
Moderate
Moderate
Moderate
Moderate
High
Moderate

Y

Hill Reps
High
Moderate
Moderate
Very High
Low
Very High
Regular Run
Moderate
Moderate
Moderate
Moderate
Moderate
Moderate
Easy Run
Low
Moderate
Low
Low
Moderate
Low
Lung
Inspiration
Very Low
NA
NA
Very High
NA
NA
Devices
TABLE 7.4 looks at the effect of various types of training on different aspects of your cardiovascular system. For example, hill repeats have a very high effect on capillaries in intermediate fibers, increasing the number of capillaries signifcantly. On the other hand, they have a low effect on slow-twitch capillaries, which require longer duration running, such as tempo runs, to stimulate similar increases in capillary density.
Stronger respiratory muscles not only lower the muscle strength and a 38 percent increase in respipsychological stress from sucking wind, they also ratory muscle endurance.
lower your energy use. At rest, breathing accounts
OUR RUNNING BOD for about 1 percent of your energy use. During hard training recommendation running, this figure can rise to 9 percent. Cutting that down by a few percentage points leaves more

Training respiratory muscles requires fast energy for the rest of your running body. And trainrunning (e.g., moderate-to high-intensity
ing these muscles works. A 2011 study on endurintervals) or special apparatus, such as reance cyclists found that respiratory conditioning spiratory performers (see page 135).

BUILD Y resulted in a 34 percent increase in respiratory
122

Build YOuR Running BODY-cOMpOnEnts anD WORKOuts

TRAINING RUNDOWN

Training from other chapters that affects cardiovascular system improvements includes:

Cardiovascular system training involves the interval and tempo running that most runners as-

» Easy Running (Chapter 5)

sociate with race conditioning. Important training

» Distance Runs (Chapter 5)

in this chapter's photo instruction includes:
» Various Cross Training (Chapter 9)
» Interval Training
To see exactly how these workouts can be in-
» Hill Repetitions
corporated into your overall training program,
» $5 K / 10 K$ Repetitions
skip directly to Chapter 15: Build Your Training
" 5K Effort Road and Trail Repetitions
Schedule, where sample schedules are available
» Cruise Intervals
for runners of all fitness levels and abilities.
" Fast Tempo
»Slow Tempo
» Long Run
" Respiratory Muscle Training Devices
BUILD Y
OUR RUNNING BOD
Y
 E M

123

Chapter 7: Build Your Running Cardiovascular System PHOTO INSTRUCTION

RUNNING WORKOUTS

In the chapter on muscles, you were introduced to some basic running workouts, from strides to easy running - even some hills. As you begin to tackle the challenge of developing your cardiovascular system, you'll need to engage in moreintense training. Grace returns to demonstrate proper stride and form for each workout. To aid in your understanding of this training, each running workout is accompanied by the following:

1. A pace table to help you find your correct intensity
2. Instructions for doing the workout
3. A rundown of the adaptations that you can expect
4. Recommended recovery-the recovery interval is given at the bottom of the table, measured in \boldsymbol{Y}
time (e.g., $1: 1$ indicates a recovery time that equals the rep time;
$1: 1 / 2$ indicates a recovery time only half as long as the rep time)
1500-Meter Pace Training
1500-meter pace effort is equivalent to the effort you'd use to race a mile. Since most runners haven't raced the 1500 or the mile, the pace table uses your 5 K race pace as a starting point, then estimates an equivalent 1500-meter performance. If you don't have a current 5 K time, use the guidelines outlined on page 34. 1500-pace suggestions are given for repetitions at 200, 300, 400, and 600 meters. Repetitions longer than 600 meters are not advised. 1500pace reps can improve:
» Stroke Volume: 1500-pace reps are a valuable workout for increasing your stroke volume. Run for 30 to 90 seconds to elevate your heart rate, then quickly slow down during the recovery interval (walking is acceptable). Begin with 8-10 reps of 30 seconds each, then add reps (and later duration)

OUR RUNNING BOD

as fitness allows. Your upper limit is dictated by fatigue.
» Capillarization: 1500-pace reps increase the number of capillaries around intermediate and fast-twitch muscle fibers. Longer reps (400 to 600 meters) are best.
» Non-cardiovascular adaptations: 1500-pace reps increase respiratory muscle strength (lungs). Longer 1500-pace reps

BUILD Y

improve mitochondrial density (Chapter 8) in faster fibers and increase monocarboxylate transport proteins (MCTs;

124
Build YOuR Running BODY-cOMpOnEnts
and WORKOuts

see Chapter 9) in those same fibers. To improve running economy (Chapter 11) for $1500 \mathrm{~m} / \mathrm{mile}$ racing, run 400-meter reps with 1:2 recovery. To increase anaerobic capacity (Chapter 10), schedule 200-400 meter reps.

1500-Meter pace training table

5K
1500 m
Repetition Paces
23:30
6:24

2:34
1:42
1:17
0:51
NA
Time
Time
600 m
400m
300 m
200m
100 m
24:00
6:32
2:37
1:45
1:18
0:52
NA
14:00
3:49
1:32
1:00
0:46
0:31
NA
24:30
6:40
2:40
1:47
$1: 20$
0:53

NA
14:30
3:57
1:35
1:03
0:47
0:32
NA
25:00
6:50
2:43
1:49
1:22
0:55
NA
15:00
4:05
1:38
1:05
0:49
0:33
NA
26:00
7:05
2:50
1:53
1:25
0:57

NA
15:30
4:13
1:41
1:08
0:51
0:34
NA
27:00
7:21
2:57
1:58
1:28
0:59
NA
16:00
4:21
1:45
1:10
0:52
0:35
NA
28:00
7:38
NA
2:02
1:32
1:01
0:30
16:30

4:30
1:48
1:12
0:54
0:36
NA
29:00
7:54
NA
2:06
1:35
1:03
0:32
17:00
4:38
1:51
1:14
0:56
0:37
NA
30:00
8:10
NA
2:11
1:38
1:05
0:33
17:30
4:46
1:54

1:16
0:57
0:38
NA
31:00
8:27
NA
2:15
1:41
1:08
0:34
18:00
4:54
1:58
1:18
0:59
0:39
NA
32:00
8:43
NA
2:19
1:45
1:10
0:35
18:30
5:02
2:00
1:21
1:01

$0: 40$
$N A$
$33: 00$
$8: 59$
$N A$
$2: 24$
$1: 48$
$1: 12$
$0: 36$
$19: 00$
$5: 10$
$2: 04$
$1: 23$
$1: 02$
$0: 41$
$N A$
$34: 00$
$9: 16$
$N A$
$1: 28$
$1: 51$
$1: 04$
$1: 14$
$0: 37$
$19: 30$
$5: 19$
$2: 07$
10
10
10

NA

35:00
9:32
NA
2:33
1:54
1:16
0:38
BUILD Y
20:00
5:27
2:11
1:27
1:05
0:44
NA
36:00
9:48
NA
2:37
1:58
1:18
0:39
20:30
5:35
2:14
1:29
1:07
0:45
NA
37:00

10:05
NA
2:41
2:01
1:21
0:40
21:00
5:43
2:17
1:32
1:09
0:46
NA
38:00
10:21
NA
2:46
2:04
1:23
0:41
21:30
5:51
2:21
1:34
1:10
0:47
NA
39:00
10:37
NA

2:50
2:07
1:25
0:42
22:00
5:59
2:24
1:36
1:12
0:48
NA
40:00
10:54
NA
2:54
2:11
1:27
0:44
22:30
6:08
2:27
1:38
1:14
0:49
NA
41:00
11:10
NA
2:59
2:14

1:29
0:45

OUR RUNNING BOD

23:00
6:16
2:30
1:40
1:15
0:50
NA
42:00
11:26
NA
NA
2:17
1:32
0:46
Work:Recovery (Time) $=1: 1$ or 1:2
The maximum recommended duration of a repetition at 1500 m pace is 3:00.
3K Pace Training
$3 K$ pace training is the closest most runners come to VO max 2
effort. The pace table uses your 5K race pace as a starting point and then estimates your equivalent $3 K$ pace, offering suggestions for repetitions at 200, 400, 600, 800, and 1000 meters. If you don't have a current 5K time, use the guidelines outlined on page 34.

Repetitions longer than 1000 meters are not advised. 3 K pace reps can improve:
» Stroke Volume: Like 1500-pace intervals, 3K pace intervals improve stroke volume. Run for 30 to 90 seconds to elevate

\boldsymbol{Y}

your heart rate, then quickly slow down during the

Build YOuR Running carDiOvasculaR sYst EM

125
recovery interval (walking is acceptable). Begin with $8-10$ reps, then add reps/duration as fitness allows. The upper limit is dictated by fatigue.
» Capillaries: 3K pace reps are great for increasing the number of capillaries around intermediate fibers. Longer reps (800-1000 meters) are best.
" Blood: 3K pace reps are also great for increasing blood volume, including your red blood cell count.

Again, longer reps are advised.
» Non-cardiovascular adaptations: Longer 3K pace reps are good for increasing mitochondrial density (Chapter 8) in intermediate muscle fibers. 3 K pace reps impr ove running economy (Chapter 11) for races from 1500 m to 10 K .

3K pace training table

5K
3K
Repetition Paces
23:30
13:42
NA
3:39
2:44
1:50

0:55
Time
Time
1000 m 800 m
600m
400m
$200 m$
24:00
13:59
NA
3:44
2:48
1:52
0:56
14:00
8:09
2:43
2:11
1:38
1:05
0:33
24:30
14:17
NA
3:48
2:51
1:54
0:57
14:30
8:27

2:49
2:15
1:41
1:08
0:34
25:00
14:34
NA
3:53
2:55
1:57
0:58
15:00
8:44
2:55
2:20
1:45
1:10
0:35
26:00
15:09
NA
NA
3:02
2:01
1:00
15:30
9:02
3:00
2:25

1:48
1:12
0:36
27:00
15:44
NA
NA
3:09
2:06
1:03
Y 16:00 9:19 3:07 2:29 1:52 1:15 0:37 28:00 16:19 NA NA 3:16
2:11 1:05
16:30
9:37
3:12
2:34
1:55
1:17
0:39
29:00
16:54
NA
NA
3:23
2:15
1:08
17:00
9:54
3:18
2:39
1:59

1:19
0:40
30:00
17:29
NA
NA
3:30
2:20
1:10
17:30
10:12
3:24
2:43
2:02
1:22
0:41
31:00
18:04
NA
NA
3:37
2:25
1:12
18:00
10:29
3:30
2:48
2:06
1:24
$0: 42$

32:00
18:39
NA
NA
3:44
2:29
1:15
18:30
10:47
3:36
2:53
2:09
1:26
0:43
33:00
19:14
NA
NA
3:51
2:34
1:17
19:00
11:04
3:41
2:57
2:13
1:29
0:44
34:00
19:49

NA
NA
3:58
2:39
1:19
19:30
11:22
3:47
3:02
2:16
1:31
0:45
35:00
20:24
NA
$N A$
NA
2:43
1:22
20:00
11:39
3:53
3:07
2:20
1:33
0:47
36:00
20:59
NA
$N A$

NA
2:48
1:24
20:30
11:57
3:59
3:11
2:23
1:36
0:48
37:00
21:34
NA
$N A$
NA
2:53
1:26
21:00
12:14
NA
3:16
2:27
1:38
0:49
38:00
22:09
NA
NA
NA
2:57

1:29
21:30
12:32
NA
3:20
2:30
1:40
0:50
39:00
22:43
NA
NA
NA
3:02
1:31
22:00
12:49
NA
3:25
2:34
1:43
0:51
40:00
23:18
NA
NA
NA
3:07
1:33
22:30

13:07
NA
3:30
2:37
1:45
0:52
41:00
23:53
NA
$N A$
NA
3:11
1:36
23:00
13:24
NA
3:34
2:41
1:47
0:54
42:00
24:28
NA
NA
NA
3:16
1:38
OUR RUNNING BOD Work:Recovery (Time) = 1:1
The maximum duration of a repetition at 3 K pace is 4:00.

BUILD Y

BuilD YOuR Running BODY-cOMpOnEnts anDWORKOuts

5K pace training table
5K
Repetition Paces
23:30
NA
4:42
3:46
1:53
0:56
Time
1600 m 1000 m
800 m
400 m
200m
24:00
NA

4:48
3:50
1:55
0:58
14:00
$4: 29$
2:48
2:14
1:07
0:34
24:30
$N A$
4:54
3:55
1:58
0:59
14:30
4:38
2:54
2:19
1:10
0:35
25:00
NA
5:00
4:00
2:00
1:00
15:00
4:48

3:00
2:24
1:12
0:36
26:00
NA
5:12
4:10
2:05
1:02
15:30
4:58
3:06
2:29
1:14
0:37
27:00
NA
NA
4:19
2:10
1:05
16:00
5:07
3:12
2:34
1:17
0:38
28:00
NA

NA
4:29
2:14
1:07
16:30
5:17
3:18
2:38
1:19
0:40
29:00
NA
NA
4:38
2:19
1:10
17:00
$N A$
3:24
2:43
1:22
0:41
30:00
NA
NA
4:48
2:24
1:12
17:30
$N A$

NA
5:17
2:38
1:19
19:00
NA
3:48
3:02
1:31
0:46
34:00
NA
NA
NA
2:43
1:22
19:30
NA
3:54
3:07
1:34
0:47
35:00
NA
NA
NA
2:48
1:24
20:00
NA

4:00
3:12
1:36
0:48
36:00
NA
NA
NA
2:53
1:26
20:30
NA
4:06
3:17
1:38
0:49
37:00
$N A$
NA
NA
2:58
1:29
21:00
NA
4:12
3:22
1:41
0:50
38:00
NA

NA
NA
3:02
1:31
21:30
NA
4:18
3:26
1:43
0:52
39:00
NA
NA
NA
3:07
1:34
BUILD Y
22:00
NA
4:24
3:31
1:46
0:53
40:00
NA
NA
NA
3:12
1:36
22:30

Work:Recovery $($ Time $)=1: 1$ or $1: 1 / 2$
The maximum duration of a repetition at 5K pace is 5:20.

OUR RUNNING BOD

5K Pace Training
5K pace training is an essential part of every competitive runner's program. The pace table uses your $5 K$ race pace to offer $5 K$ pace suggestions for repetitions at 200, 400, 800, 1000, and 1600 meters (1600 meters is ten yards short of a mile). If you don't have a current

5 K time, use the guidelines outlined on page 34. Repetitions longer than 1600 meters/ 1 mile are not advised. 5 K reps can improve:
" Stroke Volume: 5K pace reps are effective if shorter repetitions are used. Both $16-20 \times 200$ and $16-20 \times 400$, with recovery intervals 50-100 percent the length (in time) of the repetition, create a good stroke-volume workout.
» Capillaries: 5 K pace reps increase the number of capillaries around intermediate fibers. High volume or longer reps are

\boldsymbol{Y}

best.
Build YOuR Running carDiOvasculaR sYst EM

127
» Blood: 5 K pace reps increase blood volume, including your red blood cell count. Again, longer reps are advised.
» Non-cardiovascular adaptations: $5 K$ pace reps increase mitochondrial volume (Chapter 8) in intermediate fibers, as well as muscle fiber contraction velocity (Chapter 11). 5K pace reps also improve running economy (Chapter 11) for races from 3Ks to half marathons.

10K pace training table

5K
10K
Repetition Paces
23:30
48:57
NA
NA
4:54
3:55
Time
Time

2000m 1600m 1000m
800 m
24:00
50:00
NA
NA
5:00
4:00
14:00
29:10
5:50
4:40
2:55
2:20
24:30
51:02
NA
$N A$
5:06
4:05
14:30
30:12
6:02
4:50
3:01
2:25
25:00
52:05
NA
NA

5:12
4:10
15:00
31:15
6:15
5:00
3:07
2:30
26:00
54:10
NA
NA
5:25
4:20
15:30
32:17
6:27
5:10
3:14
2:35
27:00
56:15
NA
NA
5:37
4:30
16:00
33:20
6:40
5:20

3:20
2:40
28:00
58:20
NA
NA
5:50
4:40
16:30
34:22
6:52
5:30
3:26
2:45
29:00
1:00:25
NA
NA
6:02
4:50
$\boldsymbol{Y} 17: 00 \quad 35: 25 \quad 7: 05 \quad 5: 40 \quad 3: 32 \quad 2: 50$
30:00
1:02:30
NA
NA
6:15
5:00
17:30
36:27
7:17

5:50
3:39
2:55
31:00
1:04:35
NA
NA
6:27
5:10
18:00
37:30
NA
6:00
3:45
3:00
32:00
1:06:40
NA
NA
6:40
5:20
18:30
38:32
NA
6:10
3:51
3:05
33:00
1:08:45
NA

NA
6:52
5:30
19:00
39:35
NA
6:20
3:57
3:10
34:00
1:10:50
NA
NA
7:05
5:40
19:30
40:37
$N A$
6:30
4:04
3:15
35:00
1:12:55
NA
NA
NA
5:50
20:00
41:40
NA

6:40
4:10
3:20
36:00
1:15:00
NA
NA
NA
6:00
20:30
42:42
NA
6:50
4:16
3:25
37:00
1:17:05
NA
NA
NA
6:10
21:00
43:45
NA
7:00
4:22
3:30
38:00
1:19:10
$N A$

NA
$N a$
6:20
21:30
44:47
NA
7:10
4:29
3:35
39:00
1:21:15
NA
NA
NA
6:30
22:00
45:50
NA
NA
4:35
3:40
40:00
1:23:20
NA
NA
NA
6:40
22:30
46:52
NA

4:41
3:45
41:00
1:25:25
NA
NA
NA
6:50
23:00
47:55
NA
NA
4:47
3:50
42:00
1:27:30
NA
NA
NA
7:00
Work:Recovery (Time) $=1: 1 / 2$
*The maximum duration of a repetition at 10K pace is 7:07.
OUR RUNNING BOD

BUILD Y

128
Build YOuR Running BODY-cOMpOnEnts and WORKOuts

10K Pace Training

$10 K$ pace training is a less-intense alternative to 5 K pace training. The pace table uses your 5K race pace as a starting point and then estimates your equivalent 10 K pace (or just look for your 10 K pace); it offers 10 K pace suggestions for repetitions at 400, 800, 1000, and 1600 meters (1600 meters is ten yards short of a mile). If you don't have a current 5 K time, use the guidelines outlined on page 34. Repetitions longer than 2000 meters (not
shown in table) are not advised. 10 K pace reps can improve:
» Capillaries: 10K pace reps build capillaries in intermediate and slow-twitch fibers. High volume or longer reps are best.
» Blood: 10K pace reps stimulate blood volume increase, including your red blood cell count.
»Stroke Volume: 10K pace reps are a lower-intensity alternative for building stroke volume, although not as effective as reps at $1500 \mathrm{~m}-5$ K pace.
" Non-cardiovascular adaptations: 10K pace reps increase mitochondrial numbers (Chapter 8) in slow-twitch fibers (and, to a lesser extent, in intermediate fibers), MCTs in intermediate fibers (Chapter 9), and muscle fiber contraction

BUILD Y

velocity (Chapter 11). 10K pace reps also improve running economy (Chapter 11) for races from 5Ks to half marathons.

Cruise Interval Training
Cruise intervals can be viewed as a less intense version of 10 K pace reps or a slightly more intense
version of tempo. The pace table uses your 5K race pace as a startin g point and then estimates cruise in-OUR RUNNING BOD
terval paces for repetitions at 400, 800, 1000, 1200, and 1600
meters. If you don't have a current 5K time, use the guidelines outlined on page 34. Repetitions longer than 8 minutes are not advised. Cruise intervals can improve:
"Capillaries: Cruise intervals increase the number of capillaries around slow-twitch and intermediate muscle fibers.
"Blood: These intervals are good for increasing blood volume, incl uding red blood cell count.
» Non-cardiovascular adaptations: Cruise intervals increase mitochondrial volume in slow-twitch muscle fibers (Chapter 8) and MCTs in intermediate and slow-twitch fibers
(Chapter 9). They often serve as the "slower" interval portion of blend intervals (Chapter 8 photo instruction).

Build YOuR Running carDiOvasculaR sYst E M

129
cruise interval training table
5K
Repetition Paces
23:30
9:58
7:58
5:59
4:59
3:59
Time
2000m 1600m
1200 m 1000 m
800 m
24:00
10:10
8:08
6:06
5:05
4:04
14:00
6:07
4:54
3:40
3:04
2:27
24:30
10:22
8:17

6:13
5:11
4:09
14:30
6:20
5:04
3:48
3:10
2:32
25:00
10:34
8:27
6:20
5:17
4:13
15:00
6:32
5:13
3:55
3:16
2:37
26:00
10:57
8:46
6:34
5:29
4:23
15:30
6:44
5:23

4:02
3:22
2:42
27:00
11:21
9:05
6:49
5:41
4:32
16:00
6:56
5:33
4:10
3:28
2:47
28:00
11:45
9:24
7:03
5:52
4:42
16:30
7:09
5:43
4:17
3:34
2:51
29:00
12:08
9:43

7:17
6:04
4:51
17:00
7:21
5:53
4:25
3:40
2:56
30:00
12:32
10:01
7:31
6:16
5:00
17:30
7:33
6:02
4:32
3:47
3:01
31:00
12:55
10:20
7:45
6:28
5:10
18:00
7:45
6:12

4:39
3:53
3:06
32:00
13:19
10:39
7:59
6:39
5:20
18:30
7:57
6:22
4:46
3:59
3:11
33:00
13:42
10:58
8:13
6:51
5:29
19:00
8:09
6:32
4:54
4:05
3:16
34:00
14:06
11:16

8:27
7:03
5:38
19:30
8:22
6:41
5:00
4:11
3:21
35:00
14:29
11:35
8:41
7:14
5:48
20:00
8:34
6:51
5:08
4:17
3:25
36:00
14:52
11:54
8:55
7:26
5:57
20:30
8:46
7:00

5:15
4:23
3:30
37:00
15:15
12:12
9:09
7:38
6:06
21:00
8:58
7:10
5:23
4:29
3:35
38:00
15:39
12:31
9:23
7:49
6:15
Y 21:30 9:10 7:20 5:30 4:35 3:40
39:00
16:02
12:49
9:37
8:00
6:25
22:00
9:22

7:29
5:37
4:41
3:45
40:00
16:25
13:08
9:51
8:12
6:34
22:30
9:34
7:39
5:44
4:47
3:50
41:00
16:48
13:26
10:05
8:24
6:43
23:00
9:46
7:49
5:51
4:53
3:54
42:00
17:11

13:45
10:19
8:35
6:52
Work:Recovery (Time) $=1: 1 / 2$
Find your 5K time in the left column. Then use repetition paces in the corresponding row to the right.
Tempo Training
Tempo runs are completed at an effort level that über - coach Jack Daniels defines as "comfortably hard."

The tempo-training table offers tempo runs at two different paces: "fast" and "slow." The faster pace is roughly equivalent to half marathon pace; runs at this pace should last 15-25 minutes. The slower pace is roughly equivalent to marathon pace; runs at this pace should last 20-40 minutes (up to 60 minutes when prepping for a marathon). You can also break tempo efforts into tempo intervals (e.g., 2×10 min-OUR RUNNING BOD utes, or 3×10 minutes, with 3-4-minute jog recovery intervals). The table bases your tempo paces on your 5K race time. If you don't have a current 5 K time, then choose a pace that, if pressed, you could maintain for an hour (e.g., you run 15 minutes at tempo for your workout, but you believe you could maintain that pace for an hour in a race). Tempo can improve:
» Capillaries: Tempo is the best workout for increasing the number of capillaries around slow-BUILD Y
twitch muscle fibers, and it also increases capillarization around intermediate fibers.
130
Build YOuR Running BODY-cOMpOnEnts anDWORKOuts

tempo training table
5K
Fast Tempo
SlowTempo
23:30
8:07
5:03
8:33
5:19
Time
Mile
1K
Mile
$1 K$
24:00
8:16
5:08
8:43

5:25
14:00
5:01
3:07
5:19
3:18
24:30
8:26
5:14
8:53
5:31
14:30
5:11
3:13
5:29
3:24
25:00
8:35
5:20
9:03
5:37
15:00
5:21
3:20
5:40
3:31
26:00
8:54
5:32
9:23

5:50
15:30
5:31
3:26
5:50
3:37
27:00
9:13
5:44
9:42
6:02
16:00
5:41
3:32
6:00
3:44
28:00
9:32
5:55
10:02
6:14
16:30
5:51
3:38
6:11
3:50
29:00
9:51
6:07
10:22

6:26
17:00
6:00
3:44
6:21
3:57
30:00
10:09
6:19
10:41
6:38
17:30
6:11
3:50
6:31
4:03
31:00
10:28
6:30
11:00
6:50
18:00
6:21
3:56
6:42
4:10
32:00
10:46
6:42
11:20

7:02
18:30
6:30
4:03
6:52
4:16
33:00
11:05
6:53
11:39
7:14
19:00
6:40
4:09
7:02
4:22
34:00
11:23
7:05
11:58
7:26
19:30
6:50
4:15
7:12
4:29
35:00
11:42
7:16
12:17

7:38
20:00
6:59
4:21
7:23
4:35
36:00
12:00
7:27
12:36
7:50
20:30
7:09
4:27
7:33
4:41
37:00
12:18
7:39
12:55
8:01
21:00
7:19
4:33
7:43
4:48
38:00
12:36
7:50
13:13

8:13
21:30
7:28
4:39
7:53
4:54
39:00
12:54
8:01
13:32
8:25
BUILD Y
22:00
7:38
4:45
8:03
5:00
40:00
13:12
8:12
13:51
8:36
22:30
7:48
4:51
8:13
5:06
41:00
13:30
8:23

14:09
8:48
23:00
7:57
4:57
8:23
5:13
42:00
13:48
8:35
14:28
8:59
Find your 5K time in the left column. Then use the tempo paces in the corresponding row to the right.

OUR RUNNING BOD

» Blood: Tempo increases blood volume, including RBC count.
" Non-cardiovascular adaptations: Tempo increases
the volume of mitochondria, MCTs (Chapter 9), and aerobic enzymes (Chapter 10) in slow-twitch and intermediate fibers. It also increases the contraction
velocity of slow-twitch fibers and improves running economy (Chapter 11) for distances between a 10 K and a marathon.

\boldsymbol{Y}

Build YOuR Running carDiOvasculaR sYst E M

131

long Run pace table

5K
23:30
10:15-11:47
6:22-7:19
Time
Pace per Mile
Pace per Kilometer
24:00
10:27-12:00
6:29-7:27
14:00
6:26-7:29
4:00-4:39
24:30
10:38-12:13

6:36-7:35
14:30
6:39-7:43
4:08-4:48
25:00
10:50-12:25
6:44-7:43
15:00
6:51-7:58
4:16-4:57
26:00
11:12-12:51
6:58-7:59
15:30
7:04-8:12
4:23-5:05
27:00
11:35-13:16
7:12-8:15
16:00
7:16-8:26
4:31-5:14
28:00
11:58-13:41
7:26-8:30
16:30
7:28-8:40
4:39-5:23
29:00
12:20-14:05

7:40-8:45
17:00
7:41-8:53
4:46-5:31
30:00
12:42-14:30
7:54-9:00
17:30
7:53-9:07
4:54-5:40
31:00
13:04-14:54
8:07-9:16
18:00
8:05-9:21
5:01-5:49
32:00
13:26-15:18
8:21-9:31
18:30
8:17-9:34
5:09-5:57
33:00
13:48-15:42
8:34-9:45
19:00
8:29-9:48
5:16-6:05
34:00
14:09-16:06
$8: 48-10: 00$
19:30
8:41-10:02
5:24-6:14
35:00
14:31-16:29
9:01-10:15
20:00
8:53-10:15
5:31-6:22
36:00
14:52-16:52
9:14-10:29
20:30
9:05-10:28
5:38-6:30
37:00
15:14-17:15
9:28-10:43
21:00
9:16-10:42
5:46-6:39
38:00
15:35-17:38
9:41-10:58
Y 21:30 9:28-10:55
5:53-6:47
39:00
15:56-18:00
9:54-11:12

22:00
9:40-11:08
6:00-6:55
40:00
16:16-18:23
10:07-11:26
22:30
9:52-11:21
6:08-7:03
41:00
16:37-18:46
10:20-11:40
23:00
10:03-11:34
6:15-7:11
42:00
16:58-19:08
10:32-11:53
Find your 5K time in the left column. Then use the long run paces in the corresponding row to the right.

The Long Run
The long run is a staple in every distance runner's diet. Run once or twice a week-or sometimes once every other week-a long run can account for 20-25 percent of a week's training volume and can be longer than regular distance runs by 50 percent or more. Use the
"Long Run Pace Table" to determine pace, based on your current 5K
race pace. If you don't have a current 5 K time, then stick to a conversational pace. All runners should let feedback from their bodies OUR RUNNING
BOD be the final guide; long runs should remain comfortable (i.e., t hey aren't endurance competitions). The long run has multiple benefits, including improvements to:
» Capillaries: The long run builds capillaries around slow-twitch muscle fibers. Also, the duration of the workout en-

BUILD Y

sures that most available slow-twitch fibers will be recruited at some point-meaning comprehensive capillary building.

132

BuilD YOuR Running BODY-cOMpOnEnts anDWORKOuts

" Non-cardiovascular adaptations: Long runs increase mitochondrial volume in slow-twitch fibers (Chapter 8) and MCTs for transporting lactate (Chapter 9). They also improve nervous system recruitment patterns (Chapter 11) and strengthen connective tissue, allowing you to absorb the impact of higher mileage and longer races. By significantly increasing the efficiency of your stride, the long run improves running economy for all paces.

Hill Repeats
Hill repeats build a combination of strength, power, and endurance that can't be replicated by any other training. Find a hill that is challenging but not so steep that you can't maintain a good stride. Rather than timing each repetition, many runners time the
first rep and then mark the spot where that rep ends; on subsequent reps, runners refrain from measuring time and use the mark as a finish line. Proper effort is equivalent to $1500 \mathrm{~m}-3 \mathrm{~K}$ race effort (not pace, as running uphill slows your pace an indetermi-nate amountas hill steepness, terrain, and other factors will vary-making it impossible and counterproductive to target actual pace). Use the "rule of repetitions" for this workout: Always finish knowing you could have run one or possibly two more reps if required. No more than once a week (2-3 times a month) is enough for this workout. Hill reps can improve: BUILD Y
»Stroke Volume: Short hill repeats (30-45 seconds) are great for building stroke volume-stop at the end of the rep, walk for 10-15 seconds, then jog down to the start.
» Capillaries: Longer hill repeats (90-120 seconds) are an excellent way to increase capillarization around intermediate fibers and fast-twitch OUR RUNNING BOD
fibers.
» Non-cardiovascular adaptations: Longer hill repeats (90-120 seconds) increase your volume of intermediate fiber mitochondria
(Chapter 8), improve muscular strength (Chapter 5), and help rewire your nervous system (Chapter 11) for more powerful and efficient messaging.
Hill Repeats

Rep Length

Rep Volume

Recovery

(seconds)
(number)
(minutes)
30
10-15
1-1.5

8-12
1.5-2

60
6-8
2-3
90
4-6
4-5
120
4-6
4-5
Y
Correct effort level for hill reps is equivalent to $1500 \mathrm{~m}-3 \mathrm{~K}$ effort.
Always finish a workout with 1-2 reps left in you.
Build YOuR Running carDiOvascular sYst E M

133

5K Road and Trail Reps

Off-track 5 K effort repetitions are a good alternative for runners looking to improve fitness without having to focus on pace or distance covered for each rep. These reps are run by minutes, not distance, at an effort that approximates the feel of 5 K race effort. If you aren't sure what 5 K effort feels like, use the guidelines outlined on page 34. Recovery is an easy jog, nothing
harder. For runners who prefer to do preseason training-or all their training-off-track, this 10 -week progression is for you. 5 K Road and Trail Reps build:
» Everything that 5K and 10K reps build: See previous entries for 5 K and 10 K pace intervals for the full list of benefits.
» Non-quantifiable adaptation: Running repetitions based upon effort and time trains you to read feedback from your body. On the track, runners often ignore feedback in their determination to hit goal times, which can lead to overtraining syndrome. Road and trail reps put you in touch with \boldsymbol{Y}
your body, and runners often end up better racers for the experience.

5K Effort Road and trail Repetitions

Progression

Rep Length

Rep Volume

Recovery

Max Stimulus

(weeks)
(minutes)
(number)
(minutes)
(minutes)
1
1
6-8
2
0
2
2
8
3
0
3
3
6
3
6
4
4
4
$3-4$
8
5
5
4
5
$3-4$
10
3
3
12
3

Substitute 20-30
7
minutes of Tempo for
reps during Week 7.

OUR RUNNING BOD

10

*Mix: Tempo \& 5K
Reps
Variable
3-4
NA
*For mix workouts, you should alternate tempo reps and 5K effort reps with recovery periods (jogging). An example of a mix workout (by minutes per rep/pace) would be: $3 / 5 K$, Recovery, $5 / 5 K$,
Recovery, 7/Tempo, Recovery, 3/5K, Recovery, 5/5K, Recovery,
8/Тетро.

BUILD Y

134
Build YOuR Running BODY-components
anD WORKOuts

Respiration Trainer
Respiratory training targets the muscles involved in inhalation and exhalation (e.g., diaphragm, external and internal intercostals, abdominals).

Stronger respiratory muscles lower both psychological stress and en ergy consumption. The PowerLung trainer used by Grace (as pictured) comes in four different resistance levels (color-coded) and can be incorporated into running workouts or used in separate training sessions. Some rules for use: k Whatever your model, set both inhalation and exhalation control dials to " 1 ."
l Place the mouthpiece in your mouth with the lip guard outside your lips.
m Breathe in, filling your lungs completely in about three seconds.
n Pause for two seconds, then breathe out, using your abdominals to push out all the air in your lungs in about three seconds.
o If you need to increase resistance (because the exercise has
become too easy), turn the inhalation or exhalation control dials (or both) to the right until your find the correct resistance.

BUILD Y

p Begin with a few repetitions, then work up to 10.

OUR RUNNING BOD
Y
Build YOuR Running carDiOvasculaR sYst E M

135

8
Y
Powerhouses Build Y
our heart may be the engine that
drives endurance training, but
there are microscopic structures called mitochondria that provide the power. Floating within the gel-like universe that constitutes the inteour Running
rior of your muscle fibers, these structures are a few micrometers long (just barely big enough to be seen with a light microscope), yet they produce all of your aerobic energy. Known as the powerhouses of the cell, mitochondria are the reason you can run long distances-or stroll to the
corner store-and increasing their number and size will plug you into a power grid that makes the energy source you've been using look like a pair of AAA batteries. Something else about these tiny powerhouses: They're not entirely huPOWERHOUSE TRAINING man. As you'll see, their ancestors were bacterial invaders that took up residence more than a bilTraining mitochondria is a lot like training capillion years ago.
laries (Chapter 7). That's because mitochondria and capillaries develop at the same rate, often WHAT'S THE POWERHOUSE?
from the same stimulus. This makes sense when you think about it: Capillaries increase in number

The "powerhouse of the cell" is what we call a mito deliver more oxygen; mitochondria increase in tochondrion. That's because mitochondria pronumber and size in order to process this larger vide about 90 percent of the energy needed by supply of oxygen.
your body every day. Mitochondria-produced enTraining for mitochondria includes:
ergy is known as aerobic energy-meaning it can't
be created without using oxygen. So if you were

» High-intensity interval training

wondering where all that oxygen goes once your
» 800m pace repetitions cardiovascular system delivers it to your muscles,

» 5K/10K trail and track repetitions

now you know: It goes to your mitochondria.

» Tempo

(We'll take an in-depth look at your energy sys-
» Alternation/Blend Intervals
\boldsymbol{Y} tems in Chapter 10.)

» Mileage (longterm volume)

Think of mitochondria as busy industrial fac-

» The long run

tories-a whole lot of factories, since there are anywhere from hundreds to thousands within Training your mitochondria not only increases every fiber-floating within your muscle fibers. your ability to produce aerobic energy, it also repThese factories never shut down, producing en-
resents the final piece of the puzzle for the most ergy around the clock. Now imagine building new revered measurement in running: $V O$ max.

2

factories, bigger and better factories. What if you
had 50 percent more factories? What if you had

MITOCHONDRIA

twice that? Imagine the energy you could produce
then! Well, you can stop imagining, because
Mitochondria are prized by runners because they
building more mitochondria is what you're going
produce all our aerobic energy. Of course, they
to do in this chapter.
have other functions, too. For instance, they help

OUR RUNNING BOD

BEGINNER'S GUIDELINE

Don't let the science-y name "mitochondria" put you off. Training mitochondria is every bit as important as increasing red blood cells or strengthening your heart. Bigger, more numerous mitochondria make the difference between enjoying your runs and slogging through BUILD Y
every effort.
138

Build YOuR Running BODY-cOMpOnEnts anD WORKOuts

TRAINING DISCUSSION

"Hitting the Mother Lode"

Don't get creeped out, but your mitochondria aren't even human-or, at least, they didn't start out that way. According to the endosymbiotic theory, your mitochondria are the result of an ancient bacterial invasion. More than a billion years ago, our young earth was buried in mounds of bacteria only just learning to breathe oxygen. Some of these bacteria (ancestors to our modern-day mitochondria) invaded or were eaten by larger cells-and lived to
tell about it. In fact, the bacteria soon struck up a deal with their new hosts: "Allow us permanent residence, and we'll use our oxygen-breathing abilities to provide you with energy like you never dreamed possible!" A friendly handshake and eons of evolution later, mitochondria can no longer survive outside host cells.

Dr. Lynn Margulis and her son, science writer Dorion Sagan, proponents of the endosymbiotic theory, put it this way: "Life did not take over the globe by combat, but by networking."
Mitochondria are still about the size of bacteria. And unlike other organelles (tiny parts of cells, analogous to organs in the human body), they have their own DNA. This " $m t D N A$ "
allows mitochondria to produce their own enzymes and proteins. Still, they couldn't survive BUILD Y
without fuel and oxygen provided by their host cells. For human distance runners, this tit for tat is a bargain that's paid big dividends; without aerobic energy, a marathon might as well be a race to the moon.

If you're queasy about playing host to evolved bacteria, don't blame this book. Blame your mother. Most experts believe mitochondrial DNA is inherited from your mother. That's because a mother's egg contains mitochondria that survive in offspring (that's you), while paternal sperm's relatively few mitochondria are marked for destruction as soon as sperm OUR RUNNING BOD
finish their long swim. So mom gets the credit-or blame-for your 5 K and 10 K PRs.
regulate cell death, supply enzymes to make hemitochondria, which import that oxygen and use moglobin, and detoxify ammonia in liver cells.
it as one of the main ingredients when creating
But none of that matters when we runners toe adenosine triphosphate (ATP), the energy that the line for a 5 K or marathon. At that point, it's all powers your muscles. The more mitochondria about the energy. you have, the greater your oxygen uptake. Taken

In Chapter 7, we discussed why the cardiovas-
together, increased oxygen transport plus greater cular system is considered an oxygen transport oxygen uptake increases a measurement known system. Now, it's time to talk about the oxygen upas your VO max.
take system. This term refers to the process of exAs you learned in Chapter 4, your VO max is the
tracting oxygen from capillaries, bringing it into maximum amount of oxygen you can "consume" in your muscle fibers, and then using it to make a minute. In other words, it's the total amount of \boldsymbol{Y}
aerobic energy. The stars of this system are oxygen transported by your cardiovascular system

Build YOuR Running pOWERHOusEs 139

TRAINING DISCUSSION
"What is VO max?"
2
As runners, we hear a lot about VO max. It's a favorite term of exercise physiologists, 2
coaches, and running jargon-junkies. But what does it mean?
First, let's look at the term itself. " V " stands for "volume." " O " stands for "oxygen." And 2
"max" stands for " maximum." Put together and given
context, VO max refers to the maxi-2
mum volume (amount) of oxygen your body can consume in a minute.

At rest, you don't use anywhere near your VO max. That's because your aerobic energy 2
demands are low. But as you begin exercising, your energy requirements increase. Your cardiovascular system transports more oxygen-rich blood to your capillaries, your muscle fibers extract more oxygen, and your mitochondria use that oxygen to create a greater supply of aerobic energy. But this process has an upper limit. Only so much oxygen can be transported, and only so much of the transported oxygen can be used to create energy.
When your body reaches that limit, you've reached your VO max. 2

Most runners, depending on their fitness levels, reach their VO max at the fastest effort 2
they can sustain for five to seven laps on a track (2000 to 2800 meters). This means that any \boldsymbol{Y}
pace faster than VO max (e.g., 800
meters or a mile) will require more energy than you can 2
produce aerobically. You'll require an increased percentage of energy from anaerobic sources. On the other hand, any pace slower than VO max (e.g., a 10K or marathon) can 2
be fueled almost entirely from aerobic energy. In fact, marathons are 99 percent aerobic!

VO max is measured in two ways:
2
" Consumption based on body weight: Oxygen is measured in milliliters per kilogram per minute (mLkgmin), with a kilogram equal to roughly 2.2 pounds. Three-time Tour de France winner Greg LeMond had a VO max of 92.5 mLkgmin. An un-2 trained male would have a VO max of about 40-45 mLkgmin.

2
» Absolute rate of consumption: This is the total volume of oxygen consumed per minute. British rower Sir Matthew Pinsent, who won four consecutive Olympic gold medals, recorded a VO max of 7.5 liters per minute-more than any cyclist, runner, 2
or cross country skier in history-even as his VO max based on body weight was a 2
meager 68 mLkgmin. At more than 240 pounds, Pinsent needed that level of over-OUR RUNNING BOD
all oxygen consumption to compete in endurance rowing. An average untrained male would consume around 3 liters per minute.

Training typically improves VO max in previously untrained runners by about 20-25

2

percent, although the actual range can vary from negative improvements to well over 50
percent. In highly trained runners, VO max doesn't change much with training-it's already 2

BUILD Y

established. As an actual predictor of performance, VO max takes a backseat to other fac-2
tors (e.g., running economy), but it remains a valuable determinant of running potential.

140

Build YOuR Running BODY-cOMpOnEnts anDWORKOuts

that is subsequently absorbed by your cells. At rest, Dr. John O. Holloszy writes that "studies have only 20-30 percent of the oxygen you breathe is abshown that a single bout of exercise induces a sorbed. As you exercise, a far greater percentage of rapid increase in mitochondrial biogenesis. " And oxygen is extracted from your blood, until finally Dr. David Costill (a giant in exercise physiology) you reach the point where your mitochondria are and Dr. Scott Trappe write in their 2002 book producing aerobic energy at 100 percent capacity, Running: The Athlete Within, "Research has shown meaning they can't process more oxygen. At that a progressive weekly increase of approximately
point, you've reached your VO max. See the side5% in the number of muscle mitochondria over a 2
bar, "What is VO max?" for a more in-depth look at 27 week period of endurance training. At the 2

VO max.
same time, the average size of the mitochondria 2
increased from 11.5 to 15.5 microns $2 \times 10-2$, a 35%
MAXIMUM MITOCHONDRIA
increase in size."
Of course, improving your own mitochondrial Different muscle fiber types contain different volvolume will depend on several factors, including umes of mitochondria. Slow-twitch fibers boast genetics, your current fitness, your training volthe highest volume, while fast-twitch fibers have ume, and your training intensity. Predicting exthe lowest. But these numbers aren't written in actly when adaptations will occur is an inexact stone. Just as the OSI (the fictional Office of Scienscience. That said, Dr. Ronald L. Terjung, an exer-

BUILD Y

tific Intelligence) rebuilt Steve Austin in The Six cise science researcher, has written that "muscle Million Dollar Man to be better, stronger, and faster mitochondrial content appears to reach a steadythan he was before, you can rebuild your mitostate after approximately 4-5 wk [sic] of training."
chondria to be bigger, more powerful, and more Using Terjung and others' analysis of mitochonplentiful than they were pre-training. There are drial adaptations to training, Table 8.1 estimates two ways to increase mitochondrial volume: the rate at which you can expect full adaptation to occur.

OUR RUNNING BOD

" Replication: Mitochondria can split to form
You should expect to experience four stages of more mitochondria. mitochondrial adaptation:
" Size increase: An individual mitochondrion can get bigger.
table 8.1

Mitochondrial gains

When your muscle fibers gain more mitochon-

Week Number

Mitochondrial Adaptation

dria, it's like a community gaining extra power
1
44\%
plants-it eases the burden on existing power 2
63%
plants and increases potential output. Ditto for 3
77%
bigger mitochondria, which can produce more
4
89\%
energy.
5
100\%
You can build mitochondria quickly with
TABLE 8.1 details the length of time it takes for mitochondria to reach 100 percent adaptation in response to
proper training. In a 2008 paper on mitochondrial
a sustained training stress (workout) like those outlined in
biogenesis (increase in mitochondrial volume),
this book.
\boldsymbol{Y}
Build YOuR Running pOWERHOusEs
141

1. First Stimulus: Within three hours of

Kieren Perkins, and Rebecca Adlington, has sugcompleting a workout that is sufficient in gested that this phase lasts from ten to thirteen intensity and/or duration, mitochondrial days and creates an "oxygen utilization problem." adaptive activity kicks into overdrive.

Since mitochondria often adapt in groups, a size-
2. Halftime: By the end of week one, miable percentage of your mitochondria might go of-
tochondrial adaptation reaches 40-50
fline following a hard training stimulus. As a result, percent.
you can expect to feel sluggish doing workouts
3. Aerobic boost: Between days ten and
that were easy the previous week.
thirteen, your adaptation passes the 50
Don't panic. This is normal. In fact, it's's good percent threshold, and you experience a news. You've triggered an adaptation that will boost in energy production. Running gets lead to improved performance within two weeks. easier!

At the same time, be aware that training too
4. Full adaptation: By the end of week five, hard in the weeks preceding a big race runs the your mitochondria reach full (or nearrisk of initiating mitochondrial adaptation. It's a full) adaptation to the training stimulus. good idea to forgo overly hard workouts during this period. This doesn't mean you should jog or To the above list, we need to attach a few stipdo nothing. If you fail to reinforce your mitochon\boldsymbol{Y} ulations:
drial gains with further workouts, you'll lose about half of those gains in one week. Instead,
» Reinforcement: During the adaptation peinclude a long run, some 10 K pace reps, or a little riod, you must reinforce the original traintempo while tapering. ing stimulus with equivalent workouts (e.g., weekly tempo, repetition, or high-volume High-Intensity Interval Training sessions). You can't run a single workout

In recent years, there's been a lot of chatter about and then sit on the couch, waiting for your high-intensity interval training (HIIT) serving as a mitochondria to bloom.
shortcut to the demanding endurance programs

> " Staggered adaptation: Not all mitochondria traditionally favored by runners. Proponents adapt at the same time. They can adapt sinclaim the same type of mitochondrial gains from gly or in groups, and while some are adapt-HIIT that have heretofore required tempo runs, ing, others continue to function normally. long repetitions, and high mileage. Given the time
» Increased training stimulus: If you inconstraints faced by many runners, programs crease the intensity or volume of the origithat promise all the benefits in a third of the OUR RUNNING BOD
nal training stimulus, you can trigger training time are going to generate some buzz. greater adaptation in your mitochondria.
So what, exactly, is HIIT? According to a 2012 paper by Martin J. Gibala, et al., of McMaster UniThe one drawback to mitochondrial adaptation versity in Ontario, Canada, "High-intensity interis this: When mitochondria first begin adapting, val training (HIIT) describes physical exercise that they can't contribute to aerobic energy production. is characterized by brief, intermittent bursts of

BUILD Y Dr. Bob Treffene, a PhD in bioenergetics and swim vigorous activity, interspersed by periods of rest coach to Olympic multi-gold medalists Ian Thorpe, or low-intensity exercise."

142

BuilD YOuR Running BODY-cOMpOnEnts anDWORKOuts

That sounds a whole lot like regular interval longterm burnout. That's because the training training, which runners have been using to adaptations produced by Tabata-type intervals achieve increases in stroke volume, capillarizamax out after 4-6 weeks (as you'll see in Chapter tion, oxygen uptake, mitochondrial density, and 9), damage mitochondrial enzymes (Chapter 10), anaerobic buffering (explained in the following and cause central nervous system (CNS) fatigue chapter) since Gerschler and Reindell made it de (Chapter 11). So while runners who do nothing rigueur way back in the late 1930s.
more than moderate-paced distance will benefit So most of HIIT is BTDT (been there, done that) from a few sessions of Tabata intervals, those for longtime runners.
who already include a variety of aerobic and anOn the other hand, what's new are studies that
aerobic work in their programs would do well to
claim significant adaptations from super-short,
steer clear.
ultra-speedy repetitions. How short? Try a half-
Experiments that more closely compared HIIT
dozen repetitions of thirty seconds each at maxi-
with the well-rounded training practices of expemum speed, with rest intervals of up to four rienced runners were conducted by Martin Gibala minutes.
and his group at McMaster. Gibala documented The recent obsession with HIIT got a big boost increases in mitochondrial adaptive activity from from CrossFit and other fitness programs'ensessions of 7×30 seconds all out, separated by dorsement of "Tabata intervals"-twenty-second four minutes of recovery, that equaled or bested

BUILD Y

repetitions followed by rest intervals of only ten those of his control group (non HIIT athletes). Unseconds, based on a 1996 study by exercise physilike Tabata, however, Gibala had his control group ologist Izumi Tabata. The study compared two train at the equivalent of a fast tempo effort, small groups who trained on a bicycle ergometer. which is proven to increase slow-twitch mitoOne group trained only moderate-intensity enchondrial volume. So Gibala was able to show at durance, while the other group did Tabata interleast a short-term equivalency between HIIT and vals. The study concluded that only the second more time-intensive tempo training when it

OUR RUNNING BOD

group achieved improvements in anaerobic capaccomes to building your mitochondrial powerity (the amount of energy that can be produced houses. Keep in mind, however, that these exper-
anaerobically, which we'll discuss in Chapter 10), iments were conducted on a bicycle ergometer. while both groups improved VO max. The obviAnd biking isn't running. Runners deal with a 2
ous flaw in this study is that moderate-intensity whole host of variables that aren't replicated in endurance training (the only kind performed by biking. Runners change their stride to increase the non-Tabata interval group) has very little efspeed or intensity. They absorb increased impact fect upon anaerobic capacity - and no serious runforces with faster paces. There are differences in ner would train that way. For comparing anaerobic upper body motion, nervous system activity (incapacity, you might as well pit Tabata's interval
cluding proprioception), elastic recoil, etc. In group against one that did nothing but eat pizza. other words, what works in the lab for a bicycle And there's also this: Coaches and athletes have ergometer won't necessarily translate to running. decades of real-world experience with high-in-

Bottom line: Athletes looking for longterm tensity/short-recovery intervals, and the result is performance improvements are better off stick\boldsymbol{Y}
almost always short-term gain followed by ing with traditional training concepts, while

Build YOuR Running pOWERHOusEs

athletes pressed for time might find HIIT to be an TRAINING RUNDOWN
effective temporary shortcut to improved fitness.
Building your powerhouses (mitochondria) intraining recommendation volves much of the same training that we used for improving capillaries, with the addition of faster Mitochondria in different muscle fiber types repeats to stimulate mitochondrial gains in fastdemand different training. For slow-twitch twitch fiber. Important training in this chapter's mitochondria, longterm Mileage is the anphoto instruction includes:
swer (see page 150); think of the Colorado River carving out the Grand Canyon over

» HIIT (High-Intensity Interval Training)
eons. Long Runs (Chapter 7, see page 132)

» 400/800m Pace Intervals
and Tempo workouts (Chapter 7, see page

» Alternation/Blend Intervals

130) also stimulate slow-twitch mitochon-

» Mileage

drial adaptations. For intermediate fibers, 2-5 minute reps at $5 \mathrm{~K} / 10 \mathrm{~K}$ pace will do the Training from other chapters that affects mitotrick (Chapter 7, see pages 127-129 and chondrial improvements includes:

134 for $5 \mathrm{~K}, 10 \mathrm{~K}$, and 5 K Effort Road and \boldsymbol{Y}

Trail Reps); fit runners can add long Hill Re-
» 5K/10K Training (Chapter 7)
peats (Chapter 7, see page 133). Fast-twitch
» 5K Effort Road and Trail Repetitions
mitochondria benefit from reps at 800-meter
(Chapter 7)
pace (see page 147), with reps as short as

» Tempo (Chapter 7)

100 meters and no longer than 60 seconds

» The Long Run (Chapter 7)

(and with rest periods equivalent to 2-4
times the duration of the repetition). Finally,
To see exactly how these workouts can be infor runners in a time crunch, HIIT can theo-
corporated into your overall training program, retically provide benefits for all three fiber
skip directly to Chapter 15: Build Your Training types. Both all-out and 400 m pace reps can

Schedule, where sample schedules are available
be used for HIIT workouts (see pages 145-
for runners of all fitness levels and abilities.
147 for HIIT and 400 m pace intervals).

OUR RUNNING BOD

BUILD Y

Build YOuR Running BODY-cOMpOnEnts and WORKOuts

Chapter 8: Build Your Running Powerhouses PHOTO INSTRUCTION

RUNNING WORKOUTS
While much of the training for building your running powerhouses was covered in Chapter 7 ($5 \mathrm{~K} / 10 \mathrm{~K}$
pace training, long hill repeats, and tempo for intermediate muscle fiber mitochondria; long runs, 10 K
pace reps, tempo, and cruise intervals for slow-twitch mitochondria), we still have a few workouts up our sleevesespecially when it comes to fast-twitch mitochondria. However, remember that too much speed work can damage aerobic enzymes, overstress your nervous system, and lead to overtraining syndrome. Sean Brosnan illustrates five more ways to build mitochondria, the powerhouses of your cells.
HIIT (High-Intensity Interval Training)
Numerous variations of HIIT exist. Some champion all-out efforts of 30 seconds or less (see 400-Meter-Pace Training for estimations of pace) followed by extended rest. Others, like the Tabata Intervals, call for a 2:1
work-rest ratio. Less demanding variations utilize 30-60-second efforts at or below 100 percent of VO max, 2

BUILD Y

followed by an approximately equal duration of rest. Recovery varies between complete rest and medium-intensity running (i.e., about 50 percent HIIT effort). Most runners will want to avoid extreme versions of HIIT, such as the Tabata and Wingate regimens. Runners with limited training time might include Gibala workouts. The Billat 30-30 session can produce big gains in VO max, but it should be performed sparingly 2
due to its intensity. The HIIT table for this workout lists six different HIIT routines, including:
» Tabata: Popular with CrossFit and fitness clubs, Tabata is derived from a study involving a handful OUR RUNNING BOD
of participants tested on a bicycle ergometer. While gains were achieved in mitochondrial volume, running variables such as impact force, fiberspecific development, aerobic enzyme effect, longterm viability, and nervous system fatigue make this routine a bad fit for runners.
» Wingate: Based on the Wingate Test, created in the 1970s to measure peak anaerobic power and anaerobic capacity, this HIIT variation builds both aerobic and anaerobic fitness. The downside is its
longterm negative impact on the CNS and aerobic enzymes (not to mention that using it burns
adaptive energy that could be used for more productive training approaches).
" Gibala (two workouts): If you think these two HIIT
variations look a lot like a traditional miler's
300-400-meter workout ... you're correct.

\boldsymbol{Y}

Build YOuR Running pOWERHOusEs

» Timmons: Interestingly, this method approximates the carboloading strategy championed by the University of Western Australia in 2002 (Chapter 10).
» Billat: The goal of Billat's 30-30 workout is to spend maximum time at VO max. Since you remain 2
at 100 percent of VO max for the first 15-20 seconds of the recovery interval, this workout offers 2

45-50 seconds of VO max work for every minute completed. When you can no longer continue at 2

100 percent of VO max, the workout is over.
2
Hiit (High-intensity interval training)

Rep Length

Rep Volume

Recovery

Weekly

Effort

Type of HIIT
(time)
(number of reps)
(time)
Sessions
Level
Tabata

20 seconds

10 seconds

5

100%
Wingate

30 seconds

4-6

4 minutes

3-4
100%
Gibala (var. 1)

60 seconds
$8-12$

75 seconds

3
5K Effort
Gibala (var. 2)

60 seconds

10

60 seconds

90\% max heart
rate
Timmons

20 seconds

3

2 minutes easy

running

3
100\%
\boldsymbol{Y}
Billat

30 seconds

```
Until failure*
3 0 ~ s e c o n d s ~ a t
50% VO max
l
100% VO max
```

2
2

* "Until failure" requires you to run until exhaustion forces you to
discontinue the workout.

400-Meter-Pace Training
400-meter-pace workouts won't be a part of most distance runners' training programs, while most sprinters (100m to 800m)
will incorporate reps up to 150 m into their regimens. For runners who'd like to try Tabata, Wingate, or Timmons HIIT routines, 400-meter-pace reps will approximate the 100 percent
effort required. (Although 400-meter-pace reps are not technically a 100 percent effort, running any faster risks injury for non-sprint-trained runners.) 400-meter-pace reps can improve:

OUR RUNNING BOD

» Mitochondrial volume: Reps of 50-100 meters produce increases in mitochondrial volume, especially in faster fibers.
» Non-powerhouse adaptations: Four to six weeks of training at 400-meter pace will increase buffers against acidosis (Chapter 9). 400-meter pace also helps muscle spindles

BUILD Y

(Chapter 5) adapt to longer, more forceful strides.

Build YOuR Running BODY-cOMpOnEnts anDWORKOuts

400-Meter-pace training table
800 m
400 m
Repetition Paces
3:22
1:30.0
45.0
33.8
22.5
11.3

Time
Time
200m
150 m
100 m
50m

3:27
1:32.0
46.0
34.5
23.0
11.5

1:44
46.0
23.0
17.3
11.5
5.8

3:31
1:34.0
47.0
35.2
23.5
11.8

1:48
48.0
24.0
18.0
12.0
6.0

3:36
1:36.0
48.0
36.0
24.0
12.0

1:53
50.0
25.0
18.8
12.5
6.3

3:40
1:38.0
49.0
36.7
24.5
12.2

1:57
52.0
26.0
19.5
13.0
6.5

3:45
1:40.0
50.0
37.5
25.0
12.5

2:02
54.0
27.0
20.2
13.5
6.7

3:50
1:42.0
51.0
38.3
25.5
12.8

2:06
56.0
28.0
21.0
14.0
7.0

3:54
1:44.0
52.0
39.0
26.0
13.0

2:10
58.0
29.0
21.8
14.5
7.3

3:59
1:46.0
53.0
39.8
26.5
13.3

2:15
1:00.0
30.0
22.5
15.0
7.5

4:03
1:48.0
54.0
40.5
27.0
13.5

2:20
1:02.0
31.0
23.3
15.5
7.8

4:08
1:50.0
55.0
41.3
27.5
13.8

2:24
1:04.0
32.0
24.0
16.0
8.0

4:12
1:52.0
56.0
42.0
28.0
14.0

2:29
1:06.0
33.0
24.8
16.5
8.3

4:16
1:54.0
57.0
42.7
28.5
14.2

2:33
1:08.0
34.0
25.5
17.0
8.5

4:21
1:56.0
58.0
43.5
29.0
14.5

2:38
1:10.0
35.0
26.3
17.5
8.8

4:26
1:58.0
59.0
44.3
29.5
14.8

2:42
1:12.0
36.0
27.0
18.0
9.0

4:30
2:00.0
1:00.0
45.0
30.0
15.0

2:46
1:14.0
37.0
27.8
18.5
9.3

4:34
2:02.0
1:01.0
45.8
30.5
15.3

BUILD Y
2:51
1:16.0
38.0
28.5
19.0
9.5

4:39
2:04.0
1:02.0
46.5
31.0
15.5

2:56
1:18.0
39.0
29.3
19.5
9.8

Recovery
(minutes)
6-12
4-8
2-4

1-2
3:00
1:20.0
40.0
30.0
20.0
10.0

Typical Reps
2-3
3-6
4-10
8-20
3:04
1:22.0
41.0
30.7
20.5
10.3

3:09
1:24.0
42.0
31.5
21.0
10.5

The maximum recommended distance for a repetition at 400-meter pace is 200 meters. Note: Tenths of a second

3:14
1:26.0
43.0
32.3
21.5
10.8
are listed as guidelines (i.e., 11.5 seconds indicates that any
3:18
1:28.0
44.0
33.0
22.0
11.0
time from 11 to 12 seconds is acceptable).

OUR RUNNING BOD

800-Meter-Pace Training
800-meter-pace intervals are a staple for middle-distance runners, and they're about as fast as most endurance runners will train. The high intensity required for these reps can negatively impact both your CNS and aerobic enzymes, so it's best to limit yourself to 4-6 weeks of training at this pace, beginning a couple of months out from a goal race (benefits will last 2-4 weeks after you conclude "speed work"). 800m pace reps can improve:
» Mitochondrial volume: 800 m pace reps increase mitochondrial \boldsymbol{Y} volume in fast-twitch fibers.

Build YOuR Running pOWERHOusEs

 147» Non-powerhouse adaptations: 800 m pace reps are also a terrific workout for increasing the number of transport proteins called MCTs (Chapter 9) in fasttwitch muscle fibers. And they'll increase anaerobic enzymes and buffers. 800 m pace reps improve running economy (Chapter 11) for middle-distance runners by enhancing both muscle spindles and your nervous system.

800-Meter-pace training table

1600m
$800 m$

Repetition Paces
7:11
3:16
1:38.0
1:13.5
49.0
24.5

Time
Time
400 m
300m
200m
100 m
7:20
3:20
1:40.0
1:15.0
50.0
25.0

3:58
1:48
54.0
40.5
27.0
13.5

7:29
3:24
1:42.0
1:16.5
51.0
25.5

4:06
1:52
56.0
42.0
28.0
14.0

7:38
3:28
1:44.0
1:18.0
52.0
26.0

4:15
1:56
58.0
43.5
29.0
14.5

7:46
3:32
1:46.0
1:19.5
53.0
26.5

4:24
2:00
1:00.0
45.0
30.0
15.0

7:55
3:36
1:48.0
1:21.0
54.0
27.0

4:33
2:04
1:02.0
46.5
31.0
15.5

8:04
3:40
1:50.0
1:22.5
55.0
27.5

4:42
2:08
1:04.0
48.0
32.0
16.0

8:13
3:44
1:52.0
1:24.0
56.0
28.0

4:50
2:12
1:06.0
49.5
33.0
16.5

8:22
3:48
1:54.0
1:25.5
57.0
28.5

4:59
2:16
1:08.0
51.0
34.0
17.0

8:30
3:52
1:56.0
1:27.0
58.0
29.0

5:08
2:20
1:10.0
52.5
35.0
17.5

8:39
3:56
1:58.0
1:28.5
59.0
29.5

Y 5:17 2:24 1:12.0 54.0 $36.018 .08: 484: 002: 00.01: 30.01: 00.030$. 0

5:26
2:28
1:14.0
55.5
37.0
18.5

8:57
4:04
2:02.0
1:31.5
1:01.0
30.5

5:34
2:32
1:16.0
57.0
38.0
19.0

9:06
4:08
2:04.0
1:33.0

1:02.0
31.0

5:43
2:36
1:18.0
58.5
39.0
19.5

9:14
4:12
2:06.0
1:34.5
1:03.0
31.5

5:52
2:40
1:20.0
1:00.0
40.0
20.0

9:23
4:16
2:08.0
1:36.0
1:04.0
32.0

6:01
2:44
1:22.0
1:01.5
41.0
20.5

9:32
4:20
2:10.0
1:37.5
1:05.0
32.5

6:10
2:48
1:24.0
1:03.0
42.0
21.0

9:41
4:24
2:12.0
1:39.0
1:06.0
33.0

6:18
2:52
1:26.0
1:04.5
43.0
21.5

Recovery
6:27
2:56
1:28.0

1:06.0
44.0
22.0
(minutes)
4-9
3-7
2-5
1-3
6:36
3:00
1:30.0
1:07.5
45.0
22.5

Typical Reps
2-4
3-6
4-10
8-20
6:45
3:04
1:32.0
1:09.0
46.0
23.0

The maximum recommended distance for a repetition at
6:54
3:08
1:34.0
1:10.5
47.0
23.5

800-meter pace is 400 meters. Note: Tenths of a second
7:02
3:12
1:36.0
1:12.0
48.0
24.0
are listed as guidelines (i.e., 19.5 seconds indicates that any
time from 19 to 20 seconds is acceptable).
OUR RUNNING BOD
BUILD Y
148
Build YOuR Running BODY-cOMpOnEnts anDWORKOuts
alternation and Blend intervals
Alternation Intervals
Blend Intervals
Rep
Sample Workout 1
Sample Workout 2
Sample Workout 1
Sample Workout 2
1
Cruise Interval 400
Slow Tempo
(-5 seconds) 800
1600 (5K pace)
Cruise Interval 1600
2

Slow Tempo 1200
Slow Tempo
(+15 seconds) 800
Recovery 400
Recovery 400
3
Cruise Interval 400
Slow Tempo
(-5 seconds) 800
300 (1500 pace)
1200 (5K pace)
4
Slow Tempo 1200
Slow Tempo (+15
seconds) 800
Recovery 400
Recovery 400
5
Cruise Interval 400
Slow Tempo
(-5 seconds) 800
1600 (5K pace)
Cruise Interval 1600
6
Slow Tempo 1200
Slow Tempo
(+15 seconds) 800
Recovery 400
Recovery 400
7

Cruise Interval 400
Slow Tempo
(-5 seconds) 800
300 (1500 pace)
800 (3K pace)

BUILD Y

8
Slow Tempo 1200
Slow Tempo
(+15 seconds) 800
Recovery 400
Recovery 400
9
Cruise Interval 400
Slow Tempo
(-5 seconds) 800
1600 (5K pace)
Cruise Interval 1600
10
Slow Tempo 1200
Slow Tempo
(+15 seconds) 800
Recovery 400
Recovery 400
OUR RUNNING BOD
11
Cruise Interval 400
Slow Tempo
(-5 seconds) 800
300 (1500 pace)

400 (1500 pace)
12
Slow Tempo 1200
Slow Tempo
(+15 seconds) 800
Recovery 400
Recovery 400
Instructions: For each of the sample workouts above, follow the order of workout segments from 1 to 12 (left column). Alternation workouts have no rest interval, while the recovery interval for blend intervals should be a slow jog. Refer to pace charts in chapter 7 for pace guidance.

Alternation and Blend Intervals
Alternation and blend intervals are only for advanced runners. Both workouts trigger significant increases in slow-twitch mitochondrial volume, with blend intervals providing an equal stimulus for intermediate mitochondrial volume, too. The primary goal of these workouts, however, is to force your body to deal with increased lactate production (Chapter 9). Alternation intervals are a favorite of top marathon Coach Renato Canova, while blend intervals have been used by runners for decades. The corresponding table offers two sample workouts for each interval type-but creativity rules the day with \boldsymbol{Y}
this workout, and runners can fashion their own variations.

Build YOuR Running pOWERHOusEs

» Alternation intervals: There is no recovery period between the alternating intervals in this workout.

You simply switch from one gear to another, then back to the first, back to the second, and so on. See the pace tables from Chapter 7 to determine correct repetition pace.
» Blend intervals: Blend intervals insert a recovery interval (e.g., a 400-meter jog) between repetitions.

This allows for higher-intensity reps than alternation intervals. See
the pace tables from Chapter 7 to
determine correct repetition pace.
Mileage
\boldsymbol{Y} Runners use the term "mileage" as a generic catchall for every running stride we take during the week.

Jogging, hills, sprinting, pace work, distance-it all gets lumped into the week's "mileage." But when it comes to mileage, there is no magic number-no specific weekly target that guarantees success. In
fact, runners are better off replacing the word "mileage" with "volume." That's because it's the amount of time-not miles-that you spend training at different intensities that's important. Think about it: An elite runner doing one hundred miles per week of distance at six minutes per mile would tally ten hours of work. A twenty-seven-minute 5K runner doing the same one hundred miles would require twenty hours. The elite runner would improve; the twenty-seven-minute 5 K runner would break down. Remember: You're after the benefits of training, not bigger numbers in your running log. That said, increased volume is essential to improving your running. Longterm improvement is dependent upon the accumulation of volume over a long period of time (think months and years, not
days and weeks). And higher volume
also produces short-term improvement in slow-twitch mitochondrial density,

OUR RUNNING BOD MCTs (Chapter 9), running economy
(Chapter 11), blood volume, muscle and connective tissue strength, and more.

Simply put, you can't build your best running body without building a solid, substantial base of mileage-but "solid"

BUILD Y and "substantial" will mean different
things to different runners.
150

```
Build YOuR Running BODY-cOMpOnEnts anD WORKOuts
```


Running pH Balance \boldsymbol{Y}

he term "acid rain" was coined in
1872 by Robert Angus Smith to describe the corrosive effect that atmospheric
pollution was having upon the environment.
Factories were pumping galactic clouds of sulfur dioxide and nitrous oxide into the air, which then mixed with rain, snow, fog, smoke,
our
and dust, before falling back to the earth as an acidic rinse and soak. When you run hardreally hard-you create a similar atmospheric effect within your muscle fibers. As you rely more heavily upon anaerobic energy (energy that's produced outside the mitochondria without oxygen), you create an acidic $p H$, which in turn is believed to shut down muscle fibers, trigger nausea, and saturate your body following 400-meter sprints. Because fatigue at with almost unbearable fatigue. While not a probhigh intensities has traditionally been associated lem in longer runs and races, acidic pH can be a with lowered $p H$, runners train to lessen acidosis killer during high-intensity efforts. within muscle fibers (by exporting hydrogen ions from the fibers) and to buffer (explained in detail WHAT'S RUNNING pH?
later in this chapter) the hydrogen ions within the fibers, thereby neutralizing them.

Your body's pH is a measurement of the hydrogen It's important to note, however, that this the-
ions in your body. More hydrogen ions create an ory of fatigue has been challenged in recent years. acidic pH , while fewer result in an alkaline pH . Your Many researchers have discounted the effect of body prefers a slightly alkaline pH , measuring beacidosis and proposed alternative theories. A matween 7.35 and 7.45 on a scale of 1-14. A pH below jor problem with much of the original research on 7.0 is considered acidic, while anything above acidosis was that tissue used in the studies (rethat is considered alkaline. The term " $p H$ " has moved from rodents) was refrigerated, altering been variously reported to mean both "power of the results. When new studies were performed on hydrogen" and "potential hydrogen." warmed tissue-closer to normal body temperaSo what does this have to do with running? ture-the effects of acidosis disappeared to a \boldsymbol{Y}

Running at an intensity that demands a large large degree. As often happens, however, these contribution from anaerobic energy-think later studies were in turn contradicted. A 2006 exshorter races and fast-paced workouts-results in periment by Knuth, et al., tested the effect of acian increased accumulation of hydrogen ions. dosis upon warmed muscle tissue. Knuth When your pH drops below 7.0, you begin to sufconcluded that "the fatigue-inducing effects of fer from acidosis. Acidosis is accompanied by falow pH ... are still substantial and important at
tigue, an inability to generate high muscle
temperatures approaching those [in living tiscontraction force, and a burning sensation in afsue]." Stalemate.
fected muscles. If left unchecked, it can lead to a Which leaves us with a bit of a conundrum.
state of near-incapacitation, one that runners reShould we reject the theory of acidosis? Maybe
fer to as "rigging" (short for "rigor mortis"), "tying
ignore alternative theories? The answer is that up," or having the "bear jump on your back." At a we'll cover both. We'll discuss alternative theories pH of roughly 6.4, your legs become dead weight. of fatigue in Chapter 13. As for this chapter, we'll Cyclists have been tested with muscle pH as low take the advice of Dr. Ernest W. Maglischo, writing as 6.4, and back in 1983, Dr. David Costill, et al., in a 2012 issue of the Journal of the International

OUR RUNNING BOD measured runners' leg-muscle pH at 6.63
Society of Swimming Coaching: "I don't believe a BEGINNER'S GUIDELINE

The best way to combat low pH in your muscle fibers is to avoid it. Don't go out too hard BUILD Y
on runs. And stick to your prescribed paces for intervals and tempo.
152

Build YOuR Running BODY-cOMpOnEnts anDWORKOuts

TRAINING DISCUSSION

"Lactic acid—friend or foe?"

For years, lactic acid has served as the running community's bogeyman. It's been blamed for fatigue, pain, "rigging" at the end of races, and even DOMS (lingering muscle soreness).

This is the sum total of problems that lactic acid actually causes: None.

So how did lactic acid earn its skull-andcrossbones label? It began in the early twentieth century, when 1922 Nobel Prize winners Dr. Otto Meyerhof and Dr. Archibald Hill independently conducted experiments in which they administered electric shocks to severed frog legs. The frog legs would twitch at first, then go still. When inspected, the motionless legs were found to be covered in lactic acid. From this, it was deduced th at anaerobic energy production-severed frog legs don't get much in the way of an oxygen supply - produces lactic acid, leading to a condition called "acidosis," which shuts down muscle fiber contraction. Runners and coaches accepted this finding, then spent the next six decades training to overcome the effects of lactic acid.

Attitudes toward lactic acid underwent a seismic shift in 1985, when Berkeley physiologist Dr. George A. Brooks demonstrated that lactate (for all practical purposes, lactic acid BUILD Y
minus a hydrogen ion) is, in reality, a prized fuel for muscle fibers, not a contraction killer.

Where it was previously accepted that lactic acid was the final byproduct of anaerobic energy
production, it was now assumed that lactic acid instantly splits to cre ate both lactate and hydrogen ions. Lactate was good. Hydrogen ions--the culprit behind acidosis-were bad. And lactic acid remained a villain, if indirectly.
In a 2004 paper, Dr. Robert A. Robergs, et al., administered a second blow to the dwin-OUR RUNNING BOD
dling notoriety of lactic acid: Lactic acid, Robergs claimed, is never created during anaerobic energy production. Instead, hydrogen ions arise independently of lactate. What's more, lactate actually decreases acidosis, both by consuming hydrogen ions and by pairing with them and,
guided by transport proteins, exiting the muscle fiber. Biochemist an d textbook author Dr. Laurence A. Moran cheered this conclusion, writing on his blog, Sandwalk, "The important point is that lactic acid is not produced in muscles so it can't be the source of acidosis."

More recently, acidosis itself has been challenged as a cause of fatigue. In a 2008 paper, McKenna and Hargreaves write that "fatigue during exercise can be viewed as a cascade of events
occurring at multi-organ, multi-cellular, and multi-molecular levels."

Whatever the final verdict on fatigue, one result is already in: Lactic acid isn't a bad guy.

Instead, lactate is an energy source, hydrogen ions cause acidosis, and smart runners train to utilize the former and, until strong evidence appears to the contrary, avoid the latter.
\boldsymbol{Y}

BalancE YOuR Running pH

153

radical change [in training] is required. Our train-Runners are sometimes surprised to discover
ing methods have worked even though their reathat the first thirty seconds of a race (at any dissons for doing so may be different than we once tance) are more anaerobic than the remainder of thought ... [Until] we know for sure that acidosis the race, with the exception of the final gutis not involved, it would be wise to continue trainwrenching kick to the finish line. That's because it ing to improve buffering capacity. " In other words, takes time for your aerobic system to get up to if training based on low pH ain't broke, don't fix it. speed, at which point it provides the majority of energy for your effort. That makes the first thirty pH TRAINING seconds the period when your buffers are most challenged. Since building more buffers requires Training pH began with building more mitochonovertaxing existing buffers, you'll need to run dria in Chapter 8. More mitochondria create more short-duration reps that tap into the high anaero-
aerobic energy, a process that consumes hydrobic load of those thirty seconds. That means repgen ions and decreases the required input from etitions at near-maximum speeds, followed by anaerobic energy production. In this chapter, we'll plenty of rest to ensure that you replenish your look at two other ways to improve performance anaerobic energy supply for the next rep (so that while neutralizing acidosis: it won't be fueled by your aerobic system). \boldsymbol{Y}

Buffer training responds quickly, with maxi-
» Buffers
mum buffering capacity reached after only four to
» The lactate shuttle
six weeks.
For buffers, we'll try short sprints for a change

training recommendation

of pace. Training the lactate shuttle will introduce an entirely new type of workout into your schedShort reps at 400/800m pace (Chapter 8, ule: Cross training. You'll learn how riding an $\mathrm{El}-$ see page 146-148) rev up your buffering liptiGO or romping through the woods on capacity. But make sure to allow adequate snowshoes can offer big performance gains. recovery after each rep.

BUFFERS

THE LACTATE SHUTTLE

Buffers are substances that neutralize the effects of hydrogen ions (acidic pH) within your muscle The "lactate shuttle" refers to the combination of OUR RUNNING BOD fibers. Examples of buffers are phosphates, bicar-mechanisms through which your body moves lacbonate, and some proteins.
tate within your cells and between your cells,
If you never run harder than a jog, you don't which invites the question: What does a lactate have to worry about buffers. You have plenty alshuttle have to do with reducing the effect of hyready to neutralize the small level of hydrogen drogen ions-hence, acidic pH -within your musions you'll generate. On the other hand, if you cle fibers? After all, lactate is a fuel, not an acid.
BUILD Y intend to run hard, you'll need to fortify your But the truth is that lactate and hydrogen ions are buffering system.
joined at the hip. In fact, for decades they were 154

Build YOuR Running BODY-cOMpOnEnts anD WORKOuts

thought to be one entity, lactic acid (see sidebar, and difficult to measure fiber pH directly. As you
"Lactic acid-friend or foe?" page 153). Although can see in Table 9.1, some lactate accumulates at we now know that hydrogen ions, and not lactate, all running speeds. This is because both aerobic are the problem, there are several reasons why we and anaerobic energy production are always oncan't discuss acidosis without discussing lactate: going (the percentage of each changes depending
on your effort level).
» Both lactate and hydrogen ions accumulate When lactate levels within your muscle fibers during anaerobic energy production.
get high-and as hydrogen ion levels simultane-
» Lacate and hydrogen ions accumulate at ously rise-your muscle fiber types respond difroughly the same rate.
ferently. Slow-twitch fibers burn about 75-80
» Lactate and hydrogen ions leave the muscle percent of produced lactate to fuel aerobic energy fibers together, escorted out by specialized production in your mitochondria. Intermediate transport proteins called MCTs. and fast-twitch fibers, however, lack similar lac" It's easier to measure lactate than hydrogen tate-burning capacity. So when lactate levels rise ions.
in faster fibers, these fibers go into the export business, shipping lactate to other muscle fibers, Because lactate and hydrogen ions accumulate the brain, the heart, and the liver (where it's conat about the same rate, we can test blood lactate verted to glucose).

BUILD Y

levels (lactate that has exited muscle fibers and Your muscle fibers use specialized transport entered the bloodstream) as a way to estimate proteins called MCTs to move lactate. MCTs are to acidosis within the muscle fiber. The more lactate
lactate what tugboats are to larger vessels. MCTs in the bloodstream, the more in the fiber. And the can tow lactate to mitochondria, where it's burned more lactate, the more acidosis. It's too expensive as fuel. Or they can push lactate-accompanied by

OUR RUNNING BOD

table 9.1
1 mile/1500 meter pace
105
11
Blood Lactate
Type of Training
\% VO Max
1200 meter pace
110
14.7

2
(mmols)
Jogging
60
0.8

800 meter pace
115
19.6

Easy Running
65
1.1

600 meter pace
120
22.9

Moderate Running
70
1.4

400 meter pace
135
26.1

Faster Running
75
1.9

Marathon/Slow Tempo
80
2.6

200 meter pace
150
19.6

Half-Marathon/Fast
100 meter pace
155
11
Teтро
85

3.5

TABLE 9.1 offers a comparison of average blood lactate 10K pace
90

4.6

levels at various running speeds (and roughly equivalent
VO max). Blood lactate levels give an indication of rising 2
acidity within muscle fibers, which is theorized to lead to

5K pace
95
6.2
fatigue in shorter races. Note: "mmols" is the abbreviation for millimoles; a mole is a unit of measurement in 3K pace

100
8.2
chemistry.
\boldsymbol{Y}

BalancE YOuR Running pH

 155hydrogen ions-out of the fiber. Or, when needed, blood lactate level that slows facilitated diffusion
they can import lactate from adjacent fibers and of lactate and hydrogen ions from muscle fibers.
the bloodstream for use as fuel. Berkeley physiAnd that solution is cross training.
ologist Dr. George A. Brooks dubbed this process the "lactate shuttle."

Cross training
The lactate shuttle has two trainable limita-
Cross training (e.g., swimming, biking, snowshoetions:
ing, etc.) is loved by some runners and dismissed by others. The latter group correctly believes that
» MCT volume: You have a limited number of cross training violates the specificity-of-training MCTs, which can be overwhelmed when rule: Exercise you perform in practice must be as
lactate and hydrogen ion levels rise. Think close as possible to the actual competition. But of the taxi line at a busy airport. it's this very lack of specificity that makes cross
» Congestion: Lactate and hydrogen ions training perfect for improving your body's ability leave the muscle fibers by facilitated diffuto lower blood lactate levels while running. sion, meaning they are transported across a Remember that a goal of training is to dimincell membrane from an area of higher conish blood lactate during hard running, thereby alcentration to an area of lower concentralowing hardworking muscle fibers to export more \boldsymbol{Y}
tion with the assistance of MCTs. As more lactate and hydrogen ions through facilitated diflactate enters the bloodstream, blood lacfusion. What cross training accomplishes is to tate concentration rises, slowing facilitated train muscle fibers that aren't used during rundiffusion. Think of trying to merge onto the ning-that are specific to the cross training activfreeway at rush hour. ity-to increase their MCT levels, thereby increasing their ability to import lactate. Then, The traditional solution to these limitations is when you run, these non-working fibers can act simply to increase the number of MCTs, which
as lactate drop zones, gobbling up lactate from escort lactate and hydrogen ions out of fibers and the bloodstream.
pull lactate from the bloodstream into non-working "[Decreasing blood lactate] is one of the reamuscle fibers.
sons I started to insert a little more cross training Increasing MCTs to export lactate requires difinto my athletes' training," says Steve Magness, ferent training for different fiber types: the head cross country coach at the University of Houston, a former coach for the elite Nike Oregon
» Slow-twitch fibers: High mileage and long Project, an exercise scientist, and author of The OUR RUNNING BOD
runs
Science of Running (Origin Press, 2014). "It's not
» Intermediate fibers: Workouts at 10K to about replacing running. It's about getting adaptempo pace tations that might help you while running."
" Fast-twitch fibers: Repetitions at 800-meters
To test his hypothesis, Magness did a basic lacto mile pace tate profile on himself. He then spent the next four weeks adding cross training and running cir-

BUILD Y

There's also an untraditional solution for deal-
cuits to his running schedule (see photo instrucing with the problem of congestion-of a rising tion in Chapter 12 for Jay Johnson's running 156

Build YOuR Running BODY-cOMpOnEnts anD WORKOuts

circuits). His goal was to train new fibers to take TRAINING RUNDOWN

up lactate. When he tested himself again after the four weeks, his lactate profile had improved at Developing your lactate shuttle and buffers inevery training pace.
volves much of the same training that we used for Cross training offers an untapped reservoir for improving capillaries and mitochondria. At the offloading lactate, simultaneously lowering blood same time, we're introducing cross training to lactate levels and aiding the removal of hydrogen create lactate drop zones in slow-twitch fibers. ions from muscle fibers. Not only will you balance Important training in this chapter's photo inyour pH , you just might find that variety is, instruction includes: deed, the spice of life - and of training.

» Cross Training (multiple sports)

training recommendation
Training from other chapters that affects buf-
Training for the lactate shuttle includes
fers and the lactate shuttle includes:
traditional workouts like high Mileage
(Chapter 8, see page 150) and Long Runs

» Tempo (Chapter 7)

(Chapter 7, see page 132) for slow-twitch
» 5K/10K Pace Road and Trail Intervals
fiber, 10K or Tempo effort (Chapter 7, see

(Chapter 8)

» Mileage (Chapter 8)

BUILD Y
pages 130 for 10 K and tempo) workouts
for intermediate fiber, and reps at 800 m

» HIIT (Chapter 8)

pace (Chapter 8, see page 147) or mile
» 400/800m Pace Intervals (Chapter 8)
pace (Chapter 7, see page 124 for 1500-pace reps) for fasttwitch fibers. It also
To see exactly how these workouts can be in-
involves Cross Training (see page 158-163
corporated into your overall training program, range), which helps to keep blood lactate
skip directly to Chapter 15: Build Your Training

OUR RUNNING BOD

levels low during hard running.
Schedule, where sample schedules are available for runners of all fitness levels and abilities. \boldsymbol{Y}

BalancE YOuR Running pH

Chapter 9: Balance Your Running pH -
PHOTO INSTRUCTION

CROSS TRAINING

Cross training has long been a favorite form of alternative training for runners who are injured, interested in better all-around fitness, or simply looking for a change in their fitness routines. But now all runners have two very good reasons to make cross training a part of their programs: 1. It's a great way to combat acidosis within your muscle fibers.
2. It can turn your body into a giant, fully charged battery (see Chapter 10).

Cross training increases your MCT transport proteins (shuttle buses for lactate) within muscle fibers, allowing you to transport lactate/hydrogen ions (the cause of acidosis) out of those fibers and import lactate into non-working muscle fibers-those fibers become lactate drop zones when blood lactate \boldsymbol{Y} levels are high. This photo instruction will highlight eleven cross training options, demonstrated by Christian (whom you met in Chapter 2 's photo instruction); Emii, a martial arts athlete turned actress, pop entertainer, and runner; Roger Sayre, a former 2:30 marathoner and masters national cross country ski champion; and Callie Greene, a competitive cheerleader who uses running as base training, and who also builds all-around fitness with a mix of kickboxing, swimming, and stationary cycling.

Treadmill

The treadmill has existed as a popular indoor alternative to outdoor training since William Staub invented the PaceMaster 600 in the late 1960s, inspired by Dr. Kenneth H. Cooper's book, Aerobics. While treadmill running might look like outdoor running's indoor twin, it's not. It's different in several measur-able ways. First, there's no air resistance on a treadmill; you use less energy to run. To counteract this, use a 1 percent incline. Second, research shows that runners use a shorter
stride, faster cadence, and more flat-footed landing on the treadmill. This recruits a slightly different mix of fibers, re-

OUR RUNNING BOD

duces running economy, and requires a rewiring of your nervous system (see Chapter 11). Third, you'll run slower on the treadmill-studies show up to two minutes per mile slower than on the roads. So you'll want to choose your setting based on effort, not pace. The good news is that all these changes ensure the creation of new MCTs in a larger group of muscle

BUILD Y

fibers. Other than running a little slower, train like you would on the roads and trails.

158

Build YOuR Running BODY-cOMpOnEnts anDWORKOuts

Elliptical Machine

The elliptical machine was introduced in the 1990s and soon became a mainstay of fitness club cardio training. Elliptical machines have two foot-pedals (platforms) that move in an ellipse-meant to mimic the act of walking or running. You can adjust incline, resistance, and stride length (depending on the machine, stride length adjustments vary from just over a
foot to almost three feet). Many models also include moveable handles, allowing you to work your upper body. For runners looking to improve upper body fitness, a must for developing the full range of MCT improvements, you'll need to increase resistance to slow down your stride rate (rpms); this allows you to grasp the handles more easily. For runners focused on lower body training, you might want to release the handles altogethe r and increase your stride rate to mimic normal running. Some runners hold light weights in their hands (e.g., 12-ounce fishing weights) to improve balance while running handsfree. To perform workouts like fartlek and repetitions, increase both stride length and resistance settings.

BUILD Y

ElliptiGO Bicycle
The ElliptiGO is an elliptical bicycle, first marketed in 2010 and already gaining numerous adherents among elite open and masters runners. Like the elliptical machine, the ElliptiGO allows you to work muscle fibers beyond those recruited during running. Unlike the elliptical, the ElliptiGO doesn't have moveable handles for upper body training. Some quick rules for your first ride: 1. Pick a safe place (no traffic-cars, bike, or foot).

OUR RUNNING BOD

2. Wear a bike helmet, close-toed shoes (a firm toe box-the Keen McKenzie works great), and biking gloves.
3. Start in fifth gear.
4. Straddle the bike (both feet on the ground), then place your foot in the forward pedal platform and push off
with your lower foot as you stand on your forward foot.
5. Stride out, shifting into a higher gear if the motion feels choppy.
6. Use both hand brakes to slow down, and drop your foot to one side when stopping.

Other than that, pick a duration and intensity that's equivalent to a running workout.

Y
Balance YOuRRunning pH
159

Aerobics

Aerobics exploded onto the fitness club scene in the 1980s, fueled in large part by the 1982 release of Jane Fonda's exercise video, Jane Fonda's Workout. Given aerobics' emphasis on full body strength and endurance, it remains a fun and effective way to create the kind of training adaptations required for better MCT/lactate function. While "aerobics" can mean anything from spinning to martial arts to stair climbing to boot camp, two specific forms have
remained the most popular classes at fitness clubs for three decades running:
» Dance/Freestyle: Includes both high-and low-intensity fullbody movement. Often performed to music. Can include synchronized dance movements and strength exercises.
» Step Aerobics: Takes dance/freestyle and adds a low platform on which you step up and down. Like dance/freestyle, it recruits many muscle fibers not associated with running.

\boldsymbol{Y}

Aerobics is great for runners looking for a vibrant, social atmosphere for some of their training.

Kickboxing

Kickboxing (and other martial arts) provide a combination of endurance, strength, and nervous system training. But kickboxing isn't a sport you'll want to learn from a book or DVD. You'll need to find a local gym with either accredited personnel or instructors who are steeped in experience-instructors nationally ranked in kickboxing or other martial arts can be trusted to know their stuff. Also, realize that kickboxing isn't just about snapping kick/punch combinations at a sparring partner. A good training session begins with a cardio warm-up that might include running, stretching, resistance training, and form drills, among other elements. Actual kickboxing instruction will involve learning combinations of kicks and punches, aimed both at space and the
OUR RUNNING BOD heavy bag. You'll focus on form, balance, speed, strength, and endurance. Overall, the workout will challenge your body from head to toe, leaving you more fit than before you gloved up.
Cycling
Cycling holds the allure of allowing runners to go faster and farther than is possible in running shoes alone.

Plus you get to coast down hills! With a bike (road or mountain), you can train muscle fibers in the legs that BUILD Y you barely touch with running. You'll need sunglasses or other eyewear for protection and either toe clips or clipless pedals and cycling shoes (both allow you to pull up as well as push down with each spin of the $\mathbf{1 6 0}$
Build YOuR Running BODY-cOMpOnEnts anD WORKOuts

pedals, which powers the full rotation of each pedal spin and increases the workload for your muscles). Before riding, adjust the seat height so that it's about 80 percent of your inseam, enough to allow a slight bend at the knees. Once you're pedaling, pay attention to cadence. Many runners start with higher gears and put more "mash" than "spin" into their effort. Instead, make 60 rpm (revoluti ons per minute with each leg) your absolute floor, and, as your
fitness improves, shoot for 80 rpm or more (advanced cyclists maintain rates of $80-110 \mathrm{rpms}$). If you find yourself rocking from side to side when riding, readjust the seat height until you're more stable.

Now ride fast, slow, up, down, far, and short until you've gotten a good all-around workout.

Stationary Bike
Riding the stationary bike—indoor cycling or "spinning"-_garners most of the benefits of outdoor cycling, plus you can safely listen to music, control the weather, avoid run-ins with motorists (and annoying runners), and watch the latest episode of Game of Thrones, True Blood, or BUILD Y

American Idol. As an extra bonus, you'll never have to change a flat tire!

First, adjust the seat height and then set the bike's resistance, which is controlled by a knob/dial in some models and electronically in others.

Begin your ride with moderate resistance, which equates to a flat outdoor ride. You can simulate acceleration or hill-climbing by increasing resistance. Or decrease resistance to enjoy the equivalent of a nice downhill ride. With some bikes, you can hook up to your computer and OUR RUNNING BOD
choose a virtual route or ride against a virtual competitor. To improve muscle fiber recruitment, try standing while pedaling during accelerations and climbs. And to combat rising body heat, set up a fan to help evaporate your sweat.

Pool Running

Pool running (along with the elliptical) is the preferred cross trainin g activity for injured runners. It closely mimics your running motion and negates all landing impact. You only weigh about 10 percent of your normal body weight in water. By using an AquaJogger buoyancy belt (as pictured), you'll have no trouble keeping your head above water. You'll need a pool that's deep enough to ensure that your feet don't touch bottom. With some AquaJogger foot gear, you'll literally be floating with every stride. This dramatically changes muscle fiber recruitment, as you no longer have to adjust for balance and weight distribution. Unlike running, your center of gravity- \boldsymbol{Y}
your hips in running-becomes a center of buoyancy, located at your lungs.

BalancE YOuR Running pH

Use your abdominal and back muscles to maintain a straight line from your head through your trunk, with an overall forward lean of about 3 percent (or a lean that corresponds roughly to the lean you employ when running). Move your arms and legs as if you were running. Perform your normal running workouts in the pool-just go by effort and duration, not time and distance.

Swimming

Many runners avoid swimming for one simple reason: They sink. With their low
body fat, elite runners fear ending up at
the bottom of the pool. But even a runner
with a little padding can find his or her
hips and legs dragging through the pool like a boat's hull taking on water. What gives? What gives is a lack of form and balance. At sea level, water is 784 times denser than air. If you're not floating, you're doing something wrong. Imagine that you have an axis running from your head down your spine, and that you have another axis running from shoulder to shoulder. Where those two lines meet is the "T."

You want to force the " T " downward into the water (known as "pressing the T "). This automatically brings your hips into
position for kicking, while assuring a strong stroke. And you'll want that stroke.
\boldsymbol{Y} You get a third more propulsion from your pull than from your kick. Both freestyle and butterfly are good strokes for cross training.
Snowshoeing
Snowshoeing is a great cross training option for those who live where it snows. All you need are a pair of snowshoes (both Atlas and Redfeather are good brands) and a pair of waterproof boots-if not waterproof boots, then leather hiking boots, or even running shoes covered by neo-prene overshoe booties (for the cost conscious, plastic baggies will do).
For beginners or
those navigating rough terrain, poles are also advisable.
When training, it's best to find a packed trail (snowmobile trails are perfect). Because snowshoeing is more demanding than walking or running, you'll want to begin your snowshoe sessions with outings over relatively flat terrain. Treat snowshoeing like altitude training, where you hold back slightly on your effort, and don't be afraid to take walk or OUR RUNNING BOD
light jog breaks. Snowshoeing is similar in form to running, except t hat you lift your knees higher to clear the snow. For workouts that mimic tempo or $5 \mathrm{~K} / 10 \mathrm{~K}$ repetitions, go by effort, not pace.

BUILD Y

162
Build YOuR Running BODY-cOMpOnEnts
and WORKOuts

Cross Country Skiing

Cross country skiing is as good a VO max workout as you're going to find. In fact, cross country skiers 2
have recorded some of the highest VO max scores in history. Espen Harald Bjerke and Bjørn Dchlie both 2
recorded 96.0 for VO max, with Dcehlie's out-of-season score indicating the possibility of an unfathom-2
able 100+ score when at peak fitness. You can choose from two popular styles, either classic skiing or skate skiing. For both, you'll need skis, boots, poles, and cold-weather gear.
» Classic skiing: This style is closest to running. You'll need to apply kick wax under the foot area of your skis to improve grip, as well as glide wax outside the kick zone. Then try to find a trail already set up with parallel grooves. You'll use the "kick and glide" technique, swinging your opposite leg and arm forward and planting your pole to add push to your kick. Don't shuffle. Start with all your weight on one foot, then shift to the other.
" Skate Skiing: Skate skiing is a lot like ice skating. While classic skiing utilizes forward and backward arm and leg movements,
skate skiing relies on more forceful lateral movements. You'll
utilize an outward kick and aim for higher speeds. Start by putting glide wax over the length of your skis. Use double poling for BUILD Y
extra push, keeping a double pole/skate/double pole/skate rhythm. Avoid sitting back on your skis, and shift your weight-boom-from ski to ski with each kick. There are several techniques (e.g., V-1, V-2, V-2 alternate), so you'll need a little instruction before hitting the snow (there are numerous good videos on YouTube that demonstrate proper technique).

OUR RUNNING BOD

For workouts, mimic running using effort and duration as your guides.

Y
BalancE YOuR Running pH
163

10
Y

Energy System Build Y

our running is only as good as
the fuel that powers it. Building a
great running body and then providing it with
inadequate energy is like having a Hennessey
Venom GT (260 mph top speed, 0-60 mph in

our Running

2.5 seconds) and a full tank of lemonade.

Building your energy system begins with the
food you eat-with the carbs, fats, protein,
and other nutrition that you choose to consume every day-and ends with your body's
creation of ATP, the molecule that powers every movement you make, from the slightest twitch to the longest leap. Your favorite part about training your energy system will be picking healthy foods from the menu. But the most important part is teaching your body to turn ba-

» Phosphagen (anaerobic)

nanas and pasta into faster, fitter running perfor-

» Glycolytic (anaerobic)

mances.

" Aerobic (aerobic)

WHAT'S YOUR ENERGY SYSTEM?
These three systems work together to ensure that you always have adequate ATP. In fact, they Your body needs energy to run, just like kitchen create fuels, enzymes, and other products that appliances need electricity, a TV remote control can be used by one another (e.g., your glycolytic needs batteries, and your car needs gasoline in system creates lactate, which is used by your aerthe tank. Unlike electricity, batteries, or gasoline, obic system to make ATP). In other words, these
however, the energy you need, as a runner, doesn't systems are codependent. Keeping that in mind, arrive ready to burn. You have to make it yourhere are four energy system principles:
self-and that's the job of your energy system. Human motion is powered by energy from the 1. All three energy systems work simultamolecule ATP (adenosine triphosphate). You eat neously.
to harness food's energy (calories), but food
2. Effort level and duration generally deterdoesn't directly provide energy for your running. mine which energy system dominates \boldsymbol{Y} Instead, your energy system breaks down carboenergy production.
hydrates, fats, and protein, and then uses that
3. Oxygen is always present in your musenergy to create ATP. It's ATP that provides the cles, but its volume increases with aeroenergy you need to run.
bic energy demand.
In the grand scheme of things, you have one
4. Fatigue is caused by different factors in running energy system-the system that prodifferent energy systems.
duces ATP—but it's easier to understand that energy system's function if we break it down into In addition to describing the three energy systhree systems, two that are anaerobic and one tems, we'll discuss two other energy-related topthat's aerobic. Your two anaerobic systems don't
ics in this chapter: aerobic enzymes and body
require oxygen to produce energy and are limited
heat. Aerobic enzymes are an essential element
in duration. Your aerobic system requires oxygen
in mitochondrial energy production, and body
to function and can produce energy for the long
heat is created as a byproduct of ATP production
haul. The three systems are:
and use.

OUR RUNNING BOD

BEGINNER'S GUIDELINE

Never begin a new training program and a diet at the same time. Training adaptations require calories and nutrition. Starving yourself only delays recovery from workouts, depletes training energy, and lowers training enthusiasm. First, get fit. Then decide whether you need BUILD Y
to get thinner.
166

Build YOuR Running BODY-cOMpOnEnts anD WORKOuts

TRAINING DISCUSSION

" How much ATP does it take to run a marathon?"

Evolution is no dummy. Speech, opposable thumbs, and our extraordinarily big brains prove that. So why don't our bodies store more than a couple minutes' supply of ATP, the energy molecule that powers all human movement? Since recycling ATP stocks requires around-the-clock
fueling (eating), wouldn't we be better off with a longerlasting ATP reserve?
Maybe an hour's worth? Maybe enough for a whole day?
The answer is a resounding No!
If you think of ATP in terms of exercise, you'll understand why.
Two San Diego State University professors, Michael J. Buono and Fred W. Kolkhorst, have made it a practice to ask their physiology
classes this question: "How much ATP
does it take to run a marathon? " Using American record-holder Khalid Khannouchi's 2:05:42 marathon, they have their students compute the ATP that Khannouchi required to complete the race. Assuming a VO max of 80 mLkgminute and a body weight of 121

2

pounds, then using the molar equation for the oxidation of carbohydrate ... well, to make a long equation short, the answer is that Khannouchi used 132 pounds of ATP during his 2:05 marathon!

BUILD Y

Try carrying that on your fuel and hydration belt.
As with so many things, Mother Nature knows best when it comes to ATP.

ENERGY SYSTEMS TRAINING

ATP you need. Of course, they're not working at full capacity twenty-four hours a day. And they're You train your energy systems by performing worknot making equal contributions to energy produc-

OUR RUNNING BOD

outs that challenge the fuels (known as substrate), tion for all activities. Your energy systems specialenzymes, buffers, and processes (e.g., the lactate ize, with each system best-suited for a different shuttle) associated with each system. Because the type of energy demand. Table 10.1 approximates workouts recommended in this chapter have already the contributions from energy systems at differbeen demonstrated in the photo instruction for preent effort levels (represented by paces). Sprints vious chapters, we'll use this chapter's photo instrucare almost entirely anaerobic, with around 50 pertion a little differently. To aid your fueling decisions,
cent of energy contributed by the phosphagen we'll break down a variety of workouts into their system alone, while the marathon goes the opcaloric requirements, as well as noting approximate posite direction, deriving 99 percent of energy contributions from carbohydrates and fats.
from your aerobic system. We'll look at each of your energy systems to see exactly how they

YOUR ENERGY SYSTEMS
work (and how best to train them), beginning
with a brief overview of ATP itself.
You have three energy systems that are working
\boldsymbol{Y}
twenty-four hours a day to provide you with the

Build YOuR Running EnERgY sYstEM

 167table 10.1
aerobic/anaerobic Energy contribution
Glycolytic
Phosphagen
Run/Race Distance
Aerobic
Total Anaerobic
(Anaerobic)
(Anaerobic)
100 m
20.0\%
33.3\%
46.7\%
80.0\%

200m
28.0\%
51.3%
20.7%
72.0%
400 m
41.0\%
49.6%
9.4%
59.0%
800m
60.0\%
35.9%
4.1%
40.0\%

1500 m
77.0%
21.0%
2.0%
23.0%
$3 K$
86.0%
13.0%
1.0%
14.0%
5K
92.0\%
7.5%
0.5%
8.0\%

10K
96.0\%
3.7%
0.3%
4.0\%

Half Marathon
98.0\%
1.9\%
0.1%
2.0%
Fast Tempo
98.5\%
1.4\%
0.1%
1.5\%

Slow Tempo
99.0\%
1.0%
0.1%
1.0%
Marathon
99.5\%
0.4%
0.1%
0.5%
Long Runs
99.7\%
0.3%
0.0%
0.3%

Y

Regular Distance Runs
99.8\%
0.2%
0.0%
0.2%
Recovery Runs
99.9\%
0.1%
0.0%
0.1%
TABLE 10.1 shows approximate contributions from all three energy systems-aerobic, glycolytic, and phosphagen-during various running efforts.

ATP
100 percent. (See sidebar, "How much ATP does
it take to run a marathon? '")
ATP has been called the "common currency" of
You always have a small supply of available energy. Whether you're sprinting, running disATP in your muscle fibers. If you didn't, you'd extance, or just staring out the window thinking
perience rigor mortis (muscles use ATP to conabout going for a run, ATP is providing the energy tract and relax). But with your first running step, that lets you do it. If muscle contractions were you start depleting that ATP. To continue running, slot machines, ATP would be your coins. you'll need to fire up the phosphagen system. You begin each day with about one hundred grams (roughly a quarter-pound) of ATP in your

OUR RUNNING BOD

PHOSPHAGEN SYSTEM (QUICK ENERGY)
body and then recycle it as needed. But be
forewarned: Those one hundred grams won't
The phosphagen system is your first responder power more than a few minutes on the couch when muscle fiber ATP levels fall. Also called the or a few seconds on the run. Just to meet daily ATP-CP system, it resides in your muscle fibers' sarenergy demands, you'll recycle each ATP coplasm, relies upon creatine phosphate (CP or PCr) as molecule approximately 500-750 times-a
its fuel source, and is anaerobic. Whether you're
BUILD Y volume of ATP equal to your body weight! blasting out of the blocks in the Olympic 100-meter High-volume training increases demand up to final or taking the first steps of a distance run, ATP

168

Build YOuR Running BODY-cOMpOnEnts anD WORKOuts

levels will nosedive within seconds unless the Whereas the phosphagen system produces
phosphagen system comes to the rescue. And come energy anaerobically, rebuilding your CP stores to the rescue it does, in mere thousandths of a secrequires oxygen. That's one reason you huff and ond, using CP to rapidly recycle ATP at twice the rate puff after a sprint or heavy lift. It takes up to three of your next-fastest energy system.
minutes to restock your $C P$, so plan recovery from
Your phosphagen system immediately arrests
high-intensity activities accordingly.
the fall in ATP levels until reinforcements arrive.
For low-intensity exercise, your other energy sysGLYCOLYTIC SYSTEM
tems will quickly take over ATP production. For high-intensity exercise like all-out sprints, which Like the phosphagen system, the glycolytic sysdemand the kind of energy supply that only cretem resides in the sarcoplasm, is anaerobic, and atine phosphate can fuel, your phosphagen sysramps up as soon as you start exercising. During tem will remain in the driver's seat, keeping your high-intensity exercise, the glycolytic system ATP levels at 80 percent of normal volume for up takes over as your primary energy source once to ten seconds. Then, just as the nitro boost that the phosphagen system has run dry. It's also the rocketed Dominic Toretto's RX-7 to victory in The perfect example of your individual energy sysFast and the Furious was short-lived, CP depletes tems working as branches of one big energy sysrapidly. By fifteen to twenty seconds, it's mostly tem. The centerpiece of the glycolytic system is a

BUILD Y

gone. That's enough energy for sprints, heavy lifts, multi-step chemical reaction called glycolysis, plyometrics, or jumping a puddle, but not enough which is the first step in both anaerobic and aero-for a jog around the block-meaning you'll have to
bic energy production.
reduce your effort if you intend to keep running.

Fueled by glucose and glycogen (carbohydrates), glycolysis quickly produces two or three

training recommendation

ATP molecules anaerobically plus two very important molecules called pyruvate. If your muscle

OUR RUNNING BOD

Studies are mixed on how best to increase fibers' energy demand exceeds what can be procreatine phosphate stores. Some recomduced aerobically, the pyruvate molecules will be mend aerobic training (endurance athletes cycled through "fast" glycolysis. If enough oxygen resynthesize CP faster than non-endurance is available for aerobic energy production, most athletes). Others suggest that you can inpyruvate molecules are shuttled to your mitocrease CP capacity by 10-20 percent with chondria (if they aren't already at 100 percent cashort sprints of 5-10 seconds, Short Hill pacity) through "slow" glycolysis.

Sprints (Chapter 11, see page 220), or high-intensity exercises like Plyometrics (Chapter

Fast glycolysis (short-term energy)
11, see pages 211-216). Creatine supple-
Fast glycolysis is what most runners think of ments have also been shown to increase $C P$ when they hear the term "anaerobic." Fast glystores up to 20 percent, but this benefit colysis can produce ATP up to one hundred times doesn't improve overal power (just a few faster than your aerobic system. The drawback is
seconds of duration) and doesn't provide an that this production is short-lived. You'll get one \boldsymbol{Y}
advantage to endurance athletes.
minute max of full-capacity production, two

Build YOuR Running EnERgY sYstEM

 169minutes with a more conservative effort, and a forewarned that a byproduct of speed work is longer-lasting dribble of energy if you throttle acidosis. And acidosis can damage or even deway back. Sprinters and middle-distance runners stroy aerobic enzymes (we'll discuss these in a minlean hard on this system (see Table 10.1).
ute). For this reason, endurance athletes need to
Fast glycolysis begins with the pyruvate mollimit speed work by practicing these three rules: ecules created during glycolysis. The pyruvate enters a chemical reaction that produces lactate

1. Do the minimum speed work necessary to and the coenzyme NAD+. NAD+ is important beincrease anaerobic enzymes and develop cause it allows glycolysis to cycle again immedinervous system (Chapter 11) efficiency. ately, producing another two to three ATP and two
2. Employ work-to-rest ratios of between more pyruvate, which initiates yet another cycle, 1:2 and 1:12 (or more) for short, fast reps. and another, going round and round at breakneck
3. Limit speed work in the 2-3 weeks before speed, until you've created an enormous volume
an endurance competition.
of ATP.
Fast glycolysis occurs under three different
Fast glycolysis will cycle in and out as needed conditions:
during runs, and it's a major contributor when
kicking to the finish line of a race.
\boldsymbol{Y}
» Continuously: Even at rest, your muscle fiA final note on fast glycolysis: If you do find
bers produce some lactate.
yourself going out too fast in a run, race, or repeti-
» Limited oxygen: When there isn't enough
tions workout-and feel the unavoidable onset of
oxygen to process all generated pyruvate in
acidosis-slow down to an easily held aerobic
your mitochondria, fast glycolysis occurs.
pace. Trained muscles are efficient at clearing
This includes the first thirty to forty sec-
both lactate and hydrogen ions, and while you
onds of a run, before adequate oxygen can
won't be able to reverse the effects of acidosis
be delivered to your muscle fibers for incompletely, you'll recover enough to finish more
creased aerobic energy production.
strongly than if you hadn't backed off.
» Overloaded mitochondria: When your mitochondria have enough oxygen but are al-

training recommendation

ready producing aerobic energy at 100
percent capacity, pyruvate gets backed up
For fast glycolysis, repetitions of 200-400 at the mitochondrial doors and undergoes meters at 1500-meter (mile) pace or faster fast glycolysis instead.
(Chapter 7, see page 124; Chapter 8, see

OUR RUNNING BOD

pages 146-148) will increase anaerobic caTraining fast glycolysis requires speed workpacity. Allow the full recommended recovery repetitions of 200 to 400 meters at mile race pace between reps. These workouts increase anor faster. Speed work increases anaerobic enzymes, aerobic enzyme levels, which remain eleand anaerobic enzymes break down the carbohyvated for up to four weeks-meaning you
drates that fuel glycolysis. More anaerobic endon't have to risk highintensity training dur-
BUILD Y zymes means faster energy production. But be ing the couple of weeks before a big race.
170

Build YOuR Running BODY-cOMpOnEnts anDWORKOuts

Slow glycolysis
offloading excess $C O$ is a big reason why you 2

Slow glycolysis represents the other pathway for continue to breathe hard at the conclusion of a those two pyruvate molecules. Once adequate
taxing run.
oxygen reaches your muscle fibers-and as long Fatigue during aerobic exercise can result from as your mitochondria aren't already producing carbohydrate depletion, nervous system fatigue, energy at full capacity-most pyruvate will be electrolyte impairment, and free radical accumиshuttled to your mitochondria, there to be used as lation.
fuel for producing ATP aerobically.

Lactate

AEROBIC SYSTEM (LONGTERM ENERGY)
When runners think of carbohydrate fuels for their muscle fibers, they tend to think of glucose and glyAerobic energy production requires oxygen and cogen. They don't think of lactate. But they should, takes place in your mitochondria. It produces the because lactate is an excellent carbohydrate source. greatest volume of energy-by far-but takes time In slow-twitch fibers, during exercise, your mitoto get up to speed. While some oxygen is always chondria use up to 80 percent of lactate produced present in your muscles, your cardiovascular sysby fast glycolysis to create aerobic energy —netting tem requires twenty-five to thirty seconds, and up approximately fifteen ATP molecules per lactate to forty seconds for untrained runners, to deliver molecule. Are you wondering how one glucose molecule could net thirty-two ATP molecules through

BUILD Y

the volume of O necessary for most running. Until
then, unless you're running extremely easy, your slow glycolysis but only two through fast glycolysis? anaerobic systems dominate energy production. Now you know: It doesn't. It's just that the remain-

Once ample oxygen is available, your mitoing energy in fast glycolysis gets temporarily stored chondria shift into high gear. Utilizing two proas lactate. Again, this is a striking example of how
cesses-the Krebs cycle and the electron transport your anaerobic system is linked to your aerobic syschain (ETC)—your mitochondria will generate tem: Fast glycolysis simultaneously pumps out

OUR RUNNING BOD

thirty-six ATP molecules from those original two high-yield anaerobic energy while creating a fuel pyruvate molecules, thirty-eight to thirty-nine if (lactate) for aerobic energy.
you include the ATP from glycolysis. Up to six of But lactate's role as a fuel source doesn't end those ATP molecules are used by the mitochonthere. Your muscle fibers can also export lactate to dria, leaving around thirty-two for your muscle be used as fuel elsewhere. Exported lactate is not fibers. As for oxygen, it waits at the end of the only the primary fuel source for your heart (cardiac electron transport chain, ready to combine with muscle) during exercise, it's also a major fuel electrons and protons to form water, a byproduct source for carbohydrate-depleted working musof aerobic energy production.
cles. Let's say you're running a demanding session Another well-known byproduct of the aerobic of 5 K pace repetitions. As the session continues, system is carbon dioxide (CO). The rising CO you deplete the muscle glycogen stores in your 2 2
level in your bloodstream is the main reason your working slow-twitch fibers. Not to worry. In a propbreathing rate increases during exercise (oxygen erly trained runner, lactate from non-working levels and acidosis play lesser roles). And muscle fibers can come to the rescue. A 1998 study \boldsymbol{Y}

Build YOuR Running EnERgYsYstEM 171

training recommendation

glycogen breakdown in inactive muscle fibres to adjacent active muscle fibres."

Tempo runs and $5 \mathrm{~K} / 10 \mathrm{~K}$ pace repetitions
Diffusion of lactate from nearby muscle fibers
(Chapter 7, see pages 127-131) are great and export of lactate - and its subsequent converfor training your mitochondria to burn all sion to glucose-from faraway fibers give you two carbohydrates-glucose, glycogen, and more good reasons to engage in the cross training
lactate. Cross Training (Chapter 9, see pages
exercises illustrated in Chapter 9. Increasing
158-163) increases both MCTs and glycogen

MCTs in muscle fibers that can export lactate inlevels in a fuller range of muscle fibers, creases your available carbohydrate fuel supply. creating warehouses of available energy (once converted to lactate) during exercise. Runners Fat (lipolysis) can also increase their muscle glycogen Fat is good. In fact, when it comes to distance runstores (up to 150 percent in trained runners) ning, fat is great! It's just that if carbohydrateby eating a diet high in carbohydrates.
based aerobic energy production is slow, fat is glacial. Utilizing a multitude of steps, lipolysis by Rauch, Hawley, Noakes, and Dennis found that (breakdown of fats to fuel aerobic energy produclactate can diffuse from adjacent inactive muscle tion) delivers fatty acids to the mitochondria, \boldsymbol{Y} fibers to provide an energy boost in active ones. which process them through the Krebs cycle and And two studies by Ahlborg, et al. $(1982,1986)$ the electron transport chain. And if you've got the
showed that glycogen stored in non-working mustime, it's worth the wait. A single palmitate fatty cles (e.g., the muscles of your arms when you're acid produces 129 ATP molecules, four times the working your legs) can be converted to lactate, examount netted from glucose or glycogen. But beported to the bloodstream, and thereafter concause fat-based energy production is so slow, it verted into glucose, which fuels your working can't keep up with the energy demands of races
muscles. In other words, the ability of lactate to faster than 5 K pace. That said, fat is a powerful directly and indirectly fuel working muscles turns fuel source for many occasions, including: your entire body into one giant lactate battery! Dr. Timothy Noakes, a South African professor
" At rest: The majority of your energy at rest of exercise and sports science at the University of is supplied by fat-fueled aerobic energy.

Cape Town and author of the book Lore of Running,
» Below VO max: As long as your effort is be2
as well as an author of the 1998 study referenced low VO max (about 3 K pace or slower), fat 2
above, writes that lactate might "be one of the
will contribute energy-from roughly 10-15
OUR RUNNING BOD most important energy fuels in the body." In the percent at 5 K pace up to 85 percent when 1998 experiment, athletes exercised for six hours walking.
at 60 percent of VO max. During the last few
Long duration exercise: The longer you 2

"

hours of exercise, lactate provided approximately exercise, the more fat contributes to en-one-sixth of total energy, with glucose (mostly inergy production. Noakes found that ath-
gested) and fat providing the remainder. The auletes training for three hours at 70 percent

BUILD Y thors concluded that "there must have been a VO max fueled 6 percent of their energy 2 considerable diffusion of unlabelled lactate from production through fat-burning at the 172

Build YOuR Running BODY-cOMpOnEnts anD WORKOuts

start of exercise and 43 percent near its (e.g., ammonia). And protein provides structural conclusion.
and functional support for your cells-burning it is like having termites munching away at the supYou can improve your fat-burning ability by port beams for your house. increasing the number of fat-burning enzymes in your mitochondria and by training your body to training recommendation
become more efficient at using fat as a primary energy source. A study by E. Jansson and L. Kaijser There's no advantage to training your body to found that trained athletes, exercising at 65 perburn more protein. Instead, keep your carbocent of $V O$ max, produce 53 percent of their aerohydrate levels high. And ensure adequate 2
bic energy from fat, while untrained subjects restocking of any burned protein by making produced only 33 percent from fat.
protein a part of your post-exercise fueling.
Fatigue during fat-based energy production often results from the biomechanical fatigue of longer efforts-your connective tissues and muscles

Taking your energy systems to the races
take a beating.
As mentioned in Chapter 9, most runners are surprised to discover that the first thirty to fifty sec-

training recommendation

onds of a race-of any race-are the most

BUILD Y

anaerobic. We've grown accustomed to thinking
The easiest way to train your body to burn that races become more anaerobic as they promore fat is to eat more fat (just don't ignore ceed, but this simply isn't the case. The reality is carbs completely). Training while glycogenthat all three energy systems kick in the second depleted also teaches your body to burn we launch ourselves off the start line. Because the more fat. To burn fat more efficiently, high volsudden energy demand exceeds what can be proume (mileage) and long runs will do the trick.
duced aerobically-until enough oxygen is deliv-

OUR RUNNING BOD

ered to your muscle fibers and pyruvate is shuttled to your mitochondria-your anaerobic

Protein
systems (phosphagen and glycolytic) must carry
Protein is an oft-forgotten energy source. It's betthe early load. By about thirty seconds into longer
ter known as the building block for muscle fibers races (e.g., 1500 meters or more), aerobic energy and enzymes. But protein, once broken down into becomes the dominant energy source. But even in amino acids, can be converted to glucose by the shorter races (e.g., 400 and 800 meters), aerobic liver. And broken down even further, it can even energy starts to provide the majority of energy by be converted to glucose within your muscle fibers, forty to fifty-five seconds, as demonstrated in a thereafter to be fed into the mitochondrial fur2003 Australian study by Duffield, Dawson, and nace. Ball State exercise physiologist David Costill Goodman. In races run at less than VO max (e.g., 2
estimates that up to 9 percent of the total energy 5 K or longer), your aerobic system will take over expended during a marathon is fueled by protein. almost all energy production. In shorter races, the But that's not a route you want to travel on a daily energy demand exceeds what aerobic energy \boldsymbol{Y}
basis. Protein breakdown generates toxic wastes alone can provide, and anaerobic systems will

BuilD YOuR Running EnERgY sYstEM

173

TRAINING DISCUSSION

"Do carbo-loading and fat-loading work?"

Runners are always looking for a performance edge. Some have turned to carbo-loading and fat-loading to ensure adequate fuel storage during endurance events. But do they work?

In a word: Absolutely.
But there are a few stipulations. Carbo-loading works great for races longer than ninety minutes. Fat-loading is the ticket for events extending beyond four hours. For anything shorter, not so much.
Carbo-loading dates to the 1960s, when athletes discovered that three to four days of
carbohydrate restriction followed by three to four days of carbobinging doubled muscle glycogen stores, which led to reduced fatigue during endurance races. Unfortunately, carbo-restriction also leads to irritability and gastrointestinal distress. So athletes kept looking for a better way. By the 1980s, athletes had found that a three-day taper accompanied by increased carb intake worked as well as the old seven-to eight-day routine-and with no side effects. In 2002, a University of Western Australia study showed that cyclists who pedaled \boldsymbol{Y}
hard for two and a half minutes, pedaled all-out for another thirty seconds, and then loaded
up on carbs saw an 80 percent increase in glycogen stores within tw enty-four hours. And a 2013 University of Minnesota School of Kinesiology study found that simply increasing carb intake during the twenty-four hours pre-race improved marathon times by 4 percent.
On the other hand, carbo-
loading adds about four pounds to your weight, inhibits fat-burning, doesn't work well for women, and, as a race strategy, has been pretty much ren-dered obsolete by sports drinks, gels, and other glycogen-replacement strategies. Still, to ensure adequate glycogen levels, it's a good idea to increase carbs to 70 percent of all calories for three days before your race-and to taper.
Fat-loading is a performance-enhancing must for endurance events lasting four hours or more. Exercise scientist Dr. Timothy
Noakes estimates that elite Ironman triathlon competitors burn fat at a rate of 50 percent above normal following a period of fat-loading.
There are two good fat-loading methods:

» High-fat diet: Stick to a high-fat diet for seven to ten days before your event. Your OUR RUNNING BOD

body learns to function at low glycogen levels that would stop a carbo-loaded athlete in his or her tracks.
» Glycogen-deplete: Train after fasting, or reduce carbs after the preceding workout.
This teaches your body to burn more fat (an almost inexhaustible source of energy within your body) while running. In other words, this is a method of "fat-loading" by using your own fat stores.

BUILD Y

(Continued)
174

Build YOuR Running BODY-cOMpOnEnts anD WORKOuts

TRAINING DISCUSSION

All that said, anyone considering carbo-loading or fat-loading might be wise to remember the words of multiple-time USA masters champion and former 2:13 marathoner David Olds: "It's not a meal, it's a race."
continue to contribute until the buildup of acidoHEAT
sis and other fatigue factors force you to slow down or stop. But that pain you feel during the Generating ATP also generates heat-about $98.6^{\circ} \mathrm{F}$ final portion of the race-the bear jumping on in most humans. You can't add energy to a sysyour back-is not the point at which you "go antem, in this case the human body, without creataerobic"; instead, it's the point at which the ining heat. When you break down carbs and fats, crease of anaerobic byproducts that began at the you release energy to create ATP. When that ATP race start line has finally become too much to is used to power muscle contractions, you release bear (pun intended).
more energy. But you don't capture all that energy, funneling every spark into your next quadri-

AEROBIC ENZYMES
ceps or calf contraction. Instead, you use as little

BUILD Y

as 25 percent of your produced energy, while the Aerobic enzymes are mitochondria's little helpremaining energy escapes as heat. That heat is ers. These proteins improve your mitochondria's the source of your body temperature. ability to provide aerobic energy by increasing the Have you ever wondered why you shiver when efficiency of chemical reactions inside your mitoyou're cold? It's because shivering requires muschondria. Within five seconds of commencing excles to contract and relax quickly, generating
ercise, these enzymes go to work, and their more ATP and heat. When you're hot, your body

OUR RUNNING BOD

activity level increases all the way up to marahas two responses:
thon pace. In fact, training at marathon pace (tempo) is a good way to trigger creation of even
» Increased blood flow to the skin: This almore aerobic enzymes. At faster paces, acidosis lows heat that was transferred from your can occur, and it negatively impacts and even demuscles to your blood to be diffused into stroys these enzymes.
the air, a process called convection.
» Sweat: More than two million sweat glands

training recommendation

help offload heat by secreting sweat. You lose heat energy when your sweat evapoAerobic enzymes flourish with tempo-fast rates-sweating by itself doesn't cool you tempo, slow tempo, and tempo intervals.
down.
On the other hand, speed kills when it comes to these enzymes, so don't overdo But even with increased blood flow and sweatanaerobic work.
ing, your core body temperature rises during
\boldsymbol{Y}
Build YOuR Running EnERgY sYstEM
175
exercise. Normally, that's not a bad thing. Every

1. Adjust your pace: See "Air Temperature
runner knows that a warm-up aids performance.
and Pace Adjustments" in Table 10.2.
But when the air outside your body also heats up
2. Stay hydrated: Drink to thirst. Don't
(especially if it's humid, too), problems arise.
overhydrate, as that can lead to hypona-
If the air temperature is higher than $98.6^{\circ} \mathrm{F}$,
tremia, a life-threatening condition in
your body will gain heat from the air. In that situ-
which sodium concentration in the
ation, sweating is the only way to cool down. But,
blood is dangerously lowered.
again, sweat has to evaporate for that to work. If
3. Wear light clothing: Pick modern fabrics
it's humid, the air might not be able to absorb that allow heat to escape.
your sweat, and sweat dripping to the ground
4. Avoid hats: Use visors and sunscreen to doesn't help you. You're left with no way to cool protect your skin.
down except to jump in a pool, douse yourself
5. Slow down or stop: If you're really feel-
with a hose, or stop exercising.
ing the heat, quit before heat exhaustion
forces you to quit. Try pool running. Or
Steps you can take to mitigate the impact of
maybe an elliptical machine in an air-
hot and humid days include:
conditioned fitness club.
\boldsymbol{Y}
table 10.2
air temperature and pace adjustments
Temperature
Pace-per-Mile Adjustments Based on Heat*
Fahrenheit
Celsius
4:30
5:00
5:30
6:00
6:30
7:00

7:30
8:00
8:30
9:00
9:30
10:00
120
48.9

5:23
5:59
6:34
7:10
7:46
8:22
8:58
9:34
10:10 10:45 11:21 11:57
110
43.3

5:07
5:41
6:15
6:49
7:32
7:57
8:31
9:05
9:40
10:13 10:48 11:22
100
37.8

4:55
5:27
6:00
6:33
7:05
7:38
8:11
8:44
9:17
9:49
10:22 10:55
90
32.2

4:45
5:17
5:49
6:20
6:52
7:24
7:55
8:27
8:59
9:30
10:02 10:34
80
26.7

4:38
5:09
5:40

6:11
6:42
7:13
7:44
8:15
8:46
9:17
9:48
10:19
70
21.1

4:34
5:04
5:34
6:05
6:35
7:06
7:36
8:06
8:37
9:07
9:38
10:08
60
15.6

4:31
5:01
5:31
6:01
6:31

7:01
7:31
8:02
8:32
9:02
9:32
10:02
*53
11.4

4:30
5:00
5:30
6:00
6:30
7:00
7:30
8:00
8:30
9:00
9:30
10:00
50
10.0

4:30
5:00
5:30
6:00
6:30
7:00
7:30
$8: 00$
$8: 30$
$9: 00$
$9: 30$
$10: 00$
40
4.4
$4: 31$
$5: 01$
$5: 31$
$6: 01$
$6: 31$
$7: 01$
$7: 31$
$8: 02$
$8: 32$
$9: 02$
$9: 32$
$10: 02$
$8: 06$
$8: 37$
70
-1.1
$4: 34$
$5: 04$
$5: 34$
$6: 05$
$6: 35$
7

9:07
9:38
10:08

OUR RUNNING BOD

20
-6.7
4:38
5:09
5:40
6:11
6:42
7:13
7:44
8:15
8:46
9:16
9:47
10:18
10
-12.2
4:45
5:17
5:48
6:20
6:52
7:23
7:55
8:27
8:58
9:30

```
10:02 10:33
0
-17.8
4:54
5:27
6:00
6:32
7:05
7:38
8:11
8:43
9:16
9:49
10:21 10:54
-10
-23.3
5:07
5:41
6:15
6:49
7:23
7:57
8:31
9:05
9:39
10:13 10:47 11:21
-20
-28.9
5:22
5:58
```

6:34
7:10
7:46
8:21
8:57
9:33
10:09 10:45 11:20 11:56
BUILD Y TABLE 10.2 shows pace adjustments for distance runs (or tempo, reps, etc.) in the heat. The chart assumes that $* 53$ degrees is the optimal temperature; pace headings reflect pace/mile at this temperature. Find your optimal pace in the top row, then find pace adjustments in the column below that pace (associated with the temperature in the two left-hand columns).

176

Build YOuR Running BODY-cOMpOnEnts anDWORKOuts

The good news is that your body will adapt to supplements, research favors a 4:1 ratio of hot weather within two weeks. According to an carbohydrates to protein, although this

Australian review article by Saunders, et al., your can be adjusted to personal preference.
blood plasma increases by up to 12 percent, your
Many runners consider chocolate milk to heart rate goes down, your ventilation goes up, be the perfect post-run refreshment. you sweat more, and your energy requirements
4. Fueling during a race: Fueling during are reduced. In other words, your body gets better races of 10 K or shorter is unnecessary. For at running in the heat by running in the heat.
races of 70 minutes or longer, take approximately 30-60 grams of carbs (in fluid) per

training recommendation

hour, with a carb concentration of no less than 2 percent and no more than 10 perIt takes two weeks to acclimatize to the heat, cent (4-8 percent is optimal). Sports drinks and it requires sensible training. Run when like Gatorade (6 percent) and Powerade (8 it's coolest-early morning or in the evening. percent) fall squarely within this range. If

And adjust your effort and pace for the heat you're using gels, drink adequate water to and humidity.
dilute the carb content.
For a better fueling rundown, turn to Part Four

BUILD Y

FUELING
of this book.
The Build Your Running Diet section of this book
TRAINING RUNDOWN
will offer in-depth counseling on fuel choices, so
for now we'll take a brief look at four areas of im-
For this chapter's photo instruction, we're going mediate concern:
to break down the caloric requirements of different workouts and tabulate approximate contribu-

OUR RUNNING BOD

1. Pre-workout meals: Workouts per-
tions from carbohydrates and fats. We'll also offer formed at 5 K pace or faster require some
some fueling tips. Breakdowns include:
pre-workout carbo-loading. A larger meal the night before or smaller meals

" Walking

during the day of the workout can do the

» Jogging

trick. Success in these workouts is largely
» Distance Run
determined by the carbohydrate (glyco-
" Sprints
gen) content in your muscle fibers.
» 800-Pace Intervals
2. Supplementation: Consider a carbohy-
» Mile-Pace Intervals
drate/protein supplement in the 30 min-
» 5K/10K Pace Intervals
utes post-workout. You'll elevate protein
» Tempo
synthesis within the exercised muscle
» Resistance Training
fibers, replace glycogen at an increased

» Cross Training
rate, and speed recovery.

» Marathon Fueling
 \boldsymbol{Y}

3. Ratio of carbs to protein: For post-workout

Build YOuR Running EnERgY sYstEM

177

Chapter 10: Build Your Running Energy Systems PHOTO INSTRUCTION

CALORIES, CARBS, FATS, AND THE NUTRITIONAL IMPACT OF TRAINING

It's one thing to know how to do the various workouts that are required to build your running body. It's another to properly fuel the effort. For this section, we'll break down workouts into calories, carbohydrates, and fats. You'll also find a meal or snack suggestion accompanying each workout. These suggestions are based on the specific caloric and nutritional requirements of each workout, but don't worry
that they're your only choices. You'll find more recipes in Part Four of this book, and you probably have some favorites of your own. These examples are offered to help you get started. Also, remember that you burn calories around the clock (unless you're running one hundred miles per week or more, most of the calories you burn support your normal metabolism), so don't limit fueling to replacement of calories burned through exercise. To use the tables: \boldsymbol{Y}

1. Find your approximate weight in the left-hand column.
2. Find your total calories (either per mile or per minute, depending upon the table), as well as approximate breakdown of those calories into carbs and fats, in the same row as your weight.

Note that these numbers are averages and shouldn't be read as absolute values.
3. At the bottom of most tables, you'll find an additional line entry: "Actual \% Carbs/Fats Range."

This represents a more accurate range for the relative contributions of carbohydrates and fats to your workout, based on your body type, fitness, etc. For example, less-fit runners will burn less fat and more carbohydrate than fit runners during distance runs. These ranges should help you better plan your pre-and postworkout meals by alerting you to the energy sources you've depleted.
4. Note that values for protein are not given, as protein is a backup fuel that is only used when carbs are significantly depleted.
5. A pre-training or post-training meal/snack suggestion is given for each workout.

Because good fitness is a family affair, the Cushing-murrays will demonstrate the workouts. Chris-OUR RUNNING BOD tian, you've met. Wife Kathleen was a national junior age-group cross country champion and a scholar-ship athlete for UCLA. Son Nathaniel, now at UCLA, was a 9:15 high school 3200-meter runner. Daughter Jessica, still in high school, has run a 5:06 mile. Son Zachary was a sub-5:00 miler as a high school freshman. And daughter Rebecca ran a 5:27 mile in the sixth grade.

BUILD Y

178

Build YOuR Running BODY-cOMpOnEnts anD WORKOuts

Walking
training:
Walking recruits fewer muscle fibers at a less-in-

Energy and nutrition Breakdown

tense effort than jogging or running, so it burns
Calories Burned Per Mile: Walking Pace
fewer calories. Most of the calories burned while
Weight
Total
Calories
Calories
(lbs.)
Calories
from Carbs
from Fats
walking come from fat, with carbs providing a
smaller percentage. For "brisk walking," add 5-10
75

40
7
33
percent more calories per mile.
100
53
9
44
110
58
10
48
120
64
11
52
130
69
12
57
140
74
13
61

BUILD Y

230
122
21
101
240
127

22

105
250
133
23
109
275
146
26
120
300
159
28
131
Actual \% Carbs/Fats Range
14-21\%
86-79\%
OUR RUNNING BOD
RECOVERY MEAL

Best Oats and Groats Ever

Oatmeal (made from healthy oat groats) is a great source of complex carbs and offers many other nutritional benefits. It's also
not too high in calories, making it the perfect choice after a walk.
This recipe uses an easy slow-cooking method that allows the added bananas and blueberries (or whatever fruit you have on hand) to meld into a luscious, fruity dessert-meal, with 42 grams of carbohydrates.
» TOTAL CALORIES: 227 per serving (including fruit)
» RECIPE: Page 303
\boldsymbol{Y}
Build YOuR Running EnERgY sYstem
179

Jogging

training:

Jogging is more a matter of effort than pace.

Energy and nutrition Breakdown

Sometimes jogging is performed at walking pace,

Calories Burned Per Mile: Jogging Pace

while other times jogging can approach the effort

Weight
Total
Calories
Calories
(lbs.)
Calories
from Carbs
from Fats
of an easy run. Still, since the effort remains
below that of a normal distance run, you'll rely most
50
38
12
26
heavily on fat as an energy source.
75
57
17
40
100
76
23
53
110
84
26
58
120
91
28

Actual \% Carbs/Fats Range
26-35\%
74-65\%

RECOVERY MEAL

Secret Healthy Pancakes

After a nice morning jog, you know you want to eat pancakes, right? Then by all means, do so. These have a sneaky swap of white whole wheat flour, which takes the guilt out of the OUR RUNNING BOD guilty pleasure. Top with yogurt and berries, and eat as many as your calorie requirement allows, with each cake offering 8 grams of carbs, 1 gram of fat, and 2 grams of protein.
" TOTAL CALORIES: 53 per cake
» RECIPE: Page 314

BUILD Y

180

BuilD YOuR Running BODY-cOMpOnEnts anDWORKOuts

Regular Runs
training:
Regular runs include the full range of distance

Energy and nutrition Breakdown

runs that you'll include in your training diet: easy,
Calories Burned Per Mile: Regular Run Pace
regular, and long. For easy runs, you'll probably
Weight
Total
Calories
Calories
(lbs.)
Calories
from Carbs
from Fats
burn near the lower end of the carbohydrate
50
38
18
20
range. For long runs, you'll burn near the high end
75
57
28
29
of the range.
100
76
37
39
BUILD Y220167

98
275
209
101
108
300
228
111
117
OUR RUNNING BOD
Actual \% Carbs/Fats Range
43-54\%
$57-46 \%$

RECOVERY MEAL

Lemon Risotto with Avocado and Salmon

A good mix of carbs and fats are the ticket for recovery after a distance run. This risotto offers healthy fats from the salmon, avocado, and olive oil, and an equal boost of complex carbs (36 grams) from the rice for balance. And pay no mind to risotto's bad reputation as a difficult dish to make-this is really easy!
" TOTAL CALORIES: 575 per serving
» RECIPE: Page 333
Y
Build YOuR Running EnERgY sYstEM 181

Tempo Runs

training:

Tempo runs push the pace to an effort level that

Energy and nutrition Breakdown

demands faster fueling from carbs. You'll still

Calories Burned Per Mile: Tempo Pace

burn fat for a third of your calories-plus, the fact
Weight
Total
Calories
Calories
(lbs.)
Calories
from Carbs
from Fats
that you're covering ground faster means that
you'll actually burn about the same amount of fat
75
57
38

19
per minute as you did during regular runs.
100
76
51
25
110
84
56
28
120
91
61
30
130
99
66
33
140
106
71
35

167
112
55
230
175
117
58
240
182
122
60
250
190
127
63
275
209
140
69
300
228
153
75
Actual \% Carbs/Fats Range
62-72\%
38-28\%

RECOVERY MEAL

Stuffed Tortilla Chiles with Feta, Corn, and Black Beans
For tempo run recovery, aim for a meal that doesn't skimp on calories and carbs, with a bit of protein and fat to round it out. This

healthy spin on chiles rellenos offers up to 67 grams $\boldsymbol{O U R}$ RUNNING BOD

of carbs, which can be further boosted with a serving of rice.
» TOTAL CALORIES: 445 per serving
» RECIPE: Page 315
BUILD Y
182
BuildYOuR Running BODY-cOMpOnEnts anDWORKOuts

5K/10K Pace Running

training:

Whether you're running 5K/10K pace for repeti-

Energy and nutrition Breakdown

tions or during a race, your carbohydrate require-

Calories Burned Per Mile: 5K/10K Pace

ments just increased. The speed with which carbs
Weight
Total

Calories
Calories
(lbs.)
Calories
from Carbs
from Fats
are burned combined with the length of time
50
38
31
7
you'll be running means you'll be going deep into
75
57
47
10
the muscle glycogen well. You'll want to carbo-
100
76
63
13
load the night before and follow the workout with
110
84
69

15

a quick carb snack.
120
91
75

BUILD Y
220
167
138

29

230
175
144
31

240
182
150
32
250
190
157
33
275
209
172
37
300
228

OUR RUNNING BOD

Actual \% Carbs/Fats Range
77-88\%
$23-12 \%$

DINNER-THE-NIGHT-BEFORE MEAL

Linguine with Anchovies and Things

Since carbs, carbs, and more carbs are the key to success here, indulging in pasta the night before should prepare you properly. This recipe relies on a fresh tomato, olive oil, and an-chovy sauce-the main focus is on complex carbs (84 grams per serving), but the zesty sauce adds other important nutrients without too much fat.
" TOTAL CALORIES: 514 per serving
» RECIPE: Page 314
Y
Build YOuR Running EnERgY sYstEM
183

Mile-Pace Running

training:

Most efforts at mile race pace-whether for a race

Energy and nutrition Breakdown

or repetitions-don't burn fat. Above 100 percent

Calories Burned Per Minute: 1-Mile Pace

of VO max, most runners burn only carbohy-
Weight
Mile Pace
2
(lbs)
drates. So the table for mile-paced running shows
4:00
6:00
8:00
10:00
12:00
total calories without breaking down fat or carb
50
9.5
6.3
4.8
3.8
3.2
content (note that slower runners will burn some
75
14.3
9.5
7.1
5.7

4.8

fat). Also, the calories are given in "per minute"
100
19.0
12.7
9.5
7.6
6.3
totals, since all reps are less than a mile. It has
110
21.0
14.0
10.5
8.4
7.0
been theorized that high-intensity training might
120
22.8
15.2
11.4
9.1
7.6

130
24.8
16.5
12.4
9.9
8.3
lead to an "afterburn" of 3-5 percent additional 140
26.5
17.7
13.3
10.6
8.8
calories, much of it from fat.
150
28.5
19.0
14.3
11.4
9.5

160
30.5
20.3
15.3
12.2
10.2

170
32.3
21.5
16.1
12.9
10.8

180
34.3
22.8
17.1
13.7
11.4
14.6

240
45.5
30.3
22.8
18.2
15.2

250
47.5
31.7
23.8
19.0
15.8

275
52.3
34.8
26.1
20.9
17.4

300
57.0
38.0
28.5
22.8
19.0

Find your weight and mile pace; calories burned while sustaining that pace for a minute appear in the column beneath
the pace. All values are approximate.

RECOVERY SNACK

Custom Homemade Hummus

This is the perfect time for a carb-heavy snack, with just a little fat. Hummus adds to the carbs, but OUR RUNNING BOD
it also provides a bit of healthy fat and other
nutrients. One serving of hummus with a whole-wheat bagel will yield a dish with around 70 grams of carbs and 10 grams of fat. If you find post-run bagels tricky to consume, try a serving of hummus with a 300-calorie serving of pretzels.
" TOTAL CALORIES: 400 per serving (approximately 100 for hummus, 300 for bagel or pretzels)

BUILD Y

» RECIPE: Page 355
184

BuilD YOuR Running BODY-cOMpOnEnts anDWORKOuts

800m Pace Running

training:

Training or racing at 800 m pace burns only carbo-

Energy and nutrition Breakdown

hydrates. But it's hard to estimate the exact en-
Calories Burned Per Minute: 800m Pace
ergy cost. When aerobically produced energy is

Weight
800m Pace
(lbs)
your primary source, the energy cost is straight-
2:00
2:30
3:00
4:00
5:00
forward. But the moment that strength, speed,
50
9.4
7.6
6.3
4.7
3.8
power, greater muscle fiber recruitment, and a 75
14.2
11.3
9.4
7.1
5.7
primarily anaerobic energy supply become fac-
100
18.9
15.1
12.6
9.4
7.6
tors, the science becomes less clear, because
110
20.9
16.7
13.9
10.4
8.4
studies to date haven't addressed those factors.
120
22.6
18.1
15.1
11.3
9.0

Add to that a theorized 3-5 percent "afterburn" of
130
24.6
19.7
16.4
12.3
9.8
additional calories, much from fat, and it'd be fair
140
26.3
21.1
17.6
13.2
10.5
to say that calorie totals are partly guesswork.
150
28.3
22.7
18.9
14.2
11.3

This book's best guess is that calorie totals are
160
30.3
24.3
20.2
15.2
12.1
higher than those indicated.
170
32.1
25.7
21.4
16.0
12.8

180
34.1
27.2
22.7
17.0
13.6

190
35.8
28.6
23.9
17.9
14.3

200
37.8
30.2
25.2
18.9
15.1

210
39.8
31.8
26.5
19.9
15.9

BUILD Y
220
41.5
33.2
27.7
20.8
16.6

230
43.5
34.8
29.0
21.7
17.4

240
45.2
36.2
30.2
22.6
18.1

250
47.2
37.8
31.5
23.6
18.9

275
51.9
41.6
34.6
26.0
20.8

300
56.7
45.3
37.8
28.3
22.7

OUR RUNNING BOD

Find your weight and 800 m pace; calories burned while sustaining that pace for a minute appear in the column beneath the pace. All values are approximate.

RECOVERY SNACK

Almond Cherry Pie Oat Bars

Since it's important to get carbs in your tank within 30 minutes of finishing an 800 m pace run (the better to replace spent muscle glycogen stores more quickly), these bars are great to have on hand. They provide 41 grams of complex carbs, plus they' re extra tasty topped with chocolate!
» TOTAL CALORIES: 265 per bar
» RECIPE: Page 345
Y
Build YOuR Running EnERgY sYstEM 185

Sprinting (400m Pace Running)
training:
Few runners will run "sprints" at faster than

Energy and nutrition Breakdown

400-meter pace - and those who run HIIT can
Calories Burned Per Minute: 400m Pace
confidently use this same table. Again, it's nearly
Weight
400m Pace
(lbs)
impossible to estimate accurate energy expendi-
:50
1:00
1:20

1:40
2:00
tures for primarily anaerobic activity, but this ta-
50
11.3
9.4
7.1
5.7
4.7
ble should give you a ballpark idea. Sprint
75
17.0
14.2
10.6
8.5
7.1
workouts won't burn a lot of calories, although
100
22.7
18.9
14.2
11.3
9.4
there's a theorized 3-5 percent "afterburn" of ad-
110
25.1
20.9
15.7
12.5
10.4
ditional calories, much from fat.
120
27.1
22.6
17.0
13.6
11.3

130
29.5
24.6
18.5
14.8
12.3

140
31.6
26.3
19.8
15.8
13.2

150
34.0
28.3
21.3
17.0
14.2

160
36.4
30.3
22.7
18.2
23.9
19.9

220
49.8
41.5
31.1
24.9
20.8

230
52.2
43.5
32.6
26.1
21.7

240
54.3
45.2
33.9
27.1
22.6

250
56.7
47.2
35.4
28.3
23.6

275
62.3
51.9
39.0
31.2
26.0

300
68.0
56.7
42.5
34.0
28.3

Find your weight and 400m pace; calories burned while sustaining that pace for a minute appear in the column
beneath the pace. All values are approximate.

RECOVERY SNACK

Top Ten Recovery Snacks

OUR RUNNING BOD

Since you need carbs but not a lot of calories following a 400m pace race or workout, refer to this list for suitable snack options.
" TOTAL CALORIES: varies by snack
" RECIPE: Page 309 (sidebar, "Top Ten Recovery Snacks" in Chapter 19) BUILD Y

186
Build YOuR Running BODY-cOMpOnEnts anDWORKOuts

Cross Training
training:
Cross training encompasses a wide variety of

Energy and nutrition Breakdown

sports and workouts and can't be broken down

Cross Training - Calories Burned per 60 Minutes

into calories burned across the board. Instead,
Type
Intensity
Calories
this table attempts to give you an idea of how dif-
Elliptical
Level-5 setting
550
ferent cross training activities at different intensi-
ElliptiGO

15 mph

600
ties stack up against one another.
Treadmill

7 mph
650

Pool Running
Marathon effort
450
Cross Country Skiing

8 mph
 675

Snow Shoeing

3 mph

625

Kickboxing
Medium effort
525
Cycling

14 mph

475
Stair Climbing
Level-5 setting
506
Swimming
75 meters/minute
375
Indoor Rowing

125 watts

550
Note: All values are approximate.

BUILD Y

RECOVERY SNACK

Spicy Maple Hot Chocolate

All we can say is "thank you" to the researchers who determined that chocolate milk's bal-OUR RUNNING BOD ance of carbs and protein make for the optimal recovery drink -so drink it cold on hot days.

But for days when you're training in a winter wonderland, try this spicy hot cocoa for post-workout. It has 47 grams of carbs and 10 grams of protein per serving.
» TOTAL CALORIES: 267 per serving
» RECIPE: Page 315
Y
Build YOuR Running EnERgY sYstem
187

Resistance Training

training:

All resistance training is not created calorically

Energy and nutrition Breakdown

equal. High-intensity endurance training work-

Resistance Training—Calories Burned per

30-Minute Workout

outs, like The Runner 360 (see page 53), burn lots of
Weightlifting
The Runner 360
calories in 30 minutes (the factor used for deter-
Weight
Fat
Fat
mining calories in the table). Traditional weight(lbs.)

Cals

Carb
Cals
Cals
Cals
Carb
Cals
Cals
lifting, with breaks between sets, burns fewer
50
47
43
5
143
128
15
calories, although still a high percentage of carbs.
75
71
64
7
214
193
21
100
95
86
9
285

314

Note: All values are approximate.

RECOVERY MEAL

Peanut Butter Cup Smoothie

OUR RUNNING BOD

For help rebuilding muscles, protein is king after resistance training. This smoothie has a base of Greek yogurt and peanut butter, both great natural protein sources-plus banana and chocolate to make you happy! Per serving, it provides 22 grams of protein. Your muscles will thank you.
» TOTAL CALORIES: 343 per serving

BUILD Y

» RECIPE: Page 322
188
Build YOuR Running BODY-cOMpOnE nts and WORKOuts

Marathon Fueling
prefer chewy (rubbery) cubes or jelly beans to You won't need to worry about in-race fueling for drinks and gels, then Clif Shot Bloks or sport

5 Ks to 10 Ks . But once races reach 70 minutes or beans might be the fueling option for you.
longer, you can fuel with 30-60 grams of carbohydrate per hour (test yourself in training first, as
different runners' needs and gastrointestinal reactions will vary). Since runners differ in how often-and how much - they want to fuel while
racing, this table breaks down different fueling options in increments of 15-60 grams. For example, if you choose to consume 30 grams of carbs per hour, and Gatorade is your fuel of choice,
you'll drink 8 ounces (the 15-gram equivalent) every 30 minutes. Many runners mix and match fueling sources during a race. Note that gels-a favored fueling source-come in 25-gram packets, but you probably wouldn't want to split those; you'll just take one every 30 minutes or hour, de-

BUILD Y

pending on your personal requirements. If you

training:

Energy and nutrition Breakdown

Marathon Fueling

Options for 15-60 Grams of Carbohydrates per Hour
Fuel Options

OUR RUNNING BOD

15 Grams
25 Grams
30 Grams
50 Grams

60 Grams

Clif Shot Bloks

2 pieces (16 g)
3 pieces (24g)
4 pieces (32g)
6 pieces (48g)
8 pieces (64g)
Dates
1 date (18g)
1.5 dates (27 g)

2 dates (36 g)
3 dates (54 g)
3.5 dates (63g)

Fig Newtons
0.5 cookies (11g)

1 cookie (22g)
1.5 cookies (33g)

2 cookies (44 g)
3 cookies (66 g)
Gatorade
8 oz (14g)
$12 \mathrm{oz}(20 \mathrm{~g})$
16 oz (26g)
32 oz (52g)
36 oz (60 g)
Gels
n / a
1 packet (25g)
n / a
2 packets (50g)
n / a
Honey
1 tbsp (17g)
n / a
2 tbsp (32g)
n / a
4 tbsp (64g)
Power Bar
0.25 bars (11g)
0.5 bars (22g)
0.75 bars (33 g)

1 bar (44g)
1.5 bars (66 g)

Pretzels (mini)
12 pretzels (15g)
20 pretzels (25 g)
24 pretzels $(30 g)$
40 pretzels $(50 \mathrm{~g})$
48 pretzels ($60 g$)
Raisins
50 raisins (15g)
1 ounce box
(22g)
100 raisins (30 g)
2 boxes $(44 \mathrm{~g})$
200 raisins (60 g)
Sport Beans
9 beans (15g)

1 ounce packet
(25g)
18 beans (30g)
2 packets (50g)
36 beans (60 g)
\boldsymbol{Y}
Build YOuR Running EnERgY sYstEM 189

System Running Ner Rewire Y

ood communication skills aren't
just about conveying information
to the outside world. They're also the key to
utilizing your body's vast internal messaging
network-the billions of neurons and trillions
of neural pathways that comprise your nervous
our
system. In the Mary Shelley novel Frankenstein, published in 1818, rogue scientist Victor Frankenstein jolts his monster to life with electrical

vous

current harnessed from a storm. In no less dramatic fashion, the electrochemical current of
your nervous system animates your movements, delivers
sensations, and constructs your
thoughts. As a runner, you rely upon your nervous system to control every aspect of your
running body. But this bioengineered software is body, where the neurons trigger contraction and only as good as your neural wiring, a network that relaxation, as well as to organs and glands. In restretches to the far reaches of your body and evturn, sensory neurons relay stimuli detected by erywhere in between. Wiring this network for your senses throughout your body via the PNS maximum efficiency-and then rewiring it to back to the CNS.
meet new challenges-is your job. And a properly
Neurons can fire off messages up to one thoutrained nervous system makes the difference be-
sand times per second, although most operate at tween good and great running. a more manageable rate of between one and four hundred per second. These messages are called WHAT'S YOUR NERVOUS SYSTEM? impulses, and they travel at varying speeds along different types of nerves. Kick your toe while runYour nervous system is one of two principal comning and you'll feel pressure almost immediately, munications networks within your body (your ensince touch travels at 250 feet per second. Pain docrine system, which produces hormones, is the impulses, on the other hand, take twice as long other). It's comprised of the central nervous system because they travel on slower nerve fibers. Dull, (CNS), which includes your brain and spinal cord, throbbing pain inches along at two feet per secand the peripheral nervous system (PNS), which ond, giving you a two-to three-second delay be\boldsymbol{Y} contains all the nerves outside the CNS. fore you'll need to start hopping on one foot and Your CNS is the command center of your nercursing your toe for its clumsiness. vous system. It's tasked with coordinating all As you can probably guess from those speeds, physical activity and processing all sensory data. it's not electric current running through your nerThere are eighty-five billion neurons (nerve cells) vous system. Instead, you have electrochemical in your brain and another billion in your spinal
impulses that travel several million times slower cord. Compare those numbers with the neurons than the current feeding your television or toaster possessed by a sponge (zero), a cockroach (one mil(see sidebar, "What's a nerve impulse?" for more lion), a cat (one billion), a chimpanzee (seven bilon impulses).
lion), and an elephant (twenty-three billion). That's
On the other hand, your CNS can fire between
right, elephants have more neurons than chimps.
1013 and 1016 total impulses per second. That's
Don't forget that. You know elephants won't.
roughly equivalent to the capability of the world's
Motor neurons in your CNS send messages
largest supercomputer, Oak Ridge National Labo-
along axons (nerve fibers) to the muscles in your
ratory's Titan, which covers 4,300 square feet, cost

OUR RUNNING BOD

BEGINNER'S GUIDELINE

The time to rewire your nervous system is sooner, not later. Both your stride and your
running efficiency are largely dictated by your nervous system, and better wiring reduces the likelihood of injury, decreases fatigue, and improves performance.

BUILD Y

192

Build YOuR Running BODY-cOMpOnEnts anD WORKOuts

TRAINING DISCUSSION

"What's a nerve impulse?"
So what, exactly, is a nerve impulse?

Is an impulse electrical? Is it chemical? Is it an unquantifiable spark of the ethereal soul?

If you've asked yourself those questions, you're not alone. Twentyone Nobel Prize winners-from Camillo Golgi and Santiago Ramón y Cajal in 1906 to Arvid Carlsson, Paul Green-gard, and Eric Kandel in 2000-earned the award for attempting to provide some answers.

Let's start with the nerve itself. A neuron (nerve cell) has a cell body, dendrites to receive messages from other neurons, a long fiber called an axon that transmits messages, and an axon terminal that marks the end of the nerve at the synapse, a small space (specifically the synaptic gap, or synaptic cleft) separating a neuron from other neurons and muscle cells.

The neuron must communicate across the synapse if the message is to be delivered.

In the first half of the nineteenth century, nerve impulses were thought to travel at phenomenal speeds: Estimates ranged anywhere from eleven million miles per second to in-stantaneous transmission. Hermann von Helmholtz put the kibosh on that in 1849, calculating the speed of nerve impulses at twenty-five to thirty-nine meters per second-barely fast enough to outsprint a good racehorse.

By the twentieth century, work by Emil du Bois-Reymond, Julius Bernstein, Louis BUILD Y

Lapicque, and others had ushered in the golden age of electrophysiology, in which nerve impulses were viewed as electrophysiological messages propagated by action potentialsexchanges of charged ions through the axon's membrane that could s peed an impulse along an axon's length.

There was only one conundrum: What happened at the synapse, that tiny gap between a neuron and its target? Did electric sparks jump the gap? Or was some other mechanism OUR RUNNING BOD
at work? Two camps emerged in the debate. Sparkers believed it was all electrical, all the time. Soupers thought that chemical agents must be involved. As it turned out, Soupers were mostly right.

In 1921, Otto Loewi (who would share the Nobel Prize in 1936) harvested the still-beating hearts from two frogs, placed each in saline solution, and electrically stimulated one heart until its heartbeat slowed down. He then collected saline solution from
around the affected heart and injected it into the second heart. The second heart slowed down, too- a result that could only be possible if there had been a chemical release into the saline. The chemical (acetylcholine) is now known to be a neurotransmitter, one of a group of chemicals released by neurons to communicate across the synapse.

But Sparkers weren't completely wrong, either. They earned a small victory in 1957 when David Potter and Edwin Furshpan showed that some electrical impulses jump the synapse by utilizing tiny cylindrical channels known as gap junctions.
So what is a nerve impulse? It's both electrical and chemical, and it communicates messages at limited speeds over the internal wiring known as your nervous system-awaiting further reassessment from future scientists and Nobel Prize winners.

Y

REWiRE YOuR Running ne RvOus sYstem

 193$\$ 97$ million to build, and performs 17.59 petaflops movement, such as control of your fingers while
per second (more than seventeen quadrillion oppinning a race bib to your shirt. Or it might boast erations), a feat requiring enough energy to power up to two thousand muscle fibers for less coordiseven thousand homes. That's some pretty imnated movement, like contracting your quads as pressive company your CNS is keeping.
you blast off the start line.
All muscle fibers within a single motor unit
NERVOUS SYSTEM TRAINING
must be the same fiber type (e.g., all slow-twitch), and a motor unit's fibers always fire simultaneWhen it comes to running, an untrained nervous ously. Your CNS recruits groups of motor units system doesn't know what to do. Imagine if every
within a muscle so that they can work together to time you switched on the light in your living contract the muscle. When contraction occurs, two room, the garbage disposal turned on in the mechanisms govern the force of that contraction: kitchen. You'd call an electrician to rewire your house. An untrained nervous system is like that
» Rate coding: When you increase the rate at switch. You and your workouts must become the which impulses are sent from motor neuelectrician. You'll need to rewire: rons to muscle fibers, you increase both force and duration of a muscle contraction. Y

1. Motor-unit recruitment and coordination

If a motor neuron sends a single impulse,

2. Proprioception

the target muscle might only twitch (e.g.,
3. Balance
the blink of an eyelid). But if it sends a sec-
4. Nervous system fatigue
ond impulse quickly enough, the muscle
5. Running economy
will twitch again before having a chance to relax. This adds the force of the second You'll accomplish this rewiring with a combitwitch to what force remains from the first, nation of traditional running workouts, technique creating a contraction that is the sum of
drills, plyometrics, hill sprints, balance exercises,
both-a process called summation. A casand more.
cade of impulses can piggyback one twitch on top of another until the twitches blur
MOTOR-UNIT RECRUITMENT
together, creating the type of smooth, sustained contractions
required for everyday
Running begins when you "tell" your body to run.
activities-from holding a toothbrush to
The message originates in your brain, travels to stepping out the door for a run.
OUR RUNNING BOD motor neurons in your spinal cord, and then is
» Recruitment: The other way to increase force transmitted along the motor neurons' axons to production is to increase the number and size your muscles. Each motor neuron controls a speof motor units recruited (see the muscle fiber cific group of muscle fibers within a single musladder from Chapter 5). This is known as the cle-together, the neuron and the fibers it controls size principle. Your motor units respond to sigare called a motor unit.
nals sent from the brain. Slow-twitch motor

BUILD Y

A motor unit might contain only a few fibers
units have small neurons that can be acti(ten to one hundred) if it's responsible for intricate vated by weaker signals. Intermediate motor

Build YOuR Running BODY-cOMpOnEnts anD WORKOuts

units have medium-sized neurons that reovertakes neural adaptations as the prime factor quire slightly bigger signals. Fast-twitch moin strength gains from weightlifting. So important tor units have the biggest neurons and require is neural adaptation that a 2007 study on cross eduthe strongest signals. As the signal strength cation found an 8 percent strength increase in unincreases, you activate more and larger neutrained limbs when opposite limbs are resistance rons-recruiting faster fibers and increasing trained. That's the nervous system applying what the force of your muscle's contraction. it's learned from one limb to another.

You use both rate coding and recruitment
Reduced inhibition
when you run-you generate force by increasing When one muscle contracts, its opposing muscle the rate of impulses (thereby increasing the must relax. When Popeye flexes his biceps, he restrength and duration of your muscle fibers' conlaxes his triceps. That's because a contracting tractions) and by recruiting larger motor units muscle has to work harder when an opposing (and faster fibers), which produce more power. muscle doesn't fully relax. Try flexing your own Of course, there's more to muscle fiber recruit-
biceps while simultaneously contracting your triment than generating force. Let's look at a few
ceps-you can't do it! Untrained (and under-
other factors.
trained) muscles have a hard time coordinating contraction and relaxation. Training can change

BUILD Y

Recruitment patterns
that. A 1992 study found that just one week of To run efficiently, you need to coordinate contrac-quad-burning knee extension exercises led to a tion and relaxation of muscles across multiple 20 percent reduction in hamstring co-contraction. joints. Hardwiring better neural pathways is the key. Think of a postal carrier with a new route. Contraction velocity Until the carrier learns all the streets and homes Proper training can increase the contraction velocon the route, delivery will be slow. But once the ity of your muscle fibers. Contraction velocity

OUR RUNNING BOD

carrier has the route down pat, it takes less time measures the time it takes a muscle fiber to reach to deliver the mail-and the letters and packages peak contraction (shortening). Average contracall go to the right addresses! It's the same with tion velocities are:
neuromuscular adaptation. Your nervous system learns the best new pathways for delivering im-
pulses to muscle fibers in order to power a par-
» Intermediate fiber: 60-70 milliseconds
ticular movement, and then these pathways get
» Fast-twitch fibers: 25-50 milliseconds hardwired as recruitment patterns.
Faster contraction velocities allow you to genStrength gains erate more power, which translates to faster runNervous system adaptations are responsible for ning. A 2008 study found that highly competitive most early strength gains. While it's hard to meadistance runners had slow-twitch contraction sure strength gains in runners, it's easy to observe velocities that were 70 percent faster than their in weightlifters. Research suggests it takes be-couch-potato peers and intermediate rates that \boldsymbol{Y}
tween four to twenty weeks before muscle growth were 18 percent better. An earlier study at Ball
REWiRE YOuR Running nervOus sYstem 195

State found that marathon-type training inPROPRIOCEPTION
creased slow-twitch contraction velocity up to 50
percent and intermediate velocity by 29 percent.
Proprioception is your body's ability to track its po-
It's a cliché to say that "practice makes persition relative to the outside world and then to
fect." But it 's a cliché with legs. By incorporating
adjust accordingly. Think of an Olympic gymnast multiple paces, terrains, and exercises into your as she dismounts from the balance beam. Her workout schedule, you'll increase your ability to nervous system must process a whir of motion as recruit the full range of useful muscle fibers, inshe rotates her trunk and hips, adjusts the bend crease the force of your contractions, coordinate in her limbs, and positions her feet for landing. different fiber types and muscles at varying pace It's proprioception that guides her movements. and fatigue levels, and create the most efficient You use proprioception every day. You use it to running movements possible.
walk without watching your feet. Or to type at the computer without looking at the keys. Or when

training recommendation

you run-a motion that requires your feet to leave the ground completely and then land safely time Training recruitment patterns demands varying and time again.
the intensity, pace, terrain, and duration of your Your proprioceptive system includes your in-

\boldsymbol{Y}

runs. Rate coding responds to heavy resisner ear and the nerves connecting your CNS to tance training (Chapter 5, see pages 67-69) your muscles, tendons, and ligaments. Proprioand Plyometrics (see pages 211-216). Receptive nerves relay position, tension, and stretch
duced inhibition is improved by performing
sensations to your CNS. Your CNS responds by
Technique Drills (see pages 203-210), Hill
triggering muscle contractions that hold or alter
Sprints (see page 220, and other faster running.
your body's position. These impulses travel on the
Contraction velocity improvements in slowfastest nerves in your body, reaching speeds up to twitch fibers result from marathon-type training 390 feet per second!
(volume, tempo, and longer intervals). And Your stride is governed by proprioceptors, tapering (see page 364) by itself can lead to which regulate posture, joint movement, balance, increases in intermediate contraction velocity.
stride length, and foot strike. If you step awkwardly

TRAINING DISCUSSION

"Check your balance and proprioception" OUR RUNNING BOD

Want to try an easy activity to learn the difference between balance and proprioception?

First, test your balance. Stand on one leg with your arms at your sides. Feel free to swing your arms, move the lifted leg, or do anything else to stay upright. That's balance.
Now for proprioception. Keep doing exactly what you've been doing for balance, only close your eyes. Feel the difference? That's proprioception. As you can see (or not, if you're still per-BUILD Y
forming the activity), balance and proprioception are closely related, but they're also different.
196

Build YOuR Running BODY-cOMpOnEnts anD WORKOuts

during a trail run, proprioceptors immediately inshowed reduced activation of the muscles that
form your CNS, which instructs muscles to correct stabilize the hips and knees-the runners' musthe problem before you roll an ankle.
cles were incapable of adjusting quickly to the unstable platform. They weren't able to balance.

training recommendation

Luckily, balance is easy to improve. A 2006 experiment had football players spend four weeks

Wobble/balance board training (see pages
balancing on each leg for five minutes, five days a 91-92) is an effective way to improve proprioweek. The result was 77 percent fewer ankle ception. Running (especially barefoot) on soft sprains during the season. And wobble board sand or grass can also improve your skills training (as mentioned in Chapter 5) reduces the (see page 219). Playing court or field sports reoccurrence of ankle sprains by 50 percent. is another way to challenge proprioceptors.

training recommendation

BALANCE

Training balance can be as simple as standing on one leg (see pages 217-218) or using a Balance plays a far larger role in running that wobble board (see pages 91-92)—or as commost runners realize. After all, balance is what plicated as walking a tightrope strung be-

BUILD Y

keeps us on our feet instead of tumbling to the tween two trees in your backyard. Exercises ground! Think that's easy? Then watch a child
like Foot Work and Towel Toe Curls (both on just learning to walk. Better yet, try the activities page 107) can teach your body better recruitfrom the sidebar, "Check your balance and proment and utilization of the small muscles that prioception." In fact, every step you take as a runcontrol your ankles and feet, which leads to ner is a challenge to your balance. While in an improved ability to react to uneven terrain, motion, you have to land on one foot, stay upunforeseen obstacles, and turns (i.e., improved OUR RUNNING BOD
right, recruit the proper muscles to ensure stabilbalance during real-world training).
ity, and then launch into another stride-often over uneven surfaces. That's an incredible feat! So incredible, in fact, that it took tens of millions of NERVOUS SYSTEM FATIGUE
dollars and decades of research and experimentation before Boston Dynamic's $6^{\prime 2} 2^{\prime \prime}$, 330-pound

You can't learn new skills when your nervous sysAtlas, in 2013, became the first two-legged robot tem is rundown. Your CNS loses its capacity to to walk over rough terrain.
efficiently deliver the brain's orders to your body.
Balance plays an especially large role every
And your PNS likewise loses its ability to effitime you change direction or avoid obstacles. A ciently report the outcome of those orders, as well 2013 study by Spanish researchers tested balance as relevant sensations. Acquiring new skills be-
by having runners do strides that finished with a comes impossible because your nervous system 90° sideways cut (change of direction) on a movesimply can't figure out how to perform them.
able platform. When the platform was allowed to
The only realistic way to deal with nervous sys-

\boldsymbol{Y}

wobble on the eleventh repetition, the runners
tem fatigue is to avoid it. You can't beat it. As the

REWiRE YOuR Running nERvOus sYstEM

197

TRAINING DISCUSSION

"Should I change my stride?"

These days, it seems that everyone wants to change your stride.
Form gurus tell you to shorten your stride. Or to lengthen it. To land on your midfoot. Or to land barefoot. To pick up your stride rate. To use gravity. Not to use your calves. To pull
with your hamstrings. To keep your feet behind your knees. Or to do a hundred other things you've never thought about in the past and aren't sure you should try now.
What's a runner to do?
For starters, stop listening to people who tell you to change your stride.

A highly touted 2004 review article out of Australia concluded that the best stride is
"freely chosen over considerable training time." The authors note that "the aerobic demand of running at a given speed is lowest at a self-selected stride length," and that, in contrast, running economy (a measure of running efficiency) suffers when "stride length is either lengthened or shortened from that self-selected by the runner."
By "self-selected," the authors don't mean choosing a stride the way you'd pick an EasY
ter bonnet. Instead, referencing a 1982 study by Cavanaugh and Williams, they suggest that we "naturally acquire an optimal stride length and stride rate over time."
This finding was reinforced by a 2005 study conducted by the Department of Exercise Physiology at Colorado State University. Researchers chronicled changes in the stride and running economy of triathletes who performed twelve weeks of Pose Method running. The triathletes' stride length shortened and, consequently, their running economy worsened.
The truth is that form gurus trying to sell you on a better stride in a few quick, easy lessons are making promises that they can't keepand that will make you a less efficient runner.
This doesn't mean you should ignore form! You should simply avoid wholesale changes.
Instead, work to improve the form you have. The best way to do that is through longterm mileage, drills, intervals, tempo, plyometrics, resistance training, stretching, and, above all, patience. It's proper and comprehensive training, not gimmicks, that creates a great stride.

OUR RUNNING BOD Borg of Star Trek:
The Next Generation always told

» Difficulty concentrating

soon-to-be assimilated races, "Resistance is futile."

» Physical clumsiness

Your goal should be to identify the signs of

» Trembling hands

nervous system fatigue and then dial back your
effort when you experience any of them. Symp-
Your grip strength is a good measurement of
toms include:
nervous system fatigue. You can test grip strength

BUILD Y

with a dynamometer. If your grip strength goes

» Trouble sleeping

down, your nervous system fatigue has likely
198

BuilD YOuR RunningBODY-cOMpOnEnts anDWORKOuts

chart 11.1 a comparison of two Economy curves
90
80
70
60
50
40
Oxygen Used (mLkgminute)
Typical Economy
30
Excellent Economy
20
10
04
5

6
7

8
9
10
Minutes per Mile
CHART 11.1 shows the performance curves of two runners, one with typical running economy, and one with excellent economy. The excellent-economy runner can maintain a faster pace at the same
oxygen cost ("Oxygen Used") as the typical runner. For example, at $50 \mathrm{~mL} / \mathrm{kg}$, the excellent-economy runner runs under six-minute-mile pace, while the typical runner manages only seven-minute pace. In fact, the runner with excellent economy uses only $40 \mathrm{~mL} / \mathrm{kg}$ of oxygen at the same seven-minute-mile pace that requires the typical runner to use $50 \mathrm{~mL} / \mathrm{kg}$. Since fatigue increases as runners approach VO

2

max, a runner using $40 \mathrm{~mL} / \mathrm{kg}$ will feel far less fatigued than the one using $50 \mathrm{~mL} / \mathrm{kg}$ at the same pace.

BUILD Y

gone up. Decreased vertical jump is another good five reps or fewer for heavy lifts (weightlifting), indicator, as is dropping your keys post-workout where the reps represent a near-maximum effort, while trying to unlock your car.
but you can shift the burden to your muscles by doing sets of six to twelve reps with lighter weights.

training recommendation

The same principle holds true for running workouts.
You don't train to improve nervous system

OUR RUNNING BOD

RUNNING ECONOMY
fatigue; you avoid it. Limit volume and
duration of high-intensity workouts, and
Running economy measures how efficiently you
allow at least three minutes between high-
use oxygen at a given running speed. This becomes
intensity sets (weights, running). Beginners
extremely important at submaximal running speeds.
should allow forty-eight hours between
A"submaximal speed" is a running effort below 100
high-intensity workouts, while advanced
> percent of $V O$ max. All races of 5 K and longer (and 2

runners should allow up to ten days and get most workouts) are run at submaximal speeds. a good night's sleep every night to ensure

There are three things about VO max and running 2
healthy neurotransmitters.
economy that you should keep in mind:
High-intensity, short-duration exercises are es-

1. Your $V O$ max represents the maximum

2
pecially fatiguing for your nervous system. The
amount of oxygen that your body can
closer to 100 percent effort you train at, the more use in a minute.
stress your nervous system endures. For example,
2. Fatigue increases as you approach VO 2
\boldsymbol{Y}
your nervous system is maxed out during sets of max.

REWiRE YOuR Running nervous sYstem 199
3. The less oxygen you need to maintain a strategy, like doing sets of heavy curls when your
given speed, the less fatigue you'll feel
goal is big biceps. Instead, you'll need to build betand the greater your advantage will be ter slow-twitch fibers, increase elastic recoil, reover someone with a similar VO max but wire your nervous system, and practice, practice,
inferior running economy.
practice. It'll all part of the equation. Some types
of training to focus on include:
Confused? Then compare running economy to
gas mileage in a car. The 2013 Chevrolet Cruz Eco
» Mileage: Distance runners develop econ-
and the 2013 Toyota Prius both have gas tanks that omy through high-volume running. Logging
hold about twelve gallons. Traveling at fifty mph, millions of steps per year allows your nerthe Cruz Eco gets forty-two miles per gallon, and vous system to hardwire optimal stride the Prius gets forty-eight miles per gallon. So travel-
length, stride rate, and recruitment pating at fifty mph, the Cruz Eco will run out of gas
terns. You learn to recruit fewer muscle fi-
long before the Prius, even though both cars started bers to perform the same workload,
with the same amount of fuel. Not only that, but the
decreasing your energy requirements. And
Prius can travel faster than fifty mph while still us-
you level out the energy-wasting bounce
ing a smaller amount (or the same amount, de-
that's exhibited in most runners' strides.
\boldsymbol{Y} pending upon the speed) of gas than the Cruz Eco.
» Tempo: Tempo improves efficiency at race
If the cars were runners, the Toyota Prius would
paces from 10 K to the marathon-that's behave better running economy. It can go farther at cause training doesn't just improve your the same pace, or it can go faster using the same economy at the pace you're running, it imamount of fuel. See Chart 11.1 for a comparison of proves it for paces roughly 10 percent faster the running speeds that can be maintained by runor slower, too. That makes tempo a great ners with different levels of running economy. workout for the $10 K$, since it's easier on Running economy is determined by a variety your body than 10K-pace repetitions. As an of factors, with genetics and nervous system efexample of how this works: If you do tempo ficiency at the top of the list. Genetics can include, at 6:00 per mile, you'll race economically at among other things, your height, percentage of speeds from around 5:34 to 6:36 per mile. slow-twitch fibers, calf size (smaller is better), and
» Race pace repetitions: Of course, there's no body type-an ectomorph body type, with long, better way to improve economy at any race thin limbs, flat chest, equal shoulder and hip pace than to train at that pace. If you're too width, and low body fat, tends to be most ecofatigued to run 5 K or 10 K repetitions, Cruise OUR RUNNING BOD nomical. But if that's not you, don't despair; run-Intervals (see page 129) can be used as a ners come in all sizes and shapes. As for nervous
substitution.
system efficiency, that refers to trainable ele-
" High-intensity workouts: Short sprints, ments like recruitment, pace, and stride. plyometrics, and heavy lifting (five or fewer reps per set) offer a quick return. A 2013 Becoming economical study from Italy on masters (ages forty and BUILD Y Becoming economical involves a multi-pronged over) marathoners reported that maximal approach. There's no magic bullet, no single strength training increased running

200

BuilD YOuR Running BODY-cOMpOnEnts anDWORKOuts

economy by 6 percent after only six weeks.
training recommendation
And a 2003 study from the University of
Texas showed that six weeks of plyometrics
Training for better running economy requires
produced similar gains in regular (nontraining at different volumes and durations, elite) distance runners. Finally, a 2010 study including Mileage (Chapter 8, see page 150), published in the Journal of Strength and Contempo (Chapter 7, see page 130), and race ditioning compared weight training and pace intervals (Chapter 7, see pages 124plyometrics, concluding that plyometrics
131). Quick improvements can be gained
was more effective for improving economy through high-intensity sessions of Short Hill in "moderately to well-trained male endurSprints (see page 220), Plyometrics (see ance runners." pages 211-216), and heavy weight training (e.g., Squats, Lunges, Cleans, and Dead Lifts Training for better economy might sound like from Chapter 5, see pages 67-69). Remember a lot of work, but the truth is that all of the above that you can't teach your nervous system new elements should be included in any solid, alltricks when your CNS is fatigued, so plan around training schedule.
high-intensity sessions for when you're rested.

table 11.2

BUILD Y
the Effect of Running Economy on $10 K$ performance Runner's VO max
*Projected 10K Time Based Upon Running Economy
2
(mL of O kgminute)
Poor Economy
Average Economy
Good Economy
Excellent Economy
2
30
1:05:24
1:02:13

1:00:37
59:21
35
58:46
55:54
54:28
53:19
40
53:09
50:33
49:16
48:13
45
48:25
46:04
44:53
43:56
OUR RUNNING BOD
50
44:28
42:18
41:13
40:21
55
41:11
39:10
38:10
37:22
60
38:25

36:33
35:37
34:52

65
36:05
34:19
33:27
32:44
70
34:03
32:23
31:33
30:53
75
32:11
30:37
29:50
29:12
80
30:23
28:54
28:09
27:34
85
28:31
27:08
26:26
25:53
90
26:29

25:12
24:33
24:02
TABLE 11.2 compares the predicted time for a runner based on VO max and running economy. It also illustrates how 2
runners with lower VO max scores but good/excellent economy can defeat runners with higher VO max scores but poor/

2
2
average economy. For example, a runner with a VO max of 70
$\mathrm{mg} / \mathrm{kg}$ and good economy is predicted to run 31:33 for 10K, a 2
time that beats a runner with a higher VO max of $75 \mathrm{mg} / \mathrm{kg}$ but poor economy (estimated time of 32:11). All times in the table 2
represent $10 K$ race times. *Times are approximations and will vary from runner to runner.

Y
REWiRE YOuR Running ne RvOus sYstEM
201
VO MAX VS. RUNNING ECONOMY

» Technique drills

2

» Plyometrics

Recently, there's been a big debate over whether

» Balance and proprioception

VO max or running economy plays a bigger role
2

» Hill sprints

in performance. The answer is that they each

» Barefoot running (sand and grass)

play a big role, so you shouldn't ignore either.
Within groups of runners with similar VO max
Training from other chapters that affects the 2
measurements, the runner with the best running nervous system includes:
economy will theoretically run faster. But this doesn't mean that an elite runner with a high VO 2
»Heavy resistance training (Chapter 5)
max and average economy will lose to a runner

» Tempo (Chapter 7)

with an average VO max and excellent economy.
2
» Race pace training (Chapter 7)
Table 11.2 offers approximations for what run-

» Mileage (Chapter 8)

ners with different VO max measurements can
2
» HIIT (Chapter 8)
expect to run for 10 K based on their running economy.

To see exactly how these workouts can be incorporated into your overall training program,

Y TRAINING RUNDOWN

skip directly to Chapter 15: Build Your Training Schedule, where sample schedules are available Developing your nervous system involves exerfor runners of all fitness levels and abilities. cises to improve form, balance, proprioception, and the development of neural pathways that aid muscle fiber recruitment. Important training in this chapter's photo instruction includes:
OUR RUNNING BOD

BUILD Y

202
Build YOuR Running BODY-cOMpOnEnts anDWORKOuts

Chapter 11: Rewire Your Running Nervous System PHOTO INSTRUCTION

TECHNIQUE DRILLS

Technique drills train your nervous system to recruit your maximum amount of available muscle fibers rapidly and explosively. They train opposing muscles to relax and contract in unison. Drills with a plyometric component improve running economy for all races. They also contribute to tendon stiffness and fascia strength, increasing elastic recoil. You don't have to do all the following technique drills every
session. Find a routine that works for you, and repeat often (at least once every week or two) during base building, preseason, or even off-season. Do 1-3 repetitions of each drill per workout. There are two ways to do drills: 1. Do drills only, with 1-3 minutes of rest between reps and 3-5 minutes between sets (if you're doing multiple reps of each drill).
2. Perform the drill, then jog back to the start line and immediately launch into a 50-70 meter BUILD Y
stride, then walk back to the start line and perform the next rep/drill. This helps hardwire the nervous system adaptations into your normal stride.

Remember that your CNS can't learn new skills when it's tired. So don't add drills to a hard workout.

Follow drills with a short distance run (3-7 miles). Jessica Ng, a triple jumper currently competing for Claremont McKenna College in Claremont, California, demonstrates all drills.

OUR RUNNING BOD

A March

This drill is performed on the balls of your feet. For this drill, as with most in this chapter, get used to keeping your heels off the ground. When you've mastered this drill, you can move on to the A Skip.

- SKILL LEVEL: Beginner

k Walk forward on the balls of your feet, taking short strides while lifting your knee to hip level
and swinging your opposite arm in a running motion. Your lifted knee should be at approximately
90°, with your lifted foot parallel to the floor.
l Alternate knees for 20-50 meters.

\boldsymbol{Y}

REWiRE YOuR Running ne RvOus sYstEM 203

A Skip

This drill works the hip flexors and quadriceps, developing range of motion, power, and coordination during quick movements.

- SKILL LEVEL: Intermediate, Advanced
k Move forward on the balls of your feet (note: the goal is not the speed of forward movement but rather correct form), lifting your knee to 90° or more and swinging the opposite arm in a running motion.

Look ahead, not down at your feet.
l Keep your arm and knee raised as you execute a short skip with your lower foot.
m Drive down the raised leg, landing on the ball of your foot.
n Simultaneously raise the opposite knee and the arm on the same side as your landing foot, then perform another short skip with the lower foot. Repeat for 20-50 meters.

\boldsymbol{Y}

B March

This drill finishes what the A March started, adding leg extension into the motion. Runners with tight OUR RUNNING BOD hamstrings should exercise caution. When you've mastered this drill, move on to the B Skip.

- SKILL LEVEL: Beginner

k Walk forward on the balls of your feet, lifting your knee to hip level. Your lifted knee should be at approximately 90° (more if you're flexible).
l Extend your lower leg (of the lifted leg), swinging it forward.

BUILD Y

204
Build YOuR Running BODY-cOMpOnEnts and WORKOuts

m Then actively pull your extended leg and foot to the ground, using your glutes and hamstrings to create a gentle pawing motion (as of a horse pawing the ground with its hoof in a digging motion) with your foot. Repeat with your opposite leg, then continue for 20-50 meters.

B Skip

This drill finishes what the A Skip started, adding a forceful gluteand hamstring-driven pawing motion to the end of each skip. Runners with tight hamstrings should exercise caution.

BUILD Y

- SKILL LEVEL: Intermediate, Advanced

k Move forward on the balls of your feet, lifting your knee to hip level. Your lifted knee should be 90° or more. Execute a short skip, as in the second step of the A Skip.
l Extend your lower leg (of the lifted leg), swinging it forward.
m Use your glutes and hamstrings to forcefully pull your foot back toward the ground in a pawing OUR RUNNING BOD motion. Repeat with the opposite leg, then continue for 20-50 meters.
\boldsymbol{Y}

REWiRE YOuR RunningnERvOus sYstEM 205

Butt Kicks—Trigger Action

This drill exaggerates the trigger motion of your stride, when you cock your heel high, near your glutes, before extending your leg forward.

■ SKILL LEVEL: All levels

k Stay on the balls of your feet while kicking your heels up underneath your buttocks. Don't worry if you don't touch, as less-flexible runners have trouble accomplishing this.
l Make sure to pull your heels straight up to
your buttocks while lifting the knee of your same leg in front of you. Move forward at a slow, steady pace for 20-50 meters.

Y Butt Kicks-Dynamic Flexibility

In this version of butt kicks, you're actually trying to kick the back of your butt. It's a great way to stretch out and warm up the quadriceps, but don't work the drill too hard.

- SKILL LEVEL: All levels

k Stay on the balls of your feet. Stand tall and
keep your thighs relatively perpendicular to the
ground as you kick one heel back toward your buttocks. Move your arms in a running motion.
l Kick your other heel backward. Don't worry if you can't touch your buttocks, as less flexible runners have trouble accomplishing this. Focus on the
kicks, not forward motion, and do 20-50 meters.

OUR RUNNING BOD

BUILD Y

206

> BuildYOuR Running BODY-cOMpOnEnts anDWORKOuts

Carioca

It's a good idea to try walking through this drill before doing it at full speed. This drill is great for developing hip abductors and adductors, as well as better coordination for your lower body.

- SKILL LEVEL: All levels

k Start by bringing one leg across and behind the other leg. Move your arms in a motion that mimics a slightly wider version of your running arm movement.
l Use a hopping motion and lift the knee of your forward leg as you step laterally.
m Bring your other leg across the front of your body, this time using a slight jump to help lift your knee high.
n Land laterally to your back foot.
o Step out with the back foot and begin the drill again. Do 20-60 meters, then switch legs.

BUILD Y

OUR RUNNING BOD

Quick Feet

This is a simple drill for developing neuromuscular coordination associated with foot plant-it generates faster foot speed and reduced foot-plant time. It also gives your tibialis anterior and peroneal group (both outside shin muscles) a good burn.

■ SKILL LEVEL: All levels

k Stay on the balls of your feet and take quick "steps" forward, lifting your foot 1-3 inches off the ground. Use an abbreviated running arm motion (and don't worry if your arms don't match pace with your feet).
l Move forward 2-4 inches per step. Lift and plant quickly, but not so quickly that you lose control. To increase speed, drive the ball of your foot into the ground. 20-40 meters is good.

\boldsymbol{Y}

REWiRE YOuR Running ne RvOus sYstEM
207

Skipping

This simple version of skipping-think of skipping back in the schoolyard—begins an alternative trio of skipping drills to the A / B Skip routine. The focus of these skips is more on calves, quadriceps, and explo-sion (rather than the glute/hamstring emphasis of A / B Skip).

- SKILL LEVEL: All levels
k Begin skipping forward. Take
off on one foot . . .
$l .$. then land on the same
foot, after which you switch to the
opposite foot . .
m . . and skip off that foot, too.
Skip for 20-60 meters.

High Skipping

\boldsymbol{Y} This is a variation of normal skipping, working your calves, elastic recoil in your Achilles tendons, and lower-leg fascia. It trains your body to explode off your toes.

- SKILL LEVEL: Intermediate, Advanced
k Begin your skip as in normal skipping, only this time . . .
l . . . spring upward, driving off your toes while lifting the opposite knee high. Swing your arms in an exaggerated motion.
m Land on your takeoff foot.
n Step forward into a similar spring/skip off the opposite foot. The object is to spring high, not to move forward quickly. Do 20-60 meters.

OUR RUNNING BOD

BUILD Y

208
BuildYOuR Running BODY-cOMpOnEnts anDWORKOuts

Long Skipping

In this variation of skipping, you'll skip for distance. This is like the "hop" part of the triple jump (the
"hop, skip, and jump"). You'll take off with one foot, land on the same foot, then quickly step into a similar takeoff and landing with the opposite foot. This drill is not for beginners.

- SKILL LEVEL: Advanced
k You'll need to initiate your skip with a forceful drive forward off one foot.
l Extend your back
leg as you get air. Some
runners find that a quick
double-pump of the
arms while in flight
helps to align the hips
(facing forward) for the

BUILD Y

imminent landing.
m Land on your same takeoff leg, then do a quick stride forward into a skip on the opposite side.
This in-between stride is not for length; it's just a switchover. Do 3080 meters.

Flat-Footed Marching

Flat-footed marching takes your calves out of the picture, forcing your nervous system to focus on contribu-OUR RUNNING BOD tions from your quadriceps and hip flexors.

- SKILL LEVEL: All levels

k Stand tall and start
marching forward. Lift your
knees to at least hip height.
l Forcefully bring your foot
back down, using a flat-footed
plant-don't bring your foot
down so forcefully that you increase impact (you just don't
want to let it float down).
m Lift the opposite knee,
then repeat for 20-50 meters.

\boldsymbol{Y}

REWiRE YOuR Running nERvOus sYstem

High Knees

High knees requires rapid nervous system recruitment of slowtwitch, intermediate, and fast-twitch muscle fibers in your legs and core.

- SKILL LEVEL: All Levels

k Drive one knee upward, swinging your arms high, hands at face level. Stay on the balls of your feet throughout the drill.
l Forcefully bring your leg
down, landing on the ball of
your foot, while simultaneously
beginning to drive your opposite knee upward.
m Lift your knee high. Then
repeat the drill for 20-60 meters.

Y Bounding

Bounding has you spring from one foot to the other. Imagine that you're Superman or Supergirl as you take off in flight, aiming for the sky.

■ SKILL LEVEL: Intermediate, Advanced
k Build into bounding with a couple of short hops from one foot to the other, then drive off the ball of one foot, leaping forward at about a $20-30^{\circ}$ angle, getting some hang time in the air.
l Land on your opposite foot (don't skip!), quickly absorbing the impact and then bounding again.

Repeat for 20-60 meters.
OUR RUNNING BOD

BUILD Y

210

Build YOuR Running BODY-components anD WORKOuts

PLYOMETRICS

Although drills like high skipping, long skipping, and bounding all have plyometric components, actual plyometrics will further improve explosive recruitment of fibers, elastic recoil, and running economy.

Rest 1-3 minutes between sets. Unlike with technique drills, you won't want to do strides between these.

Make sure you're warmed up before attempting a plyometrics session.

Double-Leg Hops

Double-leg hops are a great introduction to plyometrics. This exercise is very demanding on your quads,
glutes, hamstrings, calves, etc., so focus on form and don't skimp on recovery.

- SKILL LEVEL: Intermediate, Advanced

k Stand up straight, feet hip-width apart, with your toes aimed forward or angled out slightly to each side. Now squat as you pull your arms down and behind you. Your quads should be almost parallel to the ground.
l Explode upward, leaping as high as you can.
m Let your knees bend as you land, absorbing the force of this eccentric contraction (the goal of BUILD Y
plyometrics is to marshal this force for the coming concentric contraction).
n Explode upward again. Do 1-3 sets of 3-5 reps (maximum 10 reps), with 3-5 minutes of rest between sets.

OUR RUNNING BOD

Y

REWiRE YOuR Running nERvOus sYstEM 211

Single-Leg Hops

Single-
leg hops increase the force of the eccentric contraction when you lan d. You must do double-leg hops for several sessions before including these in your program.

- SKILL LEVEL: Advanced

k Stand up straight, feet hip-width apart, with your toes aimed forward or angled out slightly to each side. Squat as you pull your arms down and behind you.
l Explode upward, leaping as high as you can.
m Land on one foot, tucking the other slightly behind you. Let your landing knee bend, absorbing the downward eccentric force.
n Leap upward off one foot. Swing one arm (or both) forward and above your head to aid the jump.

Do 1-3 sets of 3-5 reps (maximum 10 reps), with 3-5 minutes of rest between sets.

Build YOuR Running BODY-cOMpOnEnts anDWORKOuts

Vertical Depth Jumps

The depth jump, like the double-leg hop, improves power and economy by marshaling the force of a concentric contraction of your
quads and glutes.

- SKILL LEVEL: Intermediate, Advanced

k Stand on a box or other platform-20-30 inches in height-with your feet at the front edge of the platform.
l Step (don't jump!) off the edge of the platform.
m Land on both feet, letting your legs bend as you absorb the downward, concentric forces.
n Rebound with an explosive leap upward. Some runners use a vertical leap marker to measure height. Do 1-3 sets of 3-5 reps (maximum 10 reps), with 3-5 minutes of rest between sets.

BUILD Y

OUR RUNNING BOD

\boldsymbol{Y}

REWiRE YOuR Running ne RvOus sYstEM 213

Single-Leg Depth Jumps

Single-leg depth jumps increase the force factor of double-leg depth jumps. These are perfect for sprinters, jumpers, and some middledistance runners.

- SKILL LEVEL: Advanced
k Stand on a box or other platform-20-30 inches in heightwith your feet at the front edge of the platform.
l Step (don't jump!) off the edge of the platform.
m Land on one foot, letting your leg bend as you absorb the
downward, concentric forces. Tuck the other leg slightly behind you.
n Rebound off that single leg with an explosive leap upward. Do 13 sets of 3-5 reps (maximum 10
reps), with 3-5 minutes of rest between sets.
Y
OUR RUNNING BOD

BUILD Y

214
BuilD YOuR Running BODY-cOMpOnEnts anDWORKOuts

Box Jumps

Box jumps are a great all-around workout for the lower body, enhancing nervous system recruitment of explosive fibers, improving elastic recoil, and increasing strength.

- SKILL LEVEL: Intermediate, Advanced
k Stand in front of a box or other
platform that's at least one foot high.
l Using both feet, jump up onto
the platform.
m Make sure both feet land
squarely on the platform (for stability),
then immediately jump backward to
the start position, marshaling the eccentric force to jump up on the platform again. Do 1-3 sets of 5-10 reps,
with 3-5 minutes of easy walking between sets.

BUILD Y

Toe Taps

Toe taps develop quick and nimble legs and feet. Plus they're fun to do!

- SKILL LEVEL: All levels
k Stand in front of a box or

OUR RUNNING BOD

platform (1-3 feet high). Place
one foot on the platform.
l Quickly drop the foot from
the platform to the floor while
lifting your opposite knee and tapping the top surface of the platform with your foot.
m Just as quickly, drive your other knee back up, again tapping the top surface. Use a quick, high-step running motion for this drill. Repeat for 1-3 sets of 5-10 reps (each foot), with 3-5 minutes of easy walking between sets.
\boldsymbol{Y}
REWiRE YOuR Running nERvOus sYstem 215

Lateral Barrier Jumps

These aren't for the beginner. You'll need some strength background (work The Runner 360 or a weight
routine from Chapter 5). Lateral barrier jumps work hip flexors, exte nsors, abductors, and adductors.

They're a great hip tune-up!

- SKILL LEVEL: Advanced

k Stand to the side of a modest barrier (one foot in height or less).
$l \& m$ Using both feet, jump sideways over the barrier.
n Land on the opposite side, letting your knees bend slightly to absorb the eccentric force.
$o \& p$ Immediately repeat the motion going the opposite
direction. Do 1-3 sets of 2-10 reps (each direction), with 3-5 minutes easy walking between sets.

\boldsymbol{Y}

Quick Hops

This drill increases foot speed, decreases foot-plant time, and delivers a plyometric burn to your quads.

It's a good exercise for the end of a session of plyometrics-not the beginning.

■ SKILL LEVEL: Intermediate, Advanced

k Start with both feet hip-width apart and with a slight
OUR RUNNING BOD bend at the knees.
l Jump forward, landing as fast as you can. Don't jump
higher than
an inch or two. The object is speedy jumps, not distance. Keep going until you've covered 20-40 meters.

BUILD Y

216

Build YOuR Running BODY-cOMpOnEnts and WORKOuts

BALANCE AND PROPRIOCEPTION

Training for balance and proprioception is important for all runners , from fans of rugged trails to those who do all their running on the local track. Every runner makes an occasional incorrect step, and it's balance/proprioception training that teaches your body how to correct its position before injury occurs and to navigate any terrain. Begin training with simple balance exercises and then work
up to the wobble board. Remember that barefoot running should be eased into slowly and then practiced
sparingly (unless you're making a transition to barefoot running, in which case you should read Scott Douglas's book, The Runner's World Complete Guide to Minimalism and Barefoot Running).

Balance on One Leg

This is the simplest balance exercise of all. Close your eyes, and it becomes the simplest proprioceptive exercise, too! Beginners can wear their shoes. Advanced balancers (if you can balance on one foot for 30-60 seconds) will want to try this barefoot.

- SKILL LEVEL: All levels

k

BUILD Y

Stand straight, knees slightly bent. Lift one foot off the floor and hol dit.

When you can't balance any longer, put the foot down. Work up to 30-60 seconds.

For working proprioception, close your eyes during this exercise, but immediately open them when balance falters.

Variation When balancing itself becomes too easy, straighten your lifted leg behind you and bend down to touch your toes-do one set of 5-10 reps on each side.

OUR RUNNING BOD

\boldsymbol{Y}

REWiRE YOuR Running nERVOus sYstEM

Balance on One Leg with Medicine Ball

Adding object control and movement to your balancing act increases the demand on your nervous system.

- SKILL LEVEL: Intermediate, Advanced
k Balance on one foot while holding a medicine ball (or other ball) in front of you.
l Remain balanced while moving the ball over your head.
m Perform other movements with the ball, including touching your toes, holding it over each shoulder, and swinging it from
side to side. Keep all movements smooth and controlled. There is no time limit for this exercise, so let
fatigue be your guide.

Y Balance with Stability Trainer

Using a stability trainer (like the Thera-Band trainer pictured) adds instability to the surface you're standing on, requiring advanced nervous system adjustment-utilizing both balance and proprioception.

- SKILL LEVEL: Intermediate, Advanced

k Balance on one foot while standing on a stability trainer. Use shoes for the first few sessions, then switch to bare feet. Work up to 30-60 seconds.

Variation If you're having any trouble (or anxiety)
balancing on the trainer, do the exercise with a
chair within easy grasp. If you try this exercise with
closed eyes, definitely use the chair!

OUR RUNNING BOD

BUILD Y

218

```
Build YOuR Running BODY-cOMpOnEnts
anD WORKOuts
```


Two-Leg Balance on the Wobble Board

This simple balance exercise prepares your legs for the instability you're likely to encounter on trails and other uneven terrain.

- SKILL LEVEL: All levels

k Stand with both feet centered on your wobble board and balance a s long as you can, up to a minute. Keep your back straight, but use a slight bend in your knees-and be careful not to hyperextend them!

Variation As you become more proficient, balance on one foot. Remember to balance with your center of gravity situated over the center of the wobble board (for many exercisers,
this will mean their heel, rather than their arch, is closer to the center).

BUILD Y

Barefoot Running on Grass or Sand

OUR RUNNING BOD

Nothing feels better than running barefoot on the grass or sand. But be careful! If you're not accustomed to running barefoot, you'll need to start slow-no more than a mile, once or twice a week.
k Run easy over grass or soft sand. The uneven surface forces your body to rely on proprioceptive senses to navigate the terrain. If you're running on grass, watch out for potholes. If you're running on soft sand, be careful not to dig too deep, as you can strain tendons and ligaments in your feet.

Y

REWiRE YOuR RunningnERvOus sYstEM

 219

Short Hill Sprints

Short hill sprints are the most effective workout for recruiting the maximum amount of muscle fiber types and muscle fibers in the minimum amount of time, for coordinating muscle fiber contraction and relaxation, and for triggering stride-length adaptations in muscle spindles. Runners who are deficient in nervous system training can shed between seconds and minutes from their race times with a single session of these sprints.

■ SKILL LEVEL: Intermediate, Advanced
k Find a hill that's steep, but not so steep that you can't maintain a rough approximation of your normal stride. Sprint uphill at 95 percent of max effort for 6-10 seconds. Do 4-8 reps. Walk down the hill for recovery, with additional rest creating 1-5-minute total recovery periods.
l Sprint down the hill at 85-95 percent of max effort. Downhill's eccentric contractions further challenge your nervous system, simultaneously creating protection against future quad

Y

soreness. Run 8-15 seconds (build into these reps more slowly than with uphill sprints, as you'll need to limit your pace to one in which you are stable and in control). Do 4-8 reps. Walk back up the hill for recovery, with additional rest creating 1-5-minute total recovery periods. But a word of caution: Don't overdo your initial downhill sessions; until your body adapts to this workout,
there is a risk of injury.

OUR RUNNING BOD

BUILD Y

220
BuildYOuR Running BODY-cOMpOnEnts anDWORKOuts

12

Hormones Build Y

W
our Running
hen many people think of
hormones, they think of
teenage romance, testosterone-fueled road rage, and antiaging commercials touting gels, powders, and pills. Don't. Hormones are far more than fuel for emotional tempests and salve for midlife crises. They're an integral messaging system that governs your growth, mood, hunger, metabolism, immune system response, reproductive capability, and overall
biological function. Without hormones, your muscles wouldn't get stronger, your cells wouldn't When you run, levels of exercise-related horabsorb nutrients, and your blood wouldn't have mones begin to rise before your first step, as an-
the RBCs it needs to transport oxygen throughout ticipation triggers a small release of epinephrine your body.
(adrenaline), which in turn stimulates the release Hormonal balance is essential for healthy livof glucagon. Other hormones join in as your run ing. And learning how to arrange your training to begins, then slowly increase in volume until you elicit perfectly timed hormonal response is key to reach an effort level of 50-75 percent of VO max. 2
achieving peak fitness.
A further increase in effort causes hormone levels to soar, as hormones play a major role in making WHAT'S A HORMONE?
fuel sources available to your muscles.
Hormones can be grouped into three types:
Hormones are chemical messengers within your
body that govern all aspects of your biological

1. Steroids: These hormones are derived function. Secreted by your endocrine system (endofrom cholesterol. Examples are cortisol crine glands are located in many tissues), horand testosterone.
mones enter the bloodstream and are transported
2. Proteins and peptides: Hormones in this to target cells-muscles, organs, glands, bones, group are created from chains of amino \boldsymbol{Y} cartilage, and other tissues-where they affect acids. Examples are insulin and human reactions within those cells. While nervous sysgrowth hormone (HGH or GH).
tem impulses travel rapidly along your neural
3. Amines: These hormones are derived network, hormones travel more slowly in your from the amino acid tyrosine. Examples bloodstream; blood takes approximately one minare epinephrine and norepinephrine, as ute to make a full circuit of your body. Compoundwell as the thyroid hormones thyroxin ing this slow delivery, hormones often work in (T4) and triiodothyronine (T3). cascades (think of the board game Mouse Trap), with one hormone triggering the release of anWhen your hormones function properly, they other and so on. Or, conversely, hormones can help your body achieve homeostasis-they keep inhibit the secretion of other hormones. Also, un-
your body stable, its interval environment in ballike nervous system impulses, which elicit shortance, regardless of external conditions. Any delived responses, hormonal impacts can last
viation in your hormonal equilibrium can result between minutes and days.
in system-wide disruptions. That's why hormonal

OUR RUNNING BOD

BEGINNER'S GUIDELINE

Since running is a mostly catabolic exercise (it breaks muscle down) and resistance training is an anabolic activity (it releases hormones that build muscle and speed recovery), it's im-BUILD Y
portant to incorporate some resistance work at the outset of your training program.

222

BuilD YOuR Running BODY-cOMpOnEnts anDWORKOuts

get-fit-quick schemes-performance-enhancing
hormones) - are especially dangerous. See the
drugs (PEDs) and supplements that contain pre-
sidebar, "Gaming the system," for a rundown on
cursors (substances that your body converts into
hormonal misbehavior and its side effects.

TRAINING DISCUSSION

"Gaming the system"

It seems you can't turn on ESPN or read about sports without learning that another athlete-
or group of athletes-has been accused, investigated, or banned for performance-enhancing drug (PED) use. Most non-stimulant PEDs are derived from hormones, and it's a testament to the power of hormones that their misuse has created a super race of bigger, faster, stronger, and, in the case of distance running, more indefatigable athletes than the world has ever seen.

It's long past the time when anyone could kid themselves that PEDs simply provide an edge to already-great athletes. PEDs turn nonathletes into athletes, average athletes into stars, and stars into superstars. A 1996 study published in the New England Journal of Medicine found that men who used steroids for ten weeks built three times as much muscle (thirteen pounds) as men who trained without PEDs (four pounds). Even scarier, men who BUILD Y
used steroids but did no training for the same ten weeks gained seven pounds of muscle, almost twice that of those who trained clean. And studies on EPO (a red-blood-cell booster) have shown that just three months on the drug can boost $V O$ max by 812 percent and 2
increase the time you can maintain 80 percent of VO max (about half marathon effort for 2
most runners) by 54 percent-in other words, a pace that you could run drug-free for a half
marathon, you can run on EPO for twenty miles. Throw in some ster oids and HGH, and OUR RUNNING BOD
you've got yourself a massive PR for the marathon.
If that seems like too much temptation for wannabe-stars to resist, it is. Consider:
» 2013: To no one's surprise, fourteen Major League Baseball players were suspended for use of human growth hormone (HGH). Across the Atlantic (and then the Mediterranean), thirty-one Turkish track and field athletes were banned from competition for their use of anabolic steroids.
» 2012: UCI, cycling's international governing body, stripped Lance Armstrong of his seven Tour de France titles for use of EPO, blooddoping, and other performance-enhancing drugs. In the process, pretty much the entire Tour peloton was implicated in the same type of doping. And in Kenya, German journalist Hajo Seppelt exposed wide-spread EPO use among Kenyan distance runners, long touted as super-runners who didn't need drugs, whose dominance was supposedly rooted in a lifetime of high-altitude training, barefoot running, and perfect ectomorph distance running bodies.
(continued)

Y

BuilD YOuR Running HORMOnEs

223

TRAINING DISCUSSION

» Top Ten Sprinters: Of the top ten male 100-meter sprinters ever, based on time, seven have tested positive for PEDs. Another, Maurice Greene, was tied to a $\$ 10,000$ wire transfer to a relative of notorious PED dealer Angel Heredia, according to a 2008 article in The New York Times. On the women's side, let's just say "Marion Jones" and leave it at that.
» Masters runners: At age forty and over, you'd think there'd be more important midlife crises to fret over than diminishing athletic ability. Yet distance runner Eddy Helle-buyck, who doped his way to a 2:12:46 marathon at age forty-two, became the first American to be banned for EPO use. Not to be outdone, the men's age fifty-andover world record-holder in the sprints, Val Barnwell, subsequently got himself a two-year ban for using testosterone. A half-dozen other masters athletes have followed suit, running the gamut of sprinters, distance runners, and field event performers.
It's no coincidence that any sport's PED abuser list looks like a ballot for that sport's hall of fame. PEDs work. They also do this: Risk the health of millions of competitors.

Y

Lance Armstrong isn't the worst story of EPO use in cycling. The worst story is that since 1989, the year synthetic EPO was introduced, an estimated one hundred international racers have died in their sleep or dropped dead from heart attacks-not surprising, given how
hard the heart struggles to pump blood thickened by increased red bl ood cells and decreased plasma volume (both effects of EPO), a lifethreatening combination made worse by the extreme dehydration brought on by hours of daily training.

And PEDs don't have to kill you to hurt you. Use has been linked to shrunken testicles, impotence, tendon weakness (leading to tendon rupture), elevated bad cholesterol, liver toxicity, jaundice, liver cancer, hypertension, enlarged heart, increased risk of arteriosclero-
sis, and other cardiovascular threats (both heart and artery), not to mention anecdotal evidence of aggression, known as "roid rage." In men with prostate cancer, it speeds the tumor's growth. And HGH can enlarge your chin and forehead; like Barry Bonds, you'll need to get a bigger hat.
Worst of all, professional PED cheats pass on their legacy to young athletes. The Centers OUR RUNNING BOD
for Disease Control and Prevention (the CDC) has estimated that 36 percent of American high school students use steroids-that's five hundred thousand to one million boys and girls.
Gaming the system with PED use shouldn't be viewed as an inevitable consequence of competition, as nothing more than another stepping stone in an athlete's quest for trophies or the big bucks of professional sports. It should be seen for what it is: the attempt by a few unethical players to rob clean athletes of the right to compete on a level playing field. It also exposes young athletes to influences that reduce their chances of growing into healthy BUILD \boldsymbol{Y}
adults.
224

Build YOuR Running BODY-cOMpOnEnts anD WORKOuts

HORMONE TRAINING
Jay Johnson, an elite coach in Boulder, Colorado, with three national champions on his
Your body is expert at maintaining homeostasis. coaching résumé, agrees with Magness. "When And it relies on hormones to do this. So you need you're out on a run," says Johnson, "everything to accept at the outset that the best endocrine you're doing is catabolic-it's breaking things system is a balanced endocrine system. down-and what [my athletes] are doing every
"The body doesn't make performance-enhancmoment from the end of the workout until we get
ing drugs," says Dr. Jeffrey S. Brown, a nationally into our cars are anabolic things." renowned endocrinologist who has treated This chapter's training will focus on those anatwenty Olympic gold medalists and consults for bolic things. It will also cover altitude training for both Nike and USA Track \& Field. "It makes horEPO, pre-workout stimulation for epinephrine, mones to keep us normal. The body is so welland a brief rundown of other important running tuned that you can't overproduce unless you have hormones.
a metabolic problem."
So does this mean that there's nothing you can
HUMAN GROWTH HORMONE (HGH OR GH) do to improve hormonal function?
Not by a long shot.
Growth hormone is where adaptation to training
While Dr. Brown stresses that a traditional apbegins. It promotes protein synthesis, muscle hy-

BUILD Y

proach to diet and exercise is the best way to keep pertrophy, bone density, and tendon and ligament your endocrine system healthy, coaches and exstrength, among other things-and helped deterercise scientists, always looking for an edge, have mine your height during childhood and adolesbeen dabbling in natural (non-PED) hormone macence. nipulation.
"You can organize your training around growth
"If you change hormones at the right time, it hormone, " says Tom Cotner, a biology PhD and the can alter training adaptations and increase recovdistance coach for Seattle-based Club Northwest.

OUR RUNNING BOD

ery," says exercise scientist and elite coach Steve "It serves as the trigger for adaptive response to Magness. Magness's methods include post-run training. It gets the muscle ready to import the resistance training and protein supplementation. building blocks-glucose and amino acids. " "It's the timing that matters. You can get a shortDr. Brown, however, cautions against too great term increase in several anabolic hormones. If an optimism when training for HGH release. "The [resistance training and protein supplementabody has safety mechanisms," he says. "It will tion] are done post-hard running session, which turn growth hormone production off after a ceris catabolic, you should get an increase in recovtain amount of time." In other words, you can't ery. You should get an increase in muscle repair." trick your body into longterm overproduction of Magness makes clear that this is a transient HGH. While weekend joggers get a large HGH rechange. Your body eventually brings your horlease from a short run, fitter runners might have monal levels back to homeostasis, which limits to go miles and miles to stimulate an equal dose. the anabolic effect but avoids the possible

Magness and Johnson aren't arguing for
negative consequences of longterm hormonal greater HGH release, however. They're arguing for \boldsymbol{Y}
imbalance.
better timing of the release that you do produce.

Build YOuR Running HORMOnEs

225
"If you do an afternoon run," says Johnson, it's actually present in women, too, albeit at 10 "and you do your general strength right after the percent the levels found in men.
workout, you're going to have a different hormonal profile when you go to bed that night.

training recommendation

Johnson thinks masters runners can especially benefit from post-run resistance training, "BeTraining for HGH and testosterone release is cause with age, your levels of testosterone and a matter of timing. Your goal is to trigger reHGH are going to go down. It becomes that much lease of the hormones when they can best harder to prevent injuries."
contribute to adaptation and recovery. Mod-
Magness champions protein spikes and recoverate amounts of resistance training post-run ery runs as ways to manage HGH release. "If you can switch off the catabolic effect of running, take a big spike of protein before bed," he says, leaving you in an anabolic state. To achieve "you'll get a huge spike in protein synthesis overthis, try The Runner 360 (Chapter 5), Jay
night. And overnight, when you're sleeping, is Johnson's Kettlebell Routine (see pages 232when a bunch of muscle repair and recovery goes 234), or a 30-minute weight room session on." Magness recommends 30 grams of protein be(Chapter 5). To make your run itself more fore bed. He also suggests taking 15 grams of proanabolic, try Jay Johnson's Running Circuit \boldsymbol{Y} tein up to five times a day as a way to maintain an (see pages 234-239). Protein supplementaanabolic state. A 2006 Australian study on protein tion can trigger protein synthesis (theoretisupplementation confirms Magness's hypothesis. cally including HGH and testosterone The study found that weightlifters who consumed release). Consume up to 15 grams of protein protein immediately before and after training saw five times a day, including immediately after significant increases in muscle size, strength, and training. (This doesn't mean you should skip glycogen stores, as well as decreases in body fat. the post-run carbs, which you need for glyMagness also recommends recovery runs. "If cogen replacement!) Before bed, the amount you look at human growth hormone increases can be increased to 30 grams. Don't exceed with easy distance runs," he says, "it takes roughly twice the daily RDA for protein, which is 56 twenty-five minutes to get a significant increase. grams for men and 46 for women. Also, be

Maybe that's why people sometimes do a short aware that catabolic effects aren't all bad; in shakeout of thirty minutes and feel better." Theo-
fact, adaptation requires them. So beginning retically, breaking a daily longer run into a meand intermediate runners, especially, should dium run and a short recovery run can increase exercise caution in attempting to shut down

OUR RUNNING BOD the length of time that HGH is active in your body.
catabolic effects-it's how we replace weak muscle fibers! Recovery runs are another
TESTOSTERONE
option for stimulating HGH release.
Testosterone increases muscle mass and bone
Johnson believes that both post-run resistance
density. In elevated levels, it can create larger
training and intra-run strength circuits can effec-
BUILD Y muscle fibers and decrease recovery time after tively upregulate testosterone (and HGH). For postworkouts. Often referred to as "male hormone,"
run training, he utilizes either a high-intensity
226

Build YOuR Running BODY-cOMpOnEnts anDWORKOuts

TRAINING DISCUSSION
"Growth hormone to the max"
Human growth hormone (HGH) stimulates your cells to grow, reproduce, regenerate, and recover. That's why athletes love it-and the more of it the better!
HGH is produced in the pituitary gland, which is the size of a pea and dangles from the hypothalamus, itself the size of an almond and located at the base of your brain. HGH is released when you
exercise and during delta sleep (your deepest sleep). The more intense your training, the more HGH you'll produce-right up to the point where your body's need to preserve homeostasis shuts down production.

Increasing HGH production can be accomplished in three ways:
» Running: HGH production begins about ten minutes into a run, then shuts down after seventy-five minutes. Fartlek is especially beneficial for stimulating release.
» Resistance training: A few intense minutes or thirty to forty minutes of more moderate training are both good stimuli for release.
» Protein supplementation: Protein before and after training, as well as a good pro-BUILD Y
tein spike before bedtime, is thought to trigger higher levels of release.

Tom Cotner, a biology PhD and longtime distance coach for the Seat tle-based Club Northwest, notes that there are also five easy ways to decrease HGH release: 1. Sleep disturbance: Anything that interrupts delta sleep interrupts HGH production.
2. Poor nutrition: It's especially important to consume enough calories.

OUR RUNNING BOD

3. Injury: HGH will shift its priority to healing any injury.
4. Sickness: Sickness lowers HGH release, especially if accompanied by a fever.
5. Alcohol: One drink decreases nocturnal HGH release by 30 percent. Two cuts it by 75-80 percent.

Stimulating maximum HGH requires you to do the right things-and avoid doing the wrong things.
kettlebell routine or lower-intensity strength train-
runners, these circuits extend the duration of working, noting that it takes about thirty minutes of the
outs while simultaneously building the kind of
latter to equal the effect of three minutes of the forstrength that wards off injury.
mer. For intra-run training, he uses running circuits Dr. Brown sounds a less optimistic note. "If you that pair running with strength exercises (see photo look at male hormone levels before, during, and after \boldsymbol{Y}
instruction in this chapter). For less-experienced a very stressful run," he says, "they go down. The

Build YOuR Running HORMOnEs

 227pituitary turns off the stimulation. To turn it back on, Magness takes a more real-world view of EPO.
you have to recover. And the quicker you recover, the
"It works," he says, pointing out the enormous adquicker you get male hormone levels back up." vantage it gives endurance athletes. A 2013 study
Nevertheless, many of the world's top runners, found that EPO created a 5 percent improvement including Mo Farah and Galen Rupp, the 2012 in the 3 K times of Kenyan runners, long thought London Olympics gold and silver medalists at immune to benefits beyond what innate physiol10,000 meters, put their faith in post-run resisogy and a heritage of high-altitude living had given tance training, performing intense strength and them. Other studies have shown gains of 5-15 perconditioning workouts within an hour of equally cent in aerobic performance. "It might not change intense interval sessions on the track.
the [oxygen-]carrying capacity to the muscle cell
to a large degree, but it changes the feedback to the ERYTHROPOIETIN (EPO)
brain. If your brain senses that there's a higher red blood cell count, then that could be enough to afEPO stimulates your bone marrow to produce red fect the central governor [a theory of how the brain blood cells. Red blood cells carry oxygen from monitors fatigue and exertion]." your lungs to your cells, so more red blood cells means more oxygen for your muscles. A 2004

training recommendation

Y study by Genc, Koroglu, and Genc determined that EPO also plays "a critical role in the developAltitude training increases EPO levels, which ment, maintenance, protection, and repair of the will increase red blood cell volume in a runnervous system." And a 2008 study from the Uniner who's not overly fatigued. Most runners versity of Oxford found that administration of benefit from at least three weeks at altitude, EPO improved cognitive function. train easy the first week and make sure you But when runners think about EPO, it's about get enough recovery between workouts. the red blood cells. Numerous studies have conSome runners use altitude tents, which simfirmed increases in VO max of 8-12 percent when ulate the low-oxygen atmosphere found at 2
hematocrit (percentage of total blood plasma vol-

8,000-12,000 feet.
ume composed of RBCs) is raised to a value of
fifty-meaning 50 percent RBCs. And a 2007 study
Altitude training is a natural way to increase by Thomsen, et al., showed that a thirteen-week $E P O$, and it's a staple of almost every elite disregimen of EPO supplementation increased timetance runner's training program. You get your big-to-exhaustion at 80 percent $V O$ max by more than gest increase in EPO during the first week at 2

OUR RUNNING BOD 50 percent (see sidebar, "Gaming the system").
altitude. After that, EPO production levels out, al-
Still, Dr. Brown isn't sold on this aspect of
though it still remains higher than normal. But
EPO's performance impact. "The oxygen that gets
translating that EPO spike into more RBCs reto the muscle is actually dissolved oxygen in the
quires enough "adaptive reserve" to fuel the pro-
plasma," he says. "You go from red blood cell to
cess. Magness hypothesizes that runners who
plasma to tissue. There's a homeostatic mecha-
don't respond well to altitude might simply be
BUILD Y nism in the body that maintains oxygen levels in tapped out, resource-wise, from the increased ef-the plasma. And plasma is not affected by EPO."
fort of training at higher elevations.
228
Build YOuR Running BODY-cOMpOnEnts
anD WORKOuts
Whether EPO's effect on endurance is due to
blood flow to muscles), and stimulates the breakincreased oxygen delivery, improved nervous sysdown of muscle glycogen and fat. Known as the tem function, feedback to the central governor, or "fight or flight" hormone, it facilitates energy cresimply the psychological relief that comes from ation and prepares your body for action. breathing more easily at sea level post-altitude Anticipation of exercise is enough to raise your training, there's no doubt that, for most runners, epinephrine levels, as anyone who's ever toed the an increase in EPO is accompanied by an imline for a big race can verify. The trick is to bring a provement in performance.
little of that same adrenaline rush to every hard workout. That's where coaches, training groups, CORTISOL
and training schedules come into play. Looking forward to a hard workout with friends produces Cortisol serves as both a catabolic agent and an a lot more adrenaline than doing a solo slog along anti-inflammatory. Where anabolic hormones the same old trail. And an occasional pre-compe(e.g., HGH and testosterone) promote tissue tition pep talk can do wonders for performance. growth, catabolic hormones break down protein "Win one for the Gipper," the halftime speech and fat. Of course, breaking down protein isn't alused by Knute Rockne to rally Notre Dame to a ways a bad thing. Cortisol, vital for muscle adap-

1928 football victory over undefeated Army, may tation, breaks down weaker muscle tissue so that be a cliché, but it's also the template for good hor-

BUILD Y

it can be replaced by stronger tissue. It also remonal therapy.
duces inflammation by suppressing the immune system during high-intensity training. And it

training recommendation

spares glycogen reserves by accelerating your use of fat.

While pep talks from inspirational coaches
So far, so good.
and athletes are great, it's more practical to When athletes overtrain, however, their bodies bring excitement to your runs the old-fashOUR RUNNING BOD
can be overwhelmed by cortisol. Too much breakioned way: Run with groups, schedule 1-3 down and not enough building lead to decreased challenging workouts a week, and try to inperformance. Longterm elevated levels of corticorporate a variety of training.
sol can lead to memory impairment, obesity, heart disease, depression, weight gain, insomnia, and night sweats, among other side effects.
INSULIN
You can use post-run anabolic training to switch off cortisol secretion. At the same time, it'd Insulin directs your cells to take up glucose form be a mistake to completely eliminate cortisol's
the bloodstream and store it as glycogen in your positive impact on adaptation.
muscles and liver. Too much insulin lowers your blood sugar (the pituitary gland's response is to EPINEPHRINE (ADRENALINE) release HGH, making insulin yet another prized PED for drug cheats). Insulin levels drop when Epinephrine increases heart rate, relaxes airways, blood glucose levels drop or when epinephrine \boldsymbol{Y}
constricts blood vessels in the skin (increasing levels rise.

Build YOuR Running HORMOnEs

229

GLUCAGON

the "normal range") in order to increase performance? Hutchinson says"it pushes me closer to

Glucagon stimulates the liver to break down glybelieving that WADA [the World Anti-Doping cogen and release glucose when blood glucose Agency] should be regulating thyroid medication levels fall. It also promotes fat-burning for aerobic use."
energy. When you run, rising epinephrine levels Also worth noting is that bodybuilders have stimulate the release of glucagon even before long used thyroid medication, claiming that it your glucose levels fall. This gives your body a both lowers body fat and increases the potency of head start on preparing fuels for your aerobic furinjected HGH.
nace. Glucagon's role in energy production makes it extremely valuable for longer races like the half training recommendation
marathon and marathon.
A 2009 study suggests that calorie deficit is THYROID HORMONE (T4 AND T3)
associated with thyroid dysfunction in athletes. So don't starve yourself. Diet sensibly

Thyroxin (T4) and triiodothyronine (T3) are reand keep your available fuel levels high for leased from the thyroid gland. T4 is later contraining.
\boldsymbol{Y} verted to $T 3$ within cells. Thyroid hormone plays a major role in determining metabolic rate and maintaining muscle, brain, bowel, and overall ENDORPHINS
hormonal function. A malfunctioning thyroid can lead to hypothyroidism (under-secretion of T4) or Endorphins are responsible for the "runner's hyperthyroidism (over-secretion of T4).
high"- a feeling of euphoria that runners some"With either too much or too little thyroid, times experience during prolonged endurance your muscles don't contract normally," says Dr. training. The good news is that longtime runners Brown, who has treated many world-class athbecome more sensitive to endorphins. The bad letes for thyroid dysfunction and claims that news is they also produce less and less of them. treatment brings them back to normal without conferring an advantage. "[Muscles] don't have

ESTROGEN

the power to contract. So sprinters don't run as fast, jumpers don't jump as far, and distance runEstrogen helps facilitate the breakdown of stored ners' times get slower."
fat into fuel. Although known as a female sex hor-

OUR RUNNING BOD

Alex Hutchinson, author of the Runner's World mone, estrogen is present in both sexes, albeit at blog Sweat Science, isn't as comfortable with the lower levels in men.
high number of athletes currently on thyroid medication. He notes that a Spanish study on cy-

HORMONES IN THE BALANCE
clists found that low-but-normal thyroid levels were associated with reduced performance. Is it While the photo instruction for this chapter will
BUILD Y ethical to increase those levels (to the high end of detail some specific training for improving your 230

Build YOuR Running BODY-cOMpOnEnts anD WORKOuts

anabolic hormonal profile, it's important that, in portant training in this chapter's photo instruc-your daily life, you observe the two main tenets of tion includes:
hormonal balance:

» Post-run kettlebell routine

» Stay healthy: Even a common cold will lead

» Running circuits

to a drop in hormone levels.
" Eat right: Get enough calories and don't
Training from other chapters that affects your completely eliminate cholesterol-you hormones includes: can't make steroid hormones without it.

» The Runner 360 (Chapter 5)

With both your nervous system and endocrine

» Resistance training (Chapter 5)

system up to speed, there's no reasonable physiological request you can make of your running

To see exactly how these workouts can be inbody that can't be delivered.
corporated into your overall training program,
skip directly to Chapter 15: Build Your Training
TRAINING RUNDOWN
Schedule, where sample schedules are available for runners of all fitness levels and abilities.
Offsetting the catabolic effect of running involves

BUILD Y

performing anabolic training post-workout. Im-
OUR RUNNING BOD
Y
Build YOuR Running HORMOnEs
231

Chapter 12: Build Your Running Hormones PHOTO INSTRUCTION

THE 95-SECOND KETTLEBELL ROUTINE
This 95-second routine was created by Coach Jay Johnson as an allaround strengthening routine and as a post-run anabolic stimulus. It requires moving fluidly from one kettlebell exercise to the next. It's advisable that you practice each exercise individually before putting
all the exercises together. Also, pick a kettlebell weight that you can handle (i.e., start light) and be careful that the kettlebell never extends
beyond the plane of your body (i.e., behind your head) when doing o verhead presses and swings. When doing each exercise separately, allow 15-30 seconds of rest between exercises-or as much time as you need the first few times. When you put it all together, there is no rest between exercises, providing you with the kind of anabolic stimulus that will have your body building-rather than breaking down-during recovery. For more of Coach Johnson's routines and advice, go to: coachjayjohnson.com.

\boldsymbol{Y}

The following four exercises, from the Squat to the Single Arm Swing, are all part of the same continuous workout.

95-Second Kettlebell Routine

SKILL LEVEL: Intermediate, Advanced

Squat

k Begin from a standing position, feet hip-width apart, toes pointed slightly out. Hold the kettlebell at chest height.
l Move your hips backward as you lower your torso until your thighs are roughly parallel to the ground. Keep

OUR RUNNING BOD your heels on the ground. Don't lean forward too much.

Reverse the motion to return to your starting position. Do
8-10 reps.

BUILD Y

232

Build YOuR Running BODY-cOMpOnEnts anD WORKOuts

$$
\AA
$$

$$
i
$$

Squat to Press

k Stand with your feet hip-width apart, toes pointed slightly out. Hold the kettlebell at chest height.
l Move your hips backward as you lower your torso until your thighs are roughly parallel to the ground. Keep your heels on the ground. Don't lean forward too much. m Reverse the motion toward your starting position, but now press the kettlebell up and over your head in one smooth motion. Then drop straight back to the squat position.

Do 8-10 reps.

BUILD Y

Double Arm Swing

k Stand with your feet hip-width apart, toes pointed slightly out. Hold the kettlebell with both hands, letting it hang below your waist.

OUR RUNNING BOD

l Bend your legs as you lower the
kettlebell between your legs.
m Swing the kettlebell in one
smooth motion over your head-don't
let momentum carry the kettlebell beyond the plane of your body (i.e., behind your head). Then move straight
back into instruction B for the next
rep. Do 8-10 reps.
\boldsymbol{Y}

Build YOuR Running HORMOnEs

Single Arm Swing

k Stand with your feet hip-width apart-or slightly wider for this exercise, for increased stability-and your toes pointed slightly out. Hold the kettlebell with one hand, letting it hang below your waist.
l Bend your legs as you lower the kettlebell between your legs. Keep your arm straight.
m Swing the kettlebell in one smooth motion over your head. There should be a straight line from your arm through the kettlebell. Switch arms at the bottom of the downswing (after performing all reps for one side). Do 8-10 reps with each arm.

RUNNING CIRCUIT

The running circuit workout requires that you run for a specified distance, stopping intermittently for quick sets of exercises. The object is to build running strength while keeping the workout anabolic (in a building phase) rather than catabolic (a breaking-down phase). The following running circuit was designed by Coach Jay Johnson. Each run/exercise segment of the workout includes the following: 1. A running repetition on the track (can be run from jogging to 10 K pace, depending on current fitness) that lasts 500-700 meters, beginning at the track's general start line.
2. If 500 meters, walk back across infield to start line, stopping intermittently to perform strength exercises.
3. If 700 meters, jog 30 more meters, then do all four strength exercises for that segment. Then jog OUR RUNNING BOD
70 meters back to start.
4. Perform all four segments during a single workout.
5. For alternative circuit exercises, go
to: coachjayjohnson.com/2010/08/running-times-circuits-parts-1-2-and-3/

The following twenty exercises, from the Run Repetition \#1 to the Scorpion, are all part of the same continuous BUILD Y workout.

234

BuilD YOuR Running BODY-cOMpOnEnts anDWORKOuts

Running Circuit

- SKILL LEVEL: All levels

Run Repetition \#1

The run-repetition segments of this workout should be determined by your fitness. This is meant to be a challenging workout, but it shouldn't be so hard that you can't complete the strength exercises that follow each run-repetition segment.
k Beginners start with 500 meters of easy running. Fitter runners can go 700 meters at tempo pace. Really fit runners can run 10 K pace. (True newbies can start with 300 meters.)

Side Lunge

k Stand with feet hip-width apart. Step to your right. Sit back as BUILD Y
you step-as if you were going to sit in a chair-while moving your weight toward your right leg. Keep your hands in front of your chest with your elbows wide. Do 10 reps, then repeat with your left leg.

OUR RUNNING BOD

Air Squat

k Stand straight, feet hip-width apart, toes pointed slightly out, arms at your sides. Bend your knees, pushing your hips back and lowering your torso until your thighs are parallel to the ground. As you squat, bring your arms up, extended in front of you (for balance) . Do 10 reps.

Side Leg Lifts

k Lie on your side with your legs stacked. Either rest your head on one arm (your shoulder, hip, and feet in a line) or rest on your elbow (for the more flexible).

Lift the top leg to 45° in a smooth motion, then bring it back down. Do 10-20 reps with each leg.
\boldsymbol{Y}

Build YOuR Running HORMOnEs

Groaners

k Sit on the track with your hands behind you. Your feet are in front of you, with about a 90° bend at the knees. Now roll your knees laterally from side to side, touching the closest knee to the track. Do 10 reps (each side).

Run Repetition \#2

k Repeat your same running repetition (as Run Repetition \#1).
\boldsymbol{Y}

Front Lunge

k From a standing position, feet hip-width apart, step forward with your left foot until your knee is over your left ankle-you should have about a 90° angle at your knee. Move your arms in a running motion. Do 10 reps, then repeat with your right leg.

Wideouts

OUR RUNNING BOD

k Start with feet hip-width apart, a slight bend at the knees, hands held together at chest level with your elbows out. Now hop as you spread your legs wide (as pictured), as if you were avoiding a soccer ball kicked between your legs. Then hop to bring your legs
back to the start position. Do 10 reps.
BUILD Y
236
BuildYOuR Running BODY-cOMpOnEnts anDWORKOuts

Prone Pedestal

k If you've ever done a push-up, this is your highpoint, start position. On your hands and toes, arms extended, head in line with your spine. Don't raise your hips
or sag. Eyes on the floor. Hold for 30 seconds.

Supine Pedestal

k This is the reverse of the prone pedestal. Face up, on your hands and heels, arms extended downward. Try not to sag. Hold for 30 seconds.

Run Repetition \#3

BUILD Y

k Repeat your same running repetition (as Run Repetition \#1).

Backward Lunge

k From a standing position, take a big step backward with

OUR RUNNING BOD

your right leg. Your left knee will be over your left ankle. Move your arms with a running motion. Alternate legs for 10 reps with each leg. You can either return to your starting position between reps or just keep moving backward.

Four O'Clock and Eight O'Clock Lunge

k From a standing position, take a big step back and to the side. If this was a clock, you'd be moving your right leg to the four o'clock position and your left leg to the eight o'clock position (with straight ahead being twelve o 'clock). Your back foot should face sideways, perpendicular to your stationary front foot. Your back knee should finish over your back ankle. Your \boldsymbol{Y}
front leg remains straight. Do 5 reps with each leg.

BuilD YOuR Running HORMOnEs

237

Prone Pedestal Leg Raise

k Assume the prone pedestal position from your previous set of exercises. Using a smooth and continuous motion, raise and lower your right leg, lifting as high as is comfortable while trying to keep the leg straight (at this point in the workout, you'll probably struggle with this-that's okay!). Do 5 reps, then do 5 reps with your left leg.

Supine Pedestal Leg Raise

k Assume the supine pedestal position from your previous set of exercises. Using a smooth and continuous motion, raise and lower your right leg, lifting as high as is comfortable while trying to keep it straight. Keep a straight line from your shoulders through your hips and the lower

\boldsymbol{Y}

leg. Do 5 reps, then do 5 reps with your left leg.

Run Repetition \#4

k Repeat your same running repetition (as Run Repetition \#1).

Burpees

k Start from a standing position.
l Drop into a squat with your hands on
the track.
m Kick your legs backward, forming the
prone pedestal position. Then hop back to the squat
position. Next, stand while raising your hands above your head (stand, don't jump). Do 10 reps.
OUR RUNNING BOD

BUILD Y

238

> Build YOuR Running BODY-cOMpOnEnts and WORKOuts

Push-Ups

k Assume the supine pedestal position, hands spread
slightly wider than shoulder width. Lower and raise your body by pushing against the track/ground. Start with 5 reps, then build up to more as fitness dictates.

Iron Cross

k Lie on your back with your arms extended laterally from your shoulders and your legs straight. Swing one leg over to the opposite side of your body, touching your foot to the track at hip height or higher. Return and perform the same motion with your opposite leg. Do 10 reps on each side.

Scorpion

k This exercise is the reverse of the Iron Cross. Lie

BUILD Y

on your belly, arms extended laterally from your shoulders. Swing one leg to the opposite side, bending at the
knee and trying to touch your foot to the track as high as you can reach. Return and perform the same motion with your other leg. Do 10 reps on each side.

OUR RUNNING BOD

\boldsymbol{Y}

BuilD YOuR Running HORMOnEs

Brain Build Y

It's a sports cliché that
success is 90 percent
mental and 10 percent physical. But most of us don't really
believe that. We know that we

our Running

can't will ourselves to be as tall as
Shaquille O'Neal, as tough as Ray
Lewis, or as fast as Usain Bolt. And the
previous eight chapters of Part Two of
this book have made clear that improved physiology trumps positive
thinking. Because of this, it's easy to
dismiss the " 90 percent mental"
claim as hyperbole.
Only one problem with that: The cliché is 100
language, perception, etc.-and is gray, hence the percent true.
term "gray matter."
It's not enough to spend weeks and months
But don't get bogged down in the anatomy.
building your physiological running body. Before
And don't expect this chapter to recommend calyou can truly put that training to work, you'll isthenics for your cerebral cortex or resistance need to pass a very important inspection. And training for your bulges and grooves. Instead, your inspector is tough as nails. Tougher than the we'll explore some theories on why the brain crejudge at a sentencing hearing. Tougher than a faates sensations of fatigue and pain (while simulther giving his daughter's date the once-over be-
taneously dictating a reduction in the force your fore the high school prom. Tougher than a Military muscles can produce), and then we'll look at a Training Instructor doing dormitory inspection few "tricks" for getting your brain to lighten upduring basic training. Your inspector is your brain. to allow you to run a little faster, farther, and with And your brain isn't about to let you harm your less fatigue and discomfort.
body just to run a PR. First, you'll have to convince We 'll begin by looking at two general apit that your body's up to the challenge. proaches to deciphering fatigue: WHAT'S THE RUNNING BRAIN?

» Theory of peripheral fatigue \boldsymbol{Y}

» Theory of the Central Governor

When we talk about your "running brain," we're talking about your brain's regulation of exercise Then we'll look at a list of candidates for the and effort-not your physical brain parts. Specifiexact cause of fatigue, and we'll also examine the cally, we want to focus on fatigue, which is your brain's role (or lack of one) in each theory. Finally, brain's mechanism for limiting performance in we'll discuss some ways to lessen, delay, or disretraining and racing.
gard fatigue.
For those who'd like a basic outline of the

Be forewarned that the brain's role in running brain's physiology: It has about eighty-five billion is a heavily debated topic among athletes, neurons (we covered this in Chapter 11). It's comcoaches, and physiologists. As of now, there are posed of the cerebrum, cerebellum, and brain lots of studies, theories, and opinions, but there's stem. And the cerebrum and cerebellum are covlittle concrete evidence behind any of them. ered by the cerebral cortex, which has two hemiThat's why we'll focus on real-world observations spheres containing bulges and grooves (gyri and of how runners have affected their brains' regulasulci) and serves as the seat of human reasoning, tion while training and racing.

OUR RUNNING BOD

BEGINNER'S GUIDELINE

Training your brain isn't about positive thoughts or fighting through pain. It's about performing the workouts that convince your brain you've earned the right to run a little harder, faster, and farther.

BUILD Y

242

BuilD YOuR Running BODY-cOMpOnEnts anD WORKOuts

TRAINING DISCUSSION

"Is swishing and spitting the new carbo-loading?"

For most of us, the phrase "mind over matter" conjures images of Indian yogis levitating during deep meditation, Tony Robbins walking barefoot over hot coa ls, or Uri Geller bending a spoon with his mind-old tricks that we dismiss out of hand.

So when someone claims that simply swishing and then spitting out a carbohydrate or caffeine drink can improve your running
performance, it seems reasonable to dismiss that as a trick, too. Except in this case, it's real.

A 2004 study found that cyclists
who rinsed their mouths with sports drink for five seconds-and then spit it out-completed a forty-kilometer time trial a minute faster than cyclists who rinsed with a placebo. And a 2009 follow-up study documented a 3 percent performance improvement and included brain imaging that revealed post-swish activation of brain regions involved in reward and motor control. Finally, proving that more is better, a 2013 study showed that rinsing for ten seconds led to even greater improvement. The main takeaway points are these: BUILD Y

1. The cyclists' brains could tell the difference between real carbs and placebos.
2. Just the oral sensation of carbs was enough for the brain to increase muscle activation.
3. Improvement occurred even though carb depletion isn't a factor in forty-kilometer time trials.

In other words, the cyclists' brains were anticipating carb depletion —even though it hadn't occurred-so rewarded the promise of more carbs by freeing the cyclists to pedal OUR RUNNING BOD harder.

A 2013 study conducted by a multinational quintet of authors, led by
C. Martyn Beaven, produced similar results for both a caffeine drink and a combination caffeine-and-carb drink.

Swishing caffeine improved sprinting ability, and a caffeine-andcarb rinse worked better than carbs alone.

What all these studies show is that there's more going on with fatigue than tired muscles.

In the case of swishing and spitting, your brain is altering your imm ediate performance based on its belief that you've added an energy source for the near future.

But before you lobby the race director for your next 10 K to set up spittoons at the start line, note that swishing and spitting only works if you're low on muscle glycogen. If you carbo-load ahead of time, swishing won't have much (or any) effect on your performance.
\boldsymbol{Y}

BuilD YOuR Running BRain

243
BRAIN TRAINING
(picking up the pace for the last 10 percent of a race) proves that runners are never actually fatigued, that Can the brain be trained? Most runners and their brains hold back energy reserves until the fincoaches these days would answer, "Yes." But that ish line is near-when it's safe to increase effort. hasn't always been the case. For decades, the Many runners and coaches opt for a third brain was viewed as little more than a sensory model: Your brain uses a combination of conrelay station for fatiguing muscles-not as the arscious and subconscious regulation to determine biter of effort, pace, and exhaustion.
pace and to monitor fatigue. Indeed, as Samuele The Peripheral Fatigue model was the dominant M. Marcora, a senior lecturer in Exercise Physioltheory of fatigue during the last century. In this ogy at Bangor University in Wales, writes, "[The] model, fatigue is generated when muscles begin to end spurt is perfectly compatible with an effortfail, and, if allowed to continue, leads to a physiologbased decision-making model of exercise perforical "catastrophe"-acidosis, extreme body heat, mance." Most athletes make conscious pace etc.-that forces you to slow down or stop. It's worth decisions and adjustments throughout a race. noting that exercise physiology studies have tradiJust as Adrian Peterson of the NFL's Minnesota Vi-
tionally been designed with this model in mind.
kings needs only a fraction of a second to choose
Study participants perform an exercise task until his path through the defense, runners constantly \boldsymbol{Y} fatigue forces them to quit (e.g., a treadmill test, in monitor their environment (terrain, climate, com-which speed and incline are increased at regular petitors, etc.) and sensations of fatigue as they
intervals until the participant is unable to continue). run, then make quick decisions on pacing, stride,

Measurements of the suspected agent of failure are and, most important, effort. At the end of a race, taken before, during, and after the test. If measurea conservative runner can increase effort-the ments rise dramatically, it might be concluded that end spurt-without collapsing. Runners who've the agent did, in fact, cause failure. The problem been less mindful of their effort, however, are of with these tests is that real-world running doesn't ten unable to pick up the pace, a partial refutation proceed linearly to the point of failure. Instead, runof the Central Governor theory.
ners choose a pace that ensures they'll reach the The training suggested in this chapter asfinish, and they have the option of slowing down at sumes both conscious and subconscious regulaany point during a run.
tion of the many factors that affect fatigue. The
The Central Governor model, proposed in 1997 by goal is to train the brain to allow you to run
Dr. Timothy Noakes (and later included in the fourth
harder, faster, and farther. Whether the fatigue
edition of his book, Lore of Running), rejects the pe-
being overcome is genuine physical discomfort or
OUR RUNNING BOD ripheral fatigue model, instead proposing that fa-an "emotion" generated by the Central Governor tigue is an emotion, generated by the brain as a doesn't change the benefit of convincing the brain
means to protect your body. Your brain monitors
to ignore it.
feedback from all regions of your body during exercise. If your brain senses imminent danger from an

FATIGUE
effort level that might damage your organs, it de-
BUILD Y creases muscle fiber recruitment, thereby slowing Fatigue occurs when muscles being used for exer-you down. Noakes believes that the "end spurt" cise show a progressive drop in performance

244

Build YOuR Running BODY-cOMpOnEnts anD WORKOuts

accompanied by physiological and psychological placebo did. A subsequent test of trained cydiscomfort. But there is genuine disagreement clists-forced to exercise at near-maximum aeroover the root cause of that reduced performance bic capacity for three hours, three days in a and subsequent (or, in the case of the Central row-likewise revealed damaged calcium chanGovernor, anticipatory) fatigue. Let's look at a few nels in skeletal muscle fibers, although ethical of the candidates. considerations prevented Marks from testing the
unapproved drug on them (the calcium channels Acidosis
fully repaired themselves, however, after a few We discussed low pH in Chapter 9. Hydrogen ions days). Since experiments with the mice were performed during highintensity energy production
formed to exhaustion, it's unknown what effect overwhelm your muscle fibers' buffering ability. leaky calcium channels have on real-world, subThe resulting acidosis has been linked to interfermaximal exercise. (Note that Dr. Marks is not sayence with calcium release within muscle fibers ing that having leaky calcium channels in skeletal (necessary for muscular contraction), reduced muscle fibers due to exercise leads to damaged ATP production, reduced ATP hydrolysis (release calcium channels in your heart; you'll recover of energy from ATP), decreased force production, quickly from changes in your skeletal muscle fiand decreased contraction velocity. A 1995 Aus-bers-if all goes well, with stronger fibers than tralian study concluded, "Intracellular acidosis you had previously).

BUILD Y

affects many aspects of muscle cell function[.]"
And, as first noted in Chapter 9, a 2006 study by
Body temperature
authors Knuth, Dave, Peters, and Fitts confirmed When your body temperature reaches a critical that "the fatigue-inducing effects of low pH " are core temperature during exercise of $104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right)$,
significant in humans.
you stop running. But as Dr. Ross Tucker points out in an in-depth series on fatigue for his webLeaky calcium channels
site, \quad The Science of Sport, experiments based on

OUR RUNNING BOD

When Dr. Andrew Marks went looking for a cause heat-based failure are "set up to evaluate a of weakened cardiac muscle fibers in patients 'forced' physiology leading to a distinct failure." with congestive heart disease, he discovered Tucker explains that most humans don't exercise damaged calcium channels-calcium is released until their bodies reach $104{ }^{\circ} \mathrm{F}$ ($106^{\circ} \mathrm{F}$ for highly within fibers as a prelude to contraction, then motivated athletes) because we have the option quickly pumped back into a storage area (the sarto slow down. Tucker had twelve trained cyclists coplasmic reticulum) so that the fibers can relax. perform 20K time trials in either hot or cool conDamaged calcium channels result in less forceful ditions. At 5K, cyclists in the hot conditions muscle contractions. In a 2008 study, Marks exslowed down-even though their body temperapanded his theory to skeletal muscle fibers. Mice tures remained almost identical (at that point) to forced to swim ninety minutes twice daily were cyclists in cool conditions-and their brain siggiven either a drug to shore up leaky calcium naling to their muscles decreased. The cyclists channels or a placebo. The mice that got the drug
didn't slow down because their body temperature showed no decline in performance during weekly rose; they slowed down in anticipation of a rising \boldsymbol{Y}
time trials to exhaustion. The mice who got the body temperature in the future-their brains

Build YOuR Running BRain

 245slowed them down to avoid physiological catascrosses the blood-brain barrier, its toxic effect on trophe.
neurons leads to reduced muscle fiber activation and sensations of fatigue.

Depolarization
Triathlete, runner, and running-writer Matt
Glycogen depletion
Fitzgerald, who serves as a reliable harbinger of All runners know the phrase "hitting the wall." It's new running theories, has written that "muscles the moment fifteen to twenty miles into a marawork kind of like batteries. They run on electricity, thon (or a long run) when glycogen stores run dry, and, like batteries, they are most powerful when forcing you to rely upon fats and protein. An averthey are highly polarized. " As you exercise at high age person stores about 300-400 grams (1,200intensity, however, the difference in positive 1,600 calories) of glycogen. But a trained, charge between the inside of your muscle fibers carbo-loaded athlete can store twice that much. A
and the space outside (the polarity) decreases. 2001 study, whose authors included Noakes This depolarization makes it harder for nerve sig(aforementioned creator of the Central Governor nals to penetrate your fibers, leading to weaker theory), found that while carbo-loaded cyclists contractions. Interestingly, studies in 2001 and and non-loaded cyclists started a time trial at the 2010 concluded that acidosis can counteract desame pace, the non-loaded cyclists slowed down \boldsymbol{Y} polarization. In fact, the latter study found that within a minute. Even more interesting, while the
lactate by itself protects against depolarization carbo-loaded cyclists rode the entire time trial 6
and "may reduce the importance of elevated expercent faster than the non-loaded cyclists, both tracellular K+ [positive charge] for the developgroups finished with virtually the exact same ment of fatigue. " Furthermore, lactate released to amount of remaining muscle glycogen. In other the bloodstream can mediate depolarization in words, they both chose paces that directly corremuscle fibers throughout the body.
lated to their relative levels of muscle glycogen.
Ammonia
Inorganic phosphate
Raised ammonia levels are associated with liver When you burn ATP for energy, it splits into ADP disorders like cirrhosis, in which the liver can no and inorganic phosphate (Pi). While ADP and inlonger adequately convert ammonia to urea. Too
organic phosphate will be reassembled to promuch ammonia also leads to diminished brain duce more ATP, during intense exercise the function and other toxic effects. Studies have production of ATP lags way behind its consumpfound that extended and intense exercise can intion. Ernest W. Maglischo, Ph.D., writes in a 2012

OUR RUNNING BOD crease ammonia levels (through the removal of paper that "muscle calcium changes brought on amino groups from adenosine monophosphate by increases of inorganic phosphate and ADP may
[AMP] and branched chain amino acids) within be major causative factors for muscular fatigue." muscle fibers. A 2010 study by Wilkinson, SmeeAnd a 2012 review by Allen and Trajonovska arton, and Watt warns, "Plasma concentrations of gues that even moderate exercise leads to inammonia during exercise often achieve or exceed creased inorganic phosphate levels, resulting in
BUILD Y those measured in liver disease patients, result-reduced calcium release in muscle fibers, reduced ing in increased cerebral uptake." Once ammonia activation of fibers, and fatigue.

246

Build YOuR Running BODY-cOMpOnEnts anD WORKOuts

Oxygen to the brain
enough-and you'll reach a point where you feel
That lightheaded feeling you get in the late stages every jarring step. And while you might not reach of a race might be your brain running low on oxythe point of physiological catastrophe that ac-gen-up to 25 percent low, according to a 2010
companies some other factors, there are times study that blames low cerebral oxygenation for when beaten-down muscles and CT lead you to reduced muscle activation, diminished neural the inescapable conclusion: I can't take another function, and fatigue. This conclusion has been step.
echoed in numerous studies, but these studies have one thing in common: Participants exercise Afferent feedback to failure. In a different 2010 study by Billaut, et The theory of afferent (sensory) feedback sugal., runners were allowed to self-pace through a gests that all the above-listed factors in fatigue $5 K$ time trial. This time, oxygen levels in the run(and more) are reported via nerve impulses to ners'brains remained within a range that didn't your brain, which reacts by inhibiting your central "hinder strenuous exercise performance," even as motor drive (i.e., it activates less muscle). A 2013 the runners rated their own efforts as maximal. study from the University of Utah had eight volunteers perform single-leg extensions (a quadriCNS fatigue ceps exercise) to exhaustion, testing each leg on a Although often overlooked, the central nervous separate day. Both legs registered similar results.

BUILD Y

system (CNS) undoubtedly plays a role in fatigue.
When the legs were subsequently re-tested con-

A 1997 paper by Davis and Bailey in Medicine \& secutively on the same day, however, the time to Science in Sports \& Exercise argues that "the unwillexhaustion for the second leg tested was almost ingness to generate and maintain adequate $C N S$ 50 percent shorter than for the first. The researchdrive to the working muscle is the most likely exers concluded that afferent feedback from the planation of fatigue for most people during norfirst leg had inhibited performance in the second mal activities." The authors speculate that leg.

OUR RUNNING BOD

increases and decreases in certain neurotransmitters are to blame (with serotonin the probable

The Central Governor
top culprit), adding that cytokines and ammonia
The Central Governor theory, proposed by Dr. Timare also involved. A 2000 paper by Davis, Alderothy Noakes, has changed the way runners, son, and Welsh on serotonin and central nervous coaches, and physiologists think about fatigue. Exsystem fatigue notes that serotonin levels "inplaining the theory in a 2012 paper, Noakes writes, crease in several brain regions during prolonged
"The Central Governor Model of Exercise Regulaexercise and reach a peak at fatigue." Serotonin is tion proposes that the brain regulates exercise pertied to lethargy, sleepiness, and altered mood.
formance by continuously modifying the number
of motor units that are recruited in the exercising

Muscle and connective tissue damage
limbs." And it doesn't just do this in a reactive way (as with afferent feedback). Instead, the Central Another factor that's rarely discussed is the role Governor (CG) anticipates danger to your body and of muscle and connective tissue damage in faacts preemptively to avoid it. At the start of a run, \boldsymbol{Y}
tigue. Run long enough-or hard enough for long the CG picks your pace and effort within the first

Build YOuR Running BRain

247

few seconds. Before making this decision, the $C G$ dehydration, and any other factor that could evenconsiders your emotional state, motivation, expetually prove dangerous to your vital organs. rience, level of neurotransmitters, body tempera"[There] are innumerable different 'homeoture, etc. Once the run is under way, the $C G$ stats, '" writes Dr. Tucker in a 2011 Science of Sport continues to regulate performance based on oxy-
blog entry, explaining his mentor's theory, "all of gen in the blood and brain, glycogen levels, which are monitored and regulated by the brain,

TRAINING DISCUSSION

"The age of Frankenstein"

If you've ever seen a Frankenstein movie, you'll shiver when you hear what a predominantly Brazilian research group did to ten cyclists in a 2013 study. They hooked up electrodes over the cyclists' temporal and insular cortexes, then zapped them with current for twenty minutes. The result? In a maximum incremental cycling test, the Frankenstein cyclists' peak power output increased 4 percent
over cyclists receiving "sham stimulation." The Frankenstein cyclists also reported a more gradual rise in perceived effort. In other words, they rode \boldsymbol{Y}
harder and hurt less.
This isn't the first time that the insular cortex has been singled out as a prime actor in fatigue. Kai Lutz and a team from the University of Zurich performed a series of experiments, published in 2011, that identified the insular cortex as the brain structure that "might not only integrate and evaluate sensory information from the periphery [muscles], but also act
in communication with the motor cortex . . . [This] is the first study t o empirical y demonstrate that muscle fatigue leads to changes in interaction between structures of a brain's neural network."

And, in 2012, researchers from the OptiBrain Center at the University of California, San Diego, revealed to Scientific American that their studies show that athletes who engage in a meditation technique called mindfulness are able to increase insular cortex activity, making them more physically self-aware and allowing them to react to feedback from their muscles (i.e., factors that cause fatigue) more quickly.

The insular cortex lies within the folds of the cerebral cortex and pla ys a role in consciousness, emotion, and bodily self-awareness. It's involved in heart rate and blood pres-OUR RUNNING BOD sure (especially during exercise), regulating homeostasis, and evaluating pain. In sum, it's at the center of the interplay between brain, exercise, and fatigue.

And now you can zap your insular cortex with electricity to knock a big chunk of time off your next 5 K or marathon. But before you go signing up for a series of electroshock treat-ments, be aware that other studies have had mixed results (with Alex Hutchinson reporting in his Runner's World blog that one researcher admitted seeing no performance boost at all).

BUILD Y

So maybe stick to meditation for now. And a quick carbo swish and spit at the start line.

Build YOuR Running BODY-cOMpOnEnts anD WORKOuts

and then controlled by changes in exercise intenbody. Become aware of your body's feedsity. And that, in a nutshell, is the Central Goverback, of the nuances that warn you of imnor theory." pending fatigue, of tension in your body, Noakes argues that symptoms of fatigue are of poor breathing, or of inefficient form. "entirely self-generated by each athlete's brain . . .

Then try some repetitions (see 5K Road As such they are illusionary." For Noakes, the illuand Trail Reps, Chapter 7) or tempo runs, sion of fatigue exists solely to prevent athletes measured in time but not distance. Learn from risking a catastrophic biological failure. The how to pace by effort. Note how various winner of a running race is the athlete who best efforts feel, and pay attention to how faignored the illusion. The other athletes accepted tigue builds through the course of those the illusion-and defeat.
efforts. Experiment with subtle changes in pace. When you become more aware of TRAINING (TRICKING) THE BRAIN your body's feedback, you'll find that you're able to anticipate problems before

The truth is that no one knows for sure what your brain steps in to correct them. causes fatigue when you're running. The list
2. Extended runs: If you're having trouble
above is a good start, but it's hardly comprehenincreasing (or completing) your daily sive. For instance, we didn't even touch on dehyrun, add 30-50 percent more distance to

BUILD Y

dration (which demands much more than a an outing. You'll suffer immensely in orparagraph; read Tucker, Dugas, and Fitzgerald's der to complete the run. But you'll be book, The Runner's Body, for the lowdown on dehyamazed how easy your regular run feels dration). But you probably get the idea that there the next time out.
are many actors on this stage. And that the
3. The "down a quart" approach: Your brain-whether it's limiting performance due to body adapts to increased stimulus. A full physiological failure or regulating performance to fuel and hydration belt may ease the fa-

OUR RUNNING BOD

avoid physiological failure-is playing a huge role tigue of your daily run, but your body will in stage direction.
respond better to the challenge of slight
So how do we train the brain?
dehydration (up to 2 percent), reduced
The following simple training "tricks" will con-
glycogen stores, and moderate discom-
vince your brain to work with you, not against
fort. Your brain will likewise learn that
you, when you run:
you can survive while running "down a quart"- a lesson that will pay big divi-

1. Take off your watch: This is the easiest dends in races.
strategy of all-and the most difficult for 4. Race-effort intervals: Race effort intermany runners. Some runners can't convals don't just prepare you physically for ceive of running a mile untimed. But once a race, they prepare you mentally, too. you're familiar with your regular running Just as sports like football and basketball routes, there's no reason to time every "slow down" after you've played them single run. Instead, stop worrying about awhile, your brain becomes familiar with \boldsymbol{Y}
the watch and start listening to your race pace.

Build YOuR Running BRain

249

5. Group workouts: Want to surprise your-
6. Negative split runs: All training runs self with a monster workout or huge pershould be negative split runs. You should formance improvement? Try running start slow, then build to your goal workwith a group. When you focus on keeping out pace. Don't force your brain to put on
pace with a group rather than obsessing the brakes by starting out too quickly! over your own fatigue, your brain focuses For marathon training, include some more on pace and less on fatigue, too. negative split long runs, where the sec-

6. Workouts with unspecified volume:

ond half of the run mimics the effort Some days, you need to run without a that will be required during your upcompreconceived end point. Go exploring ing race: The first part of the run creates with friends on a distance run. Or run a watered-down version of the biomeuntimed, unmeasured repetitions with chanical fatigue and fuel shortage you'll the goal of stopping when you've had face during an actual marathon; the enough, whatever "enough" turns out to negative split second half of the run fabe.
miliarizes your brain with the force gen-
7. Tune-up races: Your brain will almost eration required to produce marathon never allow you to run your first race afpace when you're fatigued-all while Y
ter a significant break (from racing) as sparing your body the extreme fatigue fast as your fitness should allow. Instead,
associated with an actual marathon race. it plays it safe. Tune-up races can serve
10. Consistency: Some days, maybe most as "rust-busters." It's not your body that's days, your brain is going to tell you that rusty. It's your brain. Like a protective you're too tired to run. Don't listen to it. parent, it thinks you're a child that needs Prove it wrong. The hardest part of a run strict boundaries. So schedule a tune-up is putting on your shoes and heading out race as a dress rehearsal for the real the door. A mile into your run, you'll be thing, show your brain that a hard effort fine. More importantly, your brain will won't kill you (or it), and don't be surdiscover that your body can run while prised when-as soon as a few days fatigued-and will give you more leeway later-your brain rewards you with a in the future.
race performance improvement of up to 5 percent or more!

And now a warning: When training the brain,
8. Matched time runs: If you're going to
it's a big mistake to train too hard, too fast, or for OUR RUNNING BOD
run a half marathon or marathon, it's too long. Just as the items on the above list teach important that you do a run that approx-
your brain to ease up on the reins, pushing too imates in time (not pace or distance) your hard will convince your brain that you're a danger goal for the race. Your brain needs to to your own body. So be patient. Be smart in your know that your body can keep exercising training. And show your brain that you can be for the amount of time you intend to trusted, that you've got the right stuff.

BUILD Y

race.
250

BuilD YOuR Running BODY-cOMpOnEnts anDWORKOuts

training recommendation

TRAINING RUNDOWN

Step one is to train every aspect of your
There is no photo instruction for this chapter; the running components as laid out in the applicable workouts have been illustrated in preprevious component chapters. Whether a vious chapters. What you need to do now is conlack of physiological fitness is the direct vince your brain-by doing those workouts-that cause of fatigue or an indirect stimulus for you've built a running body capable of achieving your Central Governor to create the illusion your running goals. of fatigue, building a better running body is To see exactly how all the workouts from this the remedy. For directly targeting your
book can be incorporated into your overall trainbrain, begin by experimenting with the ten ing program, see Chapter 15: Build Your Training things on the above list, and then find your Schedule, where sample schedules are available own boundaries-and exceed them.
for runners of all abilities and fitness levels.

BUILD Y

OUR RUNNING BOD
\boldsymbol{Y}
Build YOuR Running BRain 251

PART
3
Build Your
Running

Program-

Principles and
Schedules

Approach Build Y

uilding your running
body will be an indi-
vidualized experience. You aren't
a Ken or Barbie doll. You have a
unique body type, your own mix

our Running

of muscle fibers, your own fitness history, and your own fitness
goals. But no matter who
you are, where you live, or what
motivates you to train, you will get
fit, you will get faster, and you will
stay healthy and injury-free- if
you're willing to tackle each component of your running body and embrace a
well-rounded training regimen.
WHAT'S A RUNNING APPROACH?

CHOOSING YOUR RUNNING APPROACH

Your "running approach" is more than just your
When you choose a running approach, don't start training schedule. It's the attitude and experience by thinking about the training pieces-the running, you bring to your training, the fitness goals you drills, resistance training, stretching, and the rest of hope to achieve, and the lifestyle adjustments it. Instead, think about what you're trying to accomyou're willing to accommodate. A runner who plish, and then make a realistic appraisal of how trains to be competitive will have a much differmuch room there is in your daily life for a training ent approach than a runner whose goal is all-
program that will get you there. Let's look at a few around fitness. It's up to you to determine how of the factors that should inform your decision. much time to invest in your program. And it's up Competitive versus non-competitive training to you to decide what level of fitness best augments your lifestyle. While you're deciding, some Why do you run? It was the first line of Chapter factors you'll need to consider include: One. And it's the question you'll want to answer before settling on a training program. If you're training for non-competitive reasons-

" Competitive versus non-competitive

 trainingfor example, to lose weight, improve your health, or reduce stress-you might want your program \boldsymbol{Y}

» Time management

to include more all-around exercises (e.g., resis-

» Sustainability

tance training and cross training) and less run-
Once you've made up your mind, you can ning-specific exercises (e.g., tempo and long choose the training schedule from Chapter 15 repetitions). A benefit of non-competitive training that best suits your approach. Or, using the is that there's more leeway with your schedule,
knowledge you've gained from this book (cousince you aren't piggybacking adaptations one on
pled with your personal experience), you can
top of another to peak for a race. Also, you're less
fashion your own program. Training schedule in
likely to get injured on a schedule with lower vol-
hand, you'll want to review some specific princiume and intensity. Instead of aches and pains,
ples of training in order to get the most out of your
you'll feel stronger, springier, and more energetic
workouts.
during the day.

BEGINNER'S GUIDELINE

OUR RUNNING BOD

Fitness is a journey, not a destination. It is the incremental process o f transforming both your
mind and body into a healthier, stronger, and more resilient version of you. Choose a training schedule that you can maintain-one that compliments your life, rather than conflicts with it. Then be willing to adjust, to alter your training and your goals based upon feedback from BUILD Y
your body.
256
Build YOuR Running pROgRaM—pRincipl Es anD scHEDulEs

TRAINING DISCUSSION

"Ten Mistakes Runners Make"

No one sets out to train incorrectly, yet it's training error that often sabotages our fitness goals. So that you can avoid some bumps in the road, here are ten mistakes that runners often make.

1. Fast starts: Going out too fast in workouts alters the workout. You train the wrong muscle fibers, engage the wrong energy systems, and wire the wrong neuromuscular pathways. Plus, it leads to shortened or aborted workouts.
2. Medium runs: Some runners think they need to prove their fitness during every workout. They run their easy runs too hard and are left too fatigued to excel during the hard ones. The result is a diet of medium runs that fails to garner the full benefits of either easy distance runs or speedwork.
3. Speed limit: Runners cannot live on mileage alone. Doing nothing but long distance leads to atrophy of faster muscle fibers, decreased nervous system efficiency, decreased muscle buffering capacity, and increased acidosis during races. Proper speedwork reverses and improves all those factors.

BUILD Y

4. Poor recovery: Running damages muscle fibers and connective tissue, depletes fuel reserves and hormones, and fatigues your nervous system. Recovering takes time.

Younger runners need two to four days between hard workouts. Older runners might need double that.
5. Monster workouts: Some runners believe more is better. More miles. More reps.

More speed. The result is often a workout that is more physically taxing than a race.

OUR RUNNING BOD

It risks injury, illness, and burnout. One monster workout can require up to two weeks of recovery.
6. No adjustments: Many runners refuse to alter a workout once it's started. But un-predictable variables like weather, fatigue, and allergies can affect your workout.

Adjusting a workout on the fly allows you to get training benefits without risking overtraining.
7. Cafeteria running: Runner's World's Scott Douglas coined this phrase to describe runners who treat training like a buffet, choosing the workouts they find most ap-pealing from a dozen sources and then trying them all. This is like building a puzzle with pieces from several sets.
8. Running fundamentalism: Running fundamentalists cling to old training programs regardless of results. Things change: your body, your fitness, your experience, your age. What worked in year one of running won't work in year five-or year fifty.
(Continued)

Y

Build YOuR Running appROach

257

TRAINING DISCUSSION

9. Injury block: Studies confirm that $50-80$ percent of runners will get injured in any given year. Many runners repress this fact, refusing to adopt injury-prevention routines, which take ten to fifteen minutes, three to four days per week. Unfortunately, injury-reversal routines generally take months.
10. Goal fitness: Many runners base their workouts on the fitness they'd like to have rather than the fitness they already possess. This is like buying a Porsche 918 Spy-der $(\$ 845,000)$ in the belief that you'll soon be rich. Challenge your current fitness level; don't obliterate it.
If you want to run a race, but your goal is comyourself. And remember that a workout requires pletion-not competition-you'll have to decide if more than the time it takes to complete the exer-you prefer a more well-rounded program or one
cise. For example, a sixty-minute run requires at with higher running volume. Either way, you'll
least ten minutes to change into running gear preneed to include the type of race-specific training
run, and then another twenty to thirty minutes

Y outlined in Chapter 24.

post-run for showering and changing back into
If you're training with competitive race goals street clothes (and, if you're being very good, anin mind, you must include more volume and in-
other ten to fifteen minutes for some post-run tensity in your training. You can expect residual stretching and exercises). Don't try to squeeze fatigue during the day, some aches and pains, and square pegs into round holes. Plan your time wisely.
a higher risk of injury. You'll also have less schedule flexibility, as each workout is linked inextrica-

Sustainability
bly to the next (and to the previous one). Skipping
You'll want a training approach you can stick to or changing workouts can sabotage weeks of longterm. Training too hard too soon almost altraining. Of course, you'll also discover the amazways leads to injury, illness, or burnout. Your body ing potential that lies within your running body. can't adapt that quickly, and you won't be able to And you'll feel great (sometimes euphoric) while sustain your motivation. Plus, there's no rush. As you're running.
a runner, you'll probably see improvement in both performance and overall fitness for at least a deTime management cade. That's right, a decade. And that's regardless

OUR RUNNING BOD It does no good to map out an ambitious training of your age. But to see that improvement, you'll program and then discover that you lack the time to have to stay healthy and committed, and that
complete the workouts. From the start, choose a means training at a manageable level. Everything training schedule that meshes with your daily comgood about running-the benefits for your body, mitments to family, career, social obligations, and health, mood, and social life-requires longterm community involvement. If you don't, you'll soon participation. So pick your program the way you

BUILD Y have to choose between your schedule and the rest pick your friends, as an element of your life that of your life-and your
life will win. Don't sabotage you'll be happy to greet every day.

258

Build YOuR Running pROgRaM—pRincipl Es anD scHEDulEs

PRINCIPLES OF TRAINING
easy week, and a hard season is followed by a few very easy weeks.
Once you've picked your running approach, there are some fundamental principles of training (and Warm up: It takes ten to fifteen minutes of exera few unbreakable rules, too) that you'll want to cise (e.g., jogging, dynamic stretching, strides) for keep in mind:
your body to become physiologically prepared for harder training.
Train with the body you have: You possess a distinct physiology and a unique potential. You can't
Warm down: Although the value of a warm-down build your body by training as if you were someis debated in physiological circles, its value is not one else.
debated by coaches and athletes. Go with the coaches and athletes on this one.

Train with the fitness you have: Training too
hard won't help you reach your fitness goal more
Muscle fiber range: You'll need volume (distance)
quickly. Instead, you'll risk injury, illness, and
to train slow-twitch fibers and quality (reps, hills,
burnout, and your fitness will suffer.
drills, etc.) to train faster fibers. No single workout adequately trains all fibers.

Training is a journey, not a destination: Fitness

BUILD Y

goals and race goals are just beacons. Steer for
The rule of repetitions: When running repetithem and then keep going. As long as your fitness tions, always finish the workout knowing you is improving, your training is on track. could have run one or possibly two more reps if required. This protects against overtraining.

Don't specialize: Until you've strengthened all the components of your running body, don't speThe value of hills: If you want to excel as a runcialize. The training in this book will prepare you ner, you'll want to run hills: long hill runs, long

OUR RUNNING BOD

for all races from $5 K$ to the marathon. hill repeats, and short uphill and downhill sprints.

The 10 percent rule: The 10 percent rule recom-
The rule of specificity: The training you do in mends increasing training volume by no more practice must match the activity in which you inthan 10 percent per week. However, the 10 pertend to compete. Biking is great but (by itself) cent rule doesn't reflect how real runners train. won't make you a better runner. Instead, use the three-week rule.

Doubles: Running twice a day can benefit experi-
The three-week rule: It takes time for your body
enced runners (increased volume, extra HGH reto adapt to increases in mileage and intensity. So
lease, better running economy) but is generally
after a significant jump in either, allow at least too much for new runners.
three weeks before your next increase.
Don't race workouts: A race is a 100 percent efThe hard-easy rule: Hard days are followed by fort, and it requires a taper before and recovery \boldsymbol{Y} easy days, a few hard weeks are followed by an after. A 100 percent workout requires the same.

Build YOuR Running appROach

 259For multiple 100 percent repetitions, see the next principle.
Better undertrained than overtrained: Undertrained, you'll feel good, and you can always improve. Overtrained, you'll feel like hell, and you'll
need weeks of rest to recover.
The truth is that a conservative, patient approach to running will almost always yield positive results. That's because building your running
body takes time. You can't do it with one workout.
Or two. Or a dozen. It's going to take dozens of workouts to unlock your potential.

Shortcuts don't work.
Overtraining doesn't work.
Killer workouts and gung-ho boot camps won't
\boldsymbol{Y} do it.If you remember one thing about training from
this book, make it this: There are no good workouts;
there are only good training programs.
Make your running approach one that slips
easily into the life you're leading, is sustainable
from Day One, and has the punch to satisfy your
goals. Make it one you can stick to.
OUR RUNNING BOD
BUILD Y
260
Build YOuR Running pROgRaM-pRincipl Es anD scHEDulEs

15
N

Schedule Build Y

ow that you've learned how the
components of your running
body work-and how to train them-as well
as how to develop a program based on your
own fitness goals, it's time to choose your

our T

training schedule. This chapter will offer sample schedules
for six different training approaches (from non-competitive beginners to
advanced competition-focused runners), as

raining

well as sample race-training schedules for $5 K$,
$10 K$, half marathon, and marathon races.
Before you make a final decision about your
schedules. After a few sessions, feel free
training, consider the words of the late Dr. George
to add or exclude exercises.
Sheehan: "We are all an experiment of one." You
7. Post-run: Post-run routines and stretch-
have to pick a schedule that works for your fitness, ing are suggested for specific days, but
your goals, and your life outside running. And you you might prefer to schedule them for dif-have to be willing to modify that schedule to meet ferent days. As long as you're doing each
your own individual requirements, using what a minimum of twice a week, you should you've learned in this book-and from your own be okay.
experience-as your guide. If none of the sched-
8. Injury-prevention exercises: If you're re-
ules in this chapter work for you (either intact or habbing from an injury or concerned as a starting point), then craft your own. Whichabout preventing one, add injury-specific ever path you choose, consider a few guidelines exercises from the Injury Prevention table when embarking on your new fitness journey: on page 377 to your post-run routine or resistance-training sessions.

1. Photo instruction: Unless otherwise
2. Rest: If you need an easy day or a day off, noted, all workouts in the schedules have take it.
entries in this book's photo instruction.
3. Missed workouts: If you miss a workout, Y

Follow the instructions to make sure you don't try to make it up-skip it. get the full benefit of the workout.
11. Additional workouts: If you want to
2. Volume/intensity: Increasing the volume change workouts or add additional workor intensity of individual workouts in the outs (e.g., the Running Circuit from chapschedules is not advised.
ter 12), feel free, but remember that you'll
3. Warm-up/down: For hard workouts, alhave to eliminate a hard workout from ways include a warm-up and warm-down the week in order to add a new hard
(cool-down).
workout-don't risk overtraining by run-
4. Pace: If you don't know your pace for a ning too many hard sessions in any given workout (e.g., 5 K pace), use the rule of week.
repetitions (see previous chapter).
12. Racing: Sample race-specific schedules
5. Recovery: Unless otherwise specified, use
have been included. If you want to race
the recovery recommended in the photo
during the non-race schedules, do it! Just
instruction. Where there's a range, start
make sure to include a taper week before
with the high end (the longer recovery);
the race-and to schedule a reduced

OUR RUNNING BOD

use the lower end as your fitness im-
training load the following week. Then go
proves.
back to your regular schedule.
6. Suggested exercises: Exercises for beginner's resistance training, technique drills,

Choose your schedule wisely. Good luck!
and plyometrics are included in the

BUILD Y

262
Build YOuR Running pROgRaM—pRincipl Es anD scHEDulEs

TRAINING SCHEDULES
12-WEEK tRaining scHEDulE FOR BEginning anD
REtuRning RunnERs-nOn-cOMpEtitivE
WEEK
SUNDAY
MONDAY
TUESDAY
WEDNESDAY
THURSDAY
FRIDAY
SATURDAY
OFF
Easy Walking
OFF
Easy Walking
OFF
Easy Walking
OFF or Easy
1
[p. 47](20): 10-15[p. 47](20): 10-15[p. 47](20): 10-15Walking [p. 47](20):
minutes
minutes
minutes +
10-15 minutes
Beginner's $R T^{*}$
OFF
Easy Walking
OFF
Brisk Walking

OFF

Easy Walking
OFF or Easy
2
[p. 47](20): 20
[p. 47](20): 15
[p. 47](20): 20
Walking [p. 47](20):
minutes
minutes
minutes +
10-15 minutes
Beginner's $R T^{*}$
OFF
Brisk Walking
OFF
Easy Walking
OFF
Walk/Jog
OFF or Easy
3
[p. 47](20): 15-20
[p. 47](20): 20
[p. 48](20):15-20
Walking [p. 47](20):
minutes +
minutes +
minutes +

20 minutes

Stretching**
Beginner's RT*
Beginner's RT*

+ Stretching**
OFF
Walk/Jog
OFF
Easy Walking
OFF
Walk/Jog
OFF or Easy
4
[p. 48](20): 20
[p. 47](20): 20
[p. 48](20): 20
Walking [p. 47](20):
minutes +
minutes +
minutes +
20 minutes or
Stretching**
Beginner's RT*
Beginner's $R T^{*} X T$ †
+ Stretching**
\boldsymbol{Y}
OFF
Walk/Jog
OFF
Easy Walking
OFF
Walk/Jog
OFF or Easy
5
[p. 48](20): 20
[p. 47](20): 20
[p. 48](20): 20
Walking [p. 47](20):
minutes +
minutes +
minutes +
20 minutes or
Stretching**
Beginner's $R T^{*}$
Beginner's $R T^{*} X T \dagger$
+ Stretching**
OFF
Walk/Jog
OFF
Easy Walking
OFF
Jog/Easy
OFF or Easy

6

Run [p. 48](20):
Walking [p. 47](20):
minutes +
minutes +
20 minutes +
20 minutes or
Stretching**
Beginner's RT*
Beginner's RT* XT †

+ Stretching**
OFF
Jog/Easy Run
OFF
Walk/Jog
OFF
Jog/Easy Run
OFF or Walk/
[p. 48](20): 20-30
[p. 48](20): 20-30
[p. 48](20): 20-30
Jog [p. 48](20):
7
minutes +
minutes + The
minutes +
20-30 minutes
Stretching**

Runner 360
Weight Room
or $X T 广$
[p. 53] (1 set)
Routine [p. 59]

+ Stretching**
OFF
Jog/Easy Run
OFF
Walk/Jog
OFF
Jog/Easy Run
OFF or Walk/
[p. 48](20): 20-30
[p. 48](20): 20-30
[p. 48](20): 20-30
Jog [p. 48](20):

8

minutes +
minutes + The
minutes +

20-30 minutes
Stretching**
Runner 360
Weight Room
or $X T$ †
[p. 53] (1 set)
Routine [p. 59]

OUR RUNNING BOD

+ Stretching**
OFF
Jog/Easy Run
OFF
Jog/Easy Run
OFF
Easy Distance OFF or Walk/
[p. 48](20): 20-30
[p. 48](20): 15-20
Run [p. 49](40-50):
Jog [p. 48](20):

9

minutes +
minutes +
20-30 minutes 20-30 minutes
Stretching**
Strides [p. 51]

+ Weight
or $X T \dagger$
+ The Runner
Room Routine
360 [p. 53]
[p. 59] +
(1 set)
Stretching**

BUILD Y

264

Build YOuR Running pROgRaM—pRinc iplEs anD scHEDulEs

WEEK

SUNDAY

MONDAY

TUESDAY
WEDNESDAY
THURSDAY
FRIDAY
SATURDAY
OFF
Beginner's
OFF
Jog/Easy Run
OFF
Easy Distance OFF or Jog/
Fartlek [p. 49](40-50):
[p. 48](20): 20-30
Run [p. 49](40-50):
Easy Run
10
10-15 minutes
minutes + The
20-30 minutes [p. 48](20): 20-30

+ Stretching**
Runner 360
+ Weight
minutes or
[p. 53] (1 set)
Room Routine XT \dagger
[p. 59] +
Stretching**
OFF
Long Run
OFF
Jog/Easy Run
OFF
Easy Distance OFF or Jog/
[p. 132]: 30-40
[p. 48](20): 20-30
Run [p. 49](40-50):
Easy Run
11
minutes +
minutes + The
20-30 minutes [p. 48](20): 20-30
Strides [p. 51]
Runner 360
+ Weight
minutes or $X T \dagger$
+ Stretching**
[p. 53] (1 set)
Room Routine
[p. 59] +
Stretching**
OFF

Beginner's
OFF
Jog/Easy Run
OFF
Distance Run
OFF or Jog/
Fartlek [p. 49](40-50):
[p. 48](20): 20-30
[p. 50](30-60): 20-40
Easy Run
12
15-20 minutes
minutes + The
minutes +
[p. 48](20): 20-30

+ Stretching**
Runner 360
Weight Room
minutes or $X T \dagger$
[p. 53] (1 set)
Routine [p. 59]
+ Stretching**

TRAINING SCHEDULE NOTES:

*BEGINNER'S RT (Resistance Training)

Leg Lifts (1 set) [p. 60]; Russian Oblique Twise (1 set) [p. 61];
Side Leg Lifts (from Running Circuit) [p. 235]; Push-Ups (1
set) [p. 61]; Air Squat (1 set) [p. 235]; Bodyweight Lunge (1
set) [p. 64]; Heel Raises-Straight Knee (1 set) [p. 66];
Dumbbell Arm Swings (1 set) [p. 63]

BUILD Y

NOTE: Beginners should start with 1 set of each of the above exercises. Or you can do the Household Props routine (pages 107-110) as a substitution, but then don't progress to The Runner 360 or Weight Room Routine in this schedule.
**ONLY DO ONE TYPE OF STRETCHING: AIS [p. 104]; PNF [p. 70]; or Static [p. 76]
$广$ XT = CROSS TRAIN (see pp. 153-163); If you choose to cross train, keep your workout aerobic and match the effort/duration of the prescribed run.

OUR RUNNING BOD

\boldsymbol{Y}

BuildYOuR tRaining schedule

265

12-WEEK tRaining scHEDulE FOR BEginning anD

REtuRning RunnERs-cOMpEtitivE

WEEK

SUNDAY
MONDAY

TUESDAY

WEDNESDAY
THURSDAY
FRIDAY
SATURDAY
OFF
Easy Walking
OFF
Easy Walking
OFF
Easy Walking

OFF or Easy
1
[p. 47](20): 10-15
[p. 47](20): 10-15
[p. 47](20): 10-15
Walking [p. 47](20):
minutes
minutes
minutes +
10-15 minutes
Beginner's RT*
OFF
Easy Walking
OFF
Brisk Walking
Easy Walking
OFF
Walk/Jog
2
[p. 47](20): 20
[p. 47](20): 15
[p. 47](20): 20
[p. 48](20): 20
minutes
minutes
minutes +
minutes +
Stretching**
Beginner's $R T^{*}$
OFF
Walk/Jog
OFF
Walk/Jog
Easy Walking
OFF
Jog/Easy Run
3
[p. 48](20): 20
[p. 48](20): 20
[p. 47](20): 20
[p. 48](20): 15-20
minutes +
minutes
minutes +
minutes +
Stretching**
Beginner's
Beginner's RT*
$R T^{*}$
OFF
Jog/Easy
OFF or XT \dagger
Jog/Easy Run
Walk/Jog
OFF
Easy Distance

4

Run [p. 48](20):
[p. 48](20): 20
[p. 48](20): 20
Run [p. 49](40-50):
20 minutes +
minutes
minutes +
20-30 minutes
Strides [p. 51]
Beginner's RT*

+ Beginner's
+ Stretching**
+ Stretching**
$R T^{*}$
\boldsymbol{Y}
OFF
Jog/Easy
OFF or XT †
Jog/Easy Run
Walk/Jog
OFF
Easy Distance
5
Run [p. 48](20):
[p. 48](20): 20
[p. 48](20): 20
Run [p. 49](40-50):
20 minutes +minutesminutes +20-30 minutes
Strides [p. 51]
Beginner's RT*
+ Beginner's+ Stretching**+ Stretching**$R T^{*}$
OFF
Easy Distance
OFF or XT †
Easy Distance Jog/Easy
OFF
Distance Run
6
Run [p. 49](40-50):
Run [p. 49](40-50):
Run [p. 48](20):
[p. 50](30-60):
20 minutes +

20 minutes

20 minutes +
30 minutes +
Strides [p. 51]
Beginner's RT*
Beginner's RT*

+ Stretching**
+ Stretching**
OFF
Beginner's
OFF or XT \dagger
Easy Distance Jog/Easy
OFF
Distance
Fartlek [p. 49](40-50):
Run [p. 49](40-50):
Run [p. 48](20):
Run [p. 50](30-60):
7
10-25 minutes
20-30 minutes
20 minutes
40 minutes
+ Stretching**
+ either
+ either
Beginner's RT*
Beginner's $R T^{*}$
or Post-Run
or Post-Run
Routine \neq
Routine \ddagger
OFF
5K Road \&
OFF or XT \dagger
Easy Distance Jog/Easy
OFF
Distance
Trail Reps
Run [p. 49](40-50):
Run [p.48]:
Run [p. 50](30-60):

8

[p. 134]: $6 x$
20-30 minutes
20 minutes
40 minutes
1 minute +

+ either
+ either

OUR RUNNING BOD

Stretching**
Beginner's RT*
Beginner's RT*
or Post-Run
or Post-Run
Routine \neq
Routine :
OFF
5 K Road \&
OFF or XT †
Distance Run
Easy Distance
OFF
Long Run [p.
Trail Reps
[p. 50](30-60): 20-30
Run [p. 49](40-50):
132]: 45-50

9

[p. 134]: $6 x$
minutes
20 minutes
minutes +
2 minutes +

+ either
either
Stretching**
Beginner's RT*
Beginner's RT*
or Post-Run
or Post-Run

BUILD Y

Routine \ddagger
Routine \ddagger
266
Build YOuR Running pROgRaM—pRinc iplEs anD scHEDulEs

WEEK

SUNDAY
MONDAY

TUESDAY

WEDNESDAY

THURSDAY

FRIDAY
SATURDAY
OFF
Slow Tempo
OFF or XT \dagger
Distance Run
Hill Strides
OFF or Easy
Long Run
[p. 130]: $1 x$
[p. 50](30-60): 20-40
[p. 52] + either Distance Run
[p.132]:
10
10-15 minutes
minutes
Beginner's RT* [p. 49](40-50): 20-40

45-50 minutes

+ Stretching**
or Post-Run
minutes
+ either
Routine \ddagger
Beginner's $R T^{*}$
or Post-Run
Routine \ddagger
OFF
$5 K$ Road \&
OFF or $X T \dagger$
Distance Run
Easy Distance OFF or Easy
Long Run
Trail Reps
[p. 50](30-60): 20-40
Run [p. 49](40-50):
Distance Run
[p. 132]:
[p. 134]: $4 x$
minutes
20-30 minutes [p. 49](40-50): 20-40
45-50 minutes
11
3 minutes +
+ Strides
minutes
+ either
Stretching**
[p. 51] + either
Beginner's RT*
Beginner's RT*
or Post-Run
or Post-Run
Routine \ddagger
Routine +
OFF
5K Road \&
OFF or XT'
Distance Run
Hill Strides
OFF or Easy
Long Run
Trail Reps
[p. 50](30-60): 20-40
[p. 52] + eithe r Distance Run
[p.132]:
12
[p. 134]: $3 x$
minutes
Beginner's RT* [p. 49](40-50): 20-40
50-60 minutes
4 minutes +
or Post-Run
minutes
+ either
Stretching**
Routine \ddagger
Beginner's RT*
or Post-Run
Routine $\underset{\ddagger}{\text { F }}$

TRAINING SCHEDULE NOTES:

*BEGINNER'S RT (Resistance Training)

BUILD Y

Leg Lifts (1 set) [p. 60]; Russian Oblique Twise (1 set) [p. 61];
Side Leg Lifts (from Running Circuit) [p. 235]; Push-Ups (1
set) [p. 61]; Air Squat (1 set) [p. 235]; Bodyweight Lunge (1
set) [p. 64]; Heel Raises-Straight Knee (1 set) [p. 66];
Dumbbell Arm Swings (1 set) [p. 63]
NOTE: Beginners should start with 1 set of each of the above exercises. Or you can do the Household Props routine (pages 107-110) as a substitution, but then don't progress to The Runner 360 or Weight Room Routine in this schedule.
**ONLY DO ONE TYPE OF STRETCHING: AIS [p. 104];
PNF [p. 70]; or Static [p. 76]
$广$ XT = CROSS TRAIN (see pp. 158-163); If you choose to cross train, keep your workout aerobic and match the effort/duration of the prescribed run.
\ddagger POST-RUN ROUTINE
Household Props [p. 107]; Weight Room [p. 59]; The Runner 360 [p. 53]; Stretching (Choose 1 type: AIS [p. 104]; PNF [p. 70]; or Static [p. 76]) NOTE: Choose one of the three routines above; if Weight Room or Runner 360, add stretching.

OUR RUNNING BOD

Y

Build YOuR tRaining scHEDulE

```
12-WEEK tRaining scHEDulE FOR intERMEDiatE
RunnERs-
nOn-cOMpEtitivE
WEEK
SUNDAY
MONDAY
TUESDAY
WEDNESDAY
THURSDAY
FRIDAY
SATURDAY
OFF
Hill Run [p. 52]: Easy Distance OFF or
Strides [p. 51] OFF or
Long Run
1
30-40 minutes Run [p. 49]:
Distance Run
+ Post-Run
Distance Run
[p. 132]: 40-50
20-40 minutes [p. 50]: 20-40
Routine*
[p. 50]: 20-40
minutes +
+ Post-Run
minutes
minutes or
```

Post-Run
Routine*
XT**
Routine*
OFF
5K Road \&
Easy Distance OFF or
Hill Strides
OFF or
Long Run
2
Trail Reps
Run [p. 49](40-50):
Distance Run
[p. 52] + Post-
Distance Run
[p. 132]: 40-50
[p.134]:
20-40 minutes [p. 50](30-60): 20-40
Run Routine*
[p. 50](30-60): 20-40
minutes +

8×1 minute

+ Post-Run
minutes
minutes or
Post-Run
Routine*
$X T^{* *}$
Routine*
OFF
Slow Tempo
Easy Distance OFF or
Technique
OFF or
Long Run
3
[p. 130]:
Run [p. 49](40-50):
Distance Run
Drills \dagger
Distance Run
[p. 132]: 40-50
10-15 minutes
20-40 minutes [p. 50](30-60): 20-40
[p. 50](30-60): 20-40
minutes +
+ Post-Run
minutes
minutes or
Post-Run
Routine*
$X T^{* *}$
Routine*
OFF
Hill Run [p. 52]: Easy Distance OFF or
Strides [p. 51] OFF or
Long Run
4

30-40 minutes
Run [p. 49](40-50):
Distance Run

+ Post-Run
Distance Run
[p. 132]: 50-60
20-40 minutes [p. 50](30-60): 20-40
Routine*
[p. 50](30-60): 20-40
minutes +
+ Post-Run
minutes
minutes or
Post-Run
Y
Routine*
XT**
Routine*
OFF
5K Road \&
Easy Distance OFF or
Short Hill
OFF or
Long Run
5
Trail Reps
Run [p. 49](40-50):
Distance Run
Sprints
Distance Run
[p. 132]: 50-60
[p.134]:
20-40 minutes [p. 50](30-60): 20-40
[p. 220]
[p. 50](30-60): 20-40
minutes +

6×2 minutes

+ Post-Run
minutes
minutes or
Post-Run
Routine*
$X T^{* *}$
Routine*
OFF
Slow Tempo
Easy Distance OFF or
Technique
OFF or
Long Run
[p. 130]: 2×10 Run [p. 49](40-50):
Distance Run
Drills \dagger
Distance Run
[p. 132]: 50-60

6

minute
20-40
[p. 50](30-60): 20-40
[p. 50](30-60): 20-40
minutes +
minutes +
minutes
minutes or
Post-Run
Post-Run
$X T^{* *}$
Routine*
Routine*
OFF
Hill Run [p. 52]: Easy Distance OFF or
Strides [p. 51] OFF or
Long Run
30-50 minutes
Run [p. 49](40-50):
Distance Run

+ Post-Run
Distance Run
[p. 132]: 60-75
7
20-40 minutes [p. 50](30-60): 20-40
Routine*
[p. 50](30-60): 20-40
minutes +
+ Post-Run
minutes
minutes or
Post-Run
Routine*
XT**
Routine*
OFF
5K Road \&
Easy Distance OFF or
Hill Strides
OFF or
Long Run
Trail Reps
Run [p. 49](40-50):
Distance Run
[p. 52] + Post-
Distance Run
[p. 132]: 60-75
OUR RUNNING BOD
8
[p.134]: 4×3
20-40 minutes [p. 50](30-60): 20-40
Run Routine*
[p. 50](30-60): 20-40
minutes +
minutes
+ Post-Run
minutes
minutes or
Post-Run
Routine*
$X T^{* *}$
Routine*
OFF

Slow Tempo
Easy Distance OFF or
Plyometrics \neq
OFF or
Long Run
9
[p. 130]: 15-20 Run [p. 49](40-50):
Distance Run
Distance Run
[p. 132]: 60-75
minutes
20-40 minutes [p. 50](30-60): 20-40
[p. 50](30-60): 20-40
minutes +

+ Post-Run
minutes
minutes or
Post-Run
Routine*
XT**
Routine*

BUILD Y

268
Build YOuR Running pROgRaM—pRinc iplEs anD scheDules

WEEK
SUNDAY
MONDAY

TUESDAY

WEDNESDAY

THURSDAY

FRIDAY
SATURDAY
OFF
Hill Run [p. 52]: Easy Distance OFF or
Strides [p. 51] OFF or
Long Run
10
30-50 minutes
Run [p. 49](40-50):
Distance Run

+ Post-Run
Distance Run
[p. 132]: 60-90
20-40 minutes [p. 50](30-60): 20-40
Routine*
[p. 50](30-60): 20-40
minutes +
+ Post-Run
minutes
minutes or
Post-Run
Routine*
$X T^{* *}$
Routine*
OFF
5K Road \&
Easy Distance OFF or
Short Hill
OFF or
Long Run
11
Trail Reps
Run [p. 49](40-50):
Distance Run
Sprints
Distance Run
[p. 132]: 60-90
[p.134]: 4×3
20-40 minutes [p. 50](30-60): 20-40
[p. 220]
[p. 50](30-60): 20-40
minutes +minutes
+ Post-Run
minutes
minutes or
Post-Run
Routine*
$X T^{* *}$
Routine*
OFF
Fast Tempo
Easy Distance OFF or
Technique
OFF or
Long Run
12
[p. 130]: 2×10 Run [p. 49](40-50):
Distance Run
Drills †
Distance Run
[p. 132]: 60-90
minutes
20-40 minutes [p. 50](30-60): 20-40
[p. 50](30-60): 20-40
minutes +
+ Post-Run
minutes
minutes or
Post-Run
Routine*
$X T^{* *}$
Routine*

TRAINING SCHEDULE NOTES:

*POST-RUN ROUTINE

Household Props [p. 107]; Weight Room [p. 59]; The Runner 360 [p. 53]; Stretching (Choose 1 type: AIS [p. 104]; PNF [p. 70]; or Static [p. 76]) NOTE: Choose one of the three routines above; if Weight Room or Runner 360, add stretching.
**XT = CROSS TRAIN (see pp. 158-163); If you choose to cross train, keep your workout aerobic and match the effort/duration of the prescribed run.
\dagger INT. NON-COMPETITION TECHNIQUE DRILLS

Skipping [p. 208]; High Skipping [p. 208]; Flat-Footed Marching [p. 209]; High Knees [p. 210]; Quick Feet [p. 207]; Butt Kicks -

Dynamic Flexibility [p. 206]
BUILD Y
¥INTERMEDIATE PLYOMETRICS
Double-Leg Hops [p. 211]; Box Jumps [p. 215]; Quick Hops [p. 216]

OUR RUNNING BOD

Y

Build YOuR tRaining scheDulE
269
12-WEEK tRaining scHEDulE FOR intERMEDiatE RunnERs-
cOMpEtitivE

WEEK

SUNDAY
MONDAY
TUESDAY
WEDNESDAY
THURSDAY
FRIDAY
SATURDAY
OFF or
5K Road \&
Easy Distance Distance Run
Hill Strides
OFF or Easy
Long Run

1

Distance Run
Trail Reps
Run [p. 49](40-50):
[p. 50](30-60): 30-50
[p. 52]
Distance Run
[p. 132]: 50-60
[p. 50](30-60): 30-60
[p.134]: 8×1
30-50 minutes minutes
[p. 49](40-50): 30-40
minutes +
minutes or $X T^{*}$ minute

+ Post-Run
minutes or $X T^{*}$
Post-Run
Routine**
Routine**
OFF or
$5 K$ Road \&
Easy Distance Distance Run
Hill Repeats
OFF or Easy
Long Run
2
Distance Run
Trail Reps

Run [p. 49](40-50):
[p. 50](30-60): 30-50
[p. 133]: 10-15 Distance Run
[p. 132]: 50-70
[p. 50](30-60): 30-60
[p.134]: 8×2
30-50 minutes minutes
x 30 seconds
[р. 49]: 30-40
minutes +
minutes or $X T^{*}$ minutes

+ Post-Run
minutes or $X T^{*}$
Post-Run
Routine**
Routine**
OFF or
$5 K$ Road \&
Easy Distance Distance Run
Hill Repeats
OFF or Easy
Long Run
3
Distance Run
Trail Reps
Run [p. 49](40-50):
[p. 50](30-60): 30-50
[p. 133]: 8-12

Distance Run
[p. 132]: 50-70
[p. 50](30-60): 30-60
[p. 134]: 6×3
30-50 minutes minutes
$x 45$ seconds
[p. 49](40-50): 30-40
minutes +
minutes or $X T^{*}$ minutes

+ Post-Run
minutes or $X T^{*}$
Post-Run
Routine**
Routine**
OFF or
Fast Tempo
Easy Distance Distance Run
Technique
OFF or Easy
Long Hill Run
4
Distance Run
[p. 130]: 10-15 Run [p. 49](40-50):
[p. 50](30-60): 40-60
Drills \dagger
Distance Run
[p. 52]: 50-70
[p. 50](30-60): 30-60
minutes
40-50 minutes minutes
[p. 49](40-50): 40-50
minutes +
minutes or $X T^{*}$
+ Post-Run
minutes or $X T^{*}$
Post-Run
\boldsymbol{Y}
Routine**
Routine**
OFF or
$5 K$ Road \&
Easy Distance Distance Run
Hill Repeats
OFF or Easy
Long Run
5
Distance Run
Trail Reps
Run [p.49]:
[р. 50]: 40-60
[p. 133]: 6-8 x Distance Run
[p. 132]: 60-75
[p. 50](30-60): 30-60
[p.134]: 4×4
40-50 minutes minutes

60 seconds

minutes +
minutes or $X T^{*}$ minutes

+ Post-Run
minutes or $X T^{*}$
Post-Run
Routine**
Routine**
OFF or
5 K Road \&
Easy Distance Distance Run
Hill Repeats
OFF or Easy
Long Run
6
Distance Run
Trail Reps
Run [p. 49](40-50):
[p. 50](30-60): 40-60
[p. 133]: 4-6x Distance Run
[p. 132]: 60-75
[p. 50](30-60): 30-60
[p.134]: 5×4
40-50 minutes minutes

90 seconds

minutes +
minutes or $X T^{*}$ minutes

+ Post-Run
minutes or $X T^{*}$
Post-Run
Routine**
Routine**
OFF or
Fast Tempo
Easy Distance Distance Run
Technique
OFF or Easy
Long Hill Run
Distance Run
[p. 130]: $2 x$
Run [p. 49](40-50):
[p. 50](30-60): 50-60
Drills \dagger
Distance Run
[p. 52]: 60-75
7
[p. 50](30-60): 30-60
10 minutes
40-60 minutes minutes
[p. 49](40-50): 40-60
minutes +
minutes or $X T^{*}$ (3-minute jog
+ Post-Run
minutes or $X T^{*}$
Post-Run
rest)
Routine**
Routine**
OFF or
5K Road \&
Easy Distance Distance Run
Track Work
OFF or Easy
Long Run
Distance Run
Trail Reps
Run [p. 49](40-50):
[p. 50](30-60): 50-60
[p. 125]: 12-16 Distance Run
[p. 132]: 60-90

8

[p. 134]: 4×5
40-60 minutes minutes
x 200m, $3 K$
[p. 49](40-50): 40-60
minutes +
OUR RUNNING BOD
minutes or $X T^{*}$ minutes

+ Post-Run
pace (200m
minutes or $X T^{*}$
Post-Run
Routine**
jog recovery)
Routine**
OFF or
Track Work
Easy Distance Distance Run
Hill Repeats
OFF or Easy
Long Run

9

Distance Run
[p. 129]: 12-16 Run [p. 49](40-50):
[p. 50](30-60): 50-60
[p. 133]: 6×90 Distance Run
[p. 132]: 60-90
[p. 50](30-60): 30-60
x 400m, 10 K
40-60 minutes minutes
seconds
[p. 49](40-50): 40-60
minutes +
minutes or $X T^{*}$ pace

+ Post-Run

```
minutes or XT*
Post-Run
Routine**
Routine**
BUILD Y
2 7 0
BuilD YOuR Running pROgRaM-pRinc
iplEs anD scHEDulEs
WEEK
SUNDAY
MONDAY
TUESDAY
WEDNESDAY
THURSDAY
FRIDAY
SATURDAY
OFF or
Fast Tempo
Easy Distance Distance Run
Track Work
OFF or Easy
Long Hill Run
10
Distance Run
[p. 130]: 2 x
Run [p.49]:
[p. 50]: 50-60
[p. 124]: 12 x
```

Distance Run
[p.52]: 60-90
[p. 50](30-60): 30-60
10 minutes
50-60 minutes minutes
200m, 1500m
[p. 49](40-50): 40-60
minutes +
minutes or $X T^{*}$ (3-minute jog

+ Post-Run
pace (200m
minutes or $X T^{*}$
Post-Run
rest)
Routine**
jog recovery)
Routine**
OFF or
Track Work
Easy Distance Distance Run
Technique
OFF or Easy
Long Run
11
Distance Run
[p. 127]: 12-16 Run [p. 49](40-50):
[p. 50](30-60): 50-60
Drills \dagger

Distance Run
[p.132]: 60-
[p. 50](30-60): 30-60
x 400m, $5 K$
50-60 minutes minutes
[p. 49](40-50): 40-60
120 minutes +
minutes or $X T^{*}$ pace

+ Post-Run
minutes or $X T^{*}$
Post-Run
Routine**
Routine**
OFF or
Track Work
Easy Distance Distance Run
Hill Repeats
OFF or Easy
Long Run
12
Distance Run
[p. 127]: 5-6
Run [p. 49](40-50):
[p. 50](30-60): 50-60
[p. 133]: 4-6x Distance Run
[p.132]: 60-
[p. 50](30-60): 30-60
x 1000m, 5 K

50-60 minutes minutes

90 seconds

120 minutes

minutes or $X T^{*}$ pace

+ Post-Run
minutes or $X T^{*}$
+ Post-Run
Routine**
Routine**

TRAINING SCHEDULE NOTES:

*XT = CROSS TRAIN (see pp. 158-163); If you choose to cross train, keep your workout aerobic and match the effort/duration of the prescribed run.

**POST-RUN ROUTINE

Household Props [p. 107]; Weight Room [p. 59]; The Runner 360 [p. 53]; Stretching (Choose 1 type: AIS [p. 104]; PNF [p. 70]; or Static [p. 76]) NOTE: Choose one of the three routines above; if Weight Room or Runner 360, add stretching.

†INT. NON-COMPETITION TECHNIQUE DRILLS

Skipping [p. 208]; High Skipping [p. 208]; Flat-Footed
Marching [p. 209]; High Knees [p. 210]; Bounding [p. 210];
Quick Feet
[p. 207]; Butt Kicks - Trigger Action [p. 206]; Butt Kicks Dynamic Flexibility [p. 206]

BUILD Y

OUR RUNNING BOD

Y

Build YOuR tRaining scHEDulE12-WEEK tRaining scHEDulE FOR aDvancED
RunnERs-
cOMpEtitivE
WEEK
SUNDAY
MONDAY
TUESDAY
WEDNESDAY
THURSDAY
FRIDAY
SATURDAY
either Distance 5 K Road \&
Easy Distance Distance Run
Hill Repeats
either Distance Long Run
Run [p. 50](30-60):
Trail Reps
Run [p. 49](40-50):
[p. 50](30-60): 60-75
[p. 133]: 10-15 Run [p. 50](30-60):
[p.132]:
1
60-70 minutes [p. 134]: 6×3
60-70 minutes minutes
x 30 seconds
60-70 minutes 75-90

+ Stretching*
minutes
+ Post-Run
+ Post-Run
minutes
or OFF
Routine**
Routine** or
XT***
either Distance 5 K Road \&
Easy Distance Distance Run
Hill Repeats
either Distance Long Run
Run [p. 50](30-60):
Trail Reps
Run [p. 49](40-50):
[p. 50](30-60): 60-75
[p. 133]: 8-12
Run [p. 50](30-60):
[p.132]:
2
60-70 minutes [p. 134]: 5×4
60-70 minutes minutes
$x 45$ seconds
60-70 minutes 75-90
+ Stretching*
minutes
+ Post-Run
+ Post-Run
minutes
or OFF
Routine**
Routine** or
$X T^{* * *}$
either Distance Fast Tempo
Easy Distance Distance Run
Technique
either Distance Long Run
Run [p. 50](30-60):
[p. 130]: 2×10 Run [p. 49](40-50):
[p. 50](30-60): 60-75
Drills †
Run [p. 50](30-60):
[p.132]:
3
60-70 minutes minutes (with 3 60-70 minutes minutes
60-70 minutes 75-90
+ Stretching*
min.jog) or $15+$ Post-Run
+ Post-Run
minutes
or OFF
minutes Fast
Routine**
Routine** or
Tempo [p. 130]
$X T^{* * *}$
either Distance 5 K Road \&

Easy Distance Distance Run
Track Work
either Distance Long Hill Run
Run [p. 50](30-60):
Trail Reps
Run [p. 49](40-50):
[p. 50](30-60): 60-75
[pp. 124-125]: Run [p. 50](30-60):
[p. 132]:
\boldsymbol{Y}
60-70 minutes [p. 134]: 4×5
60-70 minutes minutes
12-16 x 200m, 60-70 minutes 75-90
4

+ Stretching*
minutes
+ Post-Run
1500m-3K
+ Post-Run
minutes
or OFF
Routine**
pace, start
Routine** or
slower \& finish $X T^{* * *}$
faster (200m jog
rest) + O2R 7
either Distance Track Work

Easy Distance Distance Run
Hill Repeats
either Distance Long Run
Run [p. 50](30-60):
[p. 127]: 16
Run [p. 49](40-50):
[p. 50](30-60): 60-75
[p. 133]: 6-8 x Run [p. 50](30-60):
[p. 132]:
5
60-70 minutes $\times 400 \mathrm{~m}, 5 \mathrm{~K}$
60-70 minutes minutes
60 seconds +
60-70 minutes 90-105

+ Stretching*
pace
+ Post-Run
O2R \ddagger
+ Post-Run
minutes
or OFF
Routine**
Routine** or
$X T^{* * *}$
either Distance Fast Tempo
Easy Distance Distance Run
Short Hill
either Distance Long Run

Run [p. 50](30-60):
[p. 130]: 2×10 Run [p. 49](40-50):
[p. 50](30-60): 60-75
Sprints
Run [p. 50](30-60):
[p.132]:
6
60-70 minutes minutes (with 3 60-70 minutes minutes
[p. 220] +
60-70 minutes 90-105

+ Stretching*
min. jog) or $20+$ Post-Run
O2R \ddagger
+ Post-Run
minutes
or OFF
minutes Fast
Routine**
Routine** or
or Slow Tempo
$X T^{* * *}$
[p. 130]
either Distance Track Work
Easy Distance Distance Run
Technique
either Distance Long Run
Run [p. 50](30-60):
[p. 127]: 5-6

Run [p. 49](40-50):
[p. 50](30-60): 60-75
Drills $\dagger+$ O2R \ddagger Run [p. 50](30-60):
[p. 132]:
$60-70$ minutes $\times 1000 \mathrm{~m}, 5 \mathrm{~K}$
60-70 minutes minutes
60-70 minutes 90-105
OUR RUNNING BOD
7

+ Stretching*
pace + O2R \neq
+ Post-Run
+ Post-Run
minutes
or OFF
Routine**
Routine** or
$X T^{* * *}$
either Distance Fast Tempo
Easy Distance Distance Run
Hill Repeats
either Distance Long Run
Run [p. 50](30-60):
[p.130]: 2-3
Run [p. 49](40-50):
[p. 50](30-60): 60-75
[p.133]: 4-6x
Run [p. 50](30-60):

```
[p.132]:
    60-70 minutes x 10 minutes
    60-70 minutes minutes
    90 seconds +
    60-70 minutes 90-120
    8
    + Stretching*
    (with 3 min.
    + Post-Run
    O2R\not=
    + Post-Run
    minutes
or OFF
jog) + O2R%
Routine**
Routine** or
    or 20 minutes
XT***
Fast Tempo +
BUILD Y
O2R7
2 7 2
BuilD YOuR Running pROgRaM-pRinc
    iplEs anD scHEDulEs
```


WEEK

```
SUNDAY
MONDAY
TUESDAY
```


WEDNESDAY

THURSDAY

FRIDAY

SATURDAY
either Distance Track Work
Easy Distance Distance Run
Short Hill
either Distance Long Run
Run [p. 50](30-60):
[pp. 124-125]: Run [p. 49](40-50):
[p. 50](30-60): 60-75
Sprints
Run [p. 50](30-60):
[p. 132]: 90-
9
60-70 minutes $10 \times 400 \mathrm{~m}$,
60-70 minutes minutes
[p.220] +
60-70 minutes 120 minutes

+ Stretching*
1500m-3K
+ Post-Run
O2R \ddagger
+ Post-Run
or OFF
pace, start
Routine**
Routine** or
slower \& finish
$X T^{* * *}$
faster + O2R \ddagger
either Distance Fast Tempo
Easy Distance Distance Run
Technique
either Distance Long Hill Run
Run [p. 50](30-60):
[p.130]: 2-3
Run [p. 49](40-50):
[p. 50](30-60): 60-75
Drills $\dagger+$ O2R \ddagger Run [p. 50](30-60):
[p. 52]: 90-105
60-70 minutes x 10 minutes
60-70 minutes minutes +
60-70 minutes minutes
10
+ Stretching*
(with 3 min.
+ Post-Run
O2R \ddagger
+ Post-Run
or OFF
$j o g)+O 2 R 7$
Routine**
Routine** or
or 20 minutes
$X T^{* * *}$

Fast Tempo +
O2R \ddagger
either Distance Blend Intervals Easy Distance Distance Run Hill Repeats
either Distance Long Run
Run [p. 50](30-60):
[p. 149]: Sam—
Run [p. 49](40-50):
[p. 50](30-60): 60-75
[p. 133]: $6 x$
Run [p. 50](30-60):
[p.132]:
11
60-70 minutes ple Workout 2
60-70 minutes minutes +
90 seconds +
60-70 minutes 90-135

+ Stretching*
$+O 2 R \neq$
+ Post-Run
O2R \ddagger
O2R \ddagger
+ Post-Run
minutes
or OFF
Routine**
Routine** or
$X T^{* * *}$
either Distance Track Work
Easy Distance Distance Run
Short Hill
either Distance Long Run
Run [p. 50](30-60):
[p. 127]: 20
Run [p. 49](40-50):
[p. 50](30-60): 60-75
Sprints
Run [p. 50](30-60):
[p.132]:
12
60-70 minutes $x 400 \mathrm{~m}, 5 \mathrm{~K}$
60-70 minutes minutes +
[p.220] +
60-70 minutes 90-135
+ Stretching*
pace (with
+ Post-Run
O2R \ddagger
O2R \ddagger
+ Post-Run
minutes

BUILD Y

or OFF
1:1/2 recovery) Routine**
Routine** or
$+O 2 R$ t

TRAINING SCHEDULE NOTES:
*ONLY DO ONE TYPE OF STRETCHING: AIS [p. 104];
PNF [p. 70]; or Static [p. 76]
**POST-RUN ROUTINE
Household Props [p. 107]; Weight Room [p. 59]; The Runner 360 [p. 53]; Stretching (Choose 1 type: AIS [p. 104]; PNF [p. 70]; or Static [p. 76]) NOTE: Choose one of the three routines above; if Weight Room or Runner 360, add stretching. ***XT = CROSS TRAIN (see pp. 158-163); If you choose to cross train, keep your workout aerobic and match the effort/duration of the prescribed run.

\dagger ADV. COMPETITION TECHNIQUE DRILLS

OUR RUNNING BOD

Skipping [p. 208]; High Skipping [p. 208]; Long Skipping [p. 209]; Flat-Footed Marching [p. 209]; High Knees [p. 210]; Bounding [p. 210]; Quick Feet [p. 207]; Carioca (optional) [p.207]; Butt Kicks - Trigger Action [p. 206]; Butt Kicks Dynamic Flexibility [p. 206]

耳O2R $=$ OPTIONAL 2ND RUN: 20-40 minutes (Easy Distance Run)

Y

Build YOuR tRaining schedule
273

12-WEEK tRaining scHEDulE FOR tiME-cOnstRainED RunnERs-

intERMEDiatE \& aDvancED

WEEK

SUNDAY
MONDAY
TUESDAY
WEDNESDAY

THURSDAY

FRIDAY

SATURDAY

OFF
5 K Road \&
OFF
Hill Strides
either Distance OFF
Long Run
Trail Reps
[p. 52]
Run [p. 50](30-60):
[p. 132]: 40-60
1
[p.134]: 8×1
20-30 minutes
minutes +
minute

+ Post-Run
Post-Run
Routine* or
Routine*
$X T^{* *}$
OFF
5 K Road \&
OFF
Hill Repeats
either Distance OFF
Long Run
Trail Reps
[p. 133]: $10 x$
Run [p. 50](30-60):
[p. 132]: 40-60
2
[p. 134]: 6×2
30 seconds
20-30 minutes
minutes +
minutes
+ Post-Run
Post-Run
Routine* or
Routine*
$X T^{* *}$
OFF
Slow Tempo
OFF
Technique
either Distance OFF
Long Run
[p. 130]: 15-20
Drills \dagger
Run [p. 50](30-60):
[p. 132]: 40-60
3
minutes
20-30 minutes
minutes ++ Post-Run
Post-Run
Routine* or
Routine*
$X T^{* *}$
Y
OFF
HIIT [p. 145]:
OFF
Hill Repeats
either Distance OFF
Long Run
Gibala 8 x
[p. 133]: 8×45 Run [p. 50](30-60):
[p. 132]: 40-60
460 seconds,seconds
20-30 minutes
minutes +
5K effort (75
+ Post-Run
Post-Run
seconds rest)
Routine* or
Routine*

$X T^{* *}$

OFF
5K Road \&
OFF
Plyometrics 7
either Distance OFF
Long Run
Trail Reps
Run [p. 50](30-60):
[p. 132]: 40-60
5
[p. 134]: 4×3
20-30 minutes
minutes +
minutes

+ Post-Run
Post-Run
Routine* or
Routine*
$X T^{* *}$
OFF
Slow Tempo
OFF
Technique
either Distance OFF
Long Run
[p. 130]: 20
Drills \dagger

Run [p. 50](30-60):
[p. 132]: 40-60

6

minutes
20-30 minutes
minutes +

+ Post-Run
Post-Run
Routine* or
Routine*
$X T^{* *}$
OFF
HIIT [p. 145]:
OFF
Hill Repeats
either Distance OFF
Long Run
Gibala $10 \times$
[p. 133]: 6×60 Run [p. 50](30-60):
[p. 132]: 40-60
60 seconds,
seconds
20-30 minutes
minutes +
OUR RUNNING BOD

7

$5 K$ effort (75

+ Post-Run

Post-Run
seconds rest)
Routine* or
Routine*
$X T^{* *}$
OFF
5K Road \&
OFF
Short Hill
either Distance OFF
Long Run
Trail Reps
Sprints
Run [p. 50](30-60):
[p. 132]: 40-60
8
[p. 134]: 3×4
[p. 220]
20-30 minutes
minutes +
minutes

+ Post-Run
Post-Run
Routine* or
Routine*
$X T^{* *}$

BUILD Y

274

```
BuilD YOuR Running pROgRaM-pRinc
iplEs anD scHEDulEs
```

WEEK
SUNDAY
MONDAY
TUESDAY
WEDNESDAY
THURSDAY
FRIDAY
SATURDAY
OFF
Fast Tempo
OFF
Technique
either Distance
OFF
Long Run

```[p. 130]: 15-20
```

Drills †
Run [p. 50](30-60):
[p. 132]: 40-60
9
minutes
20-30 minutes
minutes +

+ Post-Run
Post-Run
Routine* or
Routine*
$X T^{* *}$
OFF
HIIT [p.145]:
OFF
Hill Repeats
either Distance
OFF
Long Run
Gibala $12 x$
[p.133]: $4 x 90$ Run [p. 50](30-60):
[p. 132]: 40-60
10
60 seconds,
seconds
20-30 minutes
minutes +
$5 K$ effort (75
+ Post-Run
Post-Run
seconds rest)
Routine* or
Routine*
$X T^{* *}$
OFF
5 K Road \&
OFF
Plyometrics $\underset{\text { : }}{ }$
either Distance
OFF
Long Run
Trail Reps
Run [p. 50](30-60):
[p. 132]: 40-60
11
[p. 134]: 2×5
20-30 minutes
minutes +
minutes
+ Post-Run
Post-Run
Routine* or
Routine*
$X T^{* *}$
OFF
Fast Tempo
OFF
Technique
either Distance
OFF
Long Run
[p. 130]: 20
Drills \dagger
Run [p. 50](30-60):
[p. 132]: 40-60
12
minutes
20-30 minutes
minutes +
+ Post-Run
Post-Run
Routine* or
Routine*
$X T^{* *}$

BUILD Y

TRAINING SCHEDULE NOTES:

*POST-RUN ROUTINE

Household Props [p. 107]; Weight Room [p. 59]; The Runner 360 [p. 53]; Stretching (Choose 1 type: AIS [p. 104]; PNF [p. 70]; or Static [p. 76]) NOTE: Choose one of the three routines above; if Weight Room or Runner 360, add stretching.
**XT = CROSS TRAIN (see pp. 158-163); If you choose to cross train, keep your workout aerobic and match the effort/duration of the prescribed run.

\dagger TIME-CONSTRAINED TECHNIQUE DRILLS

Skipping [p. 208]; High Skipping [p. 208]; Flat-Footed Marching [p. 209]; High Knees [p. 210]; Bounding [p. 210]; Quick Feet [p. 207]; Butt Kicks - Dynamic Flexibility [p.206]

FTIME-CONSTRAINED PLYOS

OUR RUNNING BOD
Double-Leg Hops [p. 211]; Box Jumps [p. 215]; Vertical Depth Jump (optional) [p. 213]; Toe Taps [p. 215]; Lateral Barrier Jumps (optional) [p. 216]; Quick Hops [p. 216]

\boldsymbol{Y}

Build YOuR tRaining schedule
6-WEEK tRaining scHEDulE FOR 5K RacE-intERMEDiatE \& aDvancED
WEEK
SUNDAY
MONDAY
TUESDAY
WEDNESDAY
THURSDAY
FRIDAY
SATURDAY
OFF or
Fast Tempo
Easy Distance Distance Run
Track Work
Distance Run
Long Run
Distance Run
[p. 130]: 2×10 Run [p. 49](40-50):
[p. 50](30-60): 50-75
[pp. 124-125]: [p. 50](30-60): 30-70
[p. 132]: 60-
1
[p. 50](30-60): 30-70
minutes (with
40-70 minutes minutes +
12-16 x 200m, minutes or
120 minutes
minutes
3-minute jog+ Post-Run

$$
O 2 R^{*}
$$

$$
1500 \mathrm{~m}-3 \mathrm{~K}
$$

$$
X T \dagger
$$

$$
+ \text { Post-Run }
$$

$$
r e s t)+O 2 R^{*}
$$

$$
\text { Routine }{ }^{* *}
$$

pace, start
Routine **
slower \& finish

$$
\text { faster }+O 2 R^{*}
$$

OFF or
Track WorkEasy Distance Distance Run
Hill Repeats
Distance RunLong Run2
Distance Run
[p. 127]: 12-16 Run [p. 49](40-50):
[р. 50]: 50-75
[p.133]: $6 x$
[p. 50](30-60): 30-70
[p. 132]: 60-75
[p. 50](30-60): 30-70
x 400m, 5 K
40-70 minutes minutes +

90 seconds +
minutes or
minutes +
minutes
pace + O2R*

+ Post-Run
O2R*
O2R*
$X T \dagger$
Post-Run
Routine**
Routine**
OFF or
Road Intervals Easy Distance Easy Distance Easy
Distance Jog/Easy Run Tune-Up Race:
Distance Run
(not in book):
Run [p. 49](40-50):
Run [p. 49](40-50):
Run [p. 49](40-50):
[p. 48](20):
5K RACE
[p. 50](30-60): 30-70
10-20 x 30
30-50 minutes $30-50$ minutes 25 minutes +

20 minutes

3
minutes
secs at $1500 m-+$ Post-Run
$+O 2 R^{*}$
Strides: 4-8+
3K effort, with
Routine**
Stretching \neq
1-minute jog
recovery +
O2R*
Y

OFF or Easy
Distance Run
Distance Run
Fast Tempo
Easy Distance either Distance Long Run
Distance Run
[p. 50](30-60): 50-75
[p. 50](30-60): 50-75
[p. 130]: 2×10 Run [p. 49](40-50):
Run [p. 50](30-60):
[p. 132]: 60-
4
[p. 50](30-60): 30-70
minutes +
minutes or XT† minutes (with
40-60 minutes 30-70 minutes 120 minutes
minutes
Post-Run
3-minute jog

+ Post-Run
Routine** +
rest) $+O 2 R^{*}$
Routine** or
O2R*
$X T \dagger$
OFF or
Track Work
Easy Distance Distance Run
Track Work
Distance Run
Long Run
Distance Run
[p. 129]: 4-6x Run [p. 49](40-50):
[p. 50](30-60): 50-75
[pp. 124-125]: [p. 50](30-60): 30-70
[p. 132]: 60-75
5
[p. 50](30-60): 30-70
1000m, Cruise 40-70 minutes minutes +
$12 \times 200 \mathrm{~m}$,
minutes or
minutes +
minutes
Intervals (with
+ Post-Run
O2R*
1500m-3K
$X T \dagger$
Post-Run
1:1 recovery
Routine**
pace, start
Routine**
based on time)
slower \& finish
$+O 2 R^{*}$
faster $+O 2 R^{*}$
OFF or
Track Work
Easy Distance Easy Distance Easy Distance Jog/Easy Run Goal Race:

Distance Run
[p. 127]: 6-12
Run [p. 49](40-50):
Run [p. 49](40-50):
Run [p. 49](40-50):
[p. 48](20): 20
5K RACE
[p. 50](30-60): 30-70
x 400m, 5 K
30-50 minutes 30-50 minutes
25 minutes +
minutes
minutes
pace + O2R*

+ Post-Run
Strides
Routine**
[p. 51]: 4-8 +
Stretching \neq

TRAINING SCHEDULE NOTES:

OUR RUNNING BOD
*O2R $=$ OPTIONAL 2ND RUN: 20-40 minutes (Easy
Distance Run)
**POST-RUN ROUTINE
Household Props [p. 107]; Weight Room [p. 59]; The Runner 360 [p. 53]; Stretching (Choose 1 type: AIS [p. 104]; PNF [p. 70]; or Static [p. 76]) NOTE: : Choose one of the three routines above; if Weight Room or Runner 360, add stretching.
$\dagger \mathbf{X T}=\boldsymbol{C R O S S}$ TRAIN (see pp. 158-163); If you choose to cross train, keep your workout aerobic and match the effort/duration of the prescribed run.

PNF [p. 70], or Static [p. 76]

BUILD Y

276

Build YOuR Running pROgRaM—pRinc iplEs anD scHEDulEs

6-WEEK tRaining scHEDulE FOR 10K RacE- intERMEDiatE \& aDvancED
WEEK
SUNDAY
MONDAY
TUESDAY
WEDNESDAY
THURSDAY
FRIDAY
SATURDAY
OFF or
Fast Tempo
Easy Distance Distance Run
Track Work
Distance Run
Long Run
Distance Run
[p. 130]: 2×10 Run [p. 49](40-50):
[p. 50](30-60): 50-75[p. 124-125]:[p. 50](30-60): 30-70
[p. 132]: 60-
1
[p. 50](30-60): 30-70
minutes (with40-70 minutes minutes +
12-16 x 200m, minutes or
120 minutes
minutes
3-minute jog

+ Post-Run
O2R*
1500m-3K
$X T \dagger$
+ Post-Run
rest) $+O 2 R^{*}$
Routine**
pace, start
Routine**
slower \& finish
faster $+O 2 R^{*}$
OFF or
Track Work
Easy Distance Distance Run
Hill Repeats
Distance Run
Long Run
2
Distance Run
[p. 129]: 12-20 Run [p. 49](40-50):
[p. 50](30-60): 50-75
[p. 133]: $6 x$
[p. 50](30-60): 30-70
[p. 132]: 60-75
[p. 50](30-60): 30-70
x 400m, 10 K

40-70 minutes minutes +
90 seconds +
minutes or
minutes +
minutes
pace + O2R*

+ Post-Run
O2R*
O2R*
$X T \dagger$
Post-Run
Routine**
Routine**
OFF or
Road Intervals Easy Distance Easy Distance Easy
Distance Jog/Easy Run Tune-Up
Distance Run
(not in book):
Run [p. 49](40-50):
Run [p. 49](40-50):
Run [p. 49](40-50):
[p. 48](20): 20
Race: $5 K$
[p. 50](30-60): 30-70
10-20 x 30
30-50 minutes $30-50$ minutes 25 minutes +
minutes
RACE

3

minutes
secs at $1500 m-+$ Post-Run
$+O 2 R^{*}$
Strides
3 Keffort, with
Routine**
[p. 51]: 4-8 +
1-minute jog
Stretching \ddagger
recovery +
O2R*
OFF or Easy
Distance Run
Distance Run
Fast Tempo
Easy Distance Distance Run
Long Run

BUILD Y

Distance Run
[p. 50](30-60): 50-75
[p. 50](30-60): 50-75
[p. 130]: 2-3
Run [p. 49](40-50):
[p. 50](30-60): 30-70
[p. 132]: 60-
[p. 50](30-60): 30-70
minutes +
minutes or $X T \dagger x 10$ minutes
40-60 minutes minutes +

120 minutes

4

minutes
Post-Run
(with 3-minute
Post-Run
Routine** +
jog rest) +
Routine**
O2R*
O2R* or Fast
Tempo: 20
minutes +
O2R*
OFF or
Track Work
Easy Distance Distance Run
Track Work
Distance Run
Long Run
OUR RUNNING BOD
Distance Run
[p. 129]: 4-8 x Run [p. 49](40-50):
[p. 50](30-60): 50-75
[pp. 124-125]: [p. 50](30-60): 30-70
[p. 132]: 60-75

5

1000m, Cruise 40-75 minutes minutes +
$12 \times 200 \mathrm{~m}$,
minutes or
minutes +
minutes
Intervals (with

+ Post-Run
O2R*
1500m-3K
$X T \dagger$
Post-Run
1:1 recovery
Routine**
pace, start
Routine**
based upon
slower \& finish
time) $+O 2 R^{*}$
faster $+O 2 R^{*}$
OFF or
Track Work
Easy Distance Easy Distance Easy Distance Jog/Easy Run
Goal Race:
Distance Run
[p. 129]: 8-16
Run [p. 49](40-50):

Run [p. 49](40-50):
Run [p. 49](40-50):
[p. 48](20): 20
10K RACE
6
[p. 50](30-60): 30-70
x 400m, 10 K
30-50 minutes 30-50 minutes
25 minutes +
minutes
minutes
pace $+O 2 R^{*}$

+ Post-Run
Strides
Routine**
[p. 51]: 4-8 +
Stretching \neq

TRAINING SCHEDULE NOTES:

*O2R $=$ OPTIONAL 2ND RUN: 20-40 minutes (Easy
Distance Run)
**POST-RUN ROUTINE
Household Props [p. 107]; Weight Room [p. 59]; The Runner 360 [p. 53]; Stretching (Choose 1 type: AIS [p. 104]; PNF [p. 70]; or Static [p. 76]) NOTE: : Choose one of the three routines above; if Weight Room or Runner 360, add stretching.
\dagger †TT = CROSS TRAIN (see pp. 158-163); If you choose to cross train, keep your workout aerobic and match the effort/duration of the prescribed run.
łONLY DO ONE TYPE OF STRETCHING: AIS [p. 104]; PNF [p. 70], or Static [p. 76]
YBuild YOuR tRaining scheDulE277
6-WEEK tRaining scHEDulE FOR HalF MaRatHOn-intERMEDiatE \& aDvancED
WEEK
SUNDAY
MONDAY
TUESDAY
WEDNESDAY
THURSDAY
FRIDAY
SATURDAY
OFF or
Fast Tempo
Easy Distance Distance Run
Track Work
Distance Run
Long Run
Distance Run
[p. 130]: 2×10 Run [p. 49](40-50):
[p. 50](30-60): 50-75
[pp 124-125]:
[p. 50](30-60): 30-70
[p. 132]: 60-
[p. 50](30-60): 30-70
minutes (with
40-70 minutes minutes +

12-16 x 200m, minutes or

120 minutes

1
minutes
3-minute jog

+ Post-Run
O2R*
1500m-3K
$X T \dagger$
rest) $+O 2 R^{*}$ or Routine**
pace, start
Slow Tempo
slower \& finish
[p.130]: 20-30
faster $+O 2 R^{*}$
minutes +
O2R*
OFF or
Track Work
Easy Distance Distance Run
Hill Repeats
Distance Run
Long Run
2
Distance Run
[p. 127]: 12-16 Run [p. 49](40-50):
[р. 50]: 50-75
[p. 133]: $6 x$
[p. 50](30-60): 30-70
[p. 132]: 75-
[p. 50](30-60): 30-70
x 400m, 5 K
40-70 minutes minutes +
90 seconds +
minutes or
135 minutes
minutes
pace + O2R*
+ Post-Run
O2R*
O2R*
XT \dagger
Routine**
OFF or
Fast Tempo
Easy Distance Distance Run
Road Intervals Distance Run
Long Run
Distance Run
[p. 130]: 2-3
Run [p. 49](40-50):
[p. 50](30-60): 50-75
(not in book):
[p. 50](30-60): 30-70
[p. 132]:
[p. 50](30-60): 30-70
x 10 minutes
40-70 minutes minutes + 10-20 x

```
minutes or
90-150
3
minutes
(with 3-minute + Post-Run
O2R*
30 secs at
XT \dagger
minutes
jog rest) +
Routine**
1500m-3K
O2R* or Fast
effort, with
Tempo: 20
1-minute jog
minutes +
recovery +
Y
O2R*
O2R*
OFF or
5K Road &
Easy Distance Easy Distance Easy Distance Jog/Easy Run
Tune-Up
Distance Run
Trail Reps
Run [p. 49]:
Run [p. 49]:
Run [p. 49]:
```

Race: 5 K
4
[p. 50](30-60): 30-70
[p. 134]: $6 x$
30-50 minutes $30-50$ minutes 25 minutes +
minutes
RACE
minutes
3 minutes +

+ Post-Run
$+O 2 R^{*}$
Strides
O2R*
Routine**
[p. 51]: 4-8 +
Stretching \neq
OFF or Easy
Distance Run
Distance Run
Fast Tempo
Easy Distance Distance Run
Long Run
5
Distance Run
[p. 50](30-60): 40-60
[p. 50](30-60): 40-60
[p. 130]: 3×10 Run [p. 49](40-50):
[p. 50](30-60): 30-60
[p. 132]: 60-75

```
[p. 49]: 30-70
minutes
minutes +
minutes (with
40-60 minutes minutes +
minutes +
minutes
Post-Run
3-minute jog
Post-Run
Strides [p. 51]
Routine**
rest) + O2R*
Routine**
(optional)
OFF or
Track Work
Easy Distance Easy Distance Easy Distance Jog/Easy Run
Goal Race:
Distance Run
[p. 127]: 6-12
Run [p. 49]:
Run [p.49]:
Run [p. 49]:
[p.48]: 20
HALF
6
[p. 50]: 30-70
x 400m, 5K
30-50 minutes 30-50 minutes
```

25 minutes +
minutes
MARATHON
minutes
pace + O2R*

+ Post-Run
Strides
Routine**
[p. 51]: 4-8 +
Stretching \ddagger

TRAINING SCHEDULE NOTES:

*O2R = OPTIONAL 2ND RUN: 20-40 minutes (Easy Distance Run)
**POST-RUN ROUTINE

OUR RUNNING BOD

Household Props [p. 107]; Weight Room [p. 59]; The Runner 360
[p. 53]; Stretching (Choose 1 type: AIS [p. 104]; PNF [p. 70]; or Static [p. 76]) NOTE: : Choose one of the three routines above; if Weight Room or Runner 360, add stretching.
\dagger XT $=$ CROSS TRAIN (see pp. 158-163); If you choose to cross train, keep your workout aerobic and match the effort/duration of the prescribed run.
łONLY DO ONE TYPE OF STRETCHING: AIS [p. 104]; PNF [p. 70], or Static [p. 76]

BUILD Y

278
Build YOuR Running pROgRaM—pRincipl Es anD scHEDulEs

8-WEEK tRaining scHEDulE FOR MaRatHOn-intERMEDiatE \& aDvancED

WEEK
SUNDAY
MONDAY
TUESDAY
WEDNESDAY
THURSDAY
FRIDAY
SATURDAY
OFF or
Slow Tempo
Easy Distance
Distance Run
Track Work
either Distance Long Run
1
Distance Run
[p. 130]: 2×15 Run [p. 49](40-50):
[p. 50](30-60): 50-75
[p. 125]: 16
Run [p. 50](30-60):
[p. 132]:
[р. 50]: 30-70
minutes
40-70 minutes
minutes +
x 200m, 3 K
30-70 minutes 90-135
minutes
(3-minute jog)

+ Post-RunO2R*pace + O2R*or $X T \dagger+$ Post-
minutes
$+O 2 R^{*}$
Routine**
Run Routine**
OFF or
Track Work
Easy Distance Distance Run
Hill Repeats
Easy Distance Long Run
Distance Run
[p. 129]: 6-10x Run [p. 49](40-50):
[p. 50](30-60): 50-75
[p. 133]: 6×90 Run [p. 49](40-50):
[p. 132]:
2
[p. 50](30-60): 30-70
1000m, Cruise 40-70 minutes minutes +
seconds
30-70 minutes $105-150$
minutes
Intervals (with 1:1 + Post-Run
$O 2 R$ *
or $X T \dagger$
minutes
recovery based Routine**
on time) $+O 2 R^{*}$
OFF or
Track Work
Easy Distance Distance Run
Easy Run [p. 48](20): Easy Distance Slow Tempo

Distance Run
[p. 127]: 12-16 Run [p. 49](40-50):
[p. 50](30-60): 50-75
30-50 minutes Run [p. 49](40-50):
[p.130]: 60
[p. 50](30-60): 30-70
x 400m, 5 K
40-70 minutes minutes +

+ Strides
30-70 minutes minutes
minutes
pace + O2R*
+ Post-Run
O2R*
[p. 51]: 4-8 +
or XT †
Routine**
Stretching \ddagger
OFF or
Easy Distance Easy Distance Distance Run
Hill Repeats
Easy Distance Long Run
4
Distance Run
Run [p. 49](40-50):
Run [p. 49](40-50):
[p. 50](30-60): 50-75
[p. 133]: $6 x$
Run [p. 49](40-50):
[p. 132]:
[p. 50](30-60): 30-70
30-70 minutes
40-70 minutes + minutes
90 seconds +
30-70 minutes 120-180
minutes
Post-Run Rou-
O2R*
or $X T$ †
minutes
tine** + O2R*
OFF or
Fast Tempo
Easy Distance Distance Run
Track Work
Easy Distance Long Run
Distance Run
[p. 130]: 3×10 Run [p. 49](40-50):
[p. 50](30-60): 50-75
[p. 125]: 16
Run [p.49]:
[p. 132]:
[p. 50](30-60): 30-70
minutes (with
40-70 minutes minutes +
x 200m, 3 K
30-70 minutes $\quad 135-210$

BUILD Y

minutes
3-minute jog

+ Post-Run
$O 2 R^{*}$
pace + O2R*
or $X T \dagger$
minutes
rest) $+O 2 R^{*}$
Routine**
or Slow Tempo
[p. 130]: 30-40
minutes $+O 2 R^{*}$
OFF or
Track Work
Easy Distance Easy Distance Easy Run
Jog/Easy Run
Tune-up Race:
6
Distance Run
[p. 127]: 6-12
Run [p. 49](40-50):
Run [p. 49](40-50):
[p. 48](20): 25 min- [p. 48](20): 20
5K RACE
[p. 50](30-60): 30-70
x 400m, 5 K
30-50 minutes $30-50$ minutes
utes + Strides
minutes
minutes

```
pace +O2R*
+ Post-Run
[p. 51]: 4-8 +
Routine**
Stretching%
OUR RUNNING BOD
OFF or Easy
Distance Run
Distance Run
Fast Tempo
Easy Distance Easy Distance Long Run [p. 132]:
7
Distance Run
[p. 50]: 40-60
[p. 50]: 40-60
[p.130]: 2x 10 Run [p. 49]:
Run [p.49]:
45-85 minutes
[р. 49]: 30-70
minutes
minutes +
minutes (with
40-60 minutes 40-60 minutes
+ Strides
minutes
Post-Run
3-minute jog
[p. 51]: 4-8 +
Routine**
rest) + O2R*
```

Stretching \ddagger
OFF or
Distance Run
Easy Distance Easy Distance Easy Distance Rest \& Travel
Jog/Easy
Distance Run
[p. 50](30-60): 40-70
Run [p. 49](40-50):
Run [p. 49](40-50):
Run [p. 49](40-50):

+ Increase
Run [p. 48](20):
[p. 50](30-60): 30-70
minutes (op-
30-50 minutes 30-50 minutes
25 minutes +
Carbs (see
20 minutes +
8
minutes
tion: Include
+ Post-Run
Strides [p.51]: Chapter 19)
Increase Carbs
2-4 miles at
Routine**
4-8 + Stretch-
(see Chapter
Goal Marathon
ing \neq + Increase
pace)
Carbs (see
Chapter 19)
9
Goal Race:
MARATHON

TRAINING SCHEDULE NOTES:

*O2R = OPTIONAL 2ND RUN: 20-40 minutes (Easy Distance Run)
**POST-RUN ROUTINE
Household Props [p. 107]; Weight Room [p. 59]; The Runner 360
[p. 53]; Stretching (Choose 1 type: AIS [p. 104]; PNF [p. 70]; or Static [p. 76]) NOTE: : Choose one of the three routines above; if Weight Room or Runner 360, add stretching.
\dagger XT $=$ CROSS TRAIN (see pp. 158-163); If you choose to cross train, keep your workout aerobic and match the effort/duration of the prescribed run.
\boldsymbol{Y}
干ONLY DO ONE TYPE OF STRETCHING: AIS [p. 104]; PNF [p. 70], or Static [p. 76]
BuilD YOuR tRaining scheDulE
279

16
I

Recover Build Y

t 's not the training you do that counts.
It's the training from which your body
can recover.
Many runners believe they get stronger during hard bouts of training. Not true. You get
our Running
stronger while you're recovering from train-

y

ing. That's when muscle fibers are repaired,
hormones are replaced, glycogen stores are re-
triggers an adaptation (improved fitness). As
plenished, mitochondria multiply, your nervous
these adaptations accumulate, you begin to system reboots, and your cardiovascular system transform your running body, building a stronger goes under construction, ready to be transformed and more durable you. But this transformation into an oxygen superhighway. But the demands doesn't occur while you're training; it occurs of recovery require more than plopping your butt while you recover. Without full recovery, you on the couch post-run. Recovery is a multi-layered short-circuit your body's ability to adapt. approach, combining both active and passive eleProper recovery occurs on many levels when ments, that's aimed at generating physical imyou're training: provement while simultaneously leaving you psychologically fresh-the better to maintain

» Recovery between reps and sets (intervals, your motivation to train again.
 drills, resistance training, etc.)

» Recovery post-workout
 WHAT'S RECOVERY?

» Recovery at night
» Recovery between hard workouts
Recovery is a low-key set of activities practiced in

» Recovery from the daily grind

tandem with physical exertion. It's a mistake to

» Recovery between race seasons

\boldsymbol{Y} think of recovery as a passive passage of time. Instead, you'll need to engage in activities that fa-

Too many runners want to skip recovery and
cilitate recovery. These can include stretching,
head straight into the next hard workout. They
post-run exercises, glycogen replacement, rehyshould heed the words of famed UCLA basketball dration, recovery runs, stress-relieving activities, coach John Wooden, who led the Bruins to ten and complete rest and sleep, among others.

NCAA titles, including seven in a row: "If you
To understand recovery, it's important to first don't have time to do it right, when will you have understand what happens during training.
time to do it over?"
Training is not a bank account. You aren't depositing workouts (distance, tempo, resistance THE MANY FACES OF RECOVERY training, etc.), into your training log, looking to withdraw them on race day. Instead, each workThere are two factors that must be properly maout applies a stimulus (your training) that nipulated for every workout. One is the stimulus

BEGINNER'S GUIDELINE

OUR RUNNING BOD

Resist the urge to train harder than scheduled on days when you "feel good." If you're properly rested and recovered, you
should feel good. That's the point of proper recovery.
Feeling good is not a green light for running too hard. And running too hard will only ensure that you "feel bad" for your next workout -or your next few workouts.

BUILD Y

282

Build YOuR Running pROgRaM—pRincipl Es anD schEDulEs

(training) required to trigger the desired adapta-Carbohydrate intake (50-100 grams) during the
tion. The second is the recovery needed to ensure immediate post-workout period can lead to glythat the adaptation occurs. We've discussed many cogen replacement at 200-300 percent the normal options for stimuli throughout this book. It's time rate. Include protein at a 4:1 ratio of carbs to proto look at six important methods of recovery.
tein if you desire.
Recovery between repetitions
Recovery at night
The recovery interval during repetitions is a tool Sleep. It's what your body needs after a long day for controlling the accumulation of fatigue; it althat includes training. A good night's sleep relows you to complete another repetition at the pairs cell damage, regenerates neurotransmitters, workout's prescribed pace. Of course, manipulastrengthens your immune system, improves flextion of recovery intervals (shortening and lengthibility, lowers stress, and keeps you fresh and ening them) also allows runners to shift a alert. And a twelve-year study from Great Britain
workout's focus to specific energy systems, musfound that people who got between seven and cle fibers, and other running components. And nine hours of sleep live longer. Elite runners make you'll recall that intervals as originally run (see sleep an essential part of their daily routine, logchapters 4 and 7) utilized the recovery period to ging nine hours per night, according to research momentarily increase blood flow to the heart, by Martin Miller and Judd Biasiotto. That's more

BUILD Y

thereby increasing stroke volume. By and large, than an hour longer than the average person. however, recovery intervals simply control faWhile that much sleep might be more than a busy tigue, allowing you to amass a greater volume of adult can schedule, you should target at least faster-pace training. seven hours if you want to get the most out of your training.

Recovery post-workout
The first fifteen to thirty minutes post-workout
Recovery between hard workouts

OUR RUNNING BOD

are critical. This is the time when your body reRecovery days allow your body to adapt to the quires your attention the most. It is important to training stimulus of a hard workout. This is when establish a post-run routine that includes stretchimprovement occurs. Recovery days are also the
ing (AIS or PNF if you have a rope or partner, static time for your body to replace hormones, enzymes, stretching if you don't) and some kind of strengthand fuel, as well as to repair muscle fibers and ening-see the various routines from Chapter 5 connective tissue. Recovery gives your nervous and Chapter 6. It's not mandatory that you do a system a chance to rejuvenate (a reboot, if you post-run routine every day; three to four days a will). Easy running on recovery days provides a week is adequate, and at least twice is essential. nice growth hormone and testosterone boost, too. Follow your post-run routine (or your run on the See tables 16.1 and 16.2 for the approximate numdays you don't do a post-run routine) by rehydratber of recovery days needed after both hard working and replacing your glycogen stores. You don't
outs and races (note that your recovery days will have to rehydrate all at once, but a glass or two of vary depending on your age and fitness). water will help return your body to homeostasis. \boldsymbol{Y}

BuilD YOuR Running REcOvERY

283
table 16.1
covered the damage stress can inflict on your number of Days Between
body (e.g., inflammation, illness, increased blood

Hard Workouts

pressure, and decreased bone and muscle den-

Runner's

Low

Medium

High

sity). While it's beating you up physically, stress is
Age
Fitness

Fitness

Fitness

also lowering your motivation to train. So find an
4.0
3.0
2.0
outlet for stress. Shoot some hoops. Read a book.
30
5.0
4.0
3.0

Go to a movie. Go dancing. Write. Paint. Work in 40
5.5
4.5
3.5
the garden. Take a vacation. Or there's always the 50
6.0
5.0
4.0
old standby: sex. Rediscovering the joy in every-
7.0
6.0
4.5
day life will make you a better runner-mostly
70
8.0
7.0
5.0
because you'll actually feel like running.
80
9.0
8.0
5.5

TABLE 16.1 offers the approximate number of days you Recovery between race seasons should recovery between "hard" workouts (e.g., repetition Elite runners have race "seasons." But even lesstraining, long hill repeats, intense strength training, or fast tempo). Runners at different fitness levels require varying competitive runners have versions of a season, recovery.
usually revolving around a major goal race (e.g., a marathon) and the tune-up races that precede it.

Recovery from the daily grind

Y

No matter how you define "season," you'll need a
Don't forget to recover from the non-running elebreak when it's done. It's a law of physics that ments of your daily life, too. Family, career, finanwhat goes up must come down. This applies to
cial decisions, social and community obligations, your fitness, too. Dr. Tom Cotner puts it this way: driving, weather, errands and chores, noise, "If you don't take planned breaks, you find your-worry-they all take their toll. In Chapter One, we self taking unplanned breaks." So congratulate table 16.2
number of Days Following a Race Before the next Workout
Race Distance
Easy Workout
Medium Workout

Hard Workout

Age Adjustment

800
1.0
2.0
3.0

Age
Factor
1500 (Mile)
1.0
2.0
3.0

20-29
1.0

3000/3200
1.0
2.5
4.0

30-39

```
1.1
5K
1.0
3.0
4 . 5
40-49
1.2
8K
1.0
4 . 0
6 . 0
50-59
1.3
OUR RUNNING BOD 10K
1.0
6 . 0
9.0
60-69
1.4
15K
1.0
7 . 0
11.0
70-79
1.5
Half Marathon
1.0
9.0
14.0
80-89
```


1.6

Marathon
1.0
17.0
26.0

90+
1.7+

TABLE 16.2 offers the approximate number of days following a race before you should attempt your next workout. An easy recovery or distance run is fine the day after a race. Medium workouts (e.g., slow tempo) require more recovery days. And hard BUILD \boldsymbol{Y} workouts (e.g., 5K pace repetitions) require even longer recovery. The two columns on the right provide age adjustments. For instance, a fifty-year-old who'd raced a 5 K would multiply 4.5 by 1.3, giving him/her approximately six days of recovery before the next hard workout.

284

BuilD YOuR Running pROgRaM-pRincipl

 Es anD scHEDulEsyourself on a season well done, and then either activities, like hiking or Frisbee. Ease up on the take three weeks completely off (the Kenyans diet. Cheat a little on the stretching and strength spend up to two months post-season doing nothroutine. Give your body the break it deserves. If ing but lying on the couch and gaining weight) or you're afraid you'll lose some of your conditionlower your volume by 50 percent (or more)—in ing-well, you will. But you'll be better for it, bethe latter case, take at least two days a week off cause you'll bounce back strong, one hundred and limit "hard" work to some strides a couple of percent ready to tackle a new program-body,
times a week. Also, indulge in some alternative mind, and spirit.

BUILD Y
OUR RUNNING BOD Y

Build YOuR Running RECOvERY
285

Injur Build Y

ouldn't it be nice if no runner ever got injured? Sorry,
not gonna happen. Studies confirm that be-

y Prevention

tween 50-80 percent of runners will suffer an
injury during any given year. But studies also

our Running

confirm that the majority of those injured runners failed to include injury-prevention routines in their training. By spending an extra ten to fifteen minutes (three to four times
per week) on post-run stretching and exercises, you can lower your odds of suffering injuries. And when injuries do occur, you can use many of these same exercises to speed your recovery-or to limit the impact of the injuries so you can train through them. WHAT'S A RUNNING INJURY?
oftentimes even with full rest. For example,
Achilles tendinosis involves degenerative In the introduction to his 2010 Runner's World ardamage and microtears in the Achilles tenticle, "10 Laws of Injury Prevention," Amby Burfoot don caused by longterm overuse, and it notes that "running injuries can be caused by berequires specific strengthening exercises ing female, being male, being old, being young, and therapeutic practices to overcome. pronating too much, pronating too little, training

[^1]kle, jamming a toe, or straining a muscle, In other words, running injuries occur when among other mishaps.
you run. Or when you do resistance training. Or
» After-the-fact: Fatigued muscle and battechnique drills. Or plyometrics. Or, for older runtered connective tissue sometimes give way ners, when you roll over in bed.
while engaged in activities post-training.
A running injury is damage or pain that occurs For instance, quick or awkward movements, as a consequence of training. Injuries come in like springing up from a chair or slipping in several forms:
the mud, can lead to calf and hamstring strains.
» Overload injuries: These result from a sud-
» Cramping: Post-workout cramps can lead

\boldsymbol{Y}

den increase in volume, intensity, or both to muscle strains, as any runner who's been (e.g., excessive initial training that leads to jolted awake in the middle of the night by a DOMS). This is a common source of injuries spasmodic calf can attest.
among beginners.
» Injuries from injuries: The most madden-
> " Overuse injuries: These result from repetiing injuries are the ones that develop while tion of a stress that irritates or damages tistrying to train through another injury. For sue. For example, runner's knee (patella example, compensating for injury on one femoral pain syndrome) can occur when side of your body (e.g., Achilles bursitis, your kneecap tracks poorly in the femoral plantar fasciitis, or hip pain) increases your groove, irritating and damaging cartilage.
> risk of injury on the opposite side.

» Chronic injuries: These result from longterm repetition of an unmitigated stress,

If you carefully parse the circumstances of the causing pain that simply won't go away,
injuries listed above, you'll find one common

BEGINNER'S GUIDELINE

OUR RUNNING BOD

Injuries almost always occur in response to new physiological stress. Ramping up your training volume too quickly, introducing sharp increases in intensity, or making mechanical changeslike altering your stridewill create the kinds of physical overload that result in injury. Be like an ocean liner: Change tack gradually and reverse thrusters well ahead of BUILD Y
perceived danger.
288
Build YOuR Running pROgRaM-pRincipl Es anD scHEDulEs
cause that underpins all of the injuries: Runners' that develop over the course of time; IT band synmistakes.
drome and Achilles tendinosis fall into this cateAnd the worst mistake we runners make is gory. Injuries like plantar fasciitis and lower back waiting to get injured before doing something pain can have either acute or chronic origins. about injuries. It's not possible to prevent all runAcute injuries are simpler to treat, since the ning injuries, but a simple post-run routine can cause is known. If you step on a rock and tear your go a long way toward lowering your risk. You'll plantar fascia, the treatment begins with letting want to include stretches and exercises that the plantar fascia heal. Chronic injuries are harder strengthen your body from core to toe-what's to diagnose because the cause is often unknown. referred to as your kinetic chain. And you'll want to For instance, if your plantar fascia becomes more perform these exercises three to four times per painful over time-perhaps beginning with pain week (two times at a minimum). that feels like a stone bruise in your heel, then gradually sweeping across the bottom of your Warning: Acute and life-threatening injuries foot-the cause can be hard to pin down. OverproBefore reading about injury prevention and rehab, nation? Tight calves? Weak hips? Flat feet? Poor recognize that some injuries demand immediate,
proprioception? Too much running on the track? professional attention. If you suffer a sudden or Too much weight for squats, lunges, or cleans? severe injury while training - a sharp pain or deWithout knowing the cause of the injury, it can be

BUILD Y

bilitating incident-then you'll need a medical difficult to design a rehab program to treat it. evaluation. In the case of heart arrhythmia, breathThere are other injuries, like general hip and ing difficulties, disorientation, sudden cessation of knee pain, that can defy diagnosis. Go to four docsweating (heat stroke), severe fever or headache, tors, and you'll get four different opinions-and badly blurred vision, or other potentially lifefour different rehab routines. threatening symptoms, you'll need immediate This is why the best treatment is injury prevenmedical attention. You'll also need professional tion. Anticipate the ambiguous nature of chronic

OUR RUNNING BOD

treatment for meniscus tears, stress fractures, torn injuries by strengthening your entire kinetic chain. tendons or ligaments, and other severe connective This strengthening, in turn, will help guard against tissue damage. We could go on, but let's sum it up acute injuries. A well-rounded routine should in-like this: If you suffer what seems to be a serious clude some or all of the following components: injury or set of symptoms, then run-don't walkto your health professional.

» Stretching

» Strength training

INJURY PREVENTION TRAINING

"Wobble board

» Carbohydrate and protein

Almost all athletes develop injuries at some point

supplementation

during their training. Injuries can be acute or

» Limited icing

chronic. Acute injuries (like ankle sprains and pulled hamstrings) result from specific, often

These elements of injury prevention can be traumatic incidents. Chronic injuries are injuries combined into a single post-run routine or \boldsymbol{Y}

Build YOuR Running inju RYpREvEntiOn 289

divvied up into two routines that you alternate.
STRETCHING
Or they can even be performed as a separate workout altogether. For best results, each exerFor most runners, a simple AIS routine (pages cise, stretch, or other routine element should be 104-106) will provide the most bang for their performed a minimum of twice per week. And if buck. AIS is quick, easy to perform, and provides
you have a specific injury concern-if you've sufthe greatest increase in range of motion-imfered an injury in the past or feel particularly susproved range of motion can reduce the incidence ceptible to a new one (e.g., plantar fasciitis for of muscle and connective tissue injury as well as masters runners)-use the table "Exercises to Prelessen the pain associated with tendinitis and vent and Rehabilitate Running Injuries" on page bursitis. AIS curtails post-run stiffness, allowing 377 to identify specific exercises that will address even high-volume, high-intensity athletes to that concern. move more freely during daily activities. The only drawback for some runners is a decrease in exTWO COMMON PRACTICES TO AVOID plosive strength and power following AIS. PNF stretching (pages 70-75) is also effective for imEqually as important as what to include in your proving range of motion, but it takes longer to injury prevention routine is what not to include: perform than AIS and requires a partner for best \boldsymbol{Y}
results. Post-run static stretching (pages 76-78) is Anti-inflammatories for muscle soreness: Inflammaeffective for relieving stiffness. Pre-run static tion is a necessary part of healing. Inflammation stretching results in temporary loss of explosive triggers specialized cells (neutrophils, macrostrength and power; nevertheless, it's grudgingly
phages, and monocytes) to clear away damaged recommended for runners who've already pracmuscle tissue. This paves the way for the creation ticed it longterm, due to the possibility of inof stronger, more durable muscle fibers. Interruptcreased injury risk if it's stopped.
ing the process derails your body's ability to recover and adapt.
STRENGTH TRAINING
Excessive antioxidant supplementation: The stimulus
Running works some muscles more than others. created by free radicals (oxygen molecules with an That's a problem because muscle imbalance can extra electron that cause damage to cells) triggers lead to injury. It creates unequal tension between adaptations that make you a better runner. While opposing muscles, puts pressure on tendons and including antioxidant-rich foods in your diet will ligaments, and reduces stride efficiency due to

OUR RUNNING BOD limit exorbitant free radical formation and speed instability. You'll need to strengthen opposing your recovery from exercise-induced inflammamuscles (e.g., quadriceps and hamstrings) and tion, an overabundance of antioxidants, such as improve neuromuscular communication. For the excessive quantities found in many multivitagood full-body strengthening and balancing, The mins and supplements, will inhibit both the stimRunner 360 (pages 53-58) offers a dynamic rouulus and subsequent adaptations that lead to
tine. For greater strength gains, traditional weight
BUILD Yimproved fitness.
room exercises (pages 59-69) will do the trick. For runners simply looking to stave off injury without 290

Build YOuR Running pROgRaM—pRincipl Es anD scheDules

building muscle, the Household Props routine of built-in rest periods." That's because icing, like (pages 107-110) can help keep you healthy.
anti-inflammatories, interrupts your body's normal healing cycle. On the other hand, icing is an integral WOBBLE BOARD
part of dealing with chronic connective tissue injuries. Reducing post-workout inflammation is some-

If you can, wobble. The wobble board is the single times necessary if there is to be a next workout. But best training tool for fortifying your kinetic chain. don't over-ice. Ten to fifteen minutes is enough. And The wobble board can help protect you from injury quit if the surrounding tissue feels too cold. Freez(from plantar fasciitis to runner's knee) or play a role ing perfectly good tissue only adds a new injury to in rehabilitation. Start with five reps of basic exerthe old.
cises (pages 91-92) and slowly increase the number each week. You can stop at ten reps, or you can A FEW WORDS ABOUT CROSS TRAINING push it as high as one hundred-though you'll want to do the minimum necessary to reap the rewards. Cross training is a popular tool for runners who are either recovering from injury or trying to train CARBOHYDRATE AND PROTEIN
through chronic injuries. It's used to retain carSUPPLEMENTATION
diovascular fitness, as well as some muscle and connective tissue strength, during periods when

BUILD Y

It's an old runner's trick: If you're suddenly heavyyou're forced to reduce mileage. Since you don't legged and lethargic, eat lots of carbs and drink train the exact same muscle fibers as running, lots of water. A deficit in muscle glycogen (stored however, expect to lose capillary, mitochondrial, carbohydrates) can turn every run into a slog. By and other cell-specific gains in those fibers not replenishing your glycogen, you should feel better recruited (due to the rule of specificity, which we in a few days. Protein supplementation can aid defined in Chapter 5). For this reason, it's best to protein synthesis, which repairs damaged muspick cross training activities that most closely reOUR RUNNING BOD
cle. See Chapter 12 for more information on prosemble running, including: pool running, the eltein supplementation. liptical machine, ElliptiGO bicycles, treadmills, snowshoeing, and cross country skiing (see ChapLIMITED ICING
ter 9's photo instruction for a rundown on each).
Icing is part of the famous injury-treatment acronym: RICE (rest, ice, compression, elevation). RICE is See the Injury Prevention table on page 377
great for acute injuries. But it's unwarranted for for a comprehensive list of common running transient muscle soreness and inflammation (e.g., injuries, including signs and symptoms for moderate cases of DOMS). "For most people, with each injury, as well as a guide to workouts in normal training, you probably don't need to do anythis book that can prevent those injuries from
thing about inflammation," says Jonathan Dugas, occurring and, in many cases, help rehab Ph.D., coauthor of the Science of Sport website. "Even them when they do occur (injuries that require during hard training, you don't need to do anything immediate professional attention are noted).
\boldsymbol{Y}
except follow the standard training process
Build YOuR Running injuRYpREvEntiOn 291

PART
4

Build Your
Running Diet-
Protein, Carbs,
Calories, and

Nutrition

18

T

Diet with Real Food Build Y

here's a strange sci-fi beauty to
much of the processed food lining
the aisles of the supermarket. Designed in
labs and produced in factories, processed food
offers the futuristic convenience of instant

our Running

meals in packages. That said, it has no right to
call itself food-or real food, at least. True, it
can be put in your mouth, chewed, and digested, but it'd be a stretch to associate processed food with the kind of food nurtured
with sunlight and soil. And most of its nutrients are but distant memories.
Processed food is food that has been taken
from its original state, had the nutrients
beaten out of it, and was then turned into something no longer recognizable as that which For runners, real food is important for a number it once was. Think of an apple (a whole food), apof reasons. Just as you wouldn't put a willy-nilly plesauce (slightly processed), and an Apple-Cinmixture of-hmmm—let's say paint, Kool-Aid, and namon Pop Tart (highly processed).
baby oil into your car for gas, you shouldn't fuel Real bodies need real food. A diet of artificial your body with the toxic and empty ingredients ingredients, preservatives, and indefensible that comprise processed food. There are compliamounts of added fats and sugars does not do a cated, physiological processes collaborating to body good. Just look at the skyrocketing rates of build your running body, and those processes rely obesity, diabetes, and cardiovascular disease. on the rich mix of nutrients found in real food.

NUTRITION DISCUSSION

"The Case of the Missing Nutrients"

When you compare whole foods with their processed offspring, you begin to see how much sugar, sodium, and fat are added, as well as how many nutrients get sacrificed.

\boldsymbol{Y}

Whole oat groats* versus instant oatmeal (per 150-160 calories) Fiber

Protein

Sugar

Oat Groats
$5 g$
$6 g$
$1 g$
Instant Oatmeal
$3 g$
$4 g$
$12 g$
Brown rice versus white rice (per 200 calories)
Fiber
Potassium
Magnesium
Vitamin B6
Brown Rice
$3.5 g$
$84 m g$
21%
15%
White Rice
$0.06 g$
$55 m g$
4%
4\%
Popcorn versus corn chips (per 160 calories)
Fiber
Protein
Iron
Sodium
Fat
Popcorn

$6 g$

$6 g$

7%
$3 m g$
$1.5 g$
Corn Chips
$1 g$
$2 g$
0%
170 mg
$10 g$

OUR RUNNING BOD

Strawberry versus Strawberry Starburst candy (per 130 calories)
Fiber
Potassium
Magnesium
Strawberry
$7 g$
$84 m g$
21%

Strawberry candy

Og
Omg
0\%
(Nutrient values vary by brand; percentages refer to Percent
Daily Values based on a 2,000-calorie diet.) BUILD Y
*Yes, "groats" sounds like a meal Charles Dickens would inflict upon his most pathetic of characters, but they can be delicious. See recipe page 303.

296
Build YOuR Running DiEt-pROtEin, car Bs, calORiEs, anDnutRitiOn

WHAT IS REAL FOOD?
atherosclerosis. They hypothesized that free radicals might also be involved in a number of disReal food is food that hasn't had all the nutrients
eases and chronic conditions. Studies seemed to stripped from it, a process designed to ensure palatbear this out, revealing that people who consumed ability for the masses and an eternal shelf life. For larger amounts of antioxidant-rich fruits and vegfood manufacturers, this works. For your body, not etables had a reduced risk for developing several so much. It's the difference between wheat berrieschronic conditions.
the whole grain from which flour is made-and Subsequent studies, however, have failed to white bread. While a 150-calorie serving of wheat confirm that antioxidants fight disease. Still, the berries has six grams of protein, six grams of dietary

Harvard School of Public Health has concluded fiber, and 8 percent of the recommended daily that "abundant evidence suggests that eating amount for iron, among other nutrients, the same whole fruits, vegetables, and whole grains-all 150 calories of bread made from refined wheat has rich in networks of antioxidants and their helper one gram of dietary fiber, half the protein, little iron, molecules-provides protection against many of and thirty fewer nutrients. (See sidebar, "The Case of these scourges of aging."
the Missing Nutrients, " for more examples.)
While superfoods may revel in the limelight,
the important thing is that you eat a variety of WHAT ARE SUPERFOODS?
fruits and vegetables, which by nature are already

BUILD Y

rich in antioxidants. You don't need exotic goji
There is no legal definition for superfoods, but they berries and trendy açai pulp-shipped long disare generally considered to be primarily planttance and generally costing a small fortunebased foods that have exceptionally high values when blueberries and red bell peppers will serve of antioxidants, vitamins, or other nutrients. They you just as well.
are often advertised as possessing the ability to fight disease, and they're described with words OUR RUNNING BOD

REAL FOOD VERSUS SUPPLEMENTS
like "amazing" and "miracle." These dazzling, shiny, so-called "superfoods" are the hands-down Diet matters for runners. Whether we're trying to darlings of the healthy-eating set, and neither lose weight, defy aging, boost health, or lower our food makers nor marketers have been shy about 5K time, we worry about nutrition. Unfortunately, capitalizing on their fame. we're also obsessed with miracle cures and the Among superfoods' components, it's the antimythic fountain of youth. Just as we want to eat oxidants that get the most buzz. The National In"superfoods," we want our nutrients concentrated
stitutes of Health describe antioxidants as
into single, small doses. And the supplements in"substances that may protect your cells against dustry is happy to oblige-happy to the tune of the effects of free radicals." Free radicals are molaround $\$ 30$ billion in sales annually, with half of all ecules produced when the body breaks down food Americans indulging in pills, powders, or potions. to produce energy (and by environmental pollutA dietary supplement is a product containing ants like tobacco smoke and radiation).
one or more dietary ingredients-vitamins, miner-
In the 1990s, scientists first connected free-
als, herbs or other botanicals, amino acids, etc.\boldsymbol{Y}
radical damage to the early stages of artery-clogging that you add to your regular diet. Whey powder

Build YOuR Running DiEt With REal FOO D

297

NUTRITION DISCUSSION

"Eight simple superfoods for runners"

Picking the healthiest food for runners is like picking your favorite child. Most produce is loaded with healthy attributes. They're all just a little different. The items here are chosen for their running-specific benefits, availability, and ease of preparation. They're super-super!

1. Almonds: Almonds are a great source of calcium, magnesium, potassium, iron, protein, and fiber-the perfect storm of important nutrients for runners. They're also one of the best sources of alphatocopherol vitamin E, a potent antioxidant that provides a good defense against the oxidative stress (damage caused to cells by highly reactive groups of molecules known as free radicals), which can result from running.
2. Beets: Beets and beet juice possess an abundance of antioxidants, folate, and potassium. They are a great source of inorganic nitrate, which the body can convert to nitrite and then nitric acid, which positively affects blood flow, muscle contraction, neurotransmission, and other functions. One 2009 study showed that six days of \boldsymbol{Y}
beet juice consumption could lower blood pressure and improve physical performance during both moderate and intense exercise. And a 2013 study from the United Kingdom concluded that beet juice "increases plasma nitrite concentration, reduces blood pressure, and may positively influence the physiological responses to exercise."
3. Blueberries: A number of studies on blueberries have found numerous positive outcomes for health-too numerous, in fact, to list here. But two studies are of particular interest to runners. In the first, runners who ate a cup of blueberries daily had less inflammation and better immune health after long runs than a berryfree control group. In the second, elite athletes given polyphenols from blueberries burned fat longer post-exercise and increased their absorption of antioxidant compounds.
4. Greek yogurt: Yogurt is a great way to get calcium and tummyloving probiotics (the
"good bacteria" that keeps your gut a peaceful, healthy place) into your system.
Thicker, creamier Greek yogurt offers twice the protein and half the sugar for the same number of calories as regular yogurt. Better yet, its nonfat version has a tex-OUR RUNNING BOD
ture (unlike other nonfat dairy) that won't make you weep.
5. Lentils: Like other legumes, lentils are a great source of potassium, calcium, zinc, niacin, and vitamin K, and they're particularly rich in dietary fiber, lean protein, folate, and iron. Unlike other legumes, they don't require overnight soaking and long cooking times when you make them from scratch.

BUILD Y

(Continued)
298
Build YOuR Running DiEt-pROtEin, caR Bs, calORiEs, anD nutition

NUTRITION DISCUSSION

6. Red bell pepper: Contrary to popular belief, it's red bell peppers, not oranges, that are the poster-child fruit for vitamin C. One halfcup of raw red sweet pepper contains 142 mg of vitamin C , twice as much as an orange, and for a mere 20 calories.

Research credits vitamin C with alleviating muscle soreness and lowering heart rate during exercise, which leads to reduced perception of exertion and fatigue.
7. Salmon: Salmon packs a punch when it comes to nutrition. It's an excellent source of high-quality protein (30 grams per 4-ounce serving) and one of the world's best sources of omega-3 fats (essential fatty acids found in fish oil, plant oil, and algae oil). Omega-3 fats help regulate the body's inflammation response, and a 2006
study from Indiana University found that three weeks of fish oil supplementation reduced symptoms of exercise-induced asthma.
8. Sweet potatoes: If you like baked potatoes for the carbs, you might think about sweet potatoes as an occasional substitution. Both spuds are comparable in calories, carbs, protein, and fiber, but sweet potatoes offer nearly 20 percent more vitamin C and are packed with 380 percent of the daily-recommended value of vitamin A. With potassium, manganese, and copper to buoy muscle function, sweet pota-BUILD Y
toes should be a staple of every runner's diet.
shakes, vitamin pills, and açai berry juice are ex-
REAL PACKAGED FOOD
amples of supplements. Many Americans mistakenly believe that supplements pass rigorous

In a perfect world, we can all agree that the food
government testing before they get put on the
on our table should be plucked directly from the

OUR RUNNING BOD

market. They don't. It took the FDA a decade to ban soil and then, still warm from the sun, purchased ephedra, even after thousands of adverse effects, during a leisurely stroll through the neighbor-
including death.
hood farmers' market.
For people who lack a full daily dose of nutri-
Now let's get real.
ents in their diet, supplements might be helpful,
There's a reason packaged and processed food
but supplements are not a substitute for a wellis so popular. The modern world moves fast. Most
rounded diet drawn from real food. The truth is of us can barely keep our heads screwed on, let that high doses of antioxidants, minerals, fiber,
alone prepare fresh, nutritious meals from
and other substances in pill form are not as effec-
scratch three times a day. Throw in a training protive at improving your health as the amounts
gram, and the idea's absurd.
found naturally in fruits, vegetables, whole grains,
Which is where packaged food comes into play.
and other real food. Frankly, runners who want to
First, we aren't talking about junky, processed eat healthy need to spend more time at the farm-
food-cheesy mystery snacks that stain your finers' market and less at the pharmacy.
gers an otherworldly orange are out. But there are

\boldsymbol{Y}

Build YOuR Running DiEt With REal FOO D

299

plenty of packaged foods that are healthy, making But there is a sneaky little trick that manufactur-wholesome eating in a busy world possible. But ers often use. Since ingredients are listed indifirst you must learn to distinguish between the
vidually, not in groups, something could contain good, the bad, and the unhealthy.
three types of sugar-for example, corn syrup, cane sugar, and malt syrup-in seemingly small

The produce aisle
quantities toward the bottom of the list. But if you
If you stick to the produce aisle, it's almost impossicombine them into a group, sugar, they quickly ble to go wrong. Although pre-cut and packaged promove to the top of the list. Can you say,"Loopduce is more expensive, it can be worth it. For hole"? When shopping packaged food, it pays to example, skip the single head of lettuce and take have a discerning eye.
advantage of pre-mixed salads that offer a variety of lettuces-each variety of leaf has a slightly different

The whole (grains) truth
nutrient profile, making for a more dynamic meal.
We 'll discuss whole grains in more detail in Chap-
In general, it's better to buy whole fruits and ter 19. For now, you need to know that the differvegetables, but if buying pre-cut produce makes it ence between refined grains and whole grains is likely that you'll eat more, then it's a good investkey when discussing real food. When manufacment. (Keep in mind that there's a slight decrease tures denude (strip) a grain of its bran, germ, and \boldsymbol{Y} in nutrients for cut vegetables, and they're usually endosperm before processing it further into a subjected to a chlorine rinsesafe, but something baked good or snack item, it's pretty much finto think about.)
ished as real food. Now it t' just sad and empty. It's When you can, buy produce that's local and in entered the realm of "things formerly known as season. If you live in a productive agricultural region food." The food industry covers up this transforwith a mild climate, this is a great way to ensure mation with deceptive-but legal-labeling eating a variety of fruits and vegetables throughout claims. For instance, "made with wheat flour" the year. If you live in a more forbidding climatedoesn't mean that it's made with whole wheat. "Insay, winter in Maine - then frozen fruits and vegecludes whole grains" could refer to 1 percent tables can serve as an alternative. While canned whole grains. And "seven grain" could be seven vegetables lose nutrients during the canning prohundred grain and it wouldn't make a difference if cess (excluding tomatoes and pumpkin), frozen they're not whole grains. Also, don't judge a loaf vegetables can be even more nutritionally robust by its cover; bread tinged brown with molasses or than their fresh counterparts. This is because protopped with a flutter of oats might still be plain duce used for freezing is generally processed at its old white bread.

OUR RUNNING BOD peak ripeness, a time when most fruits and vegeta-To crack this labeling code, simply scan the in-bles are in their most nutrient-rich states.
gredients for the word "whole." If the first ingredient is grain (any grain!) preceded by "whole," then

Label logic
you've hit the jackpot. Whole wheat flour, whole
Most of us know that ingredients are listed on oats, whole whatever-doesn't matter as long as packages in the order of their predominance, the word "whole" is there. Fiber content is also a

BUILD Y from most to least. This is the way we check to clue. Grain items containing at least three grams see the relative proportions of those ingredients.
of fiber generally have whole grains.
300
Build YOuR Running DiEt-pROtEin, car
Bs, calORiEs, and nutritiOn
Pass the salt
and food manufacturers turned to trans fats, as-
Salt tastes great and has its place in a proper diet. suming these fats were healthier since they were But adults in general shouldn't consume more than created from healthy vegetable oils through hydro$2,300 \mathrm{mg}$ of sodium per day. Compare that to the genation (hydrogen is added to vegetable oils, crealmost $3,500 \mathrm{mg}$ (about 1112 teaspoons) that most ating solid fats). Unwittingly, they had unleashed a Americans gulp down each day. How are you manmonster.
aging to eat a spoon and a half of salt each day? The
Trans fat wasn't a hero come to the rescue. Inanswer is processed foods: canned foods, condistead, studies in the 1990s confirmed that trans ments, fast food, cured meats, and salty snacks acfat decreased heart-happy good cholesterol and count for 75 percent of our salt intake. Runners
increased artery-clogging bad cholesterol. In the need salt, but not hypertension. So pass on the salt. book, Food Regulation: Law, Science, Policy, and Practice, Walter Willet of the Harvard School of Public

Trimming the trans fat
Health estimates that hydrogenated oils were at
In 1957, the American Heart Association first one time responsible for 30,000 heart-disease raised the alarm that saturated fats (e.g.-butter deaths per year, representing the "biggest food and lard) were hard on the heart. By the 1970s, processing disaster in history." saturated fat's role in heart disease was confirmed, Used in everything from muffins to microwave

BUILD Y
 NUTRITION DISCUSSION

"Real food sports drinks"

Many athletes rely on sports drinks for hydration, carbohydrates, and recovery. But few realize that there are healthy alternatives to the artificially flavored and colored brand names on the shelf. While trying "real food" sports drinks for the first time on race day isn't advised, OUR RUNNING BOD it's worth experimenting with during a regular workout session.
» Coconut water: A 2012 study by Kalman, et al., found that coconut water works as well as sports drinks when it comes to rehydration and exercise performance. As a bonus, it's filled with nutrients! The only caution is that some runners experienced bloating and upset stomach.
» Watermelon juice: A 2013 study from Spain showed that men who drank watermelon juice before an intense stationary cycling test reported no leg soreness the following day. After drinking a placebo, however, they reported soreness. As an added benefit, subjects fueled
by watermelon juice showed a lower heart rate, indicating better recovery. To make watermelon juice, blend seeded chunks of fruit in the blender and drink as is.
» For the DIY set: Yes, you can make your own. To $3 ½$ cups water, add $1 / 4$ cup fruit juice, $1 / 4$ cup maple syrup or honey, and $1 / 4$ teaspoon salt. Mix, drink, endure.
\boldsymbol{Y}

Build YOuR Running DiEt Withreal FOO D

301
popcorn to "healthy" margarine, trans fat was every-prohibitive. If you're financially strapped, you can
where. But as of January 1, 2006, all packaged foods research which conventional crops are most likely under the jurisdiction of the FDA must list the to have pesticide residue, and then limit your puramount of trans fat on the label. Food manufacturchases to organic versions of those crops. The coners have begun to remove these fats from their prodsumer advocacy group Environmental Working ucts, but there are still plenty of foods that contain Group compiles a yearly guide to inform shoppers them. To be safe, check the ingredients for the words about produce and pesticides. Their Shopper's Guide "partially hydrogenated" and "fractionated," which to Pesticides in Produce ${ }^{\text {TM }}$ lists the year's "Dirty mean trans fat is present. If you see these ingredi-Dozen"-the twelve most contaminated fruits and ents on the label, leave the product on the shelf. vegetables—as well as a "Clean 15," representing produce that scores the lowest for pesticide resi-

ORGANIC VERSUS CONVENTIONAL

due. Be forewarned: Apples and oranges often ap-
PRODUCE
pear in the Dirty Dozen. On the other hand, avocados and cabbage are regulars in the Clean 15.

A discussion of real food wouldn't be complete without acknowledging the debate between the

A MATTER OF TRUST
merits of organic produce versus produce grown
\boldsymbol{Y} with pesticides. The latest large-scale study-a The truth is that many of us no longer trust the food 2012 analysis of 237 studies on organic produce, we eat to provide the nutrition our bodies require. meats, and dairy foods by Stanford researchers-

So we buy supplements. We chase fads. We let misconcluded that organic foods don't offer a more leading labels trick us into buying food that promadvantageous nutrition profile than that of conises health but delivers empty calories. Real food ventional produce. On the other hand, if you prefer will give you what supplements and an overload of to avoid consuming compounds designed to kill empty calories can't: healthy carbs, proteins, and living things, then organic might be for you. Of fats; enzymes; vitamins; minerals; and all the good course, the cost of organic produce can be stuff required to build your running body.

a note on Build Your Running Body recipes

These recipes were developed to be user-friendly. While baking is pretty much an exact science, cooking isn't. Measurements for salt and pepper will always say "season to taste," because some people hate salt or need to watch it, while others can't get enough.
Likewise, an ingredient like jalapeño peppers can vary OUR

RUNNING BOD in its heat level, so they should be taste-tested and added accordingly. Also, become comfortable swapping ingredients. If the recipe says "cilantro," basil or mint or parsley will probably work, too. If the recipe says "almonds," ditto for hazelnuts. And feel free to use cow milk instead of the soy or coconut milk used frequently in these recipes. Ingredients will generally default to the least-refined option, but work with whatever you have on hand (e.g., we say "raw sugar," but maybe you only have white sugar). That said, nutrition is calculated based on the specified ingredients (note that nutritional values can vary depending on brand, and that calorie counts for recipes will sometimes differ from what the carb, protein, and fat intake predicts BUILD Y due to the presence of insoluble fiber and the practice of rounding the nutritional breakdown of each ingredient). Think of these recipes as a basic plan, then improvise to your mouth's content.

302

Build YOuR Running DiEt-pROtEin, car Bs, calORiEs, anDnutRitiOn

Best Oats and Groats Ever

Easy Morning Oats or Groats-

Rice Cooker Technique

When one encounters the word "groats," the nat-

» SERVES 4

ural instinct is to run away. But be brave. The
unfortunately named groat is nothing more than

4 cups water

a hulled grain (e.g., oat) generally used for break1 cup steel-cut oats or groats fast cereal. Of all cereal grains, groats are the Fruit or sweetener, optional (see note on Additions) least processed. Steel-cut oats are whole oat groats that have been sliced. Rolled oats are oat It's better to make smaller batches when using a groats that have been steamed, rolled, and flaked rice cooker so that the mix doesn't bubble over. for easier cooking. Quick-cooking oats are rolled Add the water, steel-cut oats, and fruit or sweetoats that have been chopped into smaller pieces. ener, if desired; cover, and cook while you're getAnd instant oats are mashed and nearly powting ready for the day-set the rice cooker to low dered. In this recipe, we 'll make groats and steelfor 30 minutes for steel-cut oats and 50 minutes cut oats that don't require the thirty to sixty for groats.
minutes of standing-over-the-stove-stirring time-and taste good!

Additions: Add fresh or frozen fruit-blueberBUILD Y
ries, apples, pears - to the cooker to create a

Overnight Oats or Groats-

wonderful fruit-infused mush. Bananas make it

Slow Cooker Technique

extra creamy. Or try pumpkin for a fall treat.
Dried fruits like cherries, cranberries, raisins,
»SERVES 8
dates, and figs plump up and add a nice sweet-

6 to 8 cups water

ness. For sweeteners, try honey, maple syrup,

2 cups steel-cut oats or groats

agave, or apple juice (in place of some water). If

OUR RUNNING BOD

Fruit or sweetener, optional (see note on Additions)
you want to add nuts, stir them in at the end, since they'll get soggy.

Use 6 cups of water if the groats will cook for less
than 8 hours, or 8 cups of water if they will cook
Per serving (rice cooker technique, with 1 cup
blueberries and 1 banana added)
for more than 8 hours (since this recipe calls for
6-8 cups, feel free to improvise-for example,
With groats: 227 calories; 42 g carbs; 8 g protein;
7 cups at 8 hours-depending on cooking time).
3 g fat.
Add the water, steel-cut oats, and fruit or sweet-
With steel-cut oats: 187 calories; 39 g carbs; 7 g ener, if desired; cover, and cook overnight on the protein; 3 g fat.
lowest setting. Wake up to a nice warm bowl of
oats.
Y
Build YOuR Running DiEt With REal FOOD

303
Sweet Potato Fries
Fresh Ginger Ale

» SERVES 4

» 24 SERVINGS

Sweet potatoes are a great food for runners, but Ginger has magical properties for runners. A their most popular presentation usually involves 2010 study published in The Journal of Pain a mix of butter and sugar topped with marshconcluded that the "daily consumption of raw mallows. The cure is this super-simple and seriand heat-treated ginger resulted in moderate-toously delicious method for baking them into large reductions in muscle pain following exerhealthy, crispy fries.
cise-induced muscle injury . . . and further demonstrate ginger's effectiveness as a pain re5 sweet potatoes, unpeeled, washed well and sliced liever." Commercial sodas don't qualify as real into $1 / 4$-inch strips
food, but this recipe for ginger ale packs a pain-

1 tablespoon olive oil

free punch that you won't get with a Coke.
Salt and pepper
Cayenne, curry powder, or paprika, optional
6-inch-long piece of fresh ginger

1 cup honey

1. Preheat the oven to $450^{\circ} \mathrm{F}$.

Y

3 cups water

2. Toss the sweet potatoes with the olive oil,

1 cup sparkling or hot water

then season with salt and pepper. Add cayenne,
Ice
if desired, to make the fries zesty, though they
Juice of 1 lime, optional
don't need it.
3. Spread them out in a single layer on a baking

Thinly slice the ginger (no need to peel if cleaned sheet. Bake, turning occasionally, until crispy well) and mix with the honey and water in a and lightly browned, but still a bit tender, about saucepan. Simmer on low heat for about an hour. 20 minutes.

Allow the mixture to cool, then strain and put in a clean jar. Add 2 tablespoons of the ginger mixPer serving: 159 calories; 30 g carbs; 3 g protein; 4 g fat.
ture to a glass of sparkling water, stir, add ice, and enjoy. The ginger mixture can also be added to a cup of hot water with lime juice to make a sweet, tart, and spicy tea.
OUR RUNNING BOD
Per serving: 45 calories; 12 g carbs.
BUILD Y
304
Build YOuR Running DiEt-pROtEin, c aRBs, calORiEs, anD nutRitiOn

4. Pour the batter into a pan, then bake for Chocolate Beet Cake

about 45 minutes or until a toothpick comes out clean. Cool on a wire rack for 20 minutes, remove
» SERVES 8
from the pan, and leave out until completely
Beets add a truckload of runner-friendly nutricool.
ents to this dessert, and their inherent moisture negates the need for butter. If you try really hard,

Per serving: 345 calories; 57 g carbs; 5 g protein; 13
g fat.
you can taste beets, but mostly what you'll enjoy
is a deep, earthy chocolate flavor.

SERVING SUGGESTIONS:

For chocolate glaze: This is based on a Martha Stew-
13/4 cups cooked beets (about 3 beets)
art chocolate glaze, but with a healthy makeover.

2 cups unbleached all-purpose flour

Bring $1 / 2$ cup coconut milk and 1 teaspoon honey
11/4 cups raw sugar
to a simmer in a small pan, then pour over 3
1/4 cup unsweetened cocoa powder
ounces of chopped bittersweet chocolate in a
1½ teaspoons baking soda
bowl to melt. Stir until smooth and shiny; let cool
$3 / 4$ teaspoon salt
for 10 minutes and then pour over cake.
3 ounces bittersweet chocolate, chopped
1 large egg
For beet chips: Make candied beets, or if you like a

BUILD Y

$3 / 4$ cup water
salty component with your sweets, use store-
$1 / 4$ cup mild olive oil or other vegetable oil
bought Terra beet chips.
1 teaspoon pure vanilla extract
For chocolate curls: Use a vegetable peeler and

1. Some produce sections have packages of make long curls from the edge of a thick choco-
boiled beets, which make this a breeze. Otherlate bar.
wise: trim, peel, cut, and boil beets until very

OUR RUNNING BOD

tender, about 30 minutes. Purée the beets in a food processor until smooth (or try a blender or cheese grater using the smallest shred size that
will work.)
2. Preheat the oven to $350^{\circ} \mathrm{F}$. Grease and flour
well a 9-inch round cake pan (if you have parchment paper, line the bottom of the greased pan
instead of using the flour, and grease again).
3. Stir together the remaining flour, sugar, cocoa powder, baking soda, and salt in a large bowl.

Melt half the chocolate, and add to the flour mixture along with the egg, water, oil, vanilla, and beet purée. Stir in the unmelted chocolate.

Y
Build YOuR Running DiEt With REal FOO D

305

Carbohydrates Build Y

our Running

A hummingbird's energy needs are
so great that it would starve to
death after a carbohydrate fast lasting only a few hours. If hummingbirds suddenly opted for a low-carb/high-protein diet, you'd find yourself dodging dead hummingbirds as they fell from the sky. Luckily, hummingbirds have better sense than that. You should, too. For runners, carbs are crucial.
Carbohydrates, also called saccharides, are one
» Oligosaccharide: These have three to ten of the three macronutrients that fuel our bodies monosaccharides bonded together. Exam(proteins and fats are the other two). At the heart ples are gentianose and stachynose (found of every carbohydrate is a sugar molecule, which in various plants) and raffinose (found in is a marriage of carbon, hydrogen, and oxygen beans, cabbage, Brussels sprouts, and broc(hence the name "carbohydrate"). Carbs are found coli)-it's our inability to digest raffinose in a wide variety of foods-beans, fruit, popcorn, that gives us gas.
potatoes, corn, cookies, pasta, pie, and just about
" Polysaccharide: Technically, disaccharides
everything else that isn't pure protein or fat. And and oligosaccharides are polysaccharides, while they come in a variety of forms, most are since they have more than one molecule, but sugars-starches and fibers, two of the most comthe term is usually used to refer to chains of mon carbs, are basically chains of sugar molemore than ten monosaccharides-and a cules (some containing hundreds or even polysaccharide can be made up of hundreds thousands of sugars). of thousands of monosaccharides. They inCarbs are the main source of energy for your clude storage polysaccharides such as starch running body. It's no hyperbole to say that, withand glycogen, and structural polysacchaout them, you'd be stuck on the couch.
rides like cellulose and chitin.

Y WHAT ARE SACCHARIDES?

With that information in hand, it's time to discuss the difference between complex and simple

In order to understand carbohydrates, you'll need carbohydrates.
to put on your science cap and acquaint yourself with the saccharide family, consisting of four COMPLEX VERSUS SIMPLE groups by which carbs are classified.

CARBOHYDRATES
» Monosaccharide: The most basic units of bioIn the good old days, carbohydrates were grouped
logically important carbohydrates, these are into two categories: complex and simple. Simple the simplest forms of sugar. They include glucarbohydrates included the mono-and disacchacose, galactose (found in milk and dairy prodrides. Complex carbohydrates included all of the ucts), fructose (found mostly in vegetables polysaccharides. and fruit), and others. Monosaccharides link Complex carbohydrates, like those found in together to become polysaccharides. beans, starchy vegetables, and whole grain prodOUR RUNNING BOD
» Disaccharide: When two monosaccharide ucts, were considered healthier to eat than simple molecules bond, they become disacchacarbohydrates, such as those found in fruits, sweets, rides. Examples include lactose (glucose + and refined grain products. Complex carbohydrates galactose) found in milk, maltose (glucose + do, in fact, have more nutrients and more fiber, and glucose) found in some vegetables and beer, they take longer to break down in the body. Simple and sucrose (glucose + fructose) found in carbohydrates offer little more than calories--the

BUILD Y

table sugar.
reason they're referred to as "empty calories."

Build YOuR Running DiEt-pROtEin, caR Bs, calORiEs, and nutition

NUTRITION DISCUSSION

"Top Ten recovery snacks"

Optimal post-workout recovery requires eating. Lucky you! And a big part of that recovery eating is getting enough carbs to replace burned glycogen. The golden rule of recovery is a 4:1 ratio of carbs to protein, although that ratio can be altered to ref lect the specifics of your workout. Check the tables in Chapter 10 to get a better idea of what calories and macronutrients are most appropriate for each kind of workout. Then choose from the following list: 1. Banana almond smoothie: There are times postworkout that you just don't want to chew. For those days, a smoothie will do the trick. Blend until smooth: $1 / 2$ cup low-fat vanilla yogurt, 1 banana, 1 tablespoon almond butter, $1 / 2$ cup low-fat milk, and a handful of ice. (1 serving: 335 calories; 45 g carbs; 14 g protein; 11 g fat.) 2. Clif Bar: If you're not going straight home after a run, you'll need something in your bag. Clif Bars are a good packaged snack, using less-processed, mostly organic ingredients and employing the $4: 1$ carbs to protein ratio. (1 Chocolate Brownie bar: 240 calories; 45 g carbs; 10 g protein; 4.5 g fat.) BUILD Y
3. Egg-and-avocado sandwich: When recovery requires a little extra protein and fat, this quick sandwich can't be beat. Use two slices of toast, $1 / 4$ an avocado, and a sliced hard-boiled egg. Season with salt and pepper. (1 serving: 360 calories; 55 g carbs; 18 g protein; 16 g fat.) 4. Banana and bagel: The classic post-race freebie is also great for post-workout recovery. The nutritional value given here is for a Thomas whole-wheat bagel, but ba-OUR RUNNING BOD
gels vary widely when it comes to calories, so be alert. (1 banana and bagel: 355
calories; 76 g carbs; 13 g protein; 2 g fat.)
5. Dried figs and goat cheese: Sometimes post-workout you want a snack with piz-zazz. For those days, figs and tangy goat cheese are just the thing! Dried figs are carb powerhouses, along with containing copious amounts of calcium, potassium, fiber, iron, and magnesium. (6 dried figs, 1 tablespoon goat cheese: 380 calories; 60
g carbs; 12 g protein; 12 g fat.)
6. Chocolate milk: Research confirms what runners have always known: Chocolate milk rocks! A 2011 study from the University of Texas at Austin found that low-fat chocolate milk provides recovery benefits for "serious and amateur athletes alike."

Benefits included better body composition with more muscle and less fat, improved performance, and better overall fitness. (8-ounce Horizon organic chocolate milk box: 150 calories; 22 g carbs; 8 g protein; 2.5 g fat.) (Continued)

\boldsymbol{Y}

Build YOuR Running carBoHYDRatEs 309

NUTRITION DISCUSSION

7. Cold pizza: There's something to be said about heading straight to the refrigerator post-workout to indulge in cold leftovers. (1 slice veggie pizza: 260 calories; 34 g carbs; 10 g protein; 9 g fat.)
8. Apple and cheese: Sweet apples and salty cheese go together perfectly. While not superhigh in carbs, it's a good snack when your recovery requires a boost of protein and fat. (1 large apple, 1 ounce of cheese: 224 calories; 22 g carbs; 7 g protein; 9 g fat.) 9. Greek yogurt and granola: Greek yogurt is one of the few dairy products where the no-fat version doesn't feel like a punishment-and buying a plain flavor allows you to sweeten to your liking. Add carbs by way of granola and honey. (1/2 cup Greek yogurt, 1/2 cup granola, 1/2 tablespoon honey: 335 calories; 57 g carbs; 20 g protein; 5 g fat.)
9. Peanut butter and jelly sandwich: Possibly the perfect training food, a PB\&J post-run allows you to curl up in a ball and regress to childhood-although the adult might want to use natural peanut butter and all-fruit jelly. (2 slices bread, 1 tablespoon peanut butter, 1 tablespoon jelly: 378 calories; 42 g carbs; 12 g protein; 18 g fat.) \boldsymbol{Y}

But this simple dichotomy doesn't tell the
Problems arise when dramatically fluctuating
whole story. The digestive system aims to break
blood sugar levels occur over a long period of time.
down all carbs to single sugar molecules of glu-
This seesaw of glucose, insulin, and glucagon can cose, your body's key source of energy. And that's
lead to obesity, type 2 diabetes, heart disease, and where the glycemic index enters the picture, and other conditions. Currently, seventeen million where simplicity goes out the window.
Americans have type 2 diabetes, and millions more have insulin resistance and are at risk for diabetes.
THE GLYCEMIC INDEX AND GLYCEMIC
There are ways to lower the risk of developing
LOADS
blood sugar-related conditions. For instance, natural carbohydrates (such as those found in fruits,
Your body turns carbohydrates into glucose, which vegetables, legumes, whole grains, etc.) enter the subsequently enters your bloodstream and raises bloodstream more slowly compared to the carbs your blood sugar (glucose) levels. When blood sugar found in processed foods, leading to a gentler
OUR RUNNING BOD rises, the pancreas releases insulin, a hormone that spike in insulin and blood sugar. directs cells in your muscles and liver to absorb the
This is where the glycemic index (GI) comes into sugar (and store it as glycogen). When blood sugar play. Carbs enter the bloodstream at different levels drop, insulin release decreases, and when rates. The GI measures the rise in blood sugar blood sugar falls to a certain point, the pancreas retriggered by different carbohydrates. Carbs that leases glucagon, a hormone that triggers the conenter your blood quickly score a high GI. Those
BUILD Y version of glycogen in the liver back into glucose, entering more slowly-because they take longer which is
released into the bloodstream.
to break down-earn a low GI.
310

Build YOuR Running DiEt-pROtEin, caR Bs, calORiEs, anD nutRitiOn

The GI doesn't take serving size into considerinclude soft drinks, oats, and tropical fruits (e.g., ation, however, so it can be misleading. For exbananas and mangos). High GI foods include reample, watermelon has a high GI, but its actual fined bread, potatoes, sweetened breakfast cereglycemic load (the amount of carbohydrate in the als, and sports drinks-the latter good for quick food) is relatively low. For this reason, a food's glyblasts during endurance events but not so good cemic load can be a better measure of a food's imfor your body while watching TV.
pact on blood sugar levels than GI. A unit of Runners wondering how the GI affects their glycemic load is roughly equivalent to the effect running should consider the following: one gram of glucose has on your blood sugar levels. With this in mind, a glycemic load of 20 or
» Low GI foods prior to a run: Studies show more is considered high, a load of 11 to 19 is conthat consuming low GI foods prior to trainsidered medium, and a load of 10 or fewer units is ing maintains blood sugar levels better scored as low. than eating high GI foods. One study con-

But even though glycemic load may be a better cluded that a low GI snack eaten fifteen way to estimate the impact of carbohydrates on minutes before running extended time to blood sugar, it's GI that's used on a wider basis, exhaustion by 23 percent.
with healthier carbs generally coming in with a

" Moderate-to-high GI foods during a run:

lower GI. Some low GI foods include milk, yogurt,
The rapidly digested carbs in sports drinks,

BUILD Y

lentils, pasta, nuts, and northern-climate fruits
gels, and energy bars offer a quick source of
like apples and oranges. Moderate GI foods
fuel during exercise.

NUTRITION DISCUSSION

"How to lower your glycemic load"
OUR RUNNING BOD
Moderate-to-
high glycemic load foods have their place in a runner's diet, but, in general, low GL foods are better. Here's how to keep your glycemic load low:
» For breakfast cereal, choose oats, barley, or bran. Aim for the ones that are in their most natural state, as milling and grinding can raise the glycemic load dramatically.
» When you can, eat whole wheat bread.
» Indulge in lots of fresh fruit and vegetables.
» Pick whole fruit over fruit juice; if you do drink juice, get it with the pulp.
» Eat brown rice when you can.
» Eat whole wheat pasta when you can.
» Curb junk foods, processed foods, fast food, and foods with too many additives.

Healthy carbohydrate intake will lead to healthy energy production when you need it most.
\boldsymbol{Y}
Build YOuR Running carBOHYDRat Es
311
» High GI foods after you run: High GI foods
» Weight gain: Gram for gram, carbs have the enable quick replenishment of burned glysame number of calories as protein (and cogen stores. High GI foods have been less than half the calories of fat), but carb shown to increase glycogen stores postabsorption is accompanied by a gain in waworkout at a rate twice that of low GI foods. ter weight. In fact, your body absorbs about
» The rest of the time: Nearly all research three grams of water for every gram of concludes that low GI foods are better for stored glycogen. So a runner with fully
maintaining good health.
stocked glycogen stores can weigh five-plus pounds more than if his or her glycogen HOW MANY CARBOHYDRATES DO YOU stores were mostly depleted. And the salt NEED?
that accompanies many packaged and processed carb products can raise that number.

The National Academy of Sciences has deter-
Something to consider before carbo-loading mined what percentage of your total daily caloric for your next $5 K$.
intake should come from carbohydrates, protein,
» Digestive distress: Some of the best carbs and fat (i.e., your AMDRs: acceptable macronutrihave a double dose of fiber. Think beans, ent distribution ranges). It's recommended that bran, and broccoli. An increase in fiber can $\boldsymbol{Y} 45-65$ percent of calories come from carbohylead to gas, cramps, bloating, and loose drates, 10-35 percent from protein, and 20-35 perstools. You'll need to monitor what's going cent from fat. For a 2,000-calorie diet, that means on downstairs and monitor fiber if things consuming 225 to 325 grams of carbs every day. get rumbly.

Of course, athletes have higher carbohydrate
» Blood sugar changes: Carbo-loading can and protein requirements than less-active people.
affect your blood sugar levels. Runners with
See the charts in Chapter 10 for a breakdown of blood sugar issues should consult a doctor carbohydrate and fat use during various workbefore scarfing down an increased volume outs. In general, the Academy of Nutrition and of carbs.
Dietetics recommends that endurance athletes get 2.3 to 5.5 grams of carbs for each pound of While not opposed to carbs, ultra-runners somebody weight. As you can see, that's a wide range. times favor a diet high in fat rather than carbs, since Then again, there's a wide range of carbohydrates fat is a more plentiful stored-energy source and beburned between runners doing fifteen miles a cause energy needs at the paces at which they train week and those doing one hundred.
and race can be met almost completely through fat-

OUR RUNNING BOD

based aerobic energy production.
WHEN CARBS FAIL YOU

CARBOHYDRATE LOADING

It's not surprising that when it comes to carbs-as with most things in life-one serving size doesn't
Athletes have long known that carbs aid perforfit all. While many athletes thrive on carbs, others mance, but it wasn't until the 1960s that research-
BUILD Y have a few objections:
ers from Sweden figured out how. They concluded

Build YOuR Running DiEt-pROtEin, caR Bs, calORiEs, anD nutRitiOn

 that a diet high in carbs increased muscle glycopresent problems for runners. Namely, it can lead gen, which provides 80-90 percent of your fuel for to temporary gastrointestinal distress (not pleas5 Ks and 60-70 percent for half marathons and ant during a workout, a nightmare during a race). marathons. Further research confirmed that a For this reason, runners have to be smart about high-carb diet also boosted a runner's ability to fiber intake. Fiber takes about two hours to naviabsorb repeated heavy training loads. Thus, the gate its way through your body, so save fiber-rich relationship between runners and piles of steamfoods for post-run, not before. Also, increase fiber ing pasta was forever sealed. For more on carboin your diet in small increments. That way, your loading, see the Chapter 10 sidebar, page 174, "Do body can adjust. Start by adding whole wheat carbo-loading and fat-loading work?" products, some fruits and vegetables, and beans as a replacement for meat.THE FIBER FACTOR
THE SPECIAL RELATIONSHIP BETWEEN
Unlike other carbohydrates, fiber isn't broken RUNNERS AND CARBS
down into sugar molecules by your body. Instead, it passes right through, undigested. But while it If you run, you need carbs. It's that simple. Skimpdoesn't provide nutrients, it's essential for good
ing on carbs is begging for sluggish runs, dehealth. Fiber helps regulate the body's use of sugcreased strength, and muddled thinking.

BUILD Y

ars, and it slows down the digestive process, lead-
Remember that all intense training efforts are fuing to a steadier supply of nutrients and a eled by carbs. And running at mile race pace or longer-lasting sensation of satiety. Ideally, adults faster, resistance training, plyometrics, drills, and should get 20 to 30 grams of fiber per day (i.e., most of the connective tissue exercises in the roughly 14 grams per 1,000 calories consumed), book are fueled only by carbs. So choose your though most Americans only get about 15 grams. carbs wisely, using the tips from this chapter, and Of course, for all that's good about fiber, it can then eat them.

OUR RUNNING BOD

BuilD YOuR Running carBOHYDRatEs

 313Secret Healthy Pancakes

Linguine with Anchovies and

Things

»ABOUT 15 3-INCH PANCAKES
» 4 SERVINGS
For a carb-heavy meal, few things satisfy like yummy pancakes. The trick is to make them Whole wheat pasta plays well with big flavors,
healthy without tasting like fried cardboard. The and this recipe is big on big. Based on tomatoes secret? A little miracle known as white whole and other vibrant flavors, this quick recipe is also wheat flour. Traditional flour is made with red packed with salty things. So if you're watching wheat, but this is made with a lighter version, your sodium (or find anchovies challenging), you meaning less whole wheat flavor and color (if not can swap canned tuna and roasted red peppers found at your supermarket, check Bob's Red Mill for the anchovies and olives. But if you're looking and King Arthur Flour online). This recipe uses for a salty meal (see Chapter 22 for why this yogurt and milk instead of buttermilk, because might be the case) and you revel in savory anwho keeps fresh buttermilk in their fridge? But, chovies, indulge in this as is. naturally, feel free to swap it in.

1 pound whole wheat linguine

Y 1 cup white whole wheat flour

2 tablespoons olive oil

1/2 teaspoon baking powder
2 large cloves garlic, roughly chopped
1/2 teaspoon baking soda
Jalapeño, optional
1/4 cup raw sugar
3 large tomatoes, chopped

1 cup low-fat plain yogurt

One 2-ounce tin of anchovies

1⁄2 cup 2 percent milk
${ }^{1 / 3}$ cup Kalamata olives, chopped
$1 e g g$

2 tablespoons capers

1 tablespoon butter, melted
Salt and pepper to taste
Butter for the pan
Sourdough croutons, fresh basil, or Parmesan for garnish, optional

1. Stir the dry ingredients together in a large
bowl; mix wet ingredients together in a separate
2. Boil the pasta according to the instructions bowl and then add to dry ingredients.
on the package.
3. Lightly stir, leaving some lumps-pancake
4. While the pasta cooks, add the olive oil and batter doesn't like to be over-stirred.
garlic (and the jalapeño to taste, if using) to a large
OUR RUNNING BOD 3. Place a skillet on medium heat and brush sauté pan, and heat on medium heat until sizzling. with butter. Pour the batter into the skillet and Add the tomatoes and olives, stirring occasionally. cook until small bubbles form in the pancake.

Cook until the tomatoes begin to soften and reFlip, cook, and place on a warm plate. Continue lease their juice. Stir in the anchovies to taste (start cooking until batter is gone.
with a few and see how many you can take) and the capers. Cook through until heated.

BUILD Y Per pancake: 53 calories; 8 g carbs; 2 g protein; 1 g fat. 3. Strain pasta and toss with the sauce, season 314

Build YOuR Running DiEt-pROtEin, c aRBs, calORiEs, anD nutRitiOn

with pepper and an extra sprinkle of olive oil if pers under a broiler. When cool enough to han-desired. Pasta topped with croutons adds a great dle, rub the charred skin off. This step can be
crunchy texture, or finish with fresh basil and/or
skipped entirely, but it adds a nice smoky flavor.
a few shavings of Parmesan.
2. Preheat the oven to 350°. In a large bowl, stir together the onions, corn, beans, and feta

Per serving: 514 calories; 84 g carbs; 17 g protein;
cheese.
14 g fat.
3. Make a slit in each pepper and remove the seeds, then stuff with the corn-and-bean mixture.

Wrap each pepper with a tortilla so that the pepper seam is on the top and the tortilla seam is on
the bottom. Nestle them together in a baking or

Stuffed Tortilla Chiles with

casserole dish. Stir the salsa and yogurt together

Feta, Corn, and Black Beans

to make the sauce, then pour the sauce over and around the chiles. Sprinkle cheddar on top and
» 4 SERVINGS
bake for 30 minutes, or until golden on top and
This recipe began as a healthy makeover for
bubbling. Remove, let sit for 5 minutes, and serve.
chiles rellenos, then evolved into something entirely its own. It may not be the gloppy, saucy

TIP This dish can be served with rice to

BUILD Y

Mexican meal of your dreams, but it's fresh,
boost the carb content even more.
bright, and spicy, and it hits all the right flavors, while being a fantastic source of carbs and pro-

Per serving: 445 calories; 67 g carbs; 26 g protein;
12 g fat.
tein, and still satisfying your every craving for Mexican food.

4 large chile peppers (Anaheim, poblano, and pasilla
OUR RUNNING BOD
all work well)
1 medium onion, diced

Spicy Maple Hot Chocolate

1 cup corn off the cob

1 can black beans

» 1 SERVING

1 cup feta cheese, crumbled
Following a cool or rainy morning run, few

4 whole wheat flour tortillas

snacks soothe like hot chocolate, which provides
1 cup plain, nonfat Greek yogurt
the same wallop of carbs and protein as its cooler

1 cup salsa

cousin, chocolate milk (considered by many to be 1/4 cup grated cheddar cheese for garnish the best post-run recovery drink on the planet). This version takes its cues from south of the bor1. Roast peppers on a gas burner by turning up der, with a dash of cinnamon and a spicy kick. It the flame and placing peppers directly on the doesn't lack for calories, making it perfect for grate. Turn with tongs until even black and burnt runners who'd prefer to warm up before they all over. If you don't have gas burners, place pepchow down.

\boldsymbol{Y}

Build YOuR Running carBOHYDRatEs

 3151 cup 2 percent milk
2 tablespoons unsweetened cocoa powder

2 tablespoons maple syrup

1/2 teaspoon vanilla extract
1/4 teaspoon cinnamon
1 generous pinch of cayenne

1 pinch salt

Add all ingredients to a pot, then whisk over medium heat until wellcombined and hot.

Per serving: 267 calories; 47 g carbs; 10 g protein; 6
g fat.
\boldsymbol{Y}
OUR RUNNING BOD
BUILD Y
316
Build YOuR Running DiEt-pROtEin, caR Bs, calORiEs, anD nutition

20

Protein Build Y

Proteins have been called the
our Running
"building blocks of life"-and for
good reason! Proteins are a part of every cell in your body. They are a major component of muscles, skin, organs, and glands. And they play a role in growth, digestion, tissue repair, immune system response, hormonal messaging, and a multitude of other bodily functions.

For runners, protein is essential for muscle repair and recovery post-workout; the International Society of Sport Nutrition warns that
inadequate protein increases your risk of injury while training. As enzymes, protein faduces these itself. They include alanine, ascilitates both aerobic and anaerobic energy proparagine, aspartic acid, and glutamic acid. duction. As MCTs, it shuttles lactate and hydrogen
» Conditional amino acids: These normally ions out of your cells during intense running. nonessential amino acids can become esAnd, as hemoglobin, it ferries the oxygen that sential during illness or stress. They include makes human life possible. Carbohydrates and arginine, cysteine, glutamine, glycine, ornifat may fuel your running body, but it's protein thine, proline, serine, and tyrosine.
that gives form and function to its engine.
COMPLETE PROTEINS VERSUS
WHAT ARE AMINO ACIDS?
INCOMPLETE PROTEINS
Amino acids are themselves referred to as "buildWhile most of us think of animal sources when we
ing blocks," given that they're the building blocks think of protein, plant-based proteins are plentiful, of protein. They're the building blocks' building too. It's just that most (not all) proteins from plants blocks. Officially, amino acids are a group of orare incomplete. Protein sources are grouped accordganic molecules that comprises a basic amino ing to a simple criteria: They either contain all the group, an acidic carboxyl group, and an organic R essential amino acids, or they don't.

Y group (or side chain) that is specific to each amino A complete protein is also called a high-quality acid. But you can just think of them as Legos- protein. It contains all the essential amino acids pieces that join together to create a nifty protein in optimal proportions for supporting biological whole.
functions in your body. Animal-based foods like The US National Library of Medicine lists meat, poultry, fish, milk, eggs, and cheese are twenty-one amino acids used by your body to complete protein sources.
make proteins. Your body can synthesize twelve An incomplete protein, on the other hand, of them, but the remaining nine must be supplied doesn't contain sufficient amounts of all the esby food. For this reason, the nine are called "essential amino acids. It may be missing one or sential amino acids"-as in, it's essential to get more of the essential amino acids, or it might just them through your diet. Unlike carbs and fats, be low in them. Most plant-based sources of pro-
your body can't store amino acids for future use, tein-like vegetables and grains-are incomplete. so you need to make essential amino acids a regFortunately, your body doesn't care if you get all ular part of your daily nutrition. Not to panic, your essential amino acids from a single source. however, as most normal diets already include an It's perfectly happy to have you combine amino OUR RUNNING BOD adequate supply. acids from multiple sources. This is good news for Amino acids fall into three groups: vegetarians, since few plant-based proteins are complete. But it's good news for meat-eaters, too:
» Essential amino acids: Your body can't proAlthough animal-based proteins are rich in essenduce these. They include histidine, isoleucine, tial amino acids, they're often accompanied by an leucine, lysine, methionine, phenylalanine, unhealthy dose of saturated fat. Plant-based pro-

BUILD Y

threonine, tryptophan, and valine.
teins are a healthy alternative, offering a variety of
» Nonessential amino acids: Your body pro-
other important nutrients without a lot of fat.
318
BuilD YOuR Running DiEt-pROtEin, car Bs, calORiEs, anDnutRitiOn

NUTRITION DISCUSSION

" Protein powder: miracle shakes or marketing shakedown?"

Protein drinks are part of a sports-nutrition industry that accounts for about $\$ 3$ billion a year in the United States alone, and they're the most popular supplement for teenage athletes.
But are they beneficial? While protein powders are convenient-and according to packaging illustrations, a surefire recipe for the sixpackiest abdominal muscles known to mankind-
there is a growing body of research that counters the supplement ind ustry's marketing machine. The supplement industry would like you to believe that a lack of protein is all that stands between you and a Mr. or Ms. Olympia title. (And maybe the industry has a sneaky point, given that a 2003 report from the International Olympic Committee found that almost 20 percent of supplements sold in the USA and UK were contaminated with banned, performanceenhancing substances.) But the reality is that most peopleathletes and non-athletes alike-already get adequate protein in their diets. Mega-doses measuring many times the recommended daily amount simply give your body more protein than it knows what to do with.

In Chapter 12, "Build Your Running Hormones," we explained how protein intake could be manipulated to trigger a more sustained anabolic state-leading to faster recovery and BUILD Y
better adaptation. But that's a far cry from burying your body in a mound of protein powder and hoping to emerge a champion.

Most runners should keep the following factors in mind:
» Protein supplements are expensive.
» They are not a whole food and lack a full array of nutrients.

OUR RUNNING BOD

» They often have artificial ingredients and sugar added to them.
» A 2010 Consumer Reports study found that 20 percent of tested supplements contained heavy metal (arsenic, cadmium, lead, and mercury) levels exceeding U.S.
Pharmacopeia guidelines.

If you're going to use protein supplementation, use only an amount necessary to achieve the desired goal. If you aren't sure what that amount should be, put down the shake and read the rest of this chapter.

COMPLEMENTARY PROTEINS

example, beans are low in methionine and cysteComplementary proteins are two or more incomine, but high in lysine, while grains are low in lyplete (plant) proteins that, when combined, result sine, but high in methionine and cysteine; eat Y
in a complete set of essential amino acids. For them together, as many cultures have been doing

Build YOuR Running pROtEin

319
for generations, and-ta-da! -you have a com-
"Whole wheat macaroni and cheese plete plant-based protein.
» Bean dip with pretzels or tortilla chips If you prefer a diet with low meat or no meat,
» Tofu with rice
you'll want to become familiar with complemen-
» Hummus with whole wheat pita bread tary proteins. Experts previously believed that
» Peanut butter milkshake complementary proteins needed to be eaten at
» Grilled cheese sandwich the same meal to successfully combine. But cur-
» Yogurt with nuts or granola rent opinion is that you can reap the full benefit
» Falafel sandwich by eating complementary proteins throughout
» Lentil or bean soup with rice, corn, or bread the day. The one exception is protein eaten as
» Whole grain cereal with milk part of post-workout recovery. Since this protein
» Pizza or lasagna! must be delivered within a specified window of
» Pasta salad with feta and chickpeas time (fifteen to thirty minutes post-workout) in order to provide its needed benefit, you'll need to Of course, half the fun is thinking up your own eat complementary proteins together. combinations. And a little complement will go a Putting together complementary proteins relong way when it comes to meeting your protein quires you to play matchmaker. Rice and beans needs.
\boldsymbol{Y} are the classic "complete protein" food marriage,
but there are plenty of other options. You can pair HOW MUCH PROTEIN DO YOU NEED?
legumes or dairy with grains, nuts, or seeds. Or you can pair dairy with legumes. Here are some

Most Americans get enough protein. But research pairings to get you started:
suggests that athletes require more dietary protein than their couchpotato friends. The Interna-
» Beans with corn or wheat tortillas
tional Society of Sports Nutrition (ISSN) echoes
» Peanut butter on toast
this belief, writing in a 2007 commentary: "[The
NUTRITION DISCUSSION
"Quinoa: the superstar seed"
Quinoa (pronounced keh-NO-ah or KEEN-wah) is a relatively recent arrival to the American pantry, but this wee seed has been growing in the Andes and providing plant-based protein OUR RUNNING BOD
for thousands of years. Although grain-like, quinoa is a chenopod, coming from the same family as beets and chard (feel free to impress friends at cocktail parties with that tidbit).

And this mild, nutty seed is a rock star of nutrition. Why? Because aside from being quite palatable and easy to prepare, it also contains all of the essential amino acids, something few grains and plants can claim. Of special interest to runners, it's particularly high in both lysine, an amino acid that's important for tissue growth and repair, and magnesium, a min-BUILD Y
eral linked to improved strength, as well as a reduced risk of type 2 diabetes.

```
Build YOuR Running DiEt-pROtEin, caR Bs, calORiEs, anD nutRitiOn
```

USDA recommendation for] protein intake may grams
be appropriate for non-exercising individuals, but
Food

of protein

it is likely not sufficient to offset the oxidation of
Beef, ground, 85 percent lean,
protein/amino acids during exercise . . . nor is it broiled, 3 ounces:
22.04
sufficient to provide substrate for lean tissue acBeer, 12 fluid ounces:
1.63
cretion or for the repair of exercise induced musChickpeas, l cup:
14.53
cle damage."
Chicken, skinless, roasted, 1/2 breast:
26.68

So what is the USDA's recommendation for pro-
Chocolate milk, 1 cup:
8.59
tein intake? A measly, by athletes' standards, . 8
Clams, canned, 3 ounces:
20.61
grams of protein per kilogram (. 36 grams per pound)
Cottage cheese, 1 percent milkfat, 1 cup:
28.00
of body weight per day. In contrast, the ISSN urges

Cinnamon raisin bagel, 4-inch:
8.72
physically active people to consume 1 to 2 grams of
Lentils, cooked, 1 cup:
17.86
protein per kilogram of body weight per day.
Halibut, cooked, $1 / 2$ fillet:
35.84

The ISSN breaks down protein need based on
Milkshake, vanilla, 16 fluid ounces:
11.22
activity:
Pretzels, hard, salted, 10 pretzels:
6.20

Pumpkin seeds, roasted, 1 ounce:
8.46

Refried beans, canned, 1 cup:
13.63
" Endurance exercise: You'll need 1.0 to 1.6
grams of protein per kilogram (. 45 to . 72
Trail mix, 1 cup:
20.73

Salmon, cooked, $1 / 2$ fillet:
39.37

BUILD Y

grams per pound) of body weight daily.
Soybeans, green, cooked, 1 cup:

22.23

» Intermittent exercise: For activities that are
high-intensity and intermittent in nature

Spinach, frozen, 1 cup:
7.62
(e.g.,soccer, basketball, mixed martial arts,

Spinach soufflé, 1 cup:
10.73
etc.), you'll need 1.4 to 1.7 grams of protein
Split pea soup, 1 cup:
16.35
per kilogram (. 64 to .77 grams per pound) of
Tofu, firm, $1 / 4$ block:
6.63
body weight daily. It's the increased inten-
Tuna, yellow fin, cooked 3 ounces:
24.78

OUR RUNNING BOD

sity-and the accompanying increased
Tuna salad, 1 cup:
32.88
stress on your muscles-that necessitates
Turkey burger, I patty:
22.44
additional protein.
Turkey roast, light and dark, 3 ounces:
18.13

Veggie burger, 1 patty:
13.86
» Strength/power exercise: You'll need even more protein than for endurance sports and White beans, canned, 1 cup:
19.02
intermittent exercise, especially during the
(Source: USDA National Nutrient Database for Standard
Reference)
initial stages of training and/or during sharp
increases in volume. Aim for a range of 1.6 to
2.0 grams of protein per kilogram (. 72 to .90
grams per pound) of body weight daily.
To get a feel for the amount of protein in various foods, browse the following list, then try a few
recipes steeped in healthy protein.
\boldsymbol{Y}
BuilD YOuR Running pROtEin 321
other foods. With that in mind, we present dev-Peanut Butter Cup Smoothie
iled eggs! But not the mayonnaisey classic. These recipes swap the mayo for ingredients that fur-
» 1 SERVING
ther boost the protein.
This is a great post-workout snack. One of the secrets to perfect smoothies is using frozen fruit inFor any of the following, place six eggs in a single stead of ice. Ice melts and dilutes the flavor and layer in a saucepan, then cover with cool water. texture; frozen fruit doesn't. Frozen bananas in Bring to a boil, cook for 1 minute (medium-sized particular blend into a deliciously smooth and eggs) or up to 2 minutes (jumbo-sized eggs). Turn creamy consistency-it's worth peeling, slicing, off the heat, then let the eggs sit in hot water, cov-
and freezing some bananas so that you'll always ered, for 15 minutes. Remove the eggs from the be ready. pan, make a crack in each, and immerse them in cold water until cool. Peel, cut them in half, and

1 cup low-fat milk

place the yolks in a bowl. Then proceed to one of

1 cup nonfat vanilla Greek yogurt

the following, depending on which variation

1 frozen banana

you've chosen to prepare:

2 tablespoons peanut butter

Y 2 tablespoons cocoa powder
Wasabi + Sesame Eggs
Mash the 6 yolks with: ¼ cup plain nonfat Greek Add ingredients to blender, purée until smooth. yogurt; 112 teaspoons wasabi; 1 tablespoon sesame seeds; 1 tablespoon soy sauce. Stuff the eggs

Per serving: 343 calories; 44 g carbs; 22 g protein;
11 g fat.
and top with minced pickled ginger.
Per egg: 82 calories; 1 g carbs; 8 g protein; 6 g fat.

Hummus Eggs

Modern Deviled Eggs Six Ways

Mash the 6 yolks with: $1 / 2$ cup hummus; 2 teaspoons olive oil; lemon, hot sauce, and salt to
» SERVINGS VARY
taste. Stuff the eggs and sprinkle with cayenne.
Although eggs get a bad rap for their cholesterol,
Per egg: 117 calories; 3 g carbs; 8 g protein; 9 g fat.
the Harvard School of Public Health notes that
OUR RUNNING BOD eating unhealthy fats has a much larger effect on Salmon + Horseradish Eggs most people's cholesterol levels than eating food Mash the 6 yolks with: $1 / 4$ cup nonfat Greek yo-
that contains cholesterol. In addition, eggs have
gurt; 1 teaspoon prepared horseradish; 1/4 cup nutrients that may help lower the risk for heart minced smoked salmon; fresh dill, salt, and pep-
disease, including protein, vitamins B12 and D, per to taste. Stuff the eggs and garnish with riboflavin, and folate. Plus protein quality in an more fresh dill.

BUILD Y egg is so high that scientists often use eggs as the standard for measuring the protein quality of

Per egg: 87 calories; 0 g carbs; 9 g protein; 6 g fat.

Build YOuR Running DiEt-pROtEin, c aRBs, calORiEs, anD nutRitiOn

Guacamole Eggs

1 small onion

Mash the 6 yolks with: 1 medium avocado; 2 ta-

2 cloves garlic

blespoons salsa; lime and salt to taste. Stuff the
1 can black beans, rinsed and drained
eggs and garnish with chopped cilantro.

1 egg

1/4 cup roasted red peppers, diced
Per egg: 118 calories; 3 g carbs; 8 g protein; 9 g fat.
12 teaspoon smoked paprika
$1 / 2$ teaspoon cumin

Eggs Tonnato

½ cup cooked quinoa (follow package directions)
Mash the 6 yolks with: One 5-ounce can of tuna 1/4 cup Parmesan cheese, grated
(in water), drained; 6 anchovies; 1 tablespoon ca1/4 cup bread crumbs
pers; 1 tablespoon olive oil; lemon, salt, and pep-
Salt and pepper
per to taste. Stuff the eggs and garnish with a few capers.

1. Place the onion and garlic in a food processor and pulse until finely chopped. Add half the
Per egg: 112 calories; 0 g carbs; 11 g protein; 8 g fat.
black beans, egg, red peppers, paprika, and cumin, and blend into a chunky paste.

Classic, Remixed

2. Place the mixture in a large mixing bowl, Mash 6 yolks with: ${ }^{1 / 3}$ cup low-fat cottage cheese; then add the remaining black beans, quinoa, Parmesan, and bread crumbs. Season with salt

BUILD Y

1 teaspoon Dijon mustard; sea salt to taste. Stuff
the eggs and sprinkle with smoked paprika or and pepper, to taste-add red-pepper flakes or cayenne.
other favorite seasonings here if you like-and mix until well combined.

Per egg: 91 calories; 1 g carbs; 8 g protein; 7 g fat.
3. Divide the mixture into four portions and form into patties.
4. Bean burgers can be tricky to work with and

OUR RUNNING BOD

respond well to being refrigerated for one hour prior to cooking to make them less likely to crumble. If you want to pan-cook or grill the patties, chill first; if you don't have chilling time, the

Black Bean and Quinoa Burger

baking method is for you.
5. To bake: Place the burgers on an oiled baking
» 4 SERVINGS
pan and bake for 20 minutes at $350^{\circ} \mathrm{F}$. Flip, then
A big beef burger may yield more protein per
bake them for another 10 minutes.
patty than this healthy alternative, but it also
6. To pan-cook: Place the burgers on a hot oiled yields more calories; per calorie, they actually pan over medium-low heat and cook for 6 minutes have similar amounts of protein. And this nonper side, allowing them to get browned and crispy. meat option comes with great fiber, vitamins, and
nutrients that are sorely lacking in its meaty
Per serving: 206 calories; 31 g carbs; 12 g protein; 5 g fat.
cousin. Serve as you would a regular burger.

Y

Build YOuR Running pROtEin 323

White Bean Blondies with

1. Preheat the oven to $350^{\circ} \mathrm{F}$ and lightly oil an

Sea Salt

8×8-inch baking pan.
2. Rinse and drain the beans well, then add

» 16 TWO-INCH SQUARES

them, along with all the other ingredients (exBeans aren't just for tacos and chili. In fact, cept the chocolate chips, walnuts, and salt) to a Asian cultures have been using beans in desserts food processor. Purée until smooth. for ages (think red bean ice cream). Beans are a 3. Stir in the chocolate chips and walnuts, regreat way to add protein and fiber to your serving a large handful of each. Pour the batter sweets. This recipe replaces butter, flour, and eggs into a prepared pan and smooth the batter. with, yes, white beans. The result is a rich and Sprinkle the remaining chocolate and nuts on gooey blondie with a lot of nutrients for a measly top, then finish with a sprinkle of sea salt.

200 calories.
4. Cook for 30 minutes or until the top is lightly browned and starting to crisp, and a toothpick 1 can white beans inserted in the center comes out clean. Remove $1 / 2$ cup all-natural peanut butter the pan from the oven, sprinkle with a little $1 / 4$ cup pure maple syrup more sea salt, and allow to cool. Cut into 2-inch Y 2 tablespoons mild molasses squares. At this point, they will be slightly on the 1/3 cup brown sugar
gooey side; if you prefer them a little firmer, save

2 teaspoons vanilla

them for the following day.
1/2 teaspoon salt
1/4 teaspoon baking powder
Per serving: 200 calories; 24 g carbs; 5 g protein; 9
g fat.
1/4 teaspoon baking soda
12 cup walnuts
1/2 cup semisweet chocolate chips
Sea salt
OUR RUNNING BOD
BUILD Y
324
Build YOuR Running DiEt-pROtEin, car Bs, calORiEs, anDnutRitiOn

Fats Build Y

Does your inner Homer Simpson

our Running

dream longingly of donuts? Do
you find skim milk as appetizing as water infused with chalk? In a world without jean sizes,
would you opt for potato chips over boiled kale? If you answered "yes" to any of these questions, congratulations! You like dietary fat, and that makes you a normal human being. The human fondness for fat is an evolutionary trait that helped steer our ancestors toward the energy-dense foods that they needed to survive. In the modern age, however, with fat as readily obesity and being overweight as the fifth-leading available as packaged snacks in a mini-mart, it's risk for global deaths, claiming at least 2.8 million important to temper evolution with a careful conlives each year. All told, one and a half billion sideration of what kind of fat-and how muchadults in the world are overweight, with half a bilyou'll want to include in your diet.
lion of those characterized as obese.
WHAT ARE FATS?
WHAT ARE THE BENEFITS OF FATS?
Dietary fats are the third macronutrient (carbs The argument can be made that we love fat too and protein were the first two) that fuels your much, but it's inarguable that we need it. Fat body. Consisting primarily of glycerides (with
stores energy, protects your vital organs, and other lipids in minor quantities), fats comprise a helps proteins do their jobs. It keeps your skin large group of water-insoluble compounds. Fat and hair supple, helps you absorb important fathas spent much of recent history as Public Enemy soluble vitamins (A, D, E, and K), and triggers Number One, but that's an unfair assessment. Fat chemical reactions that help regulate growth, imnot only provides energy, it's essential to the mune function, reproduction, and metabolism. proper function of your body. Fat also contains essential fatty acids-like the \boldsymbol{Y}

Fat is the most concentrated source of dietary essential amino acids, these cannot be syntheenergy. It packs nine calories per gram, compared sized by your body and must be included in your to four calories per gram for protein and carbohydiet. The two essential fatty acids, linoleic and drates. Fat also makes food taste good. Really linolenic acids, are required for ensuring proper good. And that's because we're hardwired to like brain function, keeping inflammation in check, it. Our taste for fat is thought to be a consequence and minimizing blood clotting. of evolutionary pressures to select energy-dense Fat is the superstar when it comes to fueling foods necessary for survival. In fact, foods that low-to-moderate-intensity exercise, which in-
are high in fat are instinctively more pleasing cludes the majority of your distance runs. (See than low-energy-density fruits and vegetables. In Chapter 10 for more on lipolysis, the process by Chapter 11 of Fat Detection: Taste, Texture, and Post which fat is transformed into energy.)
Ingestive Effects, Andrew Dewnowski and Eva
Bottom line: Runners need fats. (Everyone Almiron-Roig write: "The hedonic response to fat does!) But there are good fats and bad fats. And seems to be strongly linked to the endogenous then there are really bad fats. Being able to tell opioid reward system." In other words, the brain them apart and then develop a fat strategy is the

OUR RUNNING BOD rewards our choice of fat with a little blast of eu-key to including healthy fats in your diet.
phoria. French fries, please!
The problem is that our bodies developed this
UNSATURATED FATS
evolutionary craving for fat when it was scarce and
hard to obtain. Nowadays, we're up to our ears in
According to the Center for Science in the Public
fatty foods, but abundance hasn't tempered our
Interest, the average person now consumes 20
BUILD Y instinctive desire to keep eating it, and eating it, pounds more total fat per year than he or she did and eating it. The World Health Organization lists in 1970. And a recent report from the Department
326

Build YOuR Running DiEt-pROtEin, caR Bs, calORiEs, anD nutRitiOn

 of Agriculture pegged daily American fat intakehydrogen molecules (i.e., they're less saturated from added fats and oils at 645 calories-and with hydrogen); this makes them stack together that's before including fats naturally found in less tightly than the un-kinked and more solid food. That's a lot of fat-so it's important to know saturated fats. You can generally tell an unsatuwhich fats are "good" and which are "bad." All fats rated fat by its liquid consistency at room temprovide the same nine calories of energy per perature (e.g., olive oil). Studies have found that gram, but some fats have a chemical structure unsaturated fats decrease levels of harmful lowthat makes them healthier.
density lipoprotein (LDL) cholesterol and increase Unsaturated fats have one or more double levels of beneficial high-density lipoprotein (HDL) bonds in the fatty-acid chain and are considered cholesterol. LDL cholesterol, or "bad" cholesterol to be good fats. Double bonds in unsaturated fats (cue "boo hiss" sound effect), is a fatty substance are carbon-to-carbon links that create "kinks" that collects in arterial walls, contributing to the (bends) in the fatty-acid chain and pack fewer formation of plaques. An accumulation of these

NUTRITION DISCUSSION

"Five favorite fats"

To get the most out of your allotted daily fat calories, make them hea lthy LDL cholesterol-BUILD Y
busting fats like these:
» Avocados: The 30 grams of fat that come packed in an avocado are monosaturated, meaning that an avocado is as good for you as it is delicious!
» Eggs: Given a bum rap when they were labeled cholesterol bombs, eggs are now thought to improve heart health. Current thinking is that it's the saturated fat content OUR RUNNING BOD in food, not the dietary cholesterol, that leads to high LDL cholesterol levels-and an egg has only 1.5 grams of saturated fat. A phenomenal source of quality protein, eggs also have choline, an essential micronutrient that helps regulate the brain, nervous system, and cardiovascular system.
» Olive oil: Ever wonder why people in olive oil-rich Mediterranean countries live to be so old? Countless studies have concluded that olive oil can reduce the risk of heart disease, high blood pressure, and certain types of cancer. Include it as one of your daily fats-and may you live an exceedingly long life! (See Chapter 23 for more on the Mediterranean diet.)
» Nuts: Because nuts contain unsaturated fats, including omega-3 fatty acids, people who eat nuts are generally thinner, less likely to develop type 2 diabetes, and have a reduced risk of heart disease. You'd be nuts not to eat nuts.
» Fatty fish: Oily fish such as salmon, tuna, sardines, mackerel, and trout are chock-full of omega-3 fatty acids. The American Heart Association recommends eating at least two servings of fatty fish per week.

\boldsymbol{Y}

Build YOuR Running Fats

327
plaques leads to atherosclerosis, a disease char-

2. Omega-6 polyunsaturated fatty acids:

acterized by narrowed arteries and increased risk
These essential fatty acids (including lin-
of heart attack, stroke, and other significant
oleic acid) play a role in brain function, health problems. HDL cholesterol, or "good" chometabolism, reproduction, and the lesterol ("Yay!"), is thought to grab bad cholesterol growth of bones, skin, and hair. Some and whisk it away to the liver, where it can be Omega-6s have been associated with inproperly disposed of. flammation, although linoleic acid broUnsaturated fats come in two types: ken down several times to a final product (DGLA) actually reduces inflammation.
» Monounsaturated fats: These contain one Dietary sources include soybean oil, sundouble bond. Eating foods rich in monounflower seed oil, most vegetable oils, eggs, saturated fats improves blood cholesterol nuts, cereal, coconut, and others. levels and may benefit insulin levels and blood sugar control. Good sources include SATURATED FATS olive, peanut, and canola oils; avocados; nuts such as almonds, hazelnuts, and pecans; If you pay any attention to health or diet literaand seeds such as pumpkin and sesame. ture (or nutrition sound bites on the evening Y
» Polyunsaturated fats: These contain more
news), then you've heard bad things about satuthan one double bond and are found prirated fats. The reason: Eating foods that contain marily in plant-based foods and oils. Conthem raises your level of "bad" LDL cholesterol. suming foods rich in polyunsaturated fats Not only that, but studies have found that some improves blood cholesterol levels, decreassaturated fats found in dairy and meat-like paling risk of heart disease (and possibly of mitic acid and myristic acid-induce inflammatype 2 diabetes).
tion and damage your arteries. Saturated fats are generally solid at room temperature-for examPolyunsaturated fats can be further broken ple, the marbled fat in a steak-and come primardown into two types:
ily from animal sources, although they're also found in plant sources like palm oil, coconut oil,

1. Omega-3 fatty acids : These essential fatty and cocoa butter. acids appear to reduce inflammation and But not all saturated fats live up to their bad replower blood pressure. According to the utation. Stearic acid, found in dark chocolate (and Harvard School of Public Health, omega-3s also meat), may be harmless. And coconut oil, long

OUR RUNNING BOD

also decrease the risk of coronary artery considered a bad fat, contains lauric acid, a fatty
disease and stroke, protect against irregu-
acid that actually increases levels of good HDL cholar heartbeats, and help control lupus and
lesterol, thereby reducing the risk of atherosclerosis.
rheumatoid arthritis. Omega-3s are pre-
Of course, it's still a good idea to avoid foods
dominantly found in fatty fish (fish oil),
that are high in saturated fat. A rule of thumb
but they can also be found in chia seeds,
when looking at a nutrition panel is that a Daily

BUILD Y

walnuts, leafy greens, and the oils from
Value of 5 percent is low (although "0" is optimal)
flaxseed, canola, and soybeans.
and 20 percent is high.
328
Build YOuR Running DiEt-pROtEin, caR Bs, calORiEs, anDnutRitiOn

NUTRITION DISCUSSION

"10 surprising sources of saturated fat"

You probably know that cheeseburgers and ice cream are high in saturated fat, but you might be surprised at some of the foods contributing the most saturated fat to the average American diet. The following list of the ten most significant food sources of saturated fat was compiled by the National Cancer Institute. These are the worst offenders (and their overall saturated fat
contribution): 1. Cheese -8.5 percent
7. Burgers - 4.4 percent
2. Pizza -5.9 percent
8. Mexican mixed dishes -
3. Grain-based desserts -
4.1 percent
5.8 percent
9. Beef and beef mixed dishes -
4. Dairy desserts -5.6 percent
4.1 percent
5. Chicken \& chicken mixed dishes
10. Reduced-fat milk-3.9 percent

- 5.5 percent

6. Sausage, franks, bacon, and ribs

- 4.9 percent

BUILD Y

TRANS FAT
Despite efforts to reduce trans-fat
consumption by way of label changes, reformulation of
Trans fats (or trans fatty acids) are the result of hy-
foods, and even state and local bans, trans-fatty
drogenation, a process in which hydrogen is acids are still found in many foods, including added to unsaturated fatty acids to make them fried foods, vegetable shortenings, donuts, cookmore resistant to rancidity. Trans fats not only act ies, crackers, frozen pizzas, microwave popcorn,

OUR RUNNING BOD

as preservatives, they are also easier to spread canned frosting, snack foods, margarines, and and have a higher smoking point than unsatucoffee creamers. And while trans-fat consumprated fats, which makes them easier to cook with. tion has dropped, Americans still eat about 5.8

After being enthusiastically received by the programs of trans fat per day. According to the Cen-
cessed-food industry at the turn of the twentieth ters for Disease Control, further reducing trans-
century, they were added to a bevy of packaged fat consumption could prevent $10,000-20,000$ foods, with Crisco introducing the first hydrogeheart attacks and 3,000-7,000 coronary heart disnated, all-vegetable oil shortening in 1911. While ease deaths per year in the United States. there were concerns dating to the 1950s about trans fat's connection to an increased rate of RUNNING ON FAT heart disease, it wasn't until the 1990s that the worst was confirmed. Trans fat was shown to The world is rife with heated debates. The Rolling raise bad LDL cholesterol, lower HDL cholesterol, Stones versus the Beatles. Ginger versus Mary increase the risk of heart disease and stroke, and Ann. And, of course, the low-carb versus high\boldsymbol{Y}
possibly increase the risk of type 2 diabetes.
carb diet debate among runners.

Build YOuR Running Fats

329
Runners have long favored a high-carb, low-fat percent) were 250 percent more likely to get indiet. Anything over 20 percent fat was rejected as jured. The study suggested that runners consume inappropriate for the energy demands (including a 36 percent fat diet to avoid injury. post-workout glycogen replacement) of running. But before you jump on the fat bandwagon, But studies over the past two decades have many
consider that a 2004 study of elite Kenyan runendurance athletes reevaluating this axiom of funers-the top distance runners in the world eling. The new, low-carb view is this: During runfound that their diets consisted of just 13.4 ning (or any exercise), we utilize two main energy percent fat. And most of the world's top distance stores, muscle glycogen (carbohydrates) and fat; runners (5 K through the marathon) eat a lot like since glycogen is limited (as anyone who's bonked the Kenyans do. in a marathon can attest) and fat is virtually unBottom line: While ultra-runners and triathlimited, the runner who trains his or her body to letes-or anyone competing for four hours or lonburn fat will last longer in an endurance event. ger in an endurance event-would be wise to A 2000 study from the University of Buffalo consider fat as a primary energy source (see Chapcompared twelve male and thirteen female runter 10 for more on fat-loading), the rest of us would ners who spent four weeks each on a 16 percent do well to aim for a moderate amount of fat in our fat diet and then a 31 percent fat diet. In a test to diets. If you do consider trying fat for a fuel, re\boldsymbol{Y} exhaustion, the runners saw a 14 percent im-member that it is slow to digest. It can take up to provement in performance on the 31 percent fat six hours before it's converted into usable energy.
diet compared to the 16 percent fat diet. VO max And don't forget that shorter races (5 K and under)
wasn't affected by diet. A 2001 study by Venkatrarely almost exclusively on carbohydrates. man, et al., produced almost the same results. Fourteen experienced runners spent four weeks HOW MUCH FAT CAN (SHOULD) YOU EAT? each on three successive diets: first a 15 percent fat diet, then a 30 percent fat diet, and finally a 40 Really, this is all you want to know anyway, right? percent fat diet. At 30 percent fat, the runners imHere are the most recent recommendations from proved their times to exhaustion (at 80 percent of the Dietary Guidelines for Americans: VO max) over low-fat testing by 19 percent 2
(women) and 24 percent (men). Their times at 40
" Total Fat: Limit total fat intake to 20 to 35 percent fat were similar to those on the 30 perpercent of your daily calories. Based on a cent fat diet.

2,000-calorie-a-day diet, this amounts to In another study from the University of Buffalo, about 44 to 78 grams of total fat a day.
OUR RUNNING
BOD by Gerlach, et al., in 2008, a link was found between

» Monosaturated fat: No specific amount is

low fat consumption in female runners and injury recommended, but eat foods rich in this risk. Fat intake was shown to correctly predict 64 healthy fat while staying within your total
percent of future injuries. The most common injufat allowance.
ries were stress fractures, tendinitis, and iliotibial
» Polyunsaturated fat and omega-3 fatty acband syndrome. Deficiencies in the fat-soluble viids: Same as above.

BUILD Y tamins K and E were also recorded. The study con-
» Saturated fat: Limit saturated fat to no cluded that female runners on low-fat diets $(<30$ more than 10 percent of your total calories.

330
Build YOuR Running DiEt-pROtEin, caR Bs, calORiEs, anD nutRitiOn

Limit to 7 percent to further reduce your
Of course, few runners training for a mara-
risk of heart disease. Based on a 2,000-calo-thon-or even for their local 5 K -are making do rie-a-day diet, a 10 percent limit amounts to on 2,000 calories a day. So you'll have to adjust the about 22 grams of saturated fat a day, while above figures to match your personal calorie con7 percent is about 15 grams. Saturated-fat sumption. Injury-prone runners (or runners who intake counts toward your total daily alloware simply concerned about injuries) will want to ance of fat.
aim for the high end of the recommended fat in-
" Trans fat: No specific amount is recom-
take. On the other hand, runners prepping for an
mended, but the lower the better. The upcoming race that's marathon-length or shorter American Heart Association recommends need to remember that carbohydrates will be limiting trans fat to no more than 1 percent their primary energy source; your body becomes of your total daily calories. For most people, most efficient at using the energy source it's acthis is less than 2 grams a day.
customed to relying upon during training.

BUILD Y
 OUR RUNNING BOD

Y

Build YOuR Running Fats

331

Cold Avocado Soup

Sweet and Spicy Nuts
» 4 SERVINGS
» $161 / 4-C U P$ SERVINGS
This might best be described as a guacamole
Nuts are high in calories, so we're often warned to smoothie, but since that sounds gross, we'll insteer clear. But those calories come from healthy fats stead put it in a bowl, use a spoon, and call it that our bodies need. Eating them in moderation is soup. Just like that, it goes from disgusting to dethe key. Making them sweet and spicy like in this lectable! It only takes a few minutes to prepare recipe is both a blessing and a curse-there's enough and will give you both a nice dash of protein and
sweetness and kick to keep you from eating too a healthy boost of fat.
many, but on the other hand, there's enough sweetness and kick that you may not be able to stop eat3 or 4 ripe avocados, pitted and peeled (about 2 ing them. Be strong. And if you add a cup of dried cups)
cherries or other fruit to the mix, be extra strong!
2 cups vegetable broth
1 cup nonfat Greek yogurt

2 egg whites

1/2 cup cilantro, chopped
4 cups unsalted nuts of your choice (almonds, ca-
Salt
shews, pistachios, pecans, you name it; can be
\boldsymbol{Y} Cayenne or hot sauce
roasted or raw)

2 tablespoons fresh lime juice

1/2 cup raw (or brown) sugar
$3 / 4$ teaspoon cayenne pepper (or more, depending on your heat preference)

Put the avocados, vegetable broth, yogurt, and

1 teaspoon ground ginger

half the cilantro in a blender. Purée until thick Sea salt to taste and creamy. Add salt, cayenne, and lime to taste.

Chill for 2 hours. Taste again and adjust the sea-

1. Preheat the oven to $250^{\circ} \mathrm{F}$.
sonings, garnish with extra cilantro, and serve
2. Add the egg whites to a large bowl, add a cold.
dash of water, and stir until frothy. Add the re-
Per serving: 225 calories; 14 g carbs; 8 g protein; 17
maining ingredients. Spread the mixture on a g fat.
parchment-lined baking sheet (if you don't have parchment, just oil the baking sheet liberally).
3. Bake for 40 minutes, stirring occasionally. Remove from oven and reduce the oven tempera-

OUR RUNNING BOD

ture to $200^{\circ} \mathrm{F}$, then return the sheet to the oven
and cook for another 20 minutes or until crisp.
Remove the sheet from the oven, stir again to
dislodge the nuts before they stick, and let cool
completely on the sheet.

BUILD Y

Per serving: 260 calories; 21 g carbs; 7 g protein; 19
g fat.

Build YOuR Running DiEt-pROtEin, c aRBs, calORiEs, anD nutRitiOn
boiled rice and cook for a few minutes. Add $1 / 3$ cup Lemon Risotto with Avocado
of the broth and stir until the liquid is absorbed. and Salmon

Repeat adding broth until it is all absorbed, about 20 minutes. Add a generous amount of salt and » 2 SERVINGS pepper and stir in the peas and chopped mint. The word "risotto" can bring to mind slaving over 4. In between stirring, pat some sea salt on top a stove-stirring, stirring, and stirring. And, yes, of the salmon. Place the pan under the broiler on there is some stirring here, but it's not going to the upper rack and broil for 8-10 minutes, or unkill you. Risotto is typically made with Italian Artil the fish has browned on top and cooked borio rice, but short grain rice works beautifully through.
and, best yet, if you parboil the rice first for 20
5. Slice the lemon in half lengthwise and minutes, the risotto only takes another 20 minsqueeze one half into the risotto. Use a zester or utes after that. Be sure to use a vegetable stock vegetable peeler to make lemon zest with the with a flavor you like, since it will be a predomiother half for garnish.
nant taste in the rice. You may gasp at the fat
6. Plate the risotto, top with the salmon and content, but it's intentional-those grams are avocado, scatter mint and lemon zest on top, and courtesy of health-promoting monounsaturated serve.
fats and the all-important fat from fish.
Per serving: 575 calories; 36 g carbs; 43 g protein;

BUILD Y

26 g fat.
12 ounces salmon, divided into 2 pieces

1 cup short grain brown rice

2 large shallots (or 1 medium onion or large cleaned
leek), diced
2 tablespoons olive oil

4 cups warm vegetable broth

Tangerine and Almond Cake
OUR RUNNING BOD
Salt and pepper
» 8-10 SERVINGS

1 lemon

Fresh mint, some leaves chopped, some leaves re-
This slinky minx of a cake is a mix between a served whole for garnish
Tunisian citrus almond cake and Nigella

1 Haas avocado

Lawson's clementine cake-both lovely, flourless 2/3 cup green peas (frozen are great)
cakes that rely on almonds for their structure. It's a dense citrusy cake that resembles a steamed

1. Boil the rice in water for 20 minutes, then pudding. Although easy to make, it requires drain in a colander.
simmering tangerines for two hours, which is
2. Prepare the salmon. Place the cleaned filets lovely for scenting the house but may be on a broiler pan and rub with coarse sea salt and prohibitive time-wise for some-for those under pepper.
time constraint, there's a quicker hack included in
3. Saute the shallots in olive oil over medium
the instructions.
until they start to soften, 3-4 minutes. Add par-

Y

Build YOuR Running Fats

333

5 tangerines (or a quart of extra-pulp orange juice) 6 eggs
1 cup raw sugar

2 tablespoons honey

$2^{1 / 3}$ cups thinly sliced almonds

1 teaspoon baking powder

1. Place the whole tangerines in a pot, cover with water, and bring to a boil. Reduce heat and simmer for 2 hours. Drain, let cool. Cut the tangerines in half and remove the seeds. For a shorter alternative to this step, take extra-pulp orange juice and strain the pulp out, reserving the juice. Add the juice back to the pulp until you have 16 ounces; this should work as a good equivalent.
2. Preheat the oven to $375^{\circ} \mathrm{F}$. Lightly oil an $\boldsymbol{Y} 8$-inch cake pan and line with parchment paper.
3. In a food processor, add the eggs, sugar, honey, almonds, and baking powder, and mix until the almonds are finely ground. Add the tangerines, peel and all, and process until smooth.

The batter will be runnier than most cake batters, but that's fine.
4. Pour the batter into a pan and bake for 45 minutes. Remove from the oven and cover with aluminum foil to prevent the top from burning, then continue cooking for another 15 minutes. The cake is done when a toothpick inserted in the center comes out clean. Allow to cool, then serve.

OUR RUNNING BOD Per serving: 345 calories; 36 g carbs; 11 g protein; 19 g fat.

BUILD Y
334
BuilD YOuR Running DiEt-pROtEin, car Bs, calORiEs, anDnutRitiOn

22

Nutrients Build Y

For thousands of years, scurvy was
the scourge of sailors, explorers, our Running
and people living in famine-afflicted and wartorn regions. One of the oldest diseases known
to humankind-characterized by loose teeth,
bleeding eyes, fever, convulsions, bone pain, malaise, and finally death - it cost one million seamen their lives during the seventeenth and eighteenth centuries and claimed 10,000 men as recently as the California Gold Rush.
Yet, scurvy is also one of the simplest ailments
to cure. It's a nutrient deficiency, a lack of vitamin C. An orange a day keeps scurvy away.
These days, we are inundated with research
a Jetsons' diet in which everything we need is de-
detailing the minutiae of every vitamin and minlivered in a perfectly proportioned, tidy little pill? eral known to man. We are equally awash with Unfortunately, it's not 2062, and finding real nutrimarketing and media coercing us to purchase tion hidden among supermarket shelves stacked these vitamins and minerals. There's a magichigh with supplements and processed foods bullet supplement for everything that ails you, sometimes seems like a treasure hunt. But fear from osteoarthritis to cancer to the process of agnot, matey! This chapter is your map.
ing itself. It's hard to resist. Who doesn't dream of

NUTRITION DISCUSSION

"The scary side of supplements"

Athletes often attempt to fortify their diets with supplements. After all, it can't hurt, right?

Set aside that kind of thinking in the faulty-logic file. Here's why:
» Supplements aren't regulated: Unlike food, prescription medication, and over-the Y
counter medicines, dietary supplements are not reviewed by the government before they're marketed. The FDA can only take action after unsafe supplements reach the shelves, and it's very difficult to remove them once they're there.
» Some supplements are really prescription drugs: Some supplement makers spike their supplements with prescription drugs. Since 2008, there have been 400 recalls of spiked products, most marketed for bodybuilding, sexual enhancement, and weight loss.

[^2]harmful and even life-threatening.

Abstract

» Supplements can cause mineral and vitamin overdose: Taking too many minerals or vitamins can create serious imbalances. For example, zinc supplements can reduce the absorption of iron, magnesium, copper, calcium, and chromium. And if you're eating fortified foods, like breakfast cereal and PowerBars, while taking a mineral supplement, you're almost certainly getting too much of something (and some people have adverse reactions to too much calcium or iron).

OUR RUNNING BOD
» Supplements cause complaints: Consumer Reports notes that between 2007 and 2012, the FDA received supplement-related complaints describing more than 10,300 serious outcomes, including 115 deaths and more than 2,100 hospitaliza-tions, 1,000 serious injuries or illnesses, 900 emergency room visits, and 4,000
other medical events. On top of all that, the FDA suspects that most problems are never reported.

BUILD Y

336
Build YOuR Running DiEt-pROtEin, car Bs, calORiEs, anD nutition

WHAT ARE NUTRIENTS?

SUPPLEMENTS

Nutrients include all of the ingredients in food As a species, we've done pretty well over the last
(plus water and oxygen!) that nourish your runfew million years when it comes to food. We've ning body. We've already discussed protein, carlearned to eat nutritious things, learned to avoid bohydrates, and fats. In this chapter we'll focus poisonous things, and somehow figured out how on vitamins and minerals.
to cook and eat lobster and artichokes. Smart us!
But sometime during the last century the food Vitamins
industry galumphed into our collective healthyVitamins are essential organic compounds (we eating conscious and sprinkled confuse-and-forget them from plants and animals) that function get powder everywhere. The result is that as regulators of protein, carbohydrate, and fat three-fourths of world food sales now involve metabolism-and that play a critical role in processed foods. We satisfy our desire for fruit growth, tissue maintenance, and, as noted earlier, with artificially colored high-fructose corn syrup disease prevention, among other functions. We concoctions, replace vegetables with snack foods, use vitamins during energy production, but they and refine away nutrient-rich grains until we're are not sources of energy themselves. left with empty calories. What people eat is inVitamins fall into two categories: fat-soluble creasingly driven by a few multinational food

BUILD Y

and water-soluble. Fat-soluble vitamins (includcompanies, who seem bent on pushing fat, sugar, ing A, D, E, and K) are absorbed with ingested disalt, and artificial additives on us-resulting in etary fat and are stored in moderate amounts in foods that are easy to produce, easy to ship, and, your body. They are vital to maintaining normal best of all, addictive. Ka-ching!
metabolic and biochemical functions. Water-solAnd thus, the supplement industry was born:
uble vitamins, on the other hand, need to dissolve We buy food that has had the nutrients processed in water before your body can absorb them. There out of it, and then we buy concentrated nutrients

OUR RUNNING BOD

are nine water-soluble vitamins, including C-and in pills. And somehow we think there's some-B-complex, which your body must use before they thing healthy about that. Doesn't that seem a litexit via urine.
tle odd?
Also, it's not as if supplements return all the nuMinerals
trients removed by processing. Actual foods nourish Minerals are inorganic elements that occur natubetter than supplements. Food contains healthrally. We get minerals from plants (which absorb protective substances such as phytochemicals, $f i-$ minerals from water and soil), animals, dairy, fish, ber, and compounds to protect against disease. poultry, nuts, and a variety of food sources. They're As a runner, you're specifically targeted by marimportant because they influence all aspects of enketing strategies meant to convince you that top ergy metabolism. Your body requires large amounts performance can only be achieved with suppleof major minerals (e.g., calcium, potassium, and ments. And the marketing works: Research shows
magnesium) and smaller amounts of trace minerals that 30-50 percent of elite and non-elite endur(e.g., chromium, iron, and zinc) to maintain health. ance athletes use supplements. Almost 100 \boldsymbol{Y}

BuilD YOuR Running nut RiEnts

 337percent of triathletes use them. That's a big boon DNA. Most people get enough B12 in their food. for America's multi-billion-dollar supplements inSince it's found naturally in animal-based foods, dustry. But do supplements really work? Not achowever, strict vegans may become deficient. cording to the American College of Sports

Good sources: Animal products, dairy, and eggs.
Medicine, which states emphatically:" [There] is no Many vegan products are fortified with it (check the scientific evidence to support the general use of labels).
vitamin and mineral supplements to improve athletic performance. Only athletes with a defined Vitamin C
nutrient deficiency or deficiencies will benefit from Also known as ascorbic acid, vitamin C is imporsupplementation of the limiting nutrient., " tant for its role as an antioxidant (protecting cells from damage caused by oxidation) and, of course, VITAMINS AND MINERALS
for preventing scurvy. For runners, it supports joints, reduces recovery times, and may speed reGetting your nutrients from foods instead of pills
covery post-hard workout. Your body needs C to requires some work. But don't worry. Eating is fun make collagen (connective tissue), improve abwork! But first you'll need to know which nutrisorption of iron from plant-based foods, and posents are especially important for runners.
sibly boost the immune system.

\boldsymbol{Y}

Good sources: Red and green pepper, citrus fruits, Vitamin B6
kiwifruit, broccoli, strawberries, cantaloupe, baked B6 plays a role in producing red blood cells, norpotatoes, and tomatoes.
malizing neural function, and metabolizing proteins-the latter making it important for building

Vitamin D
muscle. There are claims that B6 decreases joint Vitamin D is calcium's best friend. Without $D, a b-$ pain and muscle fatigue after intense exercise, sorption of calcium suffers, and so do your bones. and a 2003 study found that patients with painful Runners low in D have an increased risk of stress rheumatoid arthritis were low in B6. Although B6 fracture. After Deena Kastor broke a bone in her deficiency is rare, birth control pills deplete B6; foot during the Olympic marathon in Beijing, it women on oral contraceptives should keep that was discovered that she was high in calcium but in mind. If you use a B6 supplement, be aware low in vitamin D. Vitamin D also helps muscles to that too much can lead to nerve damage.
move, nerves to send impulses, and the immune
Good sources: Baked potatoes, bananas, chicken, system to fight off bacteria and viruses. Few foods tuna, salmon, and fortified cereals. naturally contain D, so many of the foods you can

OUR RUNNING BOD

buy are fortified with it. Your body also makes vi-

Vitamin B12

tamin D when your skin is directly exposed to the This "energy" vitamin has a reputation for deliversun. A 2009 study in the Archives of Internal Meding a quick boost, but it's main function is to keep icine found that only 23 percent of adolescents your body's neurons and red blood cells healthy. and adults in the United States had at least the Earning its rep, it's also essential for energy meminimum levels of vitamin D associated with

BUILD Y tabolism, and it plays a role in the replication of good health. And a 2008 study from the Cooper 338

BuilD YOuR Running DiEt-pROtEin, car Bs, calORiEs, anDnutRitiOn

Clinic in Dallas reported that a statistically equiv-Calcium alent 75 percent of runners averaging twentyYour body needs this essential mineral for bone plus miles a week had low vitamin D levels. If strength. But it also uses calcium during muscle you're worried about your D level, ask your doctor contraction, blood pressure regulation, nervous for a test. It's also suggested that you get five to system function, hormone secretion, and enzyme thirty minutes of sun exposure between 10:00 AM
regulation. For athletes, calcium maintains bone and 3:00 PM; the catch is that you can't use sunhealth, decreases the risk of stress fractures (if screen, since sunscreen blocks the process (check you're not getting enough calcium from your diet, with your doctor for risk factors!).
your body swipes it from your bones) and may in-
Good sources: Wild salmon, tuna, mackerel, crease lean body mass. Menopausal women are sardines, shrimp, eggs, beef liver, and irradiated often deficient, but calcium supplements might mushrooms. Almost all milk in the USA is fortified not be the answer. A 2012 study followed almost with D, as are many breakfast cereals and some 24,000 adults for an average of eleven years, conbrands of orange juice.
cluding that regular users of calcium supplements had an 86 percent increase in heart attack risk Vitamin K
compared to those who didn't use supplements.
You don't hear much about vitamin K, but it's an-
Good sources: Milk, yogurt, and cheese are the other bone vitamin. People with higher levels of best. Also, kale, broccoli, Chinese cabbage, canned sardines and salmon (with bones), and fortified

BUILD Y

vitamin K have greater bone density, while low levels of vitamin K have been associated with osteo-
sources such as some orange juices, cereals, soy
porosis. Research has shown that vitamin K
and nut milks, and tofu. (See "10 foods for happy
improves bone health and reduces risk of bone bones" in Chapter 6 for a list of foods particularly fractures, particularly in postmenopausal women. well-suited for bone health.)

For runners, studies suggest that vitamin K boosts bone health for both male and female athletes. In Iron

OUR RUNNING BOD

addition, a 2006 study by the American College of The World Health Organization lists iron defiRheumatology linked low blood plasma levels of ciency as the number one nutritional disorder in vitamin K to an increased risk of osteoarthritis in the world. Iron gives blood its red color and is both the hands and knees, with vitamin K theofound in the hemoglobin that transports oxygen. rized to have "several potential effects on articular It plays an important role in growth, immune cartilage and subchondral bone" that may thwart function, metabolism, preventing anemia, and the development of the disease-one that has other vital functions. For runners, a deficiency ended many a runner's days on the roads. To encan result in fatigue, poor performance, and resure that you don't become deficient in this vitaduced immune system function. On the other min, make sure to eat your leafy greens-kale, hand, excess iron can turn toxic and cause death. spinach, and collard greens are packed with it. Although deficiency is not a severe problem in

Good sources: Dark leafy greens, broccoli, Bruswealthy, industrialized countries, it does happen sels sprouts, prunes, asparagus, avocado, tuna, (more frequently among vegetarians and physiand blueberries.
cally active women, the latter of whom are
\boldsymbol{Y}

Build YOuR Running nutRiEnts

 339already at risk because of menstruation and a diets, potassium is depleted when you sweat. A potendency to eat fewer calories, lowering iron intassium deficiency can leave you fatigued and with take from food). If you notice unexplained fatigue, muscle weakness or cramping. Low levels can also you may want to request a blood test for iron. affect glucose metabolism and lead to elevated Good sources: See sidebar, "15 iron-packed food blood sugar. Most sports drinks address potassium sources."
loss (e.g., Gatorade Endurance Formula has 140 mg of potassium). But take too much and potassium Potassium can upset fluid balance and may lead to abnormal Potassium is an electrolyte that pairs up with soand dangerous heart rhythms.
dium to regulate both your cell membrane potenGood sources: Bananas, baked potatoes, sweet tial (i.e., the sodium-potassium pump, critically potatoes, winter squash, milk, yogurt, cantaloupe,
important for both nerve and muscle function)
pinto beans, salmon, soy products, peas, prunes, and your fluid balance. Although abundant in most and spinach.

NUTRITION DISCUSSION

"15 iron-packed food sources"

\boldsymbol{Y}

Food has two types of iron: heme iron and non-heme iron. Heme iron is derived from hemoglobin and is found in animal-based foods, notably meat and mol usks. Non-heme iron is found in plant-based foods and isn't as easily absorbed as heme iron. Heme iron is absorbed two to three times more efficiently than non-heme iron. The $R D A$ for iron in males aged eighteen and older is 8 mg daily; females aged nineteen to fifty should get 18 mg daily, and 8 mg daily for females fifty-one and older. Foods high in heme and non-heme iron: 1. Clams, canned, drained, 3 ounces: 23.8 mg
2. Fortified dry cereals, 1 ounce:

18 to 21.1 mg
3. Oysters, cooked, 3 ounces:
10.2 mg
4. Organ meats, cooked, 3 ounces:
5.2 to 9.9 mg
5. Fortified oatmeal, 1 packet:
4.9 to 8.1 mg
6. Soybeans, cooked, $1 / 2$ cup:
4.4 mg
7. Pumpkin seeds, roasted, 1 ounce:
4.2 mg

OUR RUNNING BOD

8. White beans, canned, $1 / 2$ cup:
3.9 mg
9. Blackstrap molasses, 1 tablespoon:
3.5 mg
10. Lentils, cooked, $1 / 2$ cup:
3.3 mg
11. Spinach, cooked fresh, $1 / 2$ cup:
3.2 mg
12. Beef, chuck, blade roast, 3 ounces:
3.1 mg
13. Beef, bottom round, 3 ounces:
2.8 mg
14. Kidney beans, cooked, $1 / 2$ cup:
2.6 mg

BUILD Y
15. Sardines, canned, 3 ounces:
2.5 mg

340
Build YOuR Running DiEt-pROtEin, caR Bs, calORiEs, anD nutRitiOn
Sodium
»Color and amount of urine: Clear and plen-
We are constantly being alerted to the dangers of tiful says hydrated. Dark and concentrated sodium-too much is linked to high blood pressays dehydrated.
sure, and most Americans eat way too much of it.
» Body weight change: Check the percentage

But at the same time, it's essential for regulating of your body weight change before and afyour body's fluid balance, which in turn helps ter exercise. Well hydrated is -1 percent to control blood pressure and blood volume. Also, +1 percent; minimal dehydration is -1 peryour muscles need it to function, and your nerves cent to -3 percent; significant dehydration need it to fire. When you train, it's the major elecis -3 percent to -5 percent; and serious detrolyte in your sweat, and some people can lose as hydration is >-5 percent.
much as 3,000 mg per hour during an especially sweaty workout (keep in mind that the RDA is During training and competition, remember to 2,300 mg). If you're a salty sweater-if you've nodrink to thirst. A little dehydrated is safe and will ticed excessive dried salt on your skin after runhelp you to achieve the full training stimulus and ning in the heat-then you might consider a salty adaptation. That said, never push dehydration, snack before or during a run. Sports drinks that and try to fully rehydrate within a couple of hours contain sodium are an option as well. Endurance post-exercise.
athletes who train more than five hours at a time

BUILD Y

should also consider a salty snack somewhere in SOME SUPPLEMENTAL INFORMATION the middle. Loss of salt during a run can trigger
cramping, but it's also connected to hyponatreIf increased nutrients are your goal, there are a mia, a rare and potentially fatal condition in few options that don't include pills, powders, or which overhydration leads to low blood-sodium potions. Here are three:
levels. Also called water intoxication, it usually results from drinking excessive amounts of plain

1. Figs: Bananas and apples may win the OUR RUNNING BOD
water while sweating heavily (think endurance popularity contest, but figs are like the events).
quiet girl next door who turns out to be Good sources: Just about everything in the Amera salsa-dancing neurosurgeon. And dried ican diet. But aim for healthy sources like olives, figs are even more remarkable. Figs have tomato juice, low-fat cottage cheese, pretzels, and a tremendous amount of fiber, a thousalted nuts.
sand times more calcium than other common fruits (by weight), 80 percent WATER
more potassium than bananas, more iron than most other fruits, and a potent Just as a houseplant suffers the effects of too blast of magnesium-all for around 30 much or too little water, so do we (minus the root calories a fig.
rot). Too little water leads to dehydration. And too
2. Nutritional yeast: Yes, for some this may much water can lead to hyponatremia (see above). sound more like a condition you'd want Luckily, we can test our hydration status in two to avoid than something you'd willingly \boldsymbol{Y} easy ways:
put into your mouth. But nutritional

Build YOuR Running nutRiEnts

341
yeast-grown on molasses, then deactiand sulfate, and soaking in an Epsom vated and made into a powder-is the salt bath is a safe way to boost your culinary salvation of legions of vegans. body's levels of both (they're readily abWith its nutty, cheesy flavor, it adds a sorbed through the skin). Most Ameripunch of umami (the savory fifth flavor) cans get less magnesium than and is a good swap for Parmesan cheese. recommended. Not good, since magneVegans love its high-quality protein and sium plays an important role in more B-complex vitamins-it's almost always than 300 enzyme systems regulating biofortified with B12. And it's delicious! Try chemical reactions in the body (e.g., proit on popcorn, pizza, pesto, and on pasta
tein synthesis, muscle and nerve
in place of cheese.
function, and blood sugar control). So
3. Epsom salt bath: Many runners enjoy an add two cups of Epsom salt to warm waoccasional dunk in an Epsom salt bath, ter and soak for at least twelve minutes, and it turns out it has nutritional value, three times a week. As with all suppletoo! Epsom salt consists of magnesium ments, please check with your doctor first. \boldsymbol{Y}

OUR RUNNING BOD

BUILD Y

342
BuilD YOuR Running DiEt-pROtEin, car Bs, calORiEs, anDnutRitiOn

Banana Chia

Kale, Kale, and Kale (Kale

Breakfast Pudding

Three Ways)

» 2 SERVINGS
Dark green and overwhelmingly healthy, kale Yay, pudding for breakfast! You may know chia was once a confirmed citizen of the Island of Misseeds from the "pets" that sprout chia from their fit Vegetables. Then the leafy green was discovterracotta forms, but the superfood era has proered by the foodie set and turned into a trendy moted them from their ch-ch-ch-chia status to and beloved vegetable. It's delicious! One of the
nutrition superstars. Rich in protein and omega-3 few vegetables with significant calcium, and esfatty acids, chia is also packed with phytochemipecially high in magnesium (one cup contains 40 cals, phosphorus, manganese, fiber, calcium, and percent of the RDA), kale also boasts nice vitamin C. In liquid, chia seeds expand and get amounts of vitamin A, as well as the phytochem-gelatinous-and while that may sound off-puticals lutein and zeaxanthin. Here are three ways ting, it means that when left to soak, they turn to prepare this versatile vegetable: juice or milk into something very much like tapioca pudding.

1. Quick sauté

BUILD Y

1/4 cup chia seeds

1 teaspoon olive oil

1 cup unsweetened almond milk (or milk of choice)
Fresh garlic, chopped
$1 / 2$ teaspoon pure vanilla extract
1 large bunch kale leaves, rinsed and thoroughly

1 tablespoon honey

dried, ribs removed
1 banana, sliced
Sea salt and freshly ground black pepper
1 cup fresh berries (for garnish)
Heat the olive oil in a large saute pan, add the gar-

OUR RUNNING BOD

Combine the chia seeds through the banana in a lic, and sauté over medium-high heat until the
1-quart jar and shake well; refrigerate overnight. garlic starts to sizzle and turn golden. Next, toss Serve in bowls, top with berries, eat pudding for in a handful of kale leaves and stir a few times breakfast.
until they start to wilt. Continue tossing in a handful at a time. Adding them slowly will ensure
Per serving: 260 calories; 43 g carbs; 5 g protein; 12
that the water released cooks off before the next g fat.
handful is thrown in, which will avoid sogginess.
When all the kale is added, toss it with some sea
salt and fresh pepper and serve.

2. Slow braise

1 teaspoon olive oil

1 clove garlic, minced
1 large bunch kale leaves, rinsed and chopped
\boldsymbol{Y}

1 cup vegetable stock

Build YOuR Running nutRiEnts

343
Kale revels in a long simmer. It has a lot of structure, so it doesn't turn to mush, and its smoky

Wheat Berry Salad with Figs

flavors come out rich and mellow. Here's how to and Feta
bring out the best of your kale: Saute the garlic in
» 4 SERVINGS
olive oil, then add the kale, followed by the vegetable stock.
Simmer over low-medium heat for 20
Wheat berries are the kernels of whole grain minutes, stirring occasionally and adding more wheat. They are a great source of potassium, stock if it becomes too dry. When it's ready, the phosphorus, fiber, protein, iron, and B vitaminsstock should be reduced and all that remains is and the figs added to this dish elevate the nutria tangle of moist, tender (but not disintegrating), ent levels even more. The grains have a nice delicious greens.
nutty taste and a tender but chewy texture. It's often recommended that they should be soaked

3. Oven roasted

overnight, but it isn't necessary.
1 bunch kale leaves, rinsed and dried, stems removed

112 cups hard wheat berries

1 teaspoon olive oil

1/2 teaspoon salt
Sea salt
2 stalks celery, chopped
\boldsymbol{Y}
1 tart, firm apple, diced
Kale chips are definitely a "thing" now, but sadly,
$1 / 3$ cup tart dried cherries
they're prohibitively expensive. So make oven5 dried (or fresh) figs, chopped
roasted kale, which is like kale chips, only with$1 / 4$ cup pine nuts
out the thick coating of nutritional yeast, added $3 / 4$ cup feta cheese
flavors, and other assorted muck. In the simplest
1 tablespoon olive oil
preparation, remove the stems from a bunch of Balsamic vinegar to taste
kale, rinse and dry the leaves, spread them on a Rosemary for garnish
baking sheet, toss with the olive oil and some salt,
Freshly ground black pepper
and bake at $375^{\circ} \mathrm{F}$ for 15 minutes, turning occasionally and ch ecking to make sure they don't

1. In a sauce pan, combine the wheat berries, 5 burn. They're done when they're crispy, yet still cups of water, and $1 / 2$ teaspoon of salt. Bring to a
tender, and slightly browned on the edges.
rolling boil, reduce heat, and cover and simmer for 50 minutes, or until tender. Alternatively,
Per serving: 48 calories; 1 g carbs; 3 g protein; 4 g fat.
place the wheat berries, water, and salt in a slow

OUR RUNNING BOD

cooker. Set the cooker on low and cook, covered, for at least 8 hours and up to 12 hours.
2. Drain the wheat berries, let them cool, and toss with the remaining ingredients. Letting the salad stand for 30 minutes allows the flavors to develop and brings it to a nice temperature for eating.

BUILD Y

Per serving: 430 calories; 70 g carbs; 15 g protein;

$12 g$ fat

344

Build YOuR Running DiEt-pROtEin, c aRBs, calORiEs, anD nutRitiOn

Almond Cherry Pie Oat Bars
» 12 SERVINGS
Okay, we're not fooling anyone: These don't taste
like cherry pie. Even so, they're redolent of almonds and cherries, wholesome, and the perfect choice for a sweet packed with nutritional integrity.

2 cups rolled oats

1/2 cup applesauce

2 tablespoons almond butter

1/4 cup honey
1/4 cup brown sugar
2 tablespoons cherry preserves

1 tablespoon mild vegetable oil

1 teaspoon sea salt

2 teaspoons almond extract

BUILD Y

1 cup dried cherries

1 cup sliced almonds

1/2 cup semisweet chocolate chips

1. Preheat the oven to $350^{\circ} \mathrm{F}$. In a large mixing bowl, stir all the ingredients together.
2. Spread and pat the mixture down into an OUR RUNNING BOD
oiled 8×9-inch baking pan.
3. Bake for 30 minutes, or until the top is golden and the edges start to brown.
4. Remove, cool for 20 minutes, cut into 12
squares, allow them to cool completely, and store in an airtight container.

Per serving: 65 calories; 41 g carbs; 5 g protein; 11 g fat.

Y
Build YOuR Running nutRiEnts
345

23

Program W Build Y

eight-Loss

S

our Running

ome people run to lose weight. Some
people lose weight to run better. And
some people run for the sole purpose of being
able to eat more pie. Whatever your motivation, running and weight management are in-
extricably linked.
There isn't a perfect weight for every runner. That's a decision made by you and your
running body. But whatever number you target as your goal or maintenance weight, it's
important to pick a rational strategy for achieving have a BMI on the low end. Double 2012 Olympic
that weight-and to understand the ramifications
champion (5,000 and 10,000 meters) Mo Farah has
of exceeding that weight. After all, you wouldn't a BMI of 21.1, while sprint star Usain Bolt tips the run a race with forty sticks of butter strapped to scales at 24.9. Some elite marathoners and ultrayour waist, hips, and thighs. So why carry an extra marathoners fall into the "underweight" classificaten pounds of body fat? (In fact, the calories in a tion, scoring below 18.5, but most top-ranked stick of butter are roughly equivalent to a quartermarathoners yield marks between 19 and 21. What pound of body fat.) Healthy weight loss increases does this mean for you? It means that if you're VO max, reduces the impact forces weathered by otherwise healthy, a BMI anywhere in the 18.5 to 2
your muscles and connective tissue, and improves 24.9 range is fine-and a little below or a little running economy. Simply put, less weight—lost above probably isn't a cause for concern, either. intelligently-will improve your endurance.

Another way to determine healthy weight is to check your body-fat percentage (if you have a WHAT'S A HEALTHY WEIGHT?
skinfold caliper or a specialized water tank for hydrostatic weighing handy). The following chart

Runners perform best when they are near the from the American Council on Exercise offers bottom of their healthy weight range. A quick way body-fat ranges for several classifications ("essen\boldsymbol{Y} to gange whether your weight is healthy is to tial fat" is the minimum percentage of fat re-check your Body Mass Index
(BMI), keeping in quired to remain healthy). mind that BMI doesn't account for frame and muscle mass-very muscular people have a high classification

Men Women

BMI. The National Institutes of Health provides
Essential fat
$2-5 \% 10-13 \%$
the following calculation for determining BMI:
Athletes
6-13\% 14-20\%
Fitness
14-17\% 21-24\%
» Multiply your weight (in pounds) by 703.
» Divide the answer by your height in inches.
Average
$18-24 \% 25-31 \%$
» Divide again by your height in inches.
Obese
$25 \%+32 \%+$
Then check the following chart to see whether
your weight is healthy for your height:
Most runners, through experience, find a
BMi
classification
weight range in which they perform best. Training
<18.5 Underweight
above this range leaves them sluggish. Training OUR RUNNING BOD 18.5-24.9 Healthy
below this range robs them of strength and en-
25.0-29.9 Overweight
ergy. In the meantime, it's important to under-
30.0-39.9 Obese
stand how you lose weight.
>40
Extreme or high risk
obesity
LOSING A POUND A WEEK

BUILD Y

Of course, just as muscular people have high
For runners, losing a few "sticks of butter" isn't as
BMIs, super-fit runners might discover that they
easy as going on a juice cleanse, eating nothing
348
Build YOuR Running DiEt-pROtEin, caR Bs, calORiEs, anD nutRitiOn

NUTRITION DISCUSSION

" 8 healthy snack swaps"

Few things kill a diet faster than snacks. They tempt and lure. They hold a secret sway over us. It'd be easy to suggest keeping a stash of fruits and veggies on hand to thwart snack attacks, but let's be honest: Celery doesn't cut it when it's potato chips you crave. So here are some swaps that are wholesome, palatable standins when raw carrots just won't do the trick.
» Popped rice snacks for Doritos: Popped rice snacks are not nutritionally perfect, but they're primarily made with whole grain brown rice, are flavorful, and are a superior choice to heavily processed tortilla chips.
" Cereal bars for snack cakes: Most cereal bars-with their caramel and peanut butter and chocolate chips-have way too much sugar to be considered a "health food," but they provide many more nutrients than vacuous, commercial snack cakes and can satisfy an urgent sweet tooth.
» Good cookies for bad cookies: If you have to have a cookie, that's understandable.

BUILD Y

Just don't reach for Oreos. Look for cookies with healthy ingredients like fruit, whole grains, and dark chocolate chips. A luscious oatmeal cookie with dried cherries and dark chocolate can go a long way toward nurturing both your cookie needs and your body.
» Baked tortilla chips for fried ones: It's easy to make baked tortilla chips: Cut corn tortillas into triangles, place them on a baking sheet, and bake at $350^{\circ} \mathrm{F}$ for about ten minutes, making sure they don't get too brown-they should still be OUR RUNNING BOD
slightly pliable. Not quite the salty, greasy chips you get from a Mexican restau-rant, but with enough salsa and a bit of guacamole, you'll hardly notice the difference.
» Popcorn for Cheetos: Popcorn is a whole grain, so eat it to your heart's content.

Your best bet is to cook it on the stovetop or in an air popper (microwave versions have added ingredients and fat). Add Parmesan or smoked paprika for decadence.
If you add a tiny bit of olive oil or butter, you're still better off than if you'd chosen Cheetos.
» Dark chocolate for candy bars: The antioxidants in dark chocolate do a body good, which is more than can be said for a plain old candy bar. Aim for chocolate with a minimum of 35 percent cocoa, and don't eat more than 1.5 ounces. For increased satisfaction, look for dark chocolate-covered dried fruit, peanuts, pretzels, etc.
(Continued)

\boldsymbol{Y}

Build YOuR Running WEigHtlOss pROgRaM

349
NUTRITION DISCUSSION
» Roasted seaweed snacks for chips: One of the biggest surprise success stories in the snack food market has been that of roasted seaweed sheets, which can be purchased just about anywhere now. Even more surprising is how tasty and satisfying they are! You get all the crispy, salty je ne sais quoi of chips without the distressing calorie count from fat.
" Frozen yogurt for ice cream: Frozen yogurt may lack the deliriously creamy mouth-feel that fatty ice cream offers-but it comes close. Some frozen yogurt brands have the same amount of calories as ice cream, but others have significantly less.

What frozen yogurt offers is a blast of calcium, lower saturated fat levels than ice cream, and all-important probiotics-giving frozen yogurt the healthy edge.
but bacon, or chowing down on all-you-can-eat excess (for an analogy, think about how your body cabbage soup. You need calories in order to train maintains your body temperature regardless of and nutrients to replace those lost during workair temperature). Changing your set point takes Y outs. Crash diets lead to just that: a crash, as in time and a longterm lifestyle adjustment. Of bonk, nosedive, hit the wall. Losing too much
course, running can help instigate that change. As
weight or losing weight too quickly can be worse mentioned in Chapter 1, running has a unique for your running body than having the extra relationship with weight loss, with runners losing
weight in the first place. You'll need to lose weight almost twice as much weight as walkers from the strategically, with the aim to drop one to two same amount of exercise-induced calorie burn. pounds per week.

This could indicate that the higher intensity of The mechanics of losing a pound per week is running has a more direct effect on your set point, simple: There are 3,500 calories in a pound of giving you more weight loss bang for your caloriebody fat; therefore, a deficit of 3,500 calories will burn buck. Bottom line: It takes a combination of lead to the loss of one pound. You can create that reduced calories and increased activity to lose deficit by caloric reduction (dieting) or by training that pound a week while maintaining a diet (burning more calories). So to lose a pound a healthy enough to support your running. week, you need to consume 500 fewer calories than you burn per day, either by eating less or exOUR RUNNING BOD

POPULAR DIET PLANS AND RUNNING ercising more-or, better yet, through a combination of both. Although the handy-dandy 3,500-calorie-per-

Now the disclaimer: It's not really that simple. week trick is simple, not everyone is good at Your body has tricks up its sleeve. According to counting calories. Some need a well-defined diet the "set point" theory, your body has a preferred plan. But which one? There are more than 70,000
weight that it attempts to maintain by lowering diet books available on Amazon.com. Where does

BUILD Y (and raising) your metabolism, thereby offsetting a runner even begin? Right here, that's where, small calorie deficits or temporary, minor calorie with a rundown of five of the most popular diets

350

Build YOuR Running DiEt-pROtEin, caR Bs, calORiEs, anDnutRitiOn

and how they rate for people who pound the \& World Report. It's also recommended by the US pavement.

Department of Agriculture (USDA) as an ideal overall eating plan. The DASH diet emphasizes Atkins and all the other pro-protein plans fruits, vegetables, fat-free or low-fat dairy, whole When Dr. Atkins' Diet Revolution was unleashed in grain products, fish, poultry, and nuts. It deem1972, it suddenly seemed that the entire world was phasizes lean red meat, sweets, added sugars, eating itself skinny on steak, eggs, and bacon. The and sugary beverages. Runners will like the way it plan (and its imitators) is based on the concept favors foods rich in potassium, magnesium, and that carbohydrates are bad; by drastically reducing calcium. The goal of the diet is 55 percent carbothem and eating more protein and fat, we shift hydrates, 18 percent protein, and 27 percent fat from the use of carbohydrates to burning stored (in the neighborhood of a traditional 60 percent fat (ketosis), thereby losing weight. Can you lose
carbs, 15 percent protein, 25 percent fat running weight on the protein party-train? Yes. Is it diet).
healthy? No. Studies have found that low-carb diets increase heart attack risks. Is it good for run-

South Beach Diet
ners? If you don't know the answer to that, you
Cardiologist Arthur Agatston and dietician Marie
skipped Chapter 19 of this book. Please read it.
Almo created the South Beach Diet in the early
1990s after watching their patients and clients

BUILD Y

The Zone Diet
gain weight on the then-recommended low-fat,
Enter the Zone (1995) was written by Dr. Barry Sears,
high-carbohydrate diets. "We tried a different apa former bio-tech researcher at MIT, and promises
proach," says Dr. Agatston, "that emphasized the great health benefits and a hot body, offering (in its quality of the fats and carbohydrates, rather than subtitle) "a revolutionary life plan to put your body the relative quantity . . The basic principles of in total balance." Seriously, who wouldn't want the South Beach Diet are good fats, good carbohythat? The Zone preaches revamping your metabodrates, lean sources of protein, and plenty of fi-

OUR RUNNING BOD

lism with a diet of 40 percent carbohydrates, 30
ber." The diet plan is divided into three phases. percent protein, and 30 percent fat. The diet's apPhase One eliminates"bad" carbohydrates, the
proach has some very good components, like its source of cravings for sugary and refined foods. preference for vegetables, legumes, whole grains, Phase Two introduces "good" carbohydrates and and fruits, as well as its attempt to steer dieters lasts until the dieter reaches his or her goal away from simple carbohydrates. But while it's weight. Phase Three lasts for life and involves promoted as a diet for athletes, the limit on carbomaking healthy food choices. Runners might hydrates will prove prohibitive for most runners. have trouble with the low-carb Phase One, but by Phase Three you can pick from all allowed foods DASH diet and set your own carb-protein-fat ratio.
The National Heart, Lung, and Blood Institute created the DASH (Dietary Approaches to Stop Hy-
Weight Watchers
pertension) diet to help prevent and control blood
Weight Watchers works on a points-based syspressure. And the diet regularly takes the top spot tem, although much of its success can be attrib\boldsymbol{Y}
in the annual diet rankings released by U.S. News uted to the community aspect of the program:

Build YOuR Running WEigHtlOss pROgRaM

351
regular meetings, weekly weighins with staff
Begley is a two-time USA champion at 10,000 memembers, and lifetime memberships (LTMs) for
ters, an Olympian, and a sixteen-time NCAA Allthose who meet and maintain their goal weight. American. She also has celiac disease and can't Moreover, LTMs who continue to weigh in within eat gluten. VanOrden is a two-time USA Masters two pounds (above or below) of their healthy goal Mountain Runner of the Year and has won USA weight are allowed to attend Weight Watchers Masters Trail Running titles at multiple distances, meetings at no charge, an incentive that helps to including $10 \mathrm{~K}, 15 \mathrm{~K}$, half marathon, marathon, and keep LTMs connected with their weight-loss com50K. And he's a raw vegan who fuels his running munity for life. On Weight Watchers' PointsPlus with plant-based food that hasn't been heated plan, there are no food restrictions; instead, above $100^{\circ} \mathrm{F}$ (while most raw vegans allow food to points are based on food content: calorie-dense be heated to $118^{\circ} \mathrm{F}$, VanOrden believes that "foods foods with more fat and simple carbs have higher begin to break down and lose nutritive value points totals, while protein-and fiber-rich foods when subjected to temperatures over $100^{\circ}{ }^{\circ}$.") get fewer. The plan encourages eating a wide $v a-$ The point: There are many ways to fuel a runriety of healthy foods, split between three meals ner. Success is about making smart nutritional plus snacks, and has enough flexibility to support choices. If you stick to a proper macronutrient raa runner's fueling requirements. The diet also ad-
tio and make sure you're getting enough calories
\boldsymbol{Y} heres to the macronutrient ratio established by and nutrients, you should be good to go. And go the National Academy of Sciences: 45-65 percent and go and go. carbohydrates, 10-35 percent proteins, and 20-35 percent fat.
BENEFITS OF A MEDITERRANEAN DIET THE ART OF AVOIDING FOOD

As if living along the lovely Mediterranean coast wasn't enough, people from that region not only We live in an age of food avoidance. Gluten-free have beautiful food to eat, they also have a dethis. Fake-meat that. Nut-free these. Non-dairy creased risk of death from heart disease and canthose. But whatever reason fuels one's rejection cer, as well as a reduced incidence of Parkinson's of certain foods-allergy, disease, taste, wellness, and Alzheimer's diseases. Welcome to the Mediethics, neurosis-the question remains: Do meterranean diet-not a meal and exercise plan, but ticulous dietary restrictions put some runners at instead an approach to eating inspired by the traa disadvantage? A suitable answer to that quesditional dietary patterns of Italy, Greece, Spain, tion can be supplied via three names: Scott Jurek, and Morocco.

OUR RUNNING BOD Amy Yoder Begley, and Tim VanOrden.
Foods that make up this diet include vegeta-
Jurek is one of the top ultra-runners in the
bles, fruits, beans, whole grains, nuts, olives and world, having notched multiple victories in most
olive oil, cheese, yogurt, fish, poultry, and eggs-
elite trail and road events, including seven
all packed with micronutrients, antioxidants, vistraight victories (1999-2005) at the Western tamins, minerals, and fiber. Most of the foods in States 100 Mile Endurance Run. He's been named the diet are fresh, seasonal whole foods. Meat,

BUILD Y

UltraRunning magazine's UltraRunner of the Year sugar, sodium, a nd processed foods are kept to a
three times. He's also a passionate vegan. Yoder minimum. There is no limit on healthy fats (you

352

Build YOuR Running DiEt-pROtEin, car Bs, calORiEs, anD nutRitiOn

NUTRITION DISCUSSION

"Sly sugars"

Food manufacturers like to sneak sugar into places where, quite frankly, sugar just doesn't belong (a Dunkin Donuts bran muffin with 40 grams of added sugar comes to mind). The American Heart Association recommends no more than 100 calories of added sugar daily for women and 150 calories for men. Since nutrition labels don't differentiate between added sugar and natural sugar (e.g., sugar from fruit), you need to do some label sleuthing to ferret out added sugars. These are the names by which these sly sugars may be creeping into your food:
» Barley malt
" Grape sugar
» Beet sugar
» High-fructose corn syrup
» Brown sugar
» Honey
» Cane juice crystals
» Icing sugar
» Cane sugar
» Invert sugar
» Caramel
» Maltodextrin
» Corn sweetener
» Maltose
BUILD Y
» Corn syrup
" Malt syrup
» Corn syrup solids
» Mannitol
» Confectioner's sugar
" Maple syrup
» Carob syrup
" Molasses
" Castor sugar
» Muscovado sugar
» Date sugar
» Palm sugar
» Demerara sugar
" Raw sugar
OUR RUNNING BOD
" Dextran
» Refiner's syrup
» Dextrose
» Rice syrup
» Evaporated cane juice
» Sorbitol
» Fructose
" Sorghum syrup
» Fruit juice
» Sucrose
» Fruit juice concentrate
» Sugar
» Glucose
" Syrup
» Glucose solids
" Treacle
» Golden sugar
» Turbinado sugar
» Golden syrup
» Yellow sugar
may indulge your love of olive oil with reckless

For runners, it's the best of all worlds. If you're abandon), and moderate consumption of wine is looking to lose weight, a switch away from pro\boldsymbol{Y}
allowed.
cessed foods to nutrient-dense food will help you

BuilD YOuR Running WEigHtlOss pROgRaM

353
achieve that 3,500-calories-per-week reduction. every element offers some kind of nutritional Plus you can customize your macronutrient ratio whizbang. It's the real-world summation of all the of carbs-protein-fat to what works best for you. nutritional ideas put forth in the previous five With very few empty calories, the Mediterranean chapters. And it is, quite possibly, the best way to diet is sound, sensual, delicious real food in which build your running body.

NUTRITION DISCUSSION

"Eat like a Greek granny, run like a champ"

The basics of the Mediterranean diet are pretty simple. Keep these guidelines-based on suggestions from the Mayo Clinic—in mind. Your running body will thank you.
» Produce, produce, produce: Vegetables and fruit (fresh and whole are best) should be eaten at every meal-for snacks, too.
» Switch to whole grains for all your baked goods, cereal, pasta, and rice.
» Don't shy away from nuts, just practice moderation. Although they're high-calorie, \boldsymbol{Y}
they are loaded with healthy fats and protein.
» Rebuff the butter, fall in love with olive oil. The more you eat olive oil, the more you will love its rich flavor (and you're allowed to use it liberally!).
» Play with herbs and spices. Not only do they boost flavor, most have health benefits all their own.
» Eat fish at least twice a week: Fresh or water-packed tuna, salmon, trout, mackerel, and herring are healthy choices. If you're concerned about mercury, visit the "Health" section of nrdc.org for more information.
» Skip the red meat. You don't have to give it up, just limit it to a few times a month.

When you do eat it, choose a lean cut and small portions. Avoid sausage, bacon, and other processed meats.
» Opt for low-fat dairy. Use low-fat milk and nonfat Greek yogurt, and try sorbet instead of ice cream.

OUR RUNNING BOD

BUILD Y
354
Build YOuR Running DiEt-pROtEin, car Bs, calORiEs, anDnutRitiOn
eggs will do in a pinch-you can't go wrong.

Roasted Asparagus with

4. Remove the asparagus from the oven, divide

Poached Eggs

onto two plates, and top with two eggs each. Salt
and pepper to your liking. Add the truffle oil,

» 2 SERVINGS

parmesan cheese, or herbs, if desired.
This really couldn't be easier, and it's way more satisfying than 200 calories has any right to be.

Per serving: 190 calories; 6 g carbs; 16 g protein; 12
g fat.
Among vegetables, asparagus is the leading supplier of folic acid and a good source of potassium, thiamin, and vitamin B6. It is also one of the richest sources of rutin, which strengthens capillary walls. Eggs are an excellent source of protein, choline, lutein, and zeaxanthin.

Custom Homemade Hummus

» 8 SERVINGS

20 spears asparagus

1 teaspoon olive oil
Hummus has taken over the dip world. It seems

4 eggs

there are a thousand different flavors at the suSalt and pepper to taste permarket to choose from-so don't, because it's

BUILD Y

Truffle oil, shaved Parmesan cheese, or fresh herbs, really fun to make your own, and you can cusoptional tomize it to your heart's content, making 100 calories' worth of nutrient-loaded, flavorful spread.

1. Preheat oven to $400^{\circ} \mathrm{F}$.

First off is the basic recipe, then some ideas for
2. Snap off the rough ends from asparagus different ways to enhance it. stalks (save them for soup) and toss the spears in olive oil. Spread out on a baking sheet and sprin1 can chickpeas
OUR RUNNING BOD
kle with salt and pepper. Bake for 20 minutes,

2 garlic cloves

turning occasionally, until they begin to brown
3 tablespoons tahini (sesame paste)
lightly and look slightly wilted, but still have

2 lemons

body left to them.

1 tablespoon olive oil

3. While the asparagus cooks, poach the eggs.

Salt to taste
There are many methods for poached eggs, and each cook will swear by theirs and theirs alone.

Drain the chickpeas, saving the juice and setting
If you have a favorite, use that. If not, play
it to the side. Add the chickpeas, along with all around with the methods available and see what remaining ingredients, to a food processor. Pulse works best for you. We like a simple method usuntil you have a paste, adding reserved liquid uning a pot with at least three inches of gently boiltil you achieve a nice hummus texture-smooth, ing water; break the eggs into a cup and gently thick, and spreadable.
slide them into the water and boil for 3 to 4 minutes. If you're afraid of poaching eggs, simple

Per $1 / 4$ cup: 100 calories; 11 g carbs; 4 g protein; 6 g fat.

Y

fried eggs will work just as well. Even scrambled

BuilD YOuR Running WEigHtlOsspROgRaM

355
ADDITIONS
112 cups nonfat Greek yogurt

1 cup crumbled goat cheese

Try including these with the other ingredients

1 cup grated fresh Parmesan cheese

above before the reserved chickpea liquid is added to the food processor.

1. Preheat the oven to $375^{\circ} \mathrm{F}$.

Roasted red peppers and jalapeño; garnish with
2. Cook the noodles according to the instrucfresh cilantro. tions on its package, then set aside.
3. Mince the garlic and add to a large sauté pan Fresh ginger and mint; garnish with pomegranwith olive oil. Cook on medium-high heat until ate seeds.
sizzling. Add the mushrooms (in several batches Miso paste and wasabi; garnish with sesame if your pan isn't large enough), and salt to taste seeds.
as you go along. Sauté, stirring frequently, until the mushrooms have released their juices and Anchovies and sundried tomatoes; garnish with are slightly dry.
fresh oregano.
4. Stir the ricotta and yogurt together in a sepaBlack olives and capers; garnish with fresh parsley. rate bowl.
5. Add a little olive oil to the bottom of an $8 \times$

\boldsymbol{Y}

12-inch baking dish (if you only have an 8×8 or
9×13, don't sweat it; you can make it all fit one way or the other). Place a layer of noodles down, followed by ${ }^{1 /}$

Wild Mushroom Lasagna

${ }^{3}$ of the ricotta mixture, ${ }^{1 / 3}$ of the
mushrooms, and ${ }^{1 / 3}$ of the goat cheese. Repeat
until all the ingredients have been used, ending
» MAKES 6 AMPLE PORTIONS
with a layer of noodles and topping it all with the Yes, we have lasagna in the weight loss section! Parmesan.
While that may seem wrong on many levels, it re-
6. Bake for 45 minutes, or until browned and
ally isn 't. By using whole wheat pasta, the dish is bubbly; let sit for 15 minutes. Serve with roasted already healthier and heartier than regular lasagna kale (page 343).
(and whole wheat tastes great with mushrooms!).
This recipe swaps the mounds of mozzarella and
Per serving: 393 calories; 33 g carbs; 26 g protein;
17 g fat.
ricotta for some lower-fat alternatives.
OUR RUNNING BOD Olive oil
1 12-ounce package whole wheat lasagna noodles
1 large garlic clove

1 tablespoon olive oil

2 pounds mixed mushrooms (white, portabello, shiitake, etc.), sliced
BUILD Y Salt and pepper to taste
112 cups part-skim ricotta
356
Build YOuR Running DiEt-pROtEin, car Bs, calORiEs, anDnutRitiOn
4. Transfer to a serving bowl or individual serv-Butternut (or Pumpkin)
ing cups and refrigerate until set, overnight, or at

Pudding

least 1 ½ hours.
» 4 SERVINGS
Per serving: 248 calories; 35 g carbs; 3 g protein; 11
g fat.
Every autumn it happens: All manner of food items begin to have "pumpkin" attached to them-coffee, muffins, beer, donuts, cakes, martinis, you name it. So why not a rich, custardy pudding? This recipe calls for butternut squash because it's easier to handle when cooking from scratch (and the taste is nearly indistinguishable from pumpkin), but if desired you can make the recipe easier by using canned pumpkin puree.

Both squashes are loaded with impressive amounts of vitamin A, vitamin C, vitamin B6, potassium, and folate.
BUILD Y

13/4 cups butternut squash puree (or one 15 -ounce
can of pumpkin puree)
$1^{1 / 3}$ cups coconut milk
3 tablespoons cornstarch
2 tablespoons maple syrup
1 tablespoon molasses
1/4 cup raw sugar
OUR RUNNING BOD
$1 / 2$ teaspoon cinnamon
1/2 teaspoon nutmeg
1/2 teaspoon salt

1. If using fresh butternut squash: Peel with a vegetable peeler, cut it in half lengthwise, remove the seeds, and dice into cubes. Boil for

15-20 minutes or until soft, then puree in a
blender or food processor until smooth. (There
will be extra; you can use it in soup.)
2. Whisk all the ingredients until combined
well and smooth.
3. Add to a medium pot and cook on medium-low heat, stirring, until thickened, about 8 min-
\boldsymbol{Y}
utes.
Build YOuR Running WEigHtlOss pROgRaM

357
PART
5

Build

Your Race

Strategy

The first thing you need to understand about a race is this: A race is nothing more than a run in which you give a 100 percent effort. In fact, you could stand all alone at the start line on a track, wait for our Race
someone to yell, Go! , and run all-out until you
dropped. You'd probably last about two hundred meters, halfway around the track-if
you're lucky. Then your lungs would burn, your legs would seize, and you'd stagger to a stop with your hands on your knees (or your forehead on the track's surface), wondering what ever possessed you to think racing was a good idea. But you would have done it. You would have raced.

Building a race approach is nothing more than allowed to do in normal training: to redline your teaching your body how to stretch those 200 mepowerfully rebuilt running body.
ters into a $5 K$, or a half marathon, or a marathon.
The challenge for a properly trained runner It's about shifting your focus from improved fitness isn't the race; it's the preparation.
to race fitness. It's about preparing mentally for the specific challenge of your race. And this is the best Two race approaches
part: With a proper race approach, you'll feel much While the training schedules provided in this better finishing your first 5 K or half marathon than book prepare your running body to race any disyou would racing that 200 meters on Day One.
tance, you'll want to make a few modifications in order to ensure the best race experience. Step one WHAT'S A RACE APPROACH?
is to establish your race goal. Most runners race with one of two goals in mind:

Some runners train to race. Others race to add mileposts and purpose to their training. Many
"Completion: You want to finish a distance never race at all. A race is not a required outcome that represents a challenge to your fitness of training. It's a choice. But if you make that (e.g., completing a half marathon). choice-whether your goal is to complete a spe-
» Competition: You want to run fast and
\boldsymbol{Y} cific distance, compete for PRs and age-group compete against other runners.
medals, or simply to share the community experience-you'll need a plan.

Each race goal (and each variation on each of
The difference between a training run and a those) demands a slightly different training aprace is this: You'll run a little harder or a little farproach.
ther (or both) in a race. It's a mistake to treat racing as intrinsically different from normal training.

Training for completion
In a race, you'll push yourself a little beyond what
Training to complete a race distance is often the you do in normal training runs-but not beyond
goal for new runners, as well as for experienced what you've trained your running body to handle. runners looking for a new challenge (e.g., a reguIn fact, with a proper race approach, you'll dislar 10 K competitor testing the marathon discover that the actual race isn't so much a chal-
tance). If this is you, there are three principles to
lenge as it is an opportunity to do what you're not
keep in mind:

BEGINNER'S GUIDELINE

OUR RUNNING BOD

For many runners, the first racing mistake occurs long before race day. It happens when they run 100 percent in workouts. Don't do that. Your body doesn't know the difference between 100 percent in training and 100 percent in a race. And it has a limited capacity for 100 percent efforts. Runners who go al -out in workouts run out of race capacity long before BUILD Y
they toe an actual race start line.
362

Build YOuR Race stRatEgY

1. Allow adequate time to prepare for the regular distance pace and the sec-race. While a few weeks might be all you ond half a little faster.
need to prep your body for a $5 K$, you'll

- Marathon only: A variation of the need a few months for a marathon. negative split long run is to run

2. Race preparation is incremental. Graduseveral miles (e.g., miles 12-18 of a ally introduce greater duration and in-20-mile long run) at goal marathon
tensity into your training so that the race pace. Exercise scientist and coach is merely a small increase in both.
Greg McMillan takes this a step far3. Don't overdo it. Training too hard leads ther with "fast-finish long runs," in to injury, illness, and burnout.
which you gradually increase your
pace over the final 30-90 minutes
With those principles in mind, you'll need to of your run, finishing at near-maxiinclude the following specific adjustments in mum effort. your training:
» Tune-up races: See the guidelines that follow later in this chapter.
» Increase your long run: Your long run must
be progressively lengthened until it's close
In 2012, there were more than fifteen million
to the length of your goal race. For a $5 K$, race finishers (at all race distances) in the United

BUILD Y

you'll need to build up to 2-3 miles. For lon-
States. There's no reason you can't be a race finger races, like a marathon, you might need
isher, too.
to use time as your measuring stick rather
than distance. While a sub-three-hour mar-
Training for competition
athoner should build up to 20-22 miles,
Competitive racing requires race-specific prepara-
slower runners can't run that far (timetion. You'll need to prepare, body and mind, for a wise) without risking injury. Instead, these 100 percent effort. Specific training must include:

OUR RUNNING BOD

runners should cap their long run at 3.5 hours (2.5 hours if you're new to the sport).
» Equal duration: For shorter races (i.e., half That's a safe duration, and slower runners marathon or less), you'll need to include can add a negative split long run (see below) distance runs that are at least as long as to mimic the increased effort required over your goal race. For the marathon, you a marathon's final miles.
should include runs that match the duration » Practice race intensity: If you think your (up to 3.5 hours), not necessarily the disrace pace will be faster than your normal tance of the race. distance pace, you'll need to spend some
» Equal effort: Whatever the race distance, time training at faster paces. you'll need to run repetitions (or tempo) at

- Shorter races: Add a few sessions of your expected race effort. repetitions at race pace.
» Goal pace: As race week draws near, you'll
- Longer races: Include negative split want to shift your focus from repetitions long runs-in this workout, you run and tempo at race effort to goal race pace. \boldsymbol{Y}
the first half of your long run at your
This increases race economy (running

BuilD YOuR RacE appROacH

 363efficiency) at race pace and teaches you the repetition intensity but decreasing the volphysiological and sensory cues that will ume of reps by 33-50 percent. Then reduce keep you on pace. your mileage until the race, adding one ses-
" Speed work: Repetitions at faster-than-race sion of 8-10 strides 2-3 days out. Run easy pace (e.g., 200-meter reps at 1500-meter or skip running the day before the race. pace while training for a 5K) increase an-
» Traditional marathon taper: The marathon aerobic enzymes, recruit a wider range of taper begins three weeks out, following muscle fibers, and make race pace itself feel your last (and longest) long run.
"slower" and more manageable.

- Three weeks out-Reduce both mile-
» The warm-up: Now is the time to develop a age and quality work (i.e., harder standard warm-up routine. Use it before evworkouts like repetitions and fast ery hard workout (e.g., repetitions, hill retempo) by 20-30 percent. Maintain peats, or drills) so that, come race day, its normal effort during workouts. Finfamiliarity can help settle pre-race jitters ish the week with a run that's 50 and boost confidence. percent the length of the previous
» Tune-up races: See the guidelines that folweek's long run. low later in this chapter.
- Two weeks out-Reduce mileage and
\boldsymbol{Y}
quality work another 20-30 percent.
Training to race competitively isn't guesswork.
Maintain normal effort. Your last
You build your running body with solid training.
hard quality workout should be run
Then you fine-tune it with race-specific workouts.
10 days out from your marathon.

The work is completed before you toe the start line.
Finish the week with a run that's no more than 40 percent the length of

Tapering
your last long run.
Regardless of your race goal, you'll want to taper

- One week out-Reduce your mileage
in the days or weeks leading up to your race. Tato as little as 25 percent of normal
pering is a period of reduced training that allows volume. Some runners will include your muscles and connective tissue to heal more

2-4 miles at marathon pace during fully. It also gives your body a chance to restock their Monday run. Rest completely levels of muscle glycogen, hormones, enzymes, for 1-2 days before the race. Increase and neurotransmitters. Tapering for a 5K might carbohydrates to 70 percent of your only require a few days, while tapering for a mardiet for 2-3 days before racing.

OUR RUNNING BOD athon traditionally requires three weeks. Even
» Reduced taper: Some runners find that a then, different athletes will find that different tatraditional taper of 40-60 percent leaves pers work best for them. Some options include: them susceptible to colds, allergy attacks, and a feeling of staleness come race day.
» Traditional 5K taper: Eliminate (or reduce)
For these runners, a reduced taper of only your long run the weekend before the race.

20-25 percent-beginning 2-3 days out for

BUILD Y

Do a single repetition workout 4-6 days
the $5 K$ and 2-3 weeks out for the mara-
preceding the race, maintaining normal
thon-provides better results.
364

Build YOuR RacE st RatEgY

TRAINING DISCUSSION

"Race Jitters"

We all get nervous immediately before a race. But race jitters, that irrational panic that grips so many runners, isn't limited to race day. The following race jitters can infect the final weeks before a race, compromising your training and leading to subpar race performance.
» Phantom injury: You're suddenly overwhelmed with minor injuries, from tendinitis to lower-back tightness to flare-ups of bursitis. Can you really be that injured? Yes, you can. They're the normal aches and pains that accompany hard training. It's just that you usually ignore them-you ignore them, that is, until race anxiety turns you into a hypochondriac and amplifies every tiny tingle into something it's not: an actual injury.
Don't fret; these phantom injuries will disappear once the race is under way.
» Leaving your race in your workout: With race day fast approaching, you lose confidence in your fitness and decide to run a time trial or an all-out session of intervals to test your conditioning. Stop. Do not pass GO. A 100 percent workout is a race, and you'll deplete your body of the resources you need for the real race.

BUILD Y

"Second-guessing syndrome: With the race a week away, you decide you've prepared incorrectly. You should have done more tempo. Or intervals. Or drills. You wonder if you should run these workouts before race day. Relax. There's nothing you can do in a week to get faster - and lots you can do to sabotage your race. If adjustments are in order, make them after the race.
» Training through a race: You lessen race anxiety by treating the race as a workout.

You won't taper for it, won't worry about proper rest and nutrition, and won't go OUR RUNNING BOD
easy the next day. Don't do this. A race is a 100 percent effort no matter what you do before and after. Without proper tapering and recovery strategies, you risk overloading your body with an effort it can't handle.
» Waiting until top shape: Afraid of embarrassing yourself, you refuse to race until you've reached "top shape." One problem: Racing is an integral part of getting into top shape. It trains your brain. It stresses your running body in a way that workouts don't. Besides, "top shape" describes a utopian future that, for most runners, rarely, if ever, arrives.
» Food for thought: You decide to improve your racing through diet. Smart, if you're talking about longterm, healthy eating choices. Not so smart if you mean radical changes in diet during race week. New foods can lead to equally new gastrointestinal reactions. Changes in diet need to be tested long before race week-lest carbo-loading become carbo-unloading during the race.
(Continued)
Y
Build YOuR RacE appROach
365
TRAINING DISCUSSION
» Changes in routine: You change your daily routine to be better rested and prepared for your race. You skip work, opt out of chores, avoid stairs, and stretch continuously. "Most great performances come when you're not trying to do it, " says coach Jack Daniels.
He's right. Stick to your routine. And have faith in your trainingand yourself.

Ultimately, the best way to deal with race jitters is to stick to your pre-jitters plan.
One caveat to tapering: Newer runners who

TUNE-UP RACES

are still improving their fitness every week are
sometimes better off skipping the taper and sim-
Tune-up races are essential for achieving top perply resting the day before the race.
formances in goal races. The 100 percent effort
level of a race provides a physiological stimulus
PERIODIZATION
that you don't get through training, and it also \boldsymbol{Y}
trains your brain to allow even harder efforts in You might have heard seasoned runners talking the future. Beyond that, tune-up races serve as about periodization of training. In periodization, dress rehearsals for all the mundane aspects of training is separated into distinct phases. For racing, including parking, delayed start times, many athletes, this begins with a base training shortages of porta-potties, etc. Finally, they give phase, in which aerobic conditioning and imyou feedback on your fitness, allowing you to provements in muscle and connective tissue
make minor adjustments in your training. Differstrength take place. Following base training, some ent race distances require different tune-up stratathletes insert a preseason strength-building egies.
phase, with a focus on hills, drills, and anaerobic training. Others move straight to a competition $5 K$ and $10 K$
phase, during which they run races, often buildFor these two popular race distances, you'll probing toward a major race goal. Lastly, there's a reably tune up with a $5 K$. While it's best to tune up covery phase, during which runners take a break with a race that's shorter than your goal race, from hard training, either through complete rest there are few road races shorter than 5K. If you

OUR RUNNING BOD or by significantly reducing the volume of their can't find a tune-up race, then some tune-up subtraining. While periodization works well for elite stitutes might include: a 1500-meter or mile time
athletes with defined seasons, most runners
trial; 5×1000 meters at goal pace, with a 400-meter
compete throughout the year and function best
jog recovery; 2×1 mile at $5 K$ pace, with a 400-meter
with a more general, less-seasonal training ap-
recovery interval.
proach.

BUILD Y

366

BuilD YOuR RacEstRatEgY

Half marathon

Marathon
Both the $8 K$ and 10 K distances are appropriate as All distances from 5K to the half marathon make half marathon tune-up races. If you race farther for good marathon tune-up races. A half marathan 10K (e.g., 15K), you might consider limiting thon should be run well in advance of the marayourself to a fast tempo effort for the tune-up thon (five or six weeks). You can run a 5 K as close race. Tune-up race substitutes can include: a 20as one week out from your marathon. Tune-up 30 minute fast tempo run; 3×2 miles (3200 merace substitutes can include: 60 minutes at slow ters) at race effort, with a 3-4 minute recovery; or tempo pace; a 13-mile run at marathon effort; a 5K-10K (3-6 mile) time trial. and time trials at 5 K to 10 miles.

With a proper race approach, you can prepare your body and mind for race day. All that's left is to run.

BUILD Y

OUR RUNNING BOD

Build Y

t's race day. You've done your training.
Done your taper. Eaten right. Hydrated.
All that's left is to run the race. Every year, millions of runners toe the line at races across

America and around the world. And now our Race
you're one of them, asking yourself what separates those runners who race well and
achieve their goals from those who bonk and fail. It's not genetics. It's not talent. It's two things: Training, and knowing how to race.

You've got the first down pat. And the second is easy. It's just a matter of knowing what to do-and, more important, what not to do. WHAT'S A RACE?
as the finish banner comes into view, you expend
all the energy you have left to cross the line 100
As explained in Chapter 24, a race is a 100 percent percent spent.
effort. The specific challenge of a race is not phys-
In practice, however, it's remarkably difficult to
iological. It's psychological. Anyone can run carry out this strategy.
themselves to exhaustion. The trick is to spread It doesn't take a genius to figure out that your 100 percent effort evenly over your entire there's a maximum pace you can maintain from race distance. Sound easy? In the abstract, maybe, start to finish. But it takes a disciplined runner to but at an actual race, not so much. You'll have
block out distractions-other competitors, cheeradrenaline coursing through your veins and a sea ing spectators, your own inner voice-in order to of equally excited running peers all around you. stay on pace. Following a few basic guidelines can There'll be the excruciating wait at the start line make the task easier:
and then the full-body jolt when the gun fires (or the air horn sounds). There will be people cheer-
» Accelerate without sprinting: Accelerate ing, runners sprinting off the start line, pushing forcefully off the start line to your expected and shoving, and the instinctive urge just to go go pace (and no faster), but don't sprintgo with the herd . . . in that moment, you'll need a sprinting the first 100 meters almost en\boldsymbol{Y} plan that you've rehearsed, and you'll need the sures that you'll crawl the final 100. If you confidence to carry it out. change pace during the race, do it gradually.
Sprints-and all overzealous pace adjustRACE STRATEGY ments-carry far too great an energy cost.
» No bumping: Don't get involved in jostling
A running race is quite possibly the simplest athwith other runners. It wastes time. It's stupid.
letic competition known to humans. And the best And you'll regret your involvement in un-
race strategy is equally simple. You pick a pace sportsmanlike behavior later-guaranteed. that you're confident you can maintain. You make
» Maintain consistent effort: Run the entire
in-race adjustments based upon feedback from race (excluding the kick) at a consistent efyour body (something you've rehearsed during fort, what coach Jack Daniels labels "even numerous long runs and interval sessions). And intensity." This doesn't mean your effort

BEGINNER'S GUIDELINE

OUR RUNNING BOD

The best race strategy is to aim for a "good" race, not a great one. Trying to run a great race invites disaster; it encourages you to go out too fast and to ignore feedback from your body.
In contrast, trying to run a good race invites confidence. You run the pace for which you prepared. You reach the race's midpoint feeling strong- and it's amazing what you can ac-BUILD Y complish in the second half of a race when you're fit and feeling strong.

370

Build YOuR Race st RatEgY

will feel the same throughout the race. The
» Run the race you have in you that day: Not
first part will feel easy, the latter stages every race will bring a PR. If you aren't hitwon't. But your effort should drain your reting your targeted splits and can't increase
sources at a consistent rate, resulting in a your pace, forget the PR and run as strongly
pace you can maintain.
as you can. If nothing else, you'll get valu-
" Take legal shortcuts: Run tangents (the able feedback that you can apply to your shortest distance possible) during the race. training.
Hug curves. Don't zigzag when passing other runners. And when crossing from one Follow these guidelines, and you'll race well. side of the road to the other in preparation And on some days, you'll even race great. for an upcoming turn, remember that the shortest distance between two points is a EFFORT VERSUS PACE straight line.
" Draft: Running just behind a competitor or We've talked a lot about both "effort" and "pace" on their shoulder gives you two advantages. in this chapter, and you might be wondering if Physiologically, you save 4-8 seconds per they represent different strategies, if they're flip mile (lowered wind resistance lets you run
sides of the same coin, or if they're separate confaster at the same energy cost). Psychologicepts that are utilized together while racing.

BUILD Y

cally, you let someone else shoulder the
The answer is: All of the above.
stress of setting the pace.
First, let's look at what each approach
» Take inventory: Constantly monitor your represents:
energy and fatigue levels. Ask yourself,
"Can I finish the race at this effort?" If yes,

1. Pace: You predict your goal pace, train at then keep it up. If no, then back off before that pace, and then attempt to match you sabotage your race. that pace during the race (for a table on

OUR RUNNING BOD

» Shorten the suffering: Maintaining a corpace for four race distances from $5 K$ rect, consistent effort allows you to delay through the marathon, based on time the onset of heavy fatigue (hence, sufferper mile, see table 25.1 at the end of this ing). You shorten the period you have to chapter). hurt. If you're hurting by the halfway point 2. Effort: You utilize workouts to learn what of a race, it's hard to finish strong. your effort feels like for different race
" Kick late: Refrain from kicking until you're distances and how that "feel" changes as certain you can maintain the effort through you fatigue. You then draw on that expethe finish line. If you run out of kick before rience to closely monitor fatigue levelsthe finish, you'll lose more time crawling to
and the accompanying expenditure of
the line than you gained picking up the pace.
resources-throughout a race.
» Run your own race: It's a cliché for a reason.
Everyone in the race brings their own fitness,
Runners choose which of the two they prefer
talent, and race strategy. Someone else's
to follow more closely during a race. But let's get

\boldsymbol{Y}

might work for them. It won't work for you.
one thing straight: This isn't a case of the
BuilD YOuR RacE
371

TRAINING DISCUSSION

"Mistakes runners make"

Experience tells us that very few runners will achieve a perfectly pac ed race from start to finish. Too many runners abandon their race plans when excitement-or anxiety-takes hold. And when that happens, mistakes get made:
» Changing your warm-up on race day: You see Olympic 5,000-and 10,000-meter champion Mo Farah doing a mini-interval session as part of his warm-up and decide you need to do the same. Don't. There's something remarkably calming about repeating the same progression of jogging, strides, and stretches that you've practiced before hard workouts. Besides, you'll feel like a dope when Mo pulls on his sweats, and you realize he's there as a spectator.
» Going out too fast: The laws of physiology apply to races, just like they do to workouts.

You wouldn't run the first mile of a 10-mile run at mile race pace, and you can't run the first mile of a 5 K at mile race pace, either. At that pace, you'll only last, well, a mile.
» Running an uneven pace: Elite Kenyan distance runners are famous for setting a scorch-ing early race pace, launching vicious surges, and covering every move from their oppo-nents. So if you're an elite Kenyan distance runner, stop reading. Everyone else: Stop behaving like elite Kenyan distance runners! There is one finish line in a race, and it's at the finish. The best strategy for getting there the fastest is to run with an even effort.
» Engaging in mid-race mini-battles: Refer to the previous mistake - there is one finish line in a race, and it's at the finish. Battling back and forth with someone during a race only ensures that someone else has a better chance of beating both of you.
" Overthinking the race: Don't get so caught up in pace calculations, weather reports, course specifics, gear checklists, or concerns about the competition that you lose track of the race itself. It's counterproductive to overthink a race. There are simply too many variables that can't be predicted-like tripping at the start, having your shoe come untied, or taking a wrong turn. Have confidence in your ability to adjust on the fly. And be willing to accept that your 100 percent effort will be enough. Some runners can't. Successful runners do.

OUR RUNNING BOD

» Overanalyzing an unsatisfactory performance: You'll learn something from every race you run. But that doesn't mean that every race is a microcosm of all that's right or wrong with your training. Sometimes a bad race is just a bad race. So learn from the race, make training adjustments that are warranted, and move on.
You'll never run a perfect race. But avoiding unnecessary, costly, and self-destructive BUILD Y
mistakes is a good first step in running a satisfactory one.
372

Build YOuR Race st Rat EgY

Hatfields and the McCoys. It's true that a majority effort will feel easier at the start of the race than
of runners fall into one camp or the other-and at its conclusion. The drawback to effort-based the vast majority of those opt to race by paceracing is that it requires tremendous experibut it's equally true that, regardless of which ence-both in workouts that are based on effort camp runners choose, they invariably use aspects and in races themselves. Newer runners often of both approaches during a race. misread the easier effort required for the first Pace racing involves predicting your finish third of a race as a green light to increase their time and then trying to run splits (e.g., your preintensity. And experienced runners can somedicted time for each mile of a 5K) that represent times be lulled into slower performances as they an even breakdown of that time. For example, an attempt to elude fatigue.

18:48 5K is exactly six-minute-mile pace, so Practical racers often use a combination of you'd aim for 6:00 for your first mile, 12:00 for both approaches. They'll include workouts based two miles, and 18:00 for three miles. To train for on both effort (road and trail repetitions, fartlek, that pace, you'd run repetitions at six-minutetempo) and pace (track repetitions, time trials, mile pace (e.g., 12×400 meters in ninety sec-tune-up races). And they'll use effort to guide onds, with an easy 200-meter recovery jog). By their exertion in a race, even as they use splits to
rehearsing at race pace, you both improve your reassess that effort.
running economy at that pace and become conBeginning and less-experienced runners

BUILD Y

sciously familiar with sensory cues (especially should probably stick with racing by pace until visual) that allow you to recognize that pace in a they've become more familiar with what their race. The drawback to pace racing is twofold. running bodies can-and cannot-do.

First, your body might not be ready for that exact pace come race day; on a bad day, it's too fast, THE PERFECT RACE
while on a good day, it might limit your performance. Second, the race course, weather, compe-

There is no perfect race. And no perfect race strat-

OUR RUNNING BOD

tition, and other variables might alter the
egy. The approach favored by this book is the one practiced pace; maintaining your predicted pace put forward in this chapter: even intensity, confion an uphill mile or during extreme heat would
dence in your training, adherence to your race be a far harder effort than a flat mile practiced in plan, and running the race you have in you on good conditions.
that day. There are, of course, other approaches.
Effort racing involves choosing an exertion level
American distance legend Steve Prefontaine
right off the start line that you assume will drain
(known affectionately as "Pre" to his fans), who your energy resources at a consistent rate. You died tragically in a car accident in 1975 at the utilize both internal and external cues (i.e., feedpeak of his running career, famously said: "A lot back from your body and a sensory assessment of of people run a race to see who is fastest. I run to terrain, weather, etc.) to adjust the intensity of see who has the most guts, who can punish himyour effort as required. Your pace might slow durself into exhausting pace, and then at the end, ing a hill climb, but your expenditure of energy punish himself even more." He also said, "Someremains roughly consistent. This doesn't mean body may beat me, but they are going to have to \boldsymbol{Y}
that your effort will always feel the same. Your bleed to do it.,

Build YOuR RacE

373
But that was Pre. And there's a reason he's a That's how we get better. That's how we build legend.
our running body.
For most of us, a race is not so much a contest
No one is born a perfect runner. And none of to see who can suffer the most as it is a training us will become one. But through incremental milepost. It's a celebration of improved fitness steps, we can become better runners. And that's
and the athletic community we've joined.
the beauty of this sport: There are no shortcuts,
After the race, we take what we learned, train
nothing is given to us; we earn every mile, and we
some more, and then race again.
earn every result.
table 25.1
pace table: 4:00-15:59 per mile
Pace
5K
$10 K$
$1 / 2$ Mar.
Mar.
6:15
19:25
38:50
1:21:56
2:43:52
4:00
12:26
24:51
52:26
1:44:53
6:20
19:41
39:21
1:23:02
2:46:03
4:05
12:41

25:22
53:32
1:47:04
6:25
19:56
39:52
1:24:07
2:48:14
4:10
12:57
25:53
54:37
1:49:15
6:30
20:12
40:23
1:25:13
2:50:25
4:15
13:12
26:24
55:43
1:51:26
6:35
20:27
40:54
1:26:18
2:52:36
4:20
13:28

26:56
56:48
1:53:37
6:40
20:43
41:25
1:27:24
2:54:48
Y
4:25
13:43
27:27
57:54
1:55:48
6:45
20:58
41:57
1:28:29
2:56:59
4:30
13:59
27:58
59:00
1:57:59
6:50
21:14
42:28
1:29:35
2:59:10
4:35

14:14
28:29
1:00:05
2:00:10
6:55
21:29
42:59
1:30:40
3:01:21
4:40
14:30
29:00
1:01:11
2:02:21
7:00
21:45
43:30
1:31:46
3:03:32
4:45
14:45
29:31
1:02:16
2:04:32
7:05
22:00
44:01
1:32:51
3:05:43
4:50

15:01
30:02
1:03:22
2:06:43
7:10
22:16
44:32
1:33:57
3:07:54
4:55
15:17
30:33
1:04:27
2:08:55
7:15
22:31
45:03
1:35:03
3:10:05
5:00
15:32
31:04
1:05:33
2:11:06
7:20
22:47
45:34
1:36:08
3:12:16
5:05

15:48
31:35
1:06:38
2:13:17
7:25
23:03
46:05
1:37:14
3:14:27
5:10
16:03
32:06
1:07:44
2:15:28
7:30
23:18
46:36
1:38:19
3:16:38
5:15
16:19
32:37
1:08:49
2:17:39
7:35
23:34
47:07
1:39:25
3:18:50
5:20

16:34
33:08
1:09:55
2:19:50
7:40
23:49
47:38
1:40:30
3:21:01
5:25
16:50
33:39
1:11:01
2:22:01
7:45
24:05
48:09
1:41:36
3:23:12
5:30
17:05
34:11
1:12:06
2:24:12
7:50
24:20
48:40
1:42:41
3:25:23
OUR RUNNING BOD

5:35
17:21
34:42
1:13:12
2:26:23
7:55
24:36
49:12
1:43:47
3:27:34
5:40
17:36
35:13
1:14:17
2:28:34
8:00
24:51
49:43
1:44:53
3:29:45
5:45
17:52
35:44
1:15:23
2:30:45
8:05
25:07
50:14
1:45:58
3:31:56

5:50
18:07
36:15
1:16:28
2:32:57
8:10
25:22
50:45
1:47:04
3:34:07
5:55
18:23
36:46
1:17:34
2:35:08
8:15
25:38
51:16
1:48:09
3:36:18
6:00
18:38
37:17
1:18:39
2:37:19
8:20
25:53
51:47
1:49:15
3:38:29

BUILD Y

6:05
18:54
37:48
1:19:45
2:39:30
8:25
26:09
52:18
1:50:20
3:40:40
6:10
19:10
38:19
1:20:50
2:41:41
8:30
26:24
52:49
1:51:26
3:42:52
374
Build YOuR RacEstRatEgY
Pace
5K
10K
1/2 Mar.
Mar.
11:45
36:30

1:13:01
2:34:02
5:08:04
8:35
26:40
53:20
1:52:31
3:45:03
11:50
36:46
1:13:32
2:35:08
5:10:15
8:40
26:56
53:51
1:53:37
3:47:14
11:55
37:01
1:14:03
2:36:13
5:12:26
8:45
27:11
54:22
1:54:42
3:49:25
12:00
37:17

1:14:34
2:37:19
5:14:37
8:50
27:27
54:53
1:55:48
3:51:36
12:05
37:32
1:15:05
2:38:24
5:16:49
8:55
27:42
55:24
1:56:54
3:53:47
12:10
37:48
1:15:36
2:39:30
5:19:00
9:00
27:58
55:55
1:57:59
3:55:58
12:15
38:04

1:16:07
2:40:35
5:21:11
9:05
28:13
56:26
1:59:05
3:58:09
12:20
38:19
1:16:38
2:41:41
5:23:22
9:10
28:29
56:58
2:00:10
4:00:20
12:25
38:35
1:17:09
2:42:46
5:25:33
9:15
28:44
57:29
2:01:16
4:02:31
12:30
38:50

1:17:40
2:43:52
5:27:44
9:20
29:00
58:00
2:02:21
4:04:43
12:35
39:06
1:18:11
2:44:58
5:29:55
9:25
29:15
58:31
2:03:27
4:06:54
12:40
39:21
1:18:42
2:46:03
5:32:06
9:30
29:31
59:02
2:04:32
4:09:05
12:45
39:37

1:19:13
2:47:09
5:34:17
9:35
29:46
59:33
2:05:38
4:11:16
12:50
39:52
1:19:45
2:48:14
5:36:28
9:40
30:02
1:00:04
2:06:43
4:13:27
12:55
40:08
1:20:16
2:49:20
5:38:40
9:45
30:18
1:00:35
2:07:49
4:15:38
13:00
40:23

1:20:47
2:50:25
5:40:51
9:50
30:33
1:01:06
2:08:55
4:17:49
13:05
40:39
1:21:18
2:51:31
5:43:02
9:55
30:49
1:01:37
2:10:00
4:20:00
13:10
40:54
1:21:49
2:52:36
5:45:13
BUILD Y
10:00
31:04
1:02:08
2:11:06
4:22:11
13:15

41:10
1:22:20
2:53:42
5:47:24
10:05
31:20
1:02:39
2:12:11
4:24:22
13:20
41:25
1:22:51
2:54:48
5:49:35
10:10
31:35
1:03:10
2:13:17
4:26:33
13:25
41:41
1:23:22
2:55:53
5:51:46
10:15
31:51
1:03:41
2:14:22
4:28:45
13:30

41:57
1:23:53
2:56:59
5:53:57
10:20
32:06
1:04:13
2:15:28
4:30:56
13:35
42:12
1:24:24
2:58:04
5:56:08
10:25
32:22
1:04:44
2:16:33
4:33:07
13:40
42:28
1:24:55
2:59:10
5:58:19

OUR RUNNING BOD

10:30
32:37
1:05:15
2:17:39
4:35:18

13:45
42:43
1:25:26
3:00:15
6:00:30
10:35
32:53
1:05:46
2:18:44
4:37:29
13:50
42:59
1:25:57
3:01:21
6:02:42
10:40
33:08
1:06:17
2:19:50
4:39:40
13:55
43:14
1:26:28
3:02:26
6:04:53
10:45
33:24
1:06:48
2:20:56
4:41:51

14:00
43:30
1:27:00
3:03:32
6:07:04
10:50
33:39
1:07:19
2:22:01
4:44:02
14:05
43:45
1:27:31
3:04:37
6:09:15
10:55
33:55
1:07:50
2:23:07
4:46:13
14:10
44:01
1:28:02
3:05:43
6:11:26
11:00
34:11
1:08:21
2:24:12
4:48:24

14:15
44:16
1:28:33
3:06:49
6:13:37
11:05
34:26
1:08:52
2:25:18
4:50:35
14:20
44:32
1:29:04
3:07:54
6:15:48
11:10
34:42
1:09:23
2:26:23
4:52:47
14:25
44:47
1:29:35
3:09:00
6:17:59
11:15
34:57
1:09:54
2:27:29
4:54:58

14:30
45:03
1:30:06
3:10:05
6:20:10
11:20
35:13
1:10:25
2:28:34
4:57:09
14:35
45:18
1:30:37
3:11:11
6:22:21
11:25
35:28
1:10:56
2:29:40
4:59:20
14:40
45:34
1:31:08
3:12:16
6:24:32
11:30
35:44
1:11:27
2:30:45
5:01:31

14:45
45:50
1:31:39
3:13:22
6:26:44
11:35
35:59
1:11:59
2:31:51
5:03:42
14:50
46:05
1:32:10
3:14:27
6:28:55
\boldsymbol{Y}
11:40
36:15
1:12:30
2:32:57
5:05:53
14:55
46:21
1:32:41
3:15:33
6:31:06
BuilD YOuR RacE
375
Pace
5K

10K

1/2 Mar.
Mar.
15:30
48:09
1:36:19
3:23:12
6:46:23
15:00
46:36
1:33:12
3:16:38
6:33:17
15:35
48:25
1:36:50
3:24:17
6:48:35
15:05
46:52
1:33:43
3:17:44
6:35:28
15:40
48:40
1:37:21
3:25:23
6:50:46
15:10
47:07

1:34:14
3:18:50
6:37:39
15:45
48:56
1:37:52
3:26:28
6:52:57
15:15
47:23
1:34:46
3:19:55
6:39:50
15:50
49:12
1:38:23
3:27:34
6:55:08
15:20
47:38
1:35:17
3:21:01
6:42:01
15:55
49:27
1:38:54
3:28:39
6:57:19
15:25
47:54

1:35:48
3:22:06
6:44:12
15:59
49:39
1:39:19
3:29:32
6:59:04
To use this table, find your $5 \mathrm{~K}, 10 \mathrm{~K}$, half marathon, or marathon time on the table. Your pace per mile for that race pace appears in the left-hand column, beneath the heading "Pace."
Note: All times in italics indicate performances that are faster than the current world records for those distances.

Y

OUR RUNNING BOD

BUILD Y
376

Build YOuR Race st RatEgY

INJURY PREVENTION

The table below suggests exercises to prevent come on suddenly and are accompanied by sharp and rehabilitate specific runningrelated in-or severe pain, restricted movement, high fever, juries
(though you should only use these exer-
or other critical warning signs, consult a health
cises for rehabilitation after clearance from a professional immediately. Also note that you medical professional). Note that a full-body should consult a physician regarding dose and strengthening and injury-prevention program duration of use before including ibuprofen as part should always be your first option. If injuries of your prevention or rehabilitation routine.
Excercises to prevent and Rehabilitate Running injuries
Injury
Description
Exercises
Page
Notes
AIS - Calves
105
Icing post-run may reduce chronic
(gastrocnemius)
inflammation.
Pain on the rear of your
Achilles Bursitis
heel caused by an inflamed
Heel Dips,
109
bursa (lies between Achilles performed on
tendon and heel bone).
flat surface
(e.g., floor)
AIS - Calves
105Icing and elevation may help.(gastrocnemius)Short-term use of heel lifts and
Overuse injury accompanied
ibuprofen can provide temporary
Achilles Tendinitis
by painful inflammation in
Wobble Board -

91
relief. Consider foot subtalar
the Achilles tendon.
Forward \&
joint alignment assessment by
Backward
orthopedist, podiatrist, or physical
therapist.
Heel Dips
109
Don't ice or use anti-inflammatories, as tendinosis
Degenerative damage in the AIS-Calves
105
doesn't involve inflammation.
Achilles Tendinosis
Achilles tendon producing
(gastrocnemius)
Consider foot subtalar joint
chronic pain without
Wobble Board -
91
alignment assessment by
inflammation.
Forward \&
orthopedist, podiatrist, or physical
Backward
therapist.
Walkout/Jogout
94
See a health professional
immediately if an ACL injury is
Sprain or tear of ligaments
Backward
95
suspected.
ACL Injury (anterior
in the middle of your knee
Walkout/Jogout
cruciate ligament)
that connect your femur to
Jumpouts
95
your tibia.
Jumpouts -
96
Sideways
377
Injury
Description
Exercises
Page
Notes
Balance on One
217
See a health professional if an
Leg
ankle sprain is suspected.
Balance with
218
Stability Trainer

Wobble Board -
91
Pain, inflammation,
Forward \&
discoloration, and reduced
Backward
Ankle Sprain
mobility of the ankle due
to torn (or partially torn)
Wobble Board -
92
ligaments.
Side to Side
Wobble Board -
92
Around the
Clock
Ankle Eversion
98
Ankle Inversion
98
Painful, discolored (black)
Accompanying redness indicates
toenails. The toenail is lifted
infection; see a health professional.
Black Toenails
from its bed (by fluid or
Otherwise, the pain should diminish
blood buildup) and generally
on its own. For prevention, always
falls off.
make sure there is ample room in the toebox of your shoe.
Use a sterilized needle or pin to \boldsymbol{Y}

A sometimes painful bubble
puncture the blister at its outside
edge. Drain. Use strips of moleskin
Blisters
of fluid trapped beneath the
skin caused by friction and or other raised padding around irritation.
the outside of the blister, covered by gauze and tape, to prevent reirritation during running.
Calf - Foam
101
If pain is severe, ice for 10-15
Roller
minutes. Use either AIS or PNF
stretching, not both.
Heel Raises -
66
Straight Knee
Pain and tightness in your
Calf Tightness \&
calves, usually following
AIS - Calves
105

Strains
more intense running (e.g.,
(gastrocnemius)
reps, hills, or drills).
PNF - Calf
71
Stretch \#1
PNF - Calf

72

Stretch \#2
Reduce friction by applying
Vaseline or another lubricant to
the affected area. Products are
Painful irritation of the skin
available (check your local running
Chafing
caused by the rubbing of
store) that won't stain your clothes.

OUR RUNNING BOD

skin against skin or fabric.
Band-Aids on the nipples can prevent pain and bleeding. Or carry a tube of Chapstick for quick application on problem areas.

Painful lungs from running
A balaclava or neck warmer worn in extreme cold.
over your mouth can keep inhaled air warmer and moist. Your lungs Cold Lungs
won't freeze (air is sufficiently warmed by the time it reaches your

BUILD Y

lungs), but your air passages might
suffer without some protection in extreme cold and dry air.

378

injuRYpREvEntiOn

Injury

Description

Exercises

Page

Notes

Severe pain in the lower leg
Seek advice from a health
that begins while exercising
professional. If diagosis is
and persists afterward,
confirmed, either rest or surgery will
Compartment
caused by pressure build-
be required.
Syndrome
up in muscles that are
restricted from expanding
by connective tissue (bone,
fascia).
Muscular pain following
Easy Distance

Ibuprofen, icing, and massage can
DOMS (delayed onset changes in training intensity Run provide pain relief but may delay muscle soreness)
or duration. Thought to be repair and recovery. Run easy caused by eccentric muscle distance until DOMS improves, or contractions.
try complete rest.
PNF Hip
74
Pain can come from straining
Flexors Stretch
any of five adductor muscles or
damage to associated CT. Ice
PNF

74

and ibuprofen can temporarily
Quadriceps
relieve symptoms. Prevention
Stretch
and rehab involves stretching and
PNF Hip
73
strengthening exercises.
Adductor
Stretch
Pain in the groin or inner
thigh area, especially when

Leg Swings:

75
Groin Strain
lifting your knee, that can
Forward \&
come on either suddenly or
Backward
(dynamic

BUILD Y

gradually.
stretching)
Monster Walk
94
Hip Adduction
96
(resistance
band)
Side Steps
93
(resistance
tubing or band)

OUR RUNNING BOD

The Runner 360
53
Severe hamstring injuries require
time off (up to several weeks).
Hamstring -
101
Ibuprofen and icing at outset
Foam Roller
will help with pain management.
Bodyweight
64
Resistance training is the best
Lunge
preventative medicine. Do PNF or
AIS, not both.
Air Squat
65
Hamstring Tightness
Pain or tightness in your
Heel Raises -
67
\& Strains
hamstring, often restricting
movement.
Bent Knee
PNF Hamstring
70
Stretch
PNF Hip
73
Adductor
Stretch
Hamstring - AIS
104
Overheating due to high
Heat exhaustion can progress
temperatures, high humidity,
to heat stroke, which is a life-

Heat Exhaustion
or hard training, leading to threatening condition. Stop training, cramps, nausea, headache, get in a cool environment, and and weakness.
rehydrate.
\boldsymbol{Y}
379

injuRYpREvEntiOn

Injury

Description

Exercises

Page

Notes

A life-threatening condition
The NIH recommends: Someone
caused by prolonged
with suspected heat stroke should
exposure to extreme heat
lie down in a cool place with his
or humidity or by exercising
or her feet lifted 12 inches; apply
in that heat. The National
cool, wet cloths to the person's
Institutes of Health lists these
skin; if the person is conscious and
symptoms: Fever ($>104{ }^{\circ} \mathrm{F}$);
alert, give sports drinks or a salted
Heat Stroke
dry, hot, red skin; confusion;
beverage (1 teaspoon salt per
rapid, shallow breathing;
quart) to sip; Call 911 at the first rapid, weak pulse; seizures;
sign of heat stroke.
and unconsciousness. Heat stroke can cause damage to the brain and other organs, and can lead to shock or even death.

Your legs feel heavy and
Easy Distance
49
For rejuvenating "heavy" or "dead"
nonresponsive. Your energy Run
legs, easy distance running is the
levels are low, and your
best cure. A long run (at a very
The Long Run
132
"Heavy" Legs
motivation is sapped.
slow pace) can be very therapeutic.
Heavy legs usually results
Sometimes, complete rest is required.
from acute or longterm
Rehydration and carbo-loading can
overtraining.
sometimes reverse symptoms.

The Runner 360
53
Unless you experience sharp pain,
icing isn't advised, as hip pain
Step-Ups
63
often radiates, making it hard to \boldsymbol{Y}

Step-Downs
109
locate the specific origin. General
strengthening is the best prevention
Lunge Clock
100
and remedy; perform either The
Runner 360 or the various weight
Air Squat
65
room exercises. Stretching
Deadlift
69
exercises will help increase range
of motion and lessen tension.
Side Steps
93
Monster Walk
94
Hip Pain \& Instability
Nonspecific pain in your hip Hip Adduction
area.
(resistance
band)
PNF Hip
73
Adductor
Stretch
Gluteals - AIS
106
Leg Swings -
75
Forward \&
Backward
Leg Swings -
76
OUR RUNNING BOD
Sideways
Leg Lifts
60
Icing and ibuprofen can provide temporary relief. Prevention and

Russian
61
rehab requires core and stability
Oblique Twist
training.
Pain and inflammation
Sidewinder
55
Hip Bursitis, aka
on the outside of your
Plank with Leg
Trochanteric Bursitis
hip, located at the bony
Lift (from The
protuberance of your femur.
Runner 360)

BUILD Y

Windshield
57
Wipers (from
The Runner 360)
380
injuRYpREvEntiOn
Injury
Description
Exercises
Page

Notes

IT Band Stretch
78
Icing and ibuprofen can provide
temporary relief, but longterm
IT Band - Foam
102
prevention and recovery requires
Roller
both loosening (stretching) the IT
Pain on either the outside
Wobble - Side
band and strengthening your hip
of your knee or the outside
to Side
abductors.
of your hip generated by
IT Band Syndrome
a tight IT Band (iliotibial
Wobble-
92
band), often with weak hip
Around the
abductors as an underlying
Clock
cause.
Side Steps
93
Side Leg Lift
235
(from Running
Circuit)
Step-Ups
63
Pain in the knee that is hard to
diagnose might result from damage
Step-Downs
109
to pain nerves themselves (from
Generalized, sharp knee
Side Steps
poor mechanics). Prevention and Knee Pain (generalpain that can occur on the rehab requires strengthening the -see below for
front of the knee without an
Side Leg Lift
235
hips and quads.
"Runner's Knee")
obvious inciting incident or
(from Running
structural impairment (no
Circuit)
visible swelling or damage).
Hip Adduction
96
(resistance
band)
Mental burnout is the first sign of

BUILD Y

You feel annoyance or
physical burnout. You've probably
Lethargy (loss of
dread in anticipation of an
been overtraining. Take an easy
motivation)
upcoming workout. You
week or, if required, take some time
have no desire to train at all.
off completely (at least a few days).
Rehydration and carbo-loading can sometimes reverse symptoms.

Marching
58
For lower back tightness, try the
Bridge (The
Daydreamer for a quick fix. Use all
Runner 360)
exercises to strengthen, loosen,

OUR RUNNING BOD

and maintain flexibility.
Russian
61
Oblique Twist
Pain or stiffness in the lower PNF Hip
74
Lower Back Pain \&
back, often affecting your
Flexors Stretch
Stiffness
stride and making it hard to
Lower Back -
103
perform everyday activities.
Foam Roller
Trunk Extensors
106
(Lower Back) -

AIS
The
110
Daydreamer
Step-Ups
63
See a health professional if a sprain or tear of the MCL or

Bodyweight
64
LCL is suspected. Strengthen
Pain and swelling on the
Lunge
surrounding muscles (especially
$M C L$ and $L C L$
side(s) of your knee, often
Air Squat
65
your quadriceps) for prevention.
Damage (collateral
accompanied by instability.
ligaments)
Usually results from a blow
Wobble - Side
92
or force that moves the
to Side
knee sideways.
Wobble -
92

Y

Around the
Clock
381
injuRYpREvEntiOn
Injury
Description
Exercises
Page
Notes
Pain at the side or center of
See a health professional if a
your knee, accompanied by
meniscus tear is suspected.
swelling, usually following
Symptoms include: a popping
Meniscus Tear
a twisting motion (with
sensation at the time of injury,
your foot stationary) that
swelling that gets worse, or your
damages one of the pads
knee's catching or feeling unstable.
of fibrocartilage cushioning
your knee.
Caused by inflammation of a nerve
between the third and fourth toe.
Ice and ibuprofen can provide
some temporary relief. A shoe with
Painful, burning sensation
plenty of room in the toe box might on the bottom of your foot help (tight shoes can contribute to the problem). Insoles with extra Morton's Neuroma
beneath your third and fourth toes, sometimes
padding beneath the affected area radiating to the small toe are suggested. Toe spacers (special and toward the second toe. socks or home-made gauze/fabric wedges that spread the toes) can provide relief. Surgery is sometimes necessary, so see a health professional.

Hamstring 76

When cramps occur, use static
(static stretch)
stretching to overcome the cramp,

\boldsymbol{Y}

with the stretch held long enough
Sudden, involuntary, and
Calf (static

78

to negate the stretch reflex, thereby
stretch)
Muscle Cramps
sustained contraction of a
loosening the muscle; hold the muscle that causes pain stretch until the muscle relaxes. and doesn't relax.

Also try weightbearing ankle dorsiflexion (e.g., pulling toes/ forefoot up while in a standing position).
Most osteoarthritis is genetic, with age and trauma also acting as factors; running doesn't cause it.
Pain, swelling, and
Masters runners should consider
Osteoarthritis
immobility in a joint (for
getting an x-ray to check on runners, usually knee or hip)
cartilage thickness; if thinning caused by loss of cartilage.
has occurred, you'll be able to make informed training and racing choices that better allow you to remain physically active.
Hamstring - AIS
104
Icing (10-15 minutes) and ibuprofen can relieve initial symptoms.

PNF Hip
73
Pain on the inside (medial)

Prevention and rehab should
Adductor
include stretching (especially the
Pes anserine bursitis
part of the lower knee
Stretch
(located a couple of inches
hamstring) and strengthening
OUR RUNNING BOD (medial knee)
lower than the level of the
Step-Downs
109
exercises.
kneecap).
Lunge Clock
100
Air Squat
65
BUILD Y
382
injuRYpREvEntiOn

Injury

Description
Exercises
Page
Notes
Glutes - Foam
103
Caused by the piriformis muscle
Roller
compressing the sciatic nerve.
Treatment can initially include
Lower Back -
103
icing and ibuprofen to reduce
Foam Roller
inflammation of the piriformis.
PNF Glute
72
Prevention and rehab requires
Stretch
strengthening hip abductors,
increasing range of motion of hip
PNF Hip
73
flexors, and relaxing hip adductors
Adductor
and lower back.
Stretch
Sharp pain, tingling, or
Quadriceps
77
numbness that originates
(static stretch)
slightly above the center-
Piriformis Syndrome
middle portion of your glute Gluteals - AIS
106
(buttock) and can travel
Leg Swings -
down the buttocks and into
Forward \&
your hamstring.
Backward
Leg Swings -
76
Sideways
Flat-Footed
209
Marching
Side Steps
93
Sidewinder
55
Plank with Leg
BUILD Y
Lift (from The
Runner 360)
Towel Toe Curls
107
Plantar fasciitis can stop your
running in its tracks, then linger
Big Toe Taps
108
for months (or years). Icing and
Pain that can be felt: in
Foot Work
107
ibuprofen can provide temporary
the heel, where it's often
relief. Onset can be sudden, with
mistaken for a heel bruise;
AIS - Calves
105
an inciting incident, or gradual (over
Plantar Fasciitis
at the point where the
(gastrocnemius)
the course of weeks). Consider foot
heel meets the arch; along
subtalar joint alignment assessment
OUR RUNNING BOD
Wobble -
91
the arch; or elsewhere
by orthopedist, podiatrist, or
Forward \&
throughout the foot.
physical therapist.
Backward
Wobble - Side
92
to Side
Step-Ups
63
Initial treatmeant with ice and
ibuprofen can reduce inflammation.
Step-Downs
109

Gait (stride) problems are
Side Steps
93
associated with this injury, so hip and quadriceps strengthening are
Pain, sometimes
Side Leg Lift
235
advised.
accompanied by
(from Running
Plica Syndrome
inflammation and a
Circuit)
(knee)
snapping sensation, on the
inside (medial) part of the
Hip Adduction
96
knee.
(resistance
band)
Hamstring - AIS
104
Quadriceps -
105
AIS
Y
383
inju RY pREvEntiOn
Injury
Description
Exercises
Page
Notes
The Runner 360
53
Ice and ibuprofen can be used to
treat initial pain and inflammation.
Runner's
59
Preventive strategies should
A "pulled muscle" is another Weight Room
include regular resistance training
Routine
Pulled Muscle
term for a muscle strain. It
and stretching.
(general)
involves pain, tightness, and
sometimes immobility and
Foam Roller
101-
discoloration (bruising).
massage
103
AIS Stretching
104
PNF Stretching70

Downhill
52
Icing and ibuprofen can provide
Running
some temporary relief. Many
runners use either downhill running
Short Hill
220
Aching, painful quadriceps
at tempo effort or downhill sprints
Sprints
(front thigh) muscles that
to prevent and cure this condition;
(downhill)
aren't related to an inciting
the eccentric contractions trigger
incident (in contrast to
PNF
74
beneficial adaptations.
DOMS, which results an
Quadriceps
Quadriceps Pain
from overtraining incident).
Stretch
Pain can become both
Quadriceps -
105
chronic and intense enough AIS
to restrict running-and
may even make walking up
Quadriceps -
102
and down stairs painful.
Foam Roller
\boldsymbol{Y}
Butt Kicks -
206
Dynamic
Flexibility
The Runner 360
53
Ice and ibuprofen can be used
Runner's Knee, aka
Knee pain caused by
to treat initial inflammation.
Patellofemoral Pain
cartilage irritation or
Runner's
59
Strengthen your hips and thighs to
Syndrome, aka
deterioration beneath your
Weight Room
help your patella track better.
Chondromalacia
kneecap (patella).
Routine
Monster Walk
94

Glutes - Foam
103
Caused by irritation of the sciatic
Pain, tingling ("pins and
Roller
nerve (see "Piriformis"). Treatment
needles"), and/or numbness
by chiropractors provides relief
that is usually felt in the
Lower Back -
103
to many runners. A core muscle
Foam Roller
strength and stability exercise
Sciatica
lower back, buttocks,
and hamstring, but can
Gluteals - AIS
106
program designed by a physical
radiate down through the
therapist might be warranted.
calves and feet. It can be
PNF Hip
74
Reducing inflammation and tension
incapacitating.
Flexors Stretch
helps. Complete rest isn't always
effective.

Ankle Inversion
98
Icing and ibuprofen can provide
Shin Splints (medial)
temporary relief. Consider foot

- aka Medical Tibial

Sharp pain along the inside
Ankle
97
subtalar joint alignment assessment
Stress Sydrome
(medial location) of your
Plantarflexion

OUR RUNNING BOD

by orthopedist, podiatrist, or
(MTSS)
shins.
Foot Work
107
physical therapist.
Ankle
97
Icing and ibuprofen can provide
Dorsiflexion
temporary relief.
Shin Splints - Front
Sharp pain along the
Seated Toe
108
(outside of shin)
outside (front) of your shins.
Taps
Foot Work
107
BUILD Y
384
injuRYpREvEntiOn
Injury
Description
Exercises
Page
Notes
Leg Lifts
60
Adequate hydration and good
fitness are a primary defense.
Four-step breathing can relieve
symptoms: Breath in twice in
A sharp pain just beneath
succession (in sync with two
the rib cage-usually on the
strides) to fill your lungs maximally,
right side, but can occur on
then purse your lips (like blowing
Side Stitches
the left as well. Although the
out a candle) and blow out
cause isn't fully understood,
intensely for two more strides.
a spasmodic diaphragm is

Repeat 10-20 times. If all else fails, suspected.
ibuprofen taken 2 hours before a race can help prevent stitches, but consult a doctor before taking any medication during exercise.

Russian
61
An injury/tear to the abdominal
Oblique Twist
wall that doesn't produce the
bulge seen in a traditional hernia.
Scorpion
55
Prevention includes strengthening
Fighter (from
An injury to your core
of your obliques (side abdominals).
The Runner
muscles (obliques), leading
Recovery may require surgery.
360)

Sports Hernia
to chronic pain in the lower
abdomen, groin, and (in
Sidewinder
55
males) the testicles.
Plank with Leg
Lift (from The

Runner 360)
Leg Lifts
60

BUILD Y

The Runner 360
53
If you suspect you have a stress fracture, see a podiatrist,

Ankle Inversion
98
orthopedist, or other health
Sharp pain alongside your
Ankle
97
professional. Prevention includes
Plantarflexion
all-around strength training, limiting
Stress Fracture (tibia)
shins (feels like severe shin
splints) that hurts from the
yourself to gradual increases in
first step until the last.
Seated Toe
108
mileage and intensity of training,
Taps
and doing specific exercises to
strengthen surrounding lower leg
OUR RUNNING BOD
Foot Work

107
muscles.
If you suspect you have a metatarsal stress fracture, see a podiatrist, orthopedist, or other health professional. You might need to wear a cast or walking Sharp pain in your foot. You boot. Prevention includes proper might feel pain over a wide footwear (with suitable arch
Stress Fracture area of your foot, but if you support), limiting yourself to (metatarsal)
apply pressure directly to gradual increases in mileage and the spot of the fracture, the intensity of training, and avoidance pain will become sharp and of rushed adaptation to barefoot intense.
running (or to shoes meant to mimic barefoot running). If you suffer a metatarsal stress fracture, you'll need to take 1-3 months off from training.
\boldsymbol{Y}
385
injuRYpREvEntiOn
Injury
Description
Exercises
Page
Notes
If you suspect you have a
stress fracture, see a podiatrist,
Sharp pain in other areas of
orthopedist, or other health
Stress Fracture
the foot, and in the fibula,
professional. Stress fractures in
(other)femur (especially in women),some areas heal more slowly than
pelvis, etc.
in others, and some stress fractures
indicate other underlying medical
problems.
\boldsymbol{Y}
OUR RUNNING BOD
BUILD Y
386
injuRYpREvEntiOnGLOSSARY
ACHILLES TENDINITIS
ACTIN
An overuse injury of the Achilles tendon thatOne of two myofilaments within muscle fi-is accompanied by painful inflammation.
bers that work together to shorten (contract) the fiber. Actin is the "thin" filament that theACHILLES TENDINOSIS oretically slides over myosin (the "thick" filaDegenerative damage of the Achilles tendon ment) during muscle contraction. at the cellular level that produces chronic pain without inflammation. The cause of ACUTE INJURY most Achilles tendon pain.

An injury that occurs as the result of a single event, usually traumatic, and that requires ACHILLES TENDON immediate treatment (e.g., muscle strains, The tendon on the back of the lower leg confractures, and sprained ankles).
necting the calf muscles (gastrocnemius, soleus, and plantaris) to the heel bone

AEROBIC
(calcaneus).
Refers to a process that requires oxygen.
ACHILLES TENDON TEAR/RUPTURE
AEROBIC ENERGY
An acute injury that occurs when the Achilles
Energy produced by aerobic processes. In tendon tears partially or fully ruptures. In the cells, aerobic energy is produced by tiny orcase of rupture, pain is often described as a ganelles called mitochondria. sudden snap, like getting shot in the back on the heel, and results in immediate limping

AEROBIC ENZYMES
and some incapacitation.
Proteins that increase the efficiency of chemical reactions within mitochondria, thereby

ACIDOSIS

improving mitochondria's ability to produce
A pH of less than 7.0 within muscle fibers,
aerobic energy.
caused by the buildup of hydrogen ions created during anaerobic energy production. Aci-

AFFERENT FEEDBACK
dosis is theorized to cause fatigue and pain
Messages sent from sensory nerves to the
when running at high intensities and can central nervous system in response to exterlead to a state of near-incapacitation.
nal stimuli.
387
AGE GRADING
uses twenty-one amino acids, only twelve of
A scoring system for races in which each run-
which it can produce itself.
ner's finish time is scored as a percentage of
the maximum performance expected at that
ANAEROBIC
runner's age, with 100 percent being the top
A process that doesn't require oxygen.
predicted score. In age-grading, the maximum performance for each age is determined

ANAEROBIC ENERGY
by a curve of all age-group world records for

Energy created without the use of oxygen by the race distance. the glycolytic and phosphagen systems. In muscle fibers, anaerobic energy production AIS (ACTIVE ISOLATED STRETCHING) takes place in the sarcoplasm.

A stretching technique that utilizes contracted opposing muscles to move a muscle

ANAEROBIC ENZYMES
into a stretched position, then requires assis-
Enzymes that break down the carbohydrates tance (e.g., pulling on a rope) to slightly inthat fuel glycolysis. Without enzymes, glycolcrease the stretch. To avoid the stretch reflex, y sis would not occur.

AIS movements are never maintained (or
Y
held) at full range of motion for longer than
ANTERIOR CRUCIATE LIGAMENT
two seconds.
One of a pair of ligaments that sit in the middle of the knee and connect the femur (thigh

ALKALINE

bone) to the tibia (shin bone). The cruciate ligA pH above 7.0. The opposite of acidic.
aments stabilize the tibia's forward and backward motion, and they also help stabilize

ALTITUDE TENT
rotation in the joint.
A commercially available tent that simulates
the low-oxygen atmosphere found at 8,000 to

ANTIOXIDANTS
12,000 feet.
Molecules (e.g., vitamins C and E) that can counteract the effects of free radicals, safely

ALVEOLI
donating electrons to them and stopping the Tiny air sacs in the lungs where carbon diox-free-radical chain reaction that can damage ide and oxygen are exchanged. Alveoli are cells.
surrounded by small blood vessels called cap-

OUR RUNNING BOD

illaries, which help facilitate the exchange.
AORTA
The largest artery in the body, through which
AMINO ACIDS
oxygenated blood is first pumped out of the The building blocks of protein. A group of orheart.
ganic molecules that are comprised of a basic
amino group, an acidic carboxyl group, and
ARTERY

BUILD Y

an organic R group (or side chain) that is speA large blood vessel
that carries oxygenated
cific to each amino acid. The human body
blood away from the heart (except for the
388
GLOSSARY
pulmonary arteries, which carry deoxygen-
BODY HEAT
ated blood from the heart to the lungs).
Energy created as a byproduct of ATP production. Body heat is created when energy is
ARTICULAR CARTILAGE
released during the breakdown of carbs, fats,
The smooth coating on the surface ends of and protein to create ATP, as well as when bones that allows bones to glide over one anATP is used to power muscle contractions. Up other and provides a flexible cushion within to 75 percent of the energy produced is not the joint.
captured and escapes the body as heat.
ATP (ADENOSINE TRIPHOSPHATE)
BONE
ATP is the end product of both aerobic and Rigid connective tissue that forms the skeleanaerobic energy production. It provides the tal structure of the body. Bone is a living tisenergy for all physical movement. Each molesue that undergoes constant renewal.
cule of ATP is recycled by the human body approximately 500-750 times per day.
BONE REMODELING
The process by which bone is broken down
ATRIUM
and replaced. During bone remodeling, cells
One of the two upper chambers of the heart.
called osteoclasts remove old, damaged tis-

BUILD Y

The right atrium receives deoxygenated blood
sue while osteoblasts create new bone. This from the body; the left atrium receives oxycycle can take 3-4 months.
genated blood from the lungs.
BONK
AXON
To run out of energy in an endurance competi-
A long nerve fiber that transmits messages tion. Bonking is typically the result of depleted from the nerve cell body to the axon termi-

OUR RUNNING BOD

muscle glycogen, excessive fatigue, severe denal, where messages cross a synapse to other
hydration, or extreme body temperature.
neurons, muscles, or glands.
BUFFERS

BAREFOOT RUNNING

Substances that neutralize the effects of hy-
Running without shoes. Championed as a drogen ions (acidic pH) within muscle fibers. more natural way to run, it has advocates Examples are phosphates, bicarbonate, and who contend that it makes running healthier some proteins.
and more efficient, but studies have failed to find support for this hypothesis.

CALVES
The gastrocnemius and soleus, the large
BASE TRAINING
muscles on the backs of your lower legs.

A period of training in which aerobic conditioning and improved muscular and connec-

CAPILLARIES

tive tissue strengthening are targeted.
The smallest blood vessels in the human

\boldsymbol{Y}

body. Capillaries are fed by arterioles (which

GLOSSARY

389
are fed by arteries), and then feed into vethe term has become synonymous with ennules, which drain into veins.
durance training of all kinds.
CAPILLARIZATION
CARDIOVASCULAR SYSTEM
The increased growth of capillaries surround-
A blood distribution network composed of ing muscle fibers.
the heart, blood, and blood vessels, which transports oxygen, nutrients, hormones,

CAPILLARY BEDS
waste products, etc. throughout the body.
The zone between your bloodstream and cells
where oxygen, carbon dioxide, nutrients, and
CARTILAGE
cellular waste products are exchanged.
A tough connective tissue. All bones begin as cartilage in the womb. In adults, cartilage is

CARBOHYDRATES

found in the ears, the nose, the bronchial Also called saccharides, one of the three mac-
tubes, the ribs, and between joints.
ronutrients. Carbohydrates are built upon simple sugar molecules containing carbon, CENTRAL GOVERNOR
hydrogen, and oxygen.
A theory on the cause of fatigue. Proposed by Y

Dr. Timothy Noakes in 1997, it hypothesizes
CARBO-LOADING
that fatigue is an emotion generated by the
Increasing carbohydrate consumption and brain as a means to protect the body during decreasing fat and protein consumption prior exercise. The Central Governor anticipates to competing in endurance events in an effort physiological "catastrophe" (damage to your to boost muscle glycogen stores. Modern body) from overexertion during physical acsports drinks, gels, and other glycogen retivity and reduces muscle fiber activation, placement strategies have reduced the imthereby limiting exertion. portance of carbo-loading.

CENTRAL NERVOUS SYSTEM (CNS)

CARDIAC MUSCLE
The brain and spinal cord.
Specialized muscle found in the heart. Cardiac muscle can beat (contract and relax)

CEREBRAL CORTEX
nonstop for a lifetime.
"Gray matter." The cerebral cortex is the out-
ermost layer of the brain and is associated

OUR RUNNING BOD CARDIAC OUTPUT

with higher brain functions that include reaThe amount of blood that a heart can pump
soning, language, and perception.
in one minute, determined by a combination
of stroke volume and heart rate.
CHRONIC INJURY
Pain, inflammation, or incapacitation that gen-
CARDIO
erally results from overuse, muscle imbalance,

BUILD Y

Jargon for "cardiovascular system training," improper footwear, or improper technique
390

GLOSSARY

over an extended period of time. Examples are $98.6^{\circ} \mathrm{F}$, the average human body will absorb

IT band syndrome, Achilles tendinosis, and
heat from the air.
non-acute cases of plantar fasciitis.
CONVERSATIONAL PACE
COLLAGEN FIBER
A pace at which a conversation can be main-
Tough, flexible fibers that are a primary com-
tained while running. Considered the mark of
ponent of connective tissue, especially tena safe, aerobic pace, it is the favored pace for
dons and ligaments.
all regular and easy distance runs.
COMPLEMENTARY PROTEINS

CORE

A combination of two or more sources of inMuscles of the belly, groin, hips, mid-back, complete (plant) proteins that results in a full and lower back that strengthen and stabilize set of essential amino acids.
posture, position, and movement during athletic activity.
COMPLETE PROTEIN
Also called high-quality protein, a protein CORI CYCLE
that contains all the essential amino acids in The process by which lactate is converted to optimal proportions for supporting biological glucose in the liver.

BUILD Y

functions in the body.

CORTISOL

CONDITIONAL AMINO ACID
A hormone that serves as a catabolic agent A nonessential amino acid that can become and an anti-inflammatory. In running, cortiessential during illness or stress.
sol breaks down weaker muscle tissue so that it can be replaced by stronger tissue, reduces
CONNECTIVE TISSUE
inflammation during high-intensity training,

OUR RUNNING BOD

Tissue that connects the body's muscles, orand spares glycogen by accelerating the use gans, blood vessels, nerves, and all other tis-
of fat.
sues together-surrounding, supporting, strengthening, cushioning, protecting, and

CREATINE PHOSPHATE

storing energy for them.
Also known as phosphocreatine, creatine
phosphate is the fuel source for the phosphaCONTRACTION VELOCITY
gen system.
The time it takes a muscle fiber to reach peak contraction (to shorten).
CROSS EDUCATION
Strength gains that occur in an untrained

CONVECTION

limb when its opposite is trained.
In running, the process by which heat transferred from muscles to
the blood is diffused

CRUISE INTERVALS

into the air. At air temperatures greater than
Repetitions (usually 400-2,000 meters) that

\boldsymbol{Y}

GLOSSARY

391

are run at an effort equivalent to what a runmance, it is the best stretching activity ner could maintain for an hour all-out. Often pre-workout or pre-competition.
used as an alternative to tempo runs.
DYNAMOMETER (HAND)
DEPOLARIZATION
An instrument for measuring grip strength,

A decrease in the difference in charge bewhich is helpful for monitoring nervous systween the inside of muscle fibers and the tem fatigue (when fatigue goes up, grip space outside. One theory of fatigue suggests strength goes down).
that depolarization leads to weaker muscle contractions.

ECCENTRIC MUSCLE CONTRACTIONS
Muscle contractions that occur when muscles DIFFUSION are forced to contract and stretch (i.e., shorten The process by which substances (liquids, and lengthen) at the same time. For example, gases, and solids) move from an area of when you run, your quadriceps muscles both high concentration to an area of lower concontract and relax when your foot touches down. centration.

ECTOMORPH

Y DISTANCE

A body type common among elite distance Short for "distance running," it refers to a runners. Features include long thin limbs, flat workout from a few to many miles at a chest, equal shoulder and hip width, and low steady, submaximal pace-often referred to body fat.
as a "conversational pace." Distance accounts for the majority of volume in an endurance

ELASTIC FIBERS
runner's training program.
Fibers composed of elastin proteins that can stretch up to 1.5 times their length. They are DRAFTING
found in connective tissues like skin and fasRunning just behind or on the shoulder of cia, and to a lesser degree in tendons and ligother runners to gain a physiological and aments.
psychological edge.
ELASTIC RECOIL

DYNAMIC STRETCHING

The ability of connective tissue to store enControlled movements that bring muscles to ergy each time it's stretched, and then to reOUR RUNNING BOD
their full range of motion (without exceedlease that energy in response to muscle ing their natural range of motion or holding contraction and shortening of the connective the muscle in that position). Examples intissue. Recoil can provide up to 50 percent of clude leg swings, high-knee drills, butt-kick the propulsive force for a running stride.
drills, and any other activity that simultaneously works and stretches the muscle.

ELECTRON TRANSPORT CHAIN

BUILD Y

Shown to consistently improve perfor-
Part of the aerobic energy system within

GLOSSARY

mitochondria. The electron transport chain that increases heart rate, relaxes airways, receives electrons from NADH and FADH2 constricts blood vessels in the skin, and stimproduced by the Krebs cycle, triggering a seulates the breakdown of muscle glycogen and ries of reactions that creates the majority of fat for energy production.
aerobically produced ATP and ends with oxygen acting as the final electron acceptor in

ERYTHROPOIETIN (EPO)
the chain.
A hormone that stimulates bone marrow to produce red blood cells; it also improves nerENDOCRINE GLAND vous system and cognitive function. In its

A gland that secretes hormones.
synthetic form, a widely used performance-enhancing drug that improves endurance

ENDOCRINE SYSTEM
performance by 5-15 percent. EPO is banned
The system that produces chemical messenby WADA and has been linked to numerous gers called hormones. Endocrine glands are athlete deaths.
found in many tissues.
ESSENTIAL AMINO ACID
ENDORPHINS
An amino acid that the body cannot produce

Hormones secreted by the pituitary gland and on its own, and which must therefore be ob-

BUILD Y

the hypothalamus during exercise. They are tained from food.
responsible for the "runner's high," the feeling of euphoria that runners sometimes experiESSENTIAL FATTY ACID ence during endurance training. A fatty acid that cannot be synthesized by the human body and must be included in the ENDOSYMBIOTIC THEORY diet.

The theory that mitochondria are the evolved OUR RUNNING BOD
remnants of a bacterial invasion that ocESTROGEN curred more than one billion years ago. It Known as "female sex hormone," estrogen is suggests that such an invasion made human actually found in both sexes, but with lower life possible.
volumes in males. In running, it facilitates the breakdown of stored fat into fuel.
ENERGY PATHWAY
One of the aerobic or anaerobic processes for EXTRACELLULAR MATRIX creating ATP from food (carbohydrates, fats, The distinctive mix of fibers, proteins, carboand proteins). The three energy systems-gly-
hydrates, minerals, salts, fluids, and other elcolytic, phosphagen, and aerobic-and the ements that surrounds connective tissue cells various steps within each. and provides structural support.

EPINEPHRINE
FASCIA
Also called "adrenaline," a hormone
Connective tissue that surrounds and

Y

GLOSSARY

393
penetrates every muscle, nerve, organ, bone, to a high-fat diet for 7-10 days before a comstructure, cavity, and tissue in the body. Competition can increase the rate at which an
posed of collagen and elastic fibers, it appears
athlete burns fat by as much as 50 percent.
as membrane, sheet, cord, and gristle.
FATS
FASCICLE
One of three macronutrients (along with car-
Columns of muscle fibers that are banded tobohydrates and proteins). The most concengether to form skeletal muscles. trated source of dietary energy, with nine calories per gram, versus four each for carbs FAST GLYCOLYSIS and protein. Fats consist primarily of glycerThe anaerobic energy pathway most people ides, with other lipids in minor quantities.
think of when they discuss anaerobic energy production. Fast glycolysis uses the two pyruFEMUR vate molecules created by glycolysis to proThe thigh bone. The largest bone in the huduce lactate and $N A D+$, allowing glycolysis to man body, the femur can support up to thirty cycle again quicky, generating ATP up to one times the weight of the human body. hundred times faster than aerobic energy pro\boldsymbol{Y}
duction. Fast glycolysis is only capable of one FIBER CONVERSION minute of full-capacity energy production.

Conversion of one type of muscle fiber into another as a result of training or inactivity. FAST-TWITCH MUSCLE FIBER

Most "conversion" is thought to occur due to
One of the three human muscle fibers. These fibers taking on the characteristics of other filarge fibers contract faster and more forcebers (i.e., they don't actually transform into fully than both slow-twitch and intermediate the new fiber type, with the full physiological fast-twitch fibers. Especially useful for properties of those fibers).
sprints, jumps, and other activities that require short bursts of power. Technically re-

FIBROCARTILAGE
ferred to as Type IIx muscle fiber.
Dense connective tissue that makes up the
lateral and medial menisci (in knees), as well FATIGUE
as the discs that cushion vertebrae and nuA reduced ability to generate muscular force
merous joints. Your body often repairs dam-
when attempting to maintain or increase efaged articular cartilage with fibrocartilage,

OUR RUNNING BOD

fort. Multiple theories have been proposed, which has tremendous tensile strength and from acidosis to leaky calcium cells, but the resilience.
exact cause of fatigue remains unclear.
FIGHT-OR-FLIGHT RESPONSE
FAT-LOADING
A reaction to a perceived danger that induces
Increasing the percentage of fat in an athan immediate nervous system and endocrine

BUILD Y

lete's diet in preparation for endurance
system response, preparing the body to either events lasting more than four hours. Sticking "fight" or to flee the danger. The resulting in394

GLOSSARY

crease in strength and speed is useful for athsugar levels rise based on the speed at which
letes who are preparing for competition.
glucose enters the bloodstream, with glucose
itself having a GI of 100 .
FOREFOOT AND MIDFOOT STRIKE

Landing on the forefoot or midfoot during GLYCEMIC LOAD (GL)
each running stride. Believed by minimalist An estimation of the rise in blood sugar levels and barefoot running advocates to result in following the ingestion of carbohydrates, fewer running injuries due to reduced impact with one unit of GL roughly equivalent to the forces.
effect of one gram of glucose.
FREE RADICAL
GLYCOLYSIS
An atom or molecule with an odd, unpaired A multi-step chemical reaction within cells number of electrons that typically forms that produces two or three ATP molecules when oxygen interacts with other molecules plus two molecules of pyruvate. The pyruvate during metabolism. Free radicals damage can either be recycled to produce anaerobic molecules by attempting to "steal" their elecenergy or shuttled to mitochondria to protrons, often triggering a chain reaction that duce aerobic energy. harms the cell.

BUILD Y

GLYCOLYTIC SYSTEM

GAP JUNCTIONS

An anaerobic energy system (or pathway)
Tiny cylindrical channels that allow the elec-
that resides in the sarcoplasm and relies trical impulse from a nerve to jump the synupon glycolysis. Glycolysis produces two or aptic gap to the target tissue.
three ATP molecules anaerobically, at which point it becomes either "fast" glycolysis or GLUCAGON "slow" glycolysis.

OUR RUNNING BOD

A hormone that stimulates the liver to break down glycogen and release glucose when HALF-LIFE
blood glucose levels drop. Glucagon promotes
The length of time it takes for an amount of fat-burning and is valuable in longer races. something (e.g., number of capillaries gained through training) to fall to half its original

GLUCOSE

number or volume.
The form of carbohydrate most often used by humans for energy production. Glucose is

HAMSTRINGS

used as a substrate for glycolysis, which In common usage, the large muscles on the serves as a first step in both aerobic and anback of the upper leg (the biceps femoris, aerobic energy production (via the glycolytic semimembranosus, and semitendinosus). system) within muscle fibers.
Technically, hamstrings are the tendons that
connect these muscles to the tibia and fibula, GLYCEMIC INDEX (GI)
and can be felt (and seen) on the back of the \boldsymbol{Y}

A measure of the rise in blood sugar. Blood knee.

GLOSSARY

395
HEART RATE
the midline of the body. They include the ad-
The number of times that the heart beats in ductor brevis, adductor longus, adductor one minute.
magnus, pectineus, and gracilis.
HEAT EXHAUSTION
HIP EXTENSORS
In running, a heat-related illness usually
Muscles that increase the angle between the caused by exposure to high temperatures (esthigh and the torso (i.e., backward leg swings). pecially when accompanied by high humid-

They include the gluteus maximus and the ity), resulting in dehydration or salt depletion. hamstrings.

HEAT STROKE
HIP FLEXORS
A life-threatening heat illness defined as hav-
Muscles that decrease the angle between the ing a body temperature in excess of $104-106^{\circ} \mathrm{F}$ thigh and the torso (i.e., muscles that lift the
$\left(40-41^{\circ} \mathrm{C}\right)$. Untreated, it can lead to damage of knee). They include the psoas major, iliacus, several organs, including the brain, heart, and rectus femoris, and sartorius.
kidneys.
HITTING THE WALL

Y HEEL DIPS

The moment in a long race when competitors An eccentric calf exercise that involves rising run out of muscle glycogen and must then up on the balls of the feet and then slowly rely on fat sources for energy, necessitating a lowering one heel either to or below floor slower pace and resulting in increased falevel. Usually performed on platforms, steps, tigue.
etc., it is the only known reliable treatment for Achilles tendinosis.
HOMEOSTASIS
The body's ability to maintain a stable and HEEL STRIKE
balanced internal environment, regardless of
Landing on the heel of the foot during each external conditions.
running stride.
HORMONES

HEMATOCRIT

Chemical messengers within the body that
The percentage of total blood plasma volume govern all aspects of biological function.
that is composed of red blood cells.

OUR RUNNING BOD

HUMAN GROWTH HORMONE (HGH OR GH)

HIP ABDUCTORS

A hormone released from the pituitary gland Muscles that help move the leg away from that promotes protein synthesis, muscle hythe body. They include the gluteus medius pertrophy, bone density, and tendon and ligaand the gluteus minimus.
ment strength, among other things. Involved in athletic performance improvement, it is a

BUILD Y HIP ADDUCTORS
widely abused performance-enhancing drug
Muscles that help move the legs back toward banned by WADA.

396
GLOSSARY
HYDROGEN IONS
INORGANIC PHOSPHATE
Protons that accumulate in muscle fibers durAlso known as "Pi," one of the products of ATP ing anaerobic energy production, leading to consumption. During intense exercise, more acidosis. Hydrogen ions are also an essential ATP is consumed than produced, leading to component of the electron transport chain an increase in inorganic phosphate, which (aerobic energy production).
has been postulated as a cause of fatigue.

HYPERTHYROIDISM

INSULAR CORTEX

A hormonal disorder caused by excess producA portion of the brain that lies within the folds of tion of the thyroid hormone in the thyroid the cerebral cortex and plays a role in consciousgland.
ness, emotion, and bodily self-awareness. The insular cortex has been identified by some studies

HYPERTROPHY
as a major actor in the experience of fatigue.
With respect to muscles, an increase in size.
This can occur due to an increase in the sar-
INSULIN
coplasmic volume of the muscle fiber or from
A hormone that directs cells to take up gluan increase in myofilaments and myofibrils cose from the bloodstream and store it as glywithin muscle fibers.
cogen in the muscles and liver.

BUILD Y

HYPONATREMIA
INTERMEDIATE FAST-TWITCH MUSCLE FIBER
A life-threatening condition in which sodium
Muscle fibers that are larger than slow-twitch concentration in the blood drops dangerously fibers and smaller than fast-twitch fibers, and low. In runners, this is usually caused by which possess characteristics of both. They overhydrating (drinking too much water) becan function aerobically or anaerobically and

OUR RUNNING BOD

fore and during races.
are capable of being trained to produce both endurance and speed, making them perfect

HYPOTHYROIDISM
for middle-distance running. Technically reA hormonal disorder caused by deficient pro-
ferred to as Type IIa muscle fibers.
duction of the thyroid hormone in the thyroid
gland.
INTERVAL
The rest period following a repetition during
IMPULSES
a repetition or interval workout. Also used as
Electrochemical messages sent by neurons.
an alternative term for "repetition."
These messages can travel between two and
390 feet per second.
INTERVAL TRAINING
Repetitions with rest intervals. Pace will vary
INCOMPLETE PROTEIN
depending on the training goal.
A protein that is either missing one or more
of the essential amino acids or is too low in
INVERTED PYRAMID TRAINING
Y
them.
A training approach practiced by runners

GLOSSARY

397
whose race goal is completion. Training be-

LACTATE

gins with small volume and limited intensity,
An end-product of anaerobic fast glycolysis then gradually builds toward the expected that can be used as a carbohydrate fuel for volume and intensity of the race.
aerobic energy production by the cell, adjacent cells, or distant cells. Once released into

JARGON

the bloodstream, it can also be converted to Terms and phrases specific to a singular acglucose by the liver through the Cori cycle. tivity or group (e.g., in running, " $P R$ " refers to a runner's personal record).

LACTATE SHUTTLE

The process by which lactate is moved into
JOINT SPACE
mitochondria (within the cell), out of the cell,
The area separating bones in a joint, which is and between cells. Once outside the cell, lacfilled by cartilage. Loss of cartilage narrows tate can travel to adjacent muscle fibers or the joint space and can lead to osteoarthritis. into the bloodstream, where it's transported to distant muscles, organs (e.g., the heart and
KICK (IN A RACE)
brain), or to the liver.
The final finishing sprint in a race or, as used \boldsymbol{Y}
in the Central Governor model of fatigue, an
increased effort (pace) over the final 10 per-
Running's "bogeyman," long thought to be the cent of a race.
cause of fatigue, pain, and even DOMS. Currently, physiologists disagree over the role of

KINETIC CHAIN
lactic acid in energy production. Recent theThe interconnected chain of muscles, nerves, ory suggests that lactic acid is never proconnective tissue, and other structural comduced in human muscle fibers, but some ponents of the body that work together to physiologists still argue that it's formed move joints and create body movement.
briefly before immediately splitting into lactate and hydrogen ions.
KINETIC ENERGY
Energy possessed due to motion.
LATERAL COLLATERAL LIGAMENT
One of a pair of ligaments that stretch verti-
KREBS CYCLE
cally along the inside (medial collateral ligaAlso called the citric acid cycle, the Krebs cycle ment) and outside (lateral collateral ligament)

OUR RUNNING BOD

is part of aerobic energy production and ocof the knee, controlling the joint's sideways curs in the mitochondria. The two pyruvate motion. Damage to these ligaments disrupts molecules formed during slow glycolysis are the stability of the knee. converted into acetyl CoA and carbon dioxide;
the acetyl CoA molecules enter the Krebs cy-
LEFT VENTRICLE
cle, generating a total of two ATP molecules.
The lower left chamber of the heart, which

BUILD Y

receives oxygenated blood from the left
398

GLOSSARY

atrium and pumps that oxygenated blood
MASTERS COMPETITORS
into the aorta.
In track and field, athletes age 35 and older. In road racing and cross country within the LIGAMENT
United States, athletes age 40 and over. InterConnective tissue that connects bone to bone,
nationally, masters road racing is open to thereby stabilizing joints.
athletes age 35 and over.
LIGAMENT LAXITY
MAXIMUM HEART RATE
Elongated ligaments, usually as a result of re-
The maximum number of times the heart can peated ligament trauma, that can create joint beat in one minute. A general guideline for instability. Sometimes referred to as "loose estimating maximum heart rate is to use the joints."
formula: 220 minus a person's age. Maximum heart rate is determined by genetics and canLIPOLYSIS
not be influenced by training.
The breakdown of fats to fuel aerobic energy production. Although slower than carbohyMEDIAL COLLATERAL LIGAMENT
drate-fueled ATP production, lipolysis proOne of a pair of ligaments that stretch vertivides a larger return of ATP, with a single cally along the inside (medial collateral liga-

BUILD Y

palmitate fatty acid producing 129 molecules ment) and outside (lateral collateral ligament)
of ATP.
of the knee, controlling the sideways motion of the knee. Damage to these ligaments dis"LISTEN TO YOUR BODY"
rupts the stability of the knee.
The slogan of Dr. George Sheehan, running's late physician-philosopher, who believed that MENISCUS
a runner's body provides valuable feedback

OUR RUNNING BOD

Pads of fibrocartilage that provide shock abon fitness, fatigue, injury, and more, as long sorption and structural support for the knees. as the runner is willing to consciously recog-

Treatment for adult meniscus tears usually
nize and respond to it.
requires surgery to repair or remove the affected cartilage.
MAGIC BULLET
A one-stop solution for remedying a previ-
META-ANALYSIS
ously divisive, troubling, or limiting issue. In A review of multiple studies, experiments, or running, magic-bullet remedies (e.g., barefoot papers on a similar topic that looks for running or stride adjustment) promise imshared and statistically relevant patterns and proved fitness, performance, or injury reducoutcomes.
tion, ignoring the extremely complex
physiology and psychology involved in runMILEAGE ning.

The total amount of miles that a runner logs, typically measured by the week. Most \boldsymbol{Y}

GLOSSARY

399
runners include all running in their "mileage," move lactate to mitochondria or help push it including warm-ups, warm-downs, distance out of the cell. MCTs can also import lactate runs, strides, repetitions, jogging intervals befrom outside the cell for use as fuel.
tween repetitions, etc. Some runners, however, only count "quality" miles, excluding

MOTOR NEURONS
warm-ups, warm-downs, jogging, and recov-
Neurons in the spinal cord that control musery runs.
cles. Each motor neuron controls a specific group of muscle fibers within a single muscle.

MINERALS

Inorganic elements that act as cofactors for
MOTOR UNIT
enzymes and influence all aspects of energy
A motor neuron and all the muscle fibers it metabolism.
controls. All muscle fibers within a motor unit
must be of the same fiber type, and they all
MINIMALISM
fire simultaneously.
An approach to shoe design - and training -
that emphasizes a return to a more natural
MUSCLE
stride. Minimalist shoes bring the foot closer
See entries for cardiac muscle, smooth mus-

\boldsymbol{Y}

to the ground, have a reduced difference becle, and skeletal muscle.
tween heel and forefoot height, are lightweight and flexible, and have a wider toe box.

MUSCLE BALANCE

(Some minimalist shoes, like Vibram FiveFin-
Complimentary (balanced) strength, flexibilgers, mimic barefoot running.)
ity, coordination, and fitness found in opposing muscles
(e.g., hamstrings and quadriceps).

MITOCHONDRIA
Microscopic structures within cells that use
MUSCLE FIBER LADDER
substrates and oxygen to produce aerobic en-
The theoretical process by which human
ergy.
muscle fibers are recruited. Slow-twitch fibers are recruited first. As force requirements inMITOCHONDRIAL BIOGENESIS
crease, intermediate fast-twitch fibers are
The process by which mitochondria increase
added. Finally, beginning at about 65 percent in volume within muscle fibers, including maximum force, fast-twitch fibers are reboth the total number of all mitochondria cruited. Slower fibers remain active as faster

OUR RUNNING BOD

and the size of individual mitochondria. Spefibers are recruited.
cific training (e.g., tempo runs) can stimulate increased mitochondrial biogenesis.

MUSCLE FIBER TYPE
A muscle fiber's designation as slow-twitch,
MONOCARBOXYLATE TRANSPORT PROTEINS
intermediate fast-twitch, or fast-twitch, as
(MCTS)
well as its possession of the characteristics of

BUILD Y

Specialized transport proteins that move lacthat specific type of fiber.
tate (and hydrogen ions). Within cells, MCTs
400

GLOSSARY

MUSCLE SPINDLE
NEURAL PATHWAY

Stretch receptors (sensory organs) located The path that a nerve impulse follows. Some within muscles that line up parallel to muscle simple pathways, like reflexes, are hardfibers. They sense changes in the length of wired. Others, like those involved in a runmuscles and, in runners, limit stride length ner's stride, develop in response to training. A through the stretch reflex, which forces musgoal of training is to improve neural-pathway cles to contract in order to avoid injury from efficiency. overstretching.
NEURON
MUSCULOTENDINOUS ZONE (MUSCLE-TENDON ZONE)
A nerve cell.
The area where muscle gradually gives way to tendon, and where muscle fibers and tenNEUROTRANSMITTERS dons merge, operating as a de facto muscleChemicals released by neurons that are used tendon unit.
to communicate messages across the synapse.
MYOFILAMENTS
Protein filaments within muscle fibers, gener-
NONESSENTIAL AMINO ACID
ally referring to actin and myosin, which ac-
An amino acid that can be synthesized by the

BUILD Y

cording to the "sliding filament theory"
human body.
interact to create muscle fiber-and hence muscle-contraction.

NOREPINEPHRINE
Also known as "noradrenaline," a hormone

MYOSIN

and neurotransmitter that is active in the
One of two myofilaments within muscle fi-
fight-or-flight response, raising heart rate,

OUR RUNNING BOD

bers that work together to shorten (contract)
blood flow to skeletal muscle, and glucose the fiber. Myosin is the "thick" filament that levels in the blood.
actin (the "thin" filament) theoretically slides over during muscle contraction.

NUTRIENTS
All the components of food-plus water and MYOTENDINOUS JUNCTION
oxygen-that nourish the body.
The point at which individual muscle fibers meet tendon. It is considered the muscle's

ORGANELLES

weak link (the spot where most muscle
Tiny parts of cells, analogous to organs in the strains occur).
human body.
NERVOUS SYSTEM
OSTEOARTHRITIS
One of two principal communications net-

A degenerative joint disease in which the works in the body (the other is the endocrine joint space can narrow to the point of bonesystem), composed of the central nervous on-bone contact, leaving the joint inflamed,

\boldsymbol{Y}

system and the peripheral nervous system. painful, less mobile, and partially disabled.

GLOSSARY

401
Osteoarthritis is linked to cartilage damage, fatigue leads to a physiological "catastrophe" age, and genetics.
(acidosis, overheating, etc.) that forces the athlete to slow down or stop.

OSTEOBLASTS
Cells that repair damaged bone by laying PERIPHERAL NERVOUS SYSTEM (PNS) down new bone and filling cavities left by osAll of the nerves outside the central nervous teoclasts.
system. It includes sensory neurons that relay messages from all corners of the body

OSTEOCLASTS

back to the central nervous system, reporting
Cells that dig out old, damaged tissue from
stimuli received from the senses.
bone, leaving tiny cavities.
pH
OVERTRAINING
In running physiology, the measurement of

Training that includes too much volume, too hydrogen ions in the body. More hydrogen much intensity, or both. Overtraining leads to ions result in an acidic pH (below 7.0), while aches and pains, chronic fatigue, mental fewer create an alkaline pH (above 7.0). The burnout, and/or a sudden drop in running human body prefers a slightly alkaline pH \boldsymbol{Y} performance. Severe cases require 6-12
(7.35-7.45 on a scale of 1-14).
weeks of rest to ensure full recovery.

PHOSPHAGEN SYSTEM

OXYGEN TRANSPORT SYSTEM
An anaerobic energy system that relies on creThe cardiovascular system, which extracts atine phosphate as its fuel source and serves as oxygen from your lungs and then transports the human body's first responder when muscle it to your skeletal and cardiac muscle cells. It fiber ATP levels fall. This system can operate at includes the heart, blood, and blood vessels. maximum capacity for up to ten seconds and provides the majority of energy for very short

PALMITATE

sprints, jumps, and heavy lifts.
A common fatty acid that accounts for 10-20
percent of dietary fat intake.

PLACEBO EFFECT

Improvement or perception of improvement

PERIODIZATION

in health, performance, or behavior derived The separation of training into distinct from the belief in the efficacy of a treatment

OUR RUNNING BOD

phases, often including a base-training phase, rather than from any actual direct benefit of a strength-building phase, a competition medication, treatment, training, etc. The clasphase, and a recovery phase.
sic example is a patient who recovers from a disorder after being prescribed sugar pills.

PERIPHERAL FATIGUE THEORY
A theory of fatigue which argues that fatigue
PLYOMETRICS

BUILD Y

is generated when muscles begin to fail durExplosive exercises that use forced eccening athletic activity. If allowed to build, tric contractions to trigger powerful

402

GLOSSARY

concentric contractions (e.g., depth jumps example, a PR for a track race doesn't double from a box). Less-intense jumping exercises as a PR for a road race.
and drills are also considered plyometrics, although the greatest adaptations result PROCESSED FOOD
from the quickest transitions from landing

Food that has been changed from its original to jumping.
state, often sacrificing nutrients and other beneficial characteristics.

PNF (PROPRIOCEPTIVE NEUROMUSCULAR FACILITATION)

 STRETCHING
PROPRIOCEPTION

A stretching technique that requires a muscle
The nervous system's ability to track the
be stretched to its maximum range of motion, body's position in space relative to the outthen restrained during a 5-8 second contrac-
side world and to adjust accordingly. Comtion, and then moved to a position of inposed of a network of sensory nerves located creased stretch.
in muscles, ligaments, organs, and the inner
ear.
POSE METHOD
A technique for altering running form that
PROTEIN
teaches vertical alignment of the head, shoul-
One of three macronutrients (along with car-

BUILD Y

der, and hips, high cadence, shorter and
bohydrates and fats). Composed of amino ac-
quicker steps, forefoot landing, and a slight ids, protein is part of every cell in the human forward lean so that the runner "falls," using body, and it is a major component of skin, gravity to fuel forward motion.
muscles, organs, and glands.
POSTERIOR CRUCIATE LIGAMENT
PROTON
One of a pair of ligaments that sit in the midA hydrogen ion.

OUR RUNNING BOD

dle of the knee and connect the femur (thigh bone) to the tibia (shin bone). The cruciate ligPYRUVATE
aments stabilize the tibia's forward and backA molecule produced by glycolysis that can ward motion and also help to stabilize be cycled through "fast" glycolysis, yielding rotation in the joint.
lactate and NAD+, or shuttled to the mitochondria through "slow" glycolysis to serve as
POWERHOUSES OF THE CELL
a substrate for aerobic energy production.
Mitochondria.

QUADRICEPS

PR (PERSONAL RECORD)
The large muscle group on the front of the Also called a PB (personal best), a personal reupper leg, composed of the rectus femoris, cord refers to the best time ever recorded by a vastus lateralis, vastus medialis, and vastus runner for a particular distance-or for a parintermedius.
ticular distance at a particular age. PRs are \boldsymbol{Y}
specific to the type of race being run; for

GLOSSARY

403

RATE CODING

contracts, its opposite muscle must relax
The rate at which nerve impulses are sent (e.g., biceps and triceps). Even the slight failfrom motor neurons to muscle fibers. An inure of an opposing muscle to fully relax recrease in rate coding can increase both the sults in reduced performance.
force and duration of muscle contraction.
REPETITION
REAL FOOD
One of several repeated efforts at a set distance,
Food that hasn't had its nutrients stripped usually with a set goal pace, as part of a repetifrom it through processing.
tion or interval workout. Repetitions range between 150 meters and two miles (in rare cases,
RECOVERY
longer than that), and are separated by rest inA low-key set of activities practiced in tan-
tervals of standing, walking, or jogging to allow
dem with physical exertion. Recovery actitivirecovery before the next repetition.
ties can include stretching, post-run
exercises, glycogen replacement, rehydration, RESPIRATORY SYSTEM recovery runs, stress-relieving activites, and The system that provides oxygen to the blood complete rest and sleep, among other things.
and carries away carbon dioxide. It consists of

\boldsymbol{Y}

Recovery is required for adaptation from the lungs, air passageways, and muscles that
training to occur.
aid respiration (breathing).
RECRUIT (MUSCLE FIBERS)
RUNNER'S KNEE
Activate muscle fibers.
Also referred to as "patellofemoral pain
syndrome" and "chondromalacia," knee pain
RECRUITMENT PATTERNS
that's caused by the irritation or deterioration
Neural pathways that determine how muscle of cartilage beneath the kneecap.
fibers are recruited during activity. In running, training leads to the development of
RUNNING ECONOMY
more efficient neural pathways, as well as
A measurement of fitness based on how effi-
better recruitment of all fiber types.
ciently a runner uses oxygen at a given running speed. Running economy is determined

RED BLOOD CELLS (RBCS)
by multiple factors, including genetics and
Red blood cells carry 98 percent of the oxygen
nervous system efficiency, and is especially

OUR RUNNING BOD

that the body uses and also transport carbon
important at submaximal running speeds.
dioxide back to the lungs. RBCs usually live

120 days, but they live only 70 days in trained
SA NODE (SINOATRIAL NODE)
athletes.
A specialized group of cells in the upper right atrium. These cells deliver the electrical imREDUCED INHIBITION
pulse that first causes both atriums to con-

BUILD Y

Decrease in resistance from opposing mustract, pushing blood into the lower ventricles, cles when muscles contract. When a muscle and then causes the ventricles to contract, 404

GLOSSARY

pushing deoxygenated blood toward the fast-twitch and fast-twitch fibers. Dense with lungs and oxygenated blood into the aorta. capillaries and mitochondria, these fibers'

The firing rate of the SA node determines high capacity for aerobic energy production heart rate.
makes them perfect for endurance sports.
Technically referred to as Type I muscle fibers.

SACCHARIDES

Carbohydrates.
SMOOTH MUSCLE
One of three human muscle types, smooth
SARCOPLASM muscle controls involuntary functions like diThe gel-like filler of a muscle fiber (equivalent
gestion and blood pressure, and can be found to the cytoplasm of other cells).
in the stomach, intestines, and blood vessels (among other locations).

SCIENCE-Y
Terms and concepts from science that aren't
SPECIFICITY OF TRAINING RULE
familiar to the general public, sometimes giv-
The requirement that an athlete train specific
ing the impression that the subject matter is muscle fibers in the exact way that they'll be more complex than it really is.
used during competition (e.g., distance running and race pace repetitions to prepare for

BUILD Y

SIZE PRINCIPLE
a 10 K race).
In physical activity, the process whereby force production is increased by recruiting a
SPEED WORK
greater number of muscle fibers and by reA general term referencing
shorter, intense
cruiting larger (faster) muscle fibers.
running repetitions. Examples include
200-meter repetitions at 800-meter race pace,
SKELETAL MUSCLE
400-meter repetitions at mile race pace, and

OUR RUNNING BOD

Muscle that moves the body and accounts for short hill sprints at 90-95 percent effort.
a third of human body mass. Examples of
skeletal muscle include biceps, hamstrings, SPLIT
abdominals, and calves.
The time for a fraction of a race; for example, a 400-meter split in a 1500-meter race, or a SLOW GLYCOLYSIS
mile split in a 10 K race. Also, the time for a One of two pathways for pyruvate molecules single repetition during a repetition/interval produced by glycolysis (the other pathway is workout.
"fast" glycolysis). Pyruvate is shuttled to the mitochondria to fuel aerobic energy producSPRAINED ANKLES tion.

Overstretched or torn ligament (or ligaments) in the ankle, often leading to joint instability.
SLOW-TWITCH MUSCLE FIBER
Small muscle fibers that contract more slowly
STATIC STRETCHING
\boldsymbol{Y}
and less forcefully than intermediate
Moving a muscle to the end of its full range of

GLOSSARY

405
motion and then holding the position for a
SUPERFOODS
predetermined period of time (usually 30-60
Primarily plant-based foods with high values
seconds). Static stretching is used to reduce
of antioxidants, vitamins, or other nutrients.
stiffness post-run, but has been shown to reSuperfoods are commonly marketed as disduce power pre-workout.
ease-fighting and antiaging, claims largely unsubstantiated by research data.

STEROID HORMONES
Hormones derived from cholesterol (e.g., tesSYNAPSE (SYNAPTIC CLEFT, SYNAPTIC GAP) tosterone, cortisol).

A small space that separates a neuron from other neurons and muscle cells, across which STRETCH REFLEX neurons send signals to communicate mesAn involuntary muscular contraction that oc-
sages.
curs during overstretching or when a stretch
is held at maximum range of motion for lon-
TABATA INTERVALS
ger than two seconds.
A workout composed of twenty-second all-out repetitions followed by ten-second rest

STROKE VOLUME
intervals. Based on a 1996 bicycle ergometer \boldsymbol{Y}

The amount of blood pumped from your right study by exercise physiologist Izumi Tabata, or left ventricle with each beat. In running, it Tabata intervals have been shown to improve almost always refers to blood pumped from VO max by increasing anaerobic capacity, but
the left ventricle.
they have a negligible impact on cardiovascular development.
SUBMAXIMAL RUNNING SPEED
Any running effort below 100 percent of VO
TAPERING

2
max.
Reducing training volume in the days or weeks before a race, which allows the body to

SUBSTRATE

fully repair muscles and connective tissue, as In energy systems, the fuels that are associwell as restock muscle glycogen stores, horated with each energy pathway (e.g., carbohymones, enzymes, and neurotransmitters.
drates, specifically glucose and glycogen, for glycolysis).

TEMPO
Sustained fast running (10-40 minutes) at a

OUR RUNNING BOD SUCKING WIND

pace you could maintain for at least an
Slang for breathing exceptionally hard during
hour-often performed at half marathon or a training or race effort.
marathon pace.
SUMMATION
TENDON
Increased contraction force in a muscle due
A connective tissue that connects muscle to

BUILD Y

to an increased rate of neural impulses inbone. Tendons transmit the force generated structing the muscle fibers to contract.

406

GLOSSARY

by muscles to move joints, which in turn
TIBIA
moves the body.
The shin bone. The large, supporting bone in the lower leg connecting the knee to the anTENDON STIFFNESS
kle bones.
A measurement of the amount of force it takes to stretch a tendon. Important for elas-

TIME TRIAL
tic recoil, in which greater force leads to
An all-out effort at a specified distance-usugreater recoil. A stretch beyond 4-6 percent is ally either a race distance or a portion of a dangerous.
race distance. Runners use time trials to prepare for races, as well as to gauge their fit-

TESTOSTERONE
ness.
A hormone that increases muscle mass and bone density. It is often referred to as the TRAINING ADAPTATION
"male hormone, " although women have apPhysiological or psychological changes that proximately 10 percent the levels of men. Tes-
occur in response to training stimuli (worktosterone is a widely abused
outs). Improved fitness results from an accu-performance-enhancing drug banned by mulation of training adaptations. WADA.

BUILD Y

TRAINING STIMULUS
TETANUS
A workout or activity that challenges current A sustained muscle contraction. When the infitness. When the training stress is greater creased rate of neural impulses (rate coding) than what is normally encountered, the body reaches maximum summation (the maxiresponds by growing stronger, given adequate mum contraction force for those muscle firecovery.
bers), the muscle is in a state of tetanus.

OUR RUNNING BOD

TRIIODOTHYRONINE (T3)
THYROID HORMONE
The more potent form of thyroid hormone. T3
A general term that refers to the thyroid horcirculates in the bloodstream at only one-formones, although thyroid hormone replacetieth the volume of T4. Only about one-fifth of ment therapy usually involves treatment with
$T 3$ is produced in the thyroid gland, with
T4 only. (See following entry.)
most created outside the thyroid gland
through conversion of T4.
THYROXIN (T4)
The form of thyroid hormone with the highUNSATURATED FATS est concentration in the blood. Thyroxin is Fats that have one or more double bonds in converted to $T 3$ in cells, and is vital to the the fatty-acid chain. Unsaturated fats are conmetabolism of all cells in the body. See hypersidered "good" fats, as they decrease harmful thyroidism and hypothyroidism for disorders LDL cholesterol levels and increase beneficial related to this hormone.

HDL cholesterol levels. They are usually liquid Y
at room temperature (e.g., olive oil).

GLOSSARY

407
VEIN
temperature and suppleness in muscles, and Large blood vessels that carry deoxygenated stimulates release of lubricating synovial fluid blood toward the heart (except for the pulmoat the joints, etc.). In the case of blood, viscosnary veins, which carry oxygenated blood ity refers to thickness based on a higher red from the lungs to the left atrium). blood cell count or reduced plasma volume, creating greater resistance in blood vessels,

VENTRICLE

this can be caused naturally by dehydration or
One of the two lower chambers of the heart.
stimulated unnaturally by the use of $E P O$,
The right ventricle pumps deoxygenated among other triggers.
blood toward the lungs. The left ventricle receives oxygenated blood from the left atrium

VITAMINS
and pumps it into the aorta.
Essential organic compounds that play a critical role in the regulation of metabolism,
VENULES
growth, tissue maintenance, and disease pre-
Small blood vessels that receive deoxygenvention, among other things. Vitamins are ated blood from capillaries and transport it to not themselves sources of energy, and they veins, which then carry this blood back to the must be obtained through diet (with the exY
heart.
ception of a very few nonessential vitamins
like vitamin D and biotin, which can be pro-
VIBRAM FIVEFINGERS
duced within your body).
A minimalist shoe that includes toe sleeves.
Research has shown increased bone damage
VO MAX

2
in runners transitioning to this shoe.

The maximum amount of oxygen that a human body can consume in one minute.

VISCOSITY
Resistance. In muscles, viscosity can be reWADA
duced by performing a warm-up (which im-
World Anti-Doping Agency
proves neural messaging to muscles, increases

OUR RUNNING BOD

BUILD Y

408

GLOSSARY

FURTHER READING
Build Your Running Body was itself built upon a up-to-date information coupled with insightful wide-ranging foundation of magazine, journal, commentary:
book, and internet research.
A few of the books that were used countless
The Science of Sport, by Ross Tucker, PhD, and
times in the course of writing Build Your Running
Jonathan Dugas, PhD
Body (and which have sprouted hundreds of post-
www.sportsscientists.com
it notes in the process) include:
Sweat Science, by Alex Hutchinson, PhD
www.runnersworld.com/sweat-science
Daniels, J. (2005). Daniels'Running Formula, Second
The Science of Running, by Steve Magness
Edition. Champaign, IL: Human Kinetics.
www.scienceofrunning.com

Galloway, J. (2002). G alloway's Book On Running, SecRunner's World ond Edition. Bolinas, CA: Shelter Publications. www.runnersworld.com

Hutchinson, PhD, A. (2011). Which Comes First, Running Times

Cardio or Weights?: Fitness Myths, Training www.runnersworld.com/running-times-

Truths, and Other Surprising Discoveries from the home

Science of Exercise. New York, NY: Harper.
Martin, D. E., \& Coe, P. N. (1997). Better Training for
Finally, Build Your Running Body utilized hundreds Distance Runners, Second Edition. Champaign, of magazine and journal articles. The following

IL: Human Kinetics.
list presents some of the most interesting and
Noakes, T. D. (2002). Lore of Running, Fourth Edition.
salient articles from the bunch, grouped by
Champaign, IL: Human Kinetics.
chapter, so that you can go to the source for top-
Tucker, R., Dugas, J., \& Fitzgerald, M. (2009). Runics about which you'd like to know more:
ner's World, The Runner's Body: How the Latest Exercise Science Can Help You Run Stronger, Longer, and Faster. Emmaus, PA: Rodale.

Chapter 1: Build Your Running Motivation

Chakravarty, E., Hubert, H., Lingala, V., \& Fries, For those of you interested in keeping abreast J. (2008). Reduced Disability and Mortality of the latest in training advice and exercise sciamong Aging Runners: a 21-year Longitudinal ence, the following websites-all of which were Study. Archives of Internal Medicine, 168(15), bookmarked and visited regularly in the course of 1638-1646.
preparing this manuscript-provide a wealth of Williams, P. (2013). Greater weight loss from run409
ning than walking during a 6.2-yr prospective anterior cruciate ligament reconstruction. In-follow-up. Med Sci Sports Exerc, 45(4), 706-713. dian J Orthop, 45(4), 294-300. doi:10.4103/00195413.80320

Chapter 2: Build Your Running History

Lieberman, D., Venkadesan, M., Werbel, W., Bramble, D., \& Lieberman, D. (2004, November

Daoud, A., D'Andrea, S., Davis, I., . . . Pitsila- 18). Endurance running and the evolution of dis, Y. (2010, January 28). Foot strike patterns

Homo. Nature, 432, 345-352.
and collision forces in habitually barefoot versus shod runners. Nature, 463, 531-535.

Chapter 3: Build Your Running Gear

doi:10.1038/nature08723
Dengate, J. (n.d.). Jeff Dengate articles. Retrieved
Ridge, S., Johnson, A., Mitchell, U., Hunter, I.,
from Runner's World: www.runnersworld.
Robinson, E., Rich, B., \& Brown, S. (2013, July).
com/person/jeff-dengate
Foot bone marrow edema after a 10-wk transition to minimalist running shoes. Med Sci

Chapter 5: Build Your Running Muscles

Sports Exerc, 45(7), 1363-1368. doi:10.1249/
Simic, L., Sarabon, N., \& Markovic, G. (2013, March).
MSS.0b013e3182874769
Does pre-exercise static stretching inhibit maxFranz, J., Wierzbinski, C., \& Kram, R. (2012, imal muscular performance? A meta-analytical August). Metabolic cost of running bareY
review. Scand J Med Sci Sports, 23(2), 131-148.
foot versus shod: is lighter better? Med Sci
doi:10.1111/j.1600-0838.2012.01444.x
Sports Exerc, 44(8), 1519-1525. doi:10.1249/
MSS.0b013e3182514a88
Chapter 6: Build Your Running Connective Tissue
Williams, P. (2013, July). Effects of running and
Chapter 7: Build Your Running Cardiovascular walking on osteoarthritis and hip replace-

System
ment risk. Med Sci Sports Exerc, 45(7), 1292-
Kim, J., Malhotra, R., Chiampas, G., d'Hemecourt,
1297. doi:10.1249/MSS.0b013e3182885f26
P., Troyanos, C., Cianca, J., . . . Baggish, A.
van der Plas, A., de Jonge, S., de Vos, R., van der
(2012). Cardiac Arrest during Long-Distance

Heide, H., Verhaar, J., Weir, A., \& Tol, J. (2012,
Running Races. New England Journal of Medi-

March 1). A 5-year follow-up study of Alcine, 366, 130-140. doi:10.1056/NEJMoal106468 fredson's heel-drop exercise programme in Williams, P., \& Franklin, B. (2013, June 7). Reduced chronic midportion Achilles tendinopathy. Br Incidence of Cardiac Arrhythmias in Walkers and J Sports Med, 46(3), 214-218. doi:10.1136/bjsRunners. (C. Earnest, Ed.) doi:10.1371/journal. ports-2011-090035
pone. 0065302

OUR RUNNING

BOD Heinemeier, K., Schjerling, P., Heinemeier, J., Deloukas, P., Kanoni, S., Willenborg, C., Farrall, Magnusson, S., \& Kjaer, M. (2013, May). Lack of M., Assimes, T., Thompson, J., . . . Weang, K. H. tissue renewal in human adult Achilles ten(2013). Large-scale association analysis identidon is revealed by nuclear bomb 14C. FASEB J, fies new risk loci for coronary artery disease.

27(5), 2074-2079. doi:10.1096/fj.12-225599
Nature Genetics, 45, 25-33. doi:10.1038/ng. 2480
Dhillon, M., Bali, K., \& Prabhakar, S. (2011, Jul-
Garret, A., Creasy, R., Rehrer, N., Patterson, M., \&

BUILD Y

Aug). Proprioception in anterior cruciate
Cotter, J. (2012, May). Effectiveness of short-
ligament deficient knees and its relevance in term heat acclimation for highly trained

FuRtHERREADing

athletes. Eur J Appl Physiol, 112(5), 1827-1837.
Robergs, R., Ghiasvand, F., \& Parker, D. (2004, Sep-doi:10.1007/s00421-011-2153-3
tember 1). Biochemistry of exercise-induced
Gething, A., Williams, M., \& Davies, B. (2004, metabolic acidosis. American Journal of PhysiolDecember). Inspiratory resistive loading imogy - Regulatory, Integrative and Comparative proves cycling capacity: a placebo controlled Physiology, 287(3), R502-R516. doi:10.1152/ajptrial. Br J Sports Med, 38(6), 730-736. doi:10.136/ regu.00114.2004
bjsm.2003.007518
Brooks, G. (2009, December 1). Cell-cell and
intracellular lactate shuttles. The Journal of

Chapter 8: Build Your Running Powerhouses

Physiology, 587(23), 5591-5600. doi:10.1113/
Marguilis, L., \& Sagan, D. (1997). Microcosmos: Four jphysiol.2009.178350

Billion Years of Microbial Evolution. Berkeley, CA:
McKenna, M., \& Hargreaves, M. (2008, January).
University of California Press.
Resolving fatigue mechanisms determining
Holloszy, J. (2008). Regulation by Exercises of exercise performance: integrative physiol-

Skeletal Muscle Content of Mitochondria and ogy at its finest! Journal of Applied Physiology, GLUT4. Journal of Physiology and Pharmacology, 104(1), 286-287. doi:10.1152/japplphysi59(Suppl 7), 5-18. Retrieved from http://www. ol.01139.2007
jpp.krakow.pl/
Terjung, R. (1995). SSE \#54: Muscle Adaptations to
Chapter 10: Build Your Running Energy System

BUILD Y

Aerobic Training. Retrieved from Sports Science
Buono, M., \& Kolkhorst, F. (2001, June 1). Estimat-
Exchange: http://www.gssiweb.org/Article/ ing ATP resynthesis during a marathon run: a
sse-54-muscle-adaptations-to-aerobic-trainmethod to introduce metabolism. Adv Physiol
ing
Educ, 25(2), 70-71.
Gibala, M., Little, J., Macdonald, M., \& Hawley, J.
Rauch, H., Hawley, J., Noakes, T., \& Dennis, S.
(2012, March 1). Physiological adaptations to
(1998, July). Fuel metabolism during ultra-
low-volume, high-intensity interval train-
endurance exercise. Pflügers Archiv European

OUR RUNNING BOD

ing in health and disease. J Physiol, 590(Pt 5),
Journal of Physiology, 436(2), 211-219.
1077-1084. doi:10.1113/jphysiol.2011.224725
Ahlborg, G., \& Felig, P. (1982, January). Lactate and
Glucose Exchange across the Forearm, Legs,

Chapter 9: Balance Your Running pH

and Splanchnic Bed during and after ProCostill, D., Barnett, A., Sharp, R., Fink, W., \& Katz, longed Leg Exercise. J. Clin. Invest., 69, 45-54.
A. (1983). Leg muscle pH following sprint runAhlborg, G., Wahren, J., \& Felig, P. (1986, March). ning. Med Sci Sports Exerc, 15(4), 325-329.
Splanchnic and Peripheral Glucose and LacKnuth, S., Dave, H., Peters, J., \& Fitts, R. (2006, tate Metabolism During and After Prolonged September 15). Low cell pH depresses peak Arm Exercise. J. Clin. Invest., 77, 690-699. power in rat skeletal muscle fibres at both 30 Jansson, E., \& Kaijser, L. (1987, March). Substrate degrees C and 15 degrees C : implications for utilization and enzymes in skeletal muscle muscle fatigue. J Physiol, 575(Pt 3), 887-899. of extremely endurance-trained men. J Appl Maglischo, E. (2012). Does Lactic Acid Cause MusPhysiol, 62(3), 999-1005.
cular Fatigue? Journal of the International Society
Duffield, R., Dawson, B., \& Goodman, C. (2004, \boldsymbol{Y}
of Swimming Coaching, 2(2), 4-40.
September). Energy system contribution to

FuRtHER REaDing

100-m and 200-m track running events. J Sci
Turner, A., Owings, M., \& Schwane, J. (2003, Feb-
Med Sport, 7(3), 302-313.
ruary). Improvement in running economy
Duffield, R., Dawson, B., \& Goodman, C. (2005, after 6 weeks of plyometric training. J Strength March). Energy system contribution to

Cond Res, 17(1), 60-67.
400-metre and 800-metre track running. J
Berryman, N., Maurel, D., \& Bosquet, L. (2010,
Sports Sci, 23(3), 299-307.
July). Effect of Plyometric vs. Dynamic Weight
Training on the Energy Cost of Running. Jour-
Chapter 11: Build Your Running Nervous System
nal of Strength \& Conditioning Research, 24(7),
Farndon, J. (2009, September 16). Nerve Signalling:
1818-1825. doi:10.1519/JSC.0b013e3181def1f5
Tracing the Wiring of Life. Retrieved from Nobelprize.org: http://www.nobelprize.org/edu-

Chapter 12: Build Your Running Hormones

cational/medicine/nerve signaling/overview/
Bhasin, S., Storer, T., Berman, N., Callegari, C.,
Lee, M., \& Carroll, T. (2007). Cross education: possible
Clevenger, B., Phillips, J., . . . Casaburi, R. (1996, mechanisms for the contralateral effects of uniJuly 4). The Effects of Supraphysiologic Doses lateral resistance training. Sports Med, 37(1), 1-14.
of Testosterone on Muscle Size and Strength
Hill, D. J. (2013, July 15). Boston Dynamics' Human-
in Normal Men. N Engl J Med, 335, 1-7.
oid Robot, ATLAS, In Latest Video. Retrieved
doi:10.1056/NEJM199607043350101

\boldsymbol{Y}

from Singularity HUB: http://singularityhub.
Lundby, C., \& Olsen, N. (2011, March 15). Effects com/2013/07/15/ready-boston-dynamics-huof recombinant human erythropoietin in nor-manoid-robot-atlas-in-latest-video/
mal humans. J Physiol, 589(Pt 6), 1265-1271.
Oliveira, A., Silva, P. L., Gizzi, L., Farina, D., \& et
doi:10.1113/jphysiol.2010.195917
al. (2013, March 18). Effects of Perturbations
Thomsen, J., Rentsch, R., Robach, P., Calbet, J., to Balance on Neuromechanics of Fast Changes

Boushel, R., Rasmussen, P., . . Lundby, C.
in Direction during Locomotion. (A. Lucia, Ed.) (2007, November). Prolonged administration doi:10.1371/journal.pone. 0059029
of recombinant human erythropoietin inMcHugh, M., Tyler, T., Mirabella, M., Mullaney, creases submaximal performance more than M., \& Nicholas, S. (2007, August). The Efmaximal aerobic capacity. Eur J Appl Physiol, fectiveness of a Balance Training Interven101(4), 481-486.
tion in Reducing the Incidence of Noncontact Ankle Sprains in High School Football

Chapter 13: Build Your Running Brain

Players. Am J Sports Med, 35(8), 1289-1294.
Carter, J., Jeukendrup, A., \& Jones, D. (2004, De-
doi:10.1177/0363546507300059
cember). The effect of carbohydrate mouth
OUR RUNNING BOD Saunders, P., Pyne, D., Telford, R., \& Hawley, J.
rinse on 1-h cycle time trial performance.
(2004). Factors Affecting Running Economy in

Med Sci Sports Exerc, 36(12), 2107-2111.
Trained Distance Runners. Sports Med, 34(7),
doi:10.1249/01.MSS.0000147585.65709.6F
465-485.
Chambers, E., Bridge, M., \& Jones, D. (2009, April
Dallam, G., Wilber, R., Jadelis, K., Fletcher, G., \&
15). Carbohydrate sensing in the human

Romanov, N. (2005, July). Effect of a global al-
mouth: effects on exercise performance and

BUILD Y

teration of running technique on kinematics
brain activity. Journal of Physiology, 587, 1779-
and economy. J Sports Sci, 23(7), 757-764.
1794. doi:10.1113/jphysiol.2008.164285

412

FuRtHER REaDing

Sinclair, J., Bottoms, L., Flynn, C., Bradley, E., AlAmann, M., Venturelli, M., Ives, S., McDaniel,
exander, G., McCullagh, S., . . Hurst, H. (2013, J., Layec, G., Rossman, M., \& Richardson, R. April 11). The effect of different durations of (2013). Peripheral fatigue limits endurance carbohydrate mouth rinse on cycling perforexercise via a sensory feedback-mediated mance. Eur J Sport Sci, 259-64. doi:10.1080/1746 reduction in spinal motoneuronal output. J 1391.2013.785599

Appl Physiol, 115, 355-364. doi:10.1152/japMarcora, S. M. (2008, September 26). The end-spurt plphysiol.00049.2013
does not require a subconscious intelligent
Noakes, T. (2012). Fatigue is a Brain-Derived system. Retrieved from BMJGroup Blogs: http:// Emotion that Regulates the Exercise Behav-blogs.bmj.com/bjsm/the-end-spurt-does-notior to Ensure the Protection of Whole Body require-a-subconscious-intelligent-system/ Homeostasis. Front Physiol, 3, 82. doi:10.3389/ Bellinger, A., Reiken, S., Dura, M., Murphy, P., fphys.2012.00082
Deng, S.-X., Landry, D., . . . Marks, A. (2008, Okano, A., Fontes, E., Montenegro, R., de Tarso February 12). Remodeling of ryanodine reVeras Farinatti, P., Cyrino, E. L., Bikson, M., \& ceptor complex causes "leaky" channels: A
Noakes, T. (2013, February 27). Brain stimu-
molecular mechanism for decreased exercise lation modulates the autonomic nervous capacity. Proc Natl Acad Sci USA, 105(6), 2198system, rating of perceived exertion and per2202. doi:10.1073/pnas. 0711074105
formance during maximal exercise. Br J Sports

BUILD Y

de Paoli, F., Ørtenblad, N., Pedersen, T., Jørgensen,
Med, doi:10.1136/bjsports-2012-091658
R., \& Nielsen, O. (2010, December 1). Lactate

Upson, S. (2012, July 24). A Single Brain Structure
per se improves the excitability of depolar-
May Give Winners That Extra Physical Edge.
ized rat skeletal muscle by reducing the Cl-
Retrieved from Scientific American: http://www. conductance. J Physiol, 588(Pt 23), 4785-4794.
scientificamerican.com/article/olympics-
doi:10.1113/jphysiol.2010.196568
insula-gives-edge/
Wilkinson, D., Smeeton, N., \& Watt, P. (2010, July).

OUR RUNNING BOD

Ammonia metabolism, the brain and fatigue;

Chapter 14: Build Your Training Approach

revisiting the link. Prog Neurobiol, 91(3), 200Magness, S. (2008). Training . Retrieved from The 219. doi:10.1016/j.pneurobio.2010.01.012

Science of Running: http://magstraining.tri-
Rauch, H., Gibson, A., Lambert, E., \& Noakes, T.
pod.com/training. html (2005). A signalling role for muscle glycogen in the regulation of pace during prolonged exChapter 18: Build Your Running Diet with Real Food ercise. Br J Sports Med, 39, 34-38. doi:10.1136/ Wylie, L., Kelly, J., Bailey, S., Blackwell, J., Skiba, bjsm.2003.010645
P., Winyard, P., . . . Jones, A. (1985, August 1).

Allen, D., \& Trajanovska, S. (2012). The multiple Beetroot juice and exercise: pharmacodyroles of phosphate in muscle fatigue. Front namic and dose-response relationships. J Physiol, 3, 463. doi:10.3389/fphys.2012.00463 Apple Physiol, 115(3), 325-336. doi:10.1152/japDavis, J., Alderson, N., \& Welsh, R. (2000, August). plphysiol.00372.2013

Serotonin and central nervous system fa-
Mickleborough, T., Lindley, M., Ionescu, A., \& Fly, tigue: nutritional considerations. Am J Clin
A. (2006, January). Protective Effect of Fish

Y

Nutr, 72(2), 573s-578s.
Oil Supplementation on Exercise-Induced

413

FuRtHER REaDing

Bronchoconstriction in Asthma. Chest Journal, varying dietary fat on performance and me129(1), 39-49.
tabolism in trained male and female runners.
Tarazona-Díaz, M., Alacid, F., Carrasco, M., Marti-
J Am Coll Nutr, 19(1), 52-60.
nez, I., \& Aguayo, E. (2013). Watermelon Juice:
Gerlach, K., Burton, H., Dorn, J., Leddy, J., \& Hor-
Potential Functional Drink for Sore Muscle
vath, P. (2008). Fat intake and injury in female
Relief in Athletes. J. Agric. Food Chem., 61(31), runners.
Journal of the International Society of
7522-7528. doi:10.1021/jf400964r
Sports Nutrition, 5(1). doi:10.1186/1550-2783—
Smith-Spangler, C., Brandeau, M., Hunter, G.,
5-1
Bavinger, J., Pearson, M., Eschback, P., . . .
Talbott, S. (2013, September 10). Supplement Use
Bravata, D. (2012). Are Organic Foods Safer
Amongst Endurance Athletes. Retrieved from
or Healthier Than Conventional Alterna-
Competitor: http://running.competitor.
tives?: A Systematic Review. Ann Intern Med.,
com/2013/09/nutrition/supplement-use157(5), 348-366. doi:10.7326/0003-4819-157-5— amongst-endurance-athletes_17360 201209040-00007

Chapter 22: Build Your Running Nutrients

Chapter 19: Build Your Running Carbohydrates

Ginde, A., Liu, M., \& Camargo, Jr., C. (2009, March
Ferguson-Stegall, L., McCleave, E., Ding, Z., Doerner
23). Demographic differences and trends of \boldsymbol{Y}

III, P., Liu, Y., Wang, B., . . Ivy, J. (2011). Aerobic vitamin D insufficiency in the US population, Exercise Training Adaptations Are Increased 1988-2004. Arch Intern Med, 169(6), 626-632. by Postexercise Carbohydrate-Protein Suppledoi:10.1001/archinternmed.2008.604 mentation. Journal of Nutrition and Metabolism, Bolland, M., Grey, A., Avenell, A., Gamble, G., \& 2011. doi:10.1155/2011/623182

Reid, I. (2011, April 19). Calcium supplements with or without vitamin D and risk of cardio-

Chapter 20: Build Your Running Protein

vascular events: reanalysis of the Women's
Campbell, B., Kreider, R., Ziegenfuss, T., La
Health Initiative limited access dataset and
Bounty, P., Roberts, M., Burke, D., . . . Antonio, meta-analysis. BMJ, 342, d2040. doi:10.1136/
J. (2007). International Society of Sports Nutribmj.d2040
tion position stand: protein and exercise. Journal of the International Society of Sports Nutrition,

Chapter 25: Build Your Race

4, 8. doi:10.1186/1550-2783-4-8
Rapoport, B. (2010). Metabolic Factors Limit-
Consumer Reports. (2010, July). Alert: Protein ing Performance in Marathon Runners.
Drinks: You Don't Need the Extra Protein or
PLoS Comput Biol, 6(10). doi:10.1371/journal.

OUR RUNNING BOD

the Heavy Metals Our Tests Found. Consumer pcbi. 1000960

Reports, 75(7), 24-27. Retrieved from http:// www.consumerreports.org/cro/2012/04/pro-
tein-drinks/index.htm

Chapter 21: Build Your Running Fats

BUILD Y Horvath, P., Eagen, C., Fisher, N., Leddy, J., \& Pendergast, D. (2000, February). The effects of

414

FuRtHERREaDing

ACKNOWLEDGMENTS
Creating this book required the direct and in-sponsorship of
Nike, with special thanks to Kevin direct efforts of so many people-for start-Paulk and Vida Rabizadeh; Theraband, with special ers, the literally hundreds of coaches, athletes, thanks to Chrissy Foster; AquaJogger, with special scientists, and others who contributed innovathanks to Steve Bergstrom; Classic Kickboxing in tions to the sport-that listing them would fill Pasadena, CA, with special thanks to Mauricio Gonanother book. So the authors wish to thank them zales; Anytime Fitness in La Cañada, CA; and Powen masse.
erLung, with special thanks to Carolyn Morse.
Next, we'd like to thank Matthew Lore, presi-
We'd also like to thank Bill Greene and Sports dent and publisher for The Experiment, for his

Tutor for allowing us to use their warehouse and early enthusiasm for the book and, obviously, for grounds for multiple photo shoots-and for letpublishing it. We'd also like to thank Nicholas ting us leave up the lighting, background sheets,

Cizek, our editor, for his skill, guidance, and pafloor mats, etc. for the long weeks it took to finish tience.
the job.
And speaking of early enthusiasm, a heartfelt The injury-prevention routines, exercises, and thank-you to our agent, David Vigliano, for seeing photo shoots wouldn't have been possible withsomething unique in the original book outline, out the advice, input, and oversight of Michael P. then helping us to mold that outline into a proParkinson, PT, and Bianca Guzman, MPT (who posal. Thanks also to Matthew Carlini and the also donated her time as a model). Also contributrest of Vigliano Associates.
ing to the shoots and exercises were Phil Wharton This book grew out of articles and columns (whartonhealth.com) and CB Richards. first published by Running Times magazine, so we'd The book drew heavily on interviews conlike to thank the magazine and its editor-in-chief, ducted with Steve Magness (scienceofrunning. Jonathan Beverly, for permission to borrow ideas, com); Jay Johnson (coachjayjohson.com); Jeff Denpassages, descriptions, quotes, and even the gate (runnersworld.com/person/jeff-dengate); book's title from those pieces.
Christopher B. Scott, Ph.D. (usm.maine.edu/ehss/

Big thanks, too, to Stuart Calderwood, our copy chris-scott); Sean Wade (kenyanway.com); Alex editor, for smoothing out bumps in the manuHutchinson, Ph.D.; Robert Montgomery, Ph.D.; script and for appending a marathon-long list of Tom Cotner, Ph.D.; Jeff Gaudette (runnersconnect. production notes. net); Jeff Sneed; and Roger Sayre.

This book's photo instruction wouldn't have We also mined interviews previously conbeen possible without the enthusiasm and ducted for Pete Magill's Running Times articles and

415

columns, including those with Dr. Jeffrey S. Brown photo editing, John Fell for shooting the food pho(houstonendocrinology.com); Jonathan Dugas, tos for Part 4, the American College of Sports Ph.D.; Joe Rubio (runningwarehouse.com); Dr. Medicine (ACSM) for allowing use of their formuJames Fries, of the Stanford School of Medicine; las in creating some of the book's tables, the and Richard L. Rupp, DPM.

American Council on Exercise for permission to This book used photo instruction as its centerreprint their chart, "Percent Body Fat Norms for piece, a theme that couldn't have worked without Men and Women" (Copyright © [2011], American the time and dedication of our wonderful models:

Council on Exercise; All rights reserved; Reprinted Eddie Andre, Sean Brosnan, Christian Cushingby permission), and Scott Douglas for his valuable murray, Jessica Cushing-murray, Kathleen Cushfeedback on early drafts of this project. ing-murray, Nathaniel Cushing-murray, Rebecca Finally, we'd like to offer our deepest thanks to Cushing-murray, Zachary Cushing-murray, Emii, two very special participants in this project. First, Callie Greene, Sean Magill, Matt Nelson, Jessica a big thank-you to Andy DiConti, who was instruNg, Grace Padilla, Jacques Sallberg, Angie Stewart, mental in designing the format for this book's and Tanya Zeferjahn.
component chapters and worked tirelessly to A big thanks to Ed Murphy and the Cal Coast bring the project to fruition. Second, we owe an Track Club for creating our race pace tables. And enormous debt of gratitude to photographer Di-

Y to John Gardiner, Rob Arsenault, and other mem-ana Hernandez, whose offer to do a two-day bers of the Cal Coast Track Club for providing nushoot turned into a thousand hours of shoot prep, merous suggestions for the lists that appear in photography (those two shoots grew to a dozen), this book (from running fads to race jitters). and photo editing-not to mention additional Thanks, too, to Liz Palmer for her advice on work proofreading and providing thoughtful edstrength workouts, Fred Raimondi for advice on
its.

OUR RUNNING BOD

BUILD Y

416

acKnOWlEDgMEnts

INDEX
Page numbers in italics refer to tables and charts.
A
age grading, 28
Academy of Nutrition and Dietetics, 312
Air Squat, 65, 235
acceleration without sprinting, 370
air temperature, 175-77, 176
accidents, 288
AIS (Active Isolated Stretching), 44, 104-6
Achilles tendinitis, 83
alcohol, 227
Achilles tendinosis, 83-84
Alfredson, Hakan, 83-84
Achilles tendon injuries, 83-84
alkaline $\mathrm{pH}, 152$
acidic $\mathrm{pH}, 151-52$
Almiron-Roig, Eva, 326
acidosis, 152-54, 245
Almond Cherry Pie Oat Bars, 345
ACL (anterior cruciate ligament), 85
almonds, 298, 309, 333-34, 345
actin, 39
alternation intervals, 149, 149-50
Active Isolated Stretching (AIS), 44, 104-6
altitude running gear, 22
acute injuries, 289
altitude training, 228
additional workouts, 262
alveoli, 121
adenosine triphosphate (ATP), 166, 167, 168, 175
A March, 203
adjustments, 176, 257
American College of Sports Medicine, 338
adrenaline (epinephrine), 229
amines, 222
advanced runner training schedules
amino acids, 318
5K race, 276
ammonia, 246
10K race, 277
anaerobic energy, 26, 143, 153
competitive runners, 272-73
anaerobic enzymes, 170
half marathon, 278
Ankle Dorsiflexion, 97
marathon, 279
Ankle Eversion, 98-99
time-constrained runners, 274-75
Ankle Inversion, 98
aerobic energy, 26, 138

Ankle Plantarflexion, 97
aerobic enzymes, 175
anterior cruciate ligament (ACL), 85
Aerobics, 160
anti-inflammatories, 290
aerobic system, 171-73
antioxidants, 290, 297
afferent feedback, 247
apples, 310
after-the-fact injuries, 288
Armstrong, Lance, 121, 223, 224
Agatston, Arthur, 351
articular cartilage, 86

417

A Skip, 204
non-competitive, 264-65
Atkins plan, 351
bell peppers, red, 299
ATP (adenosine triphosphate), 166, 167, 168, 175
Best Oats and Groats Ever, 303
avocados, 309, 327, 332, 333
bicycle ergometer studies, 143
Big-Toe Taps, 108
B
Billat intervals, 146, 146
Backward Lunge, 237
Black Bean and Quinoa Burger, 323
Backward Walkout/Jogout, 95
blend intervals, 149, 149, 150
bagels, 309
blood
balance, 196, 197, 217-20
3K Pace Training, 126
Balance on One Leg, 217
5K Pace Training, 128
Balance on One Leg with Medicine Ball, 218
10K Pace Training, 129
Balance with Stability Trainer, 218
cardiovascular system, 119-21, 120
Banana Almond Smoothie, 309
Cruise Interval Training, 129
Banana Chia Breakfast Pudding, 343
flow of, 118-19, 175
barefoot running, 11, 87-88, 219
Tempo Training, 131
Barefoot Running on Grass or Sand, 219
blood doping, 121
Y base training, 366
blood sugar, 312
beets, 298, 305
blood vessels, 118-19
Beginner's Fartlek, 49
blueberries, 298
beginner's guidelines
B March, 204-5
brain, 242
body-fat percentage, 348
cardiovascular system, 112
body heat, 175-77, 176
connective tissue, 80
Body Mass Index (BMI), 348
energy system, 166
body temperature, 175-77, 176, 245-46
gear, 18
Bodyweight Lunge, 64
hormones, 222
bone, 82-83
injury prevention, 288
Bounding, 210
jargon, 26
Bowerman, Bill, 14
motivation, 4
Box Jumps, 215
muscles, 36
brain, 241-51
nervous system, 192
about, 241-42
OUR RUNNING BOD $\mathrm{pH}, 152$
beginner's guideline, 242
race approach, 362
fatigue, 244-49
race day, 370
function, 7
recovery, 282
insular cortex, 248
running approach, 256
oxygen to, 247
running history, 10
swishing and spitting technique, 243
BUILD Y beginning runner training schedules
training overview, 244
competitive, 266-67
training rundown, 251
418
INDEX
tricking, 249-50
complex versus simple, 308
Bramble, Dennis M., 12-13
disadvantages of, 312
bras, sports, 21, 23
fiber, 312
British Journal of Sports Medicine, 83-84
glycemic index/loads, 310-12
Brooks, George A., 153, 156
injury prevention training and, 291
Brown, Jeffrey S., 225, 227-28, 230
loading, 12, 174-75, 243, 312-13
B Skip, 205
protein and, 177
buffer training, 154
recipes, 314-16
bumping others, 370
runners, relationship with, 312
Buono, Michael J., 167
snacks, recovery, 309-10
Burfoot, Amby, 288
types, 308
Burpees, 238
See also nutritional impact of training
Butternut (or Pumpkin) Pudding, 357
carbon dioxide (CO), 171
2
Butt Kicks—Dynamic Flexibility, 206
cardiac muscle, 36
Butt Kicks—Trigger Action, 206
cardiac output, 115, 115-16
cardiovascular system, 111-35
C
about, 111-12
cafeteria running, 257
beginner's guideline, 112

BUILD Y

calcium, 339
blood, 119-21, 120
calcium channels, leaky, 245
blood vessels, 118-19
Calf-Foam Roller, 101
heart, 114-17, 115
Calf-Static Stretch, 78
lungs, 121-22

Calves (Gastrocnemius)—AIS, 105
photo instruction, 124-35
candy bars, substitute for, 349
resting heart rate, 113-14
capillaries
running workouts, 124-35
OUR RUNNING BOD
3K Pace Training, 126
training overview, 114
5K Pace Training, 127
training rundown, 122, 123
10K Pace Training, 129
Carioca, 207
1500-Meter Pace Training, 124
cartilage, 86,88
about, 118
Central Governor theory, 244, 247-49
Cruise Interval Training, 129
central nervous system (CNS), 192, 194, 247
Hill Repeats, 133
See also nervous system
Long Run, 132
cereal bars, 349
pressure on, 119
charity, 7
Tempo Training, 130
cheese, 310, 315, 344
capillary beds, 118

Cheetos, substitute for, 349
capillary zone, 118-19
chips, substitute for, 350
carbohydrates, 307-16
ChiRunning, 11
about, 307-8
chocolate, 305, 315-16, 349

Y

amount needed, 312
Chocolate Beet Cake, 305

419

INDEX

chocolate milk, 309
routine, 93-99
chronic injuries, 288, 289
tendon, 83-85
Cinderella gear, 23
training overview, 80-81
Clarke, Ron, 113, 114
training rundown, 89, 89-90
Clean, 68-69
wobble board, 91-92
Clif Bar, 309
consistency, 250, 370-71
coconut water, 301
contraction, 116, 195-96
Coe, Seb, 11
cookies, 349

Cold Avocado Soup, 332
core strength, 42
cold-weather running gear, 21-22
core training, 11
collagen fibers, 84,85
cortisol, 229
competition
Costill, David, 141, 152, 173
as motivation, 7
Cotner, Tom, 225, 227, 284
as periodization phase, 366
cramping, 288
training for, 256, 258, 363-64
creatine phosphate (CP), 168-69
competitive runner training schedules
Cross Country Skiing, 163
advanced runners, 272-73
cross training, 156-57, 158-63, 187, 187, 291
Y beginning/returning runners, 266-67
Cruise Interval Training, 129, 130
intermediate runners, 270-71
Curtsy Lunge Hop, 54
complementary protein, 319-20
Custom Homemade Hummus, 355-56
complete protein, 318
Cycling, 160-61
completion, training for, 362-63
complex carbohydrates, 308

D

conditional amino acids, 318
daily grind, recovery from, 284
congestion, 156
Dance/Freestyle Aerobics, 160
connective tissue, 79-110
Daniels, Jack, 15, 28, 49
about, 79-80
dark chocolate, 349
Active Isolated Stretching, 104-6
DASH (Dietary Approaches to Stop Hypertension)
beginner's guideline, 80
diet, 351
bone, 82-83
Daydreamer, 110
cartilage, 86, 88
Deadlift, 69
damage to, 247
Delayed Onset Muscle Soreness (DOMS), 37
OUR RUNNING BOD fascia, 88-89
Dengate, Jeff, 18-19, 20, 22, 23
Foam Roller Routine, 101-3
depolarization, 246
Household Props Post-Run Injury Prevention
Dewnowski, Andrew, 326
Routine, 107-10
Dietary Approaches to Stop Hypertension (DASH)
ligament, 85-86
diet, 351
lunge work, 99-100
Dietary Guidelines for Americans, 330-31
BUILD Y photo instruction, 91-110
dietary supplements. See supplements
resistance tubing loop/resistance band loop
diet changes, 365
420

INDEX

diet plans, 350-52
adenosine triphosphate, 166, 167, 168, 175
digestive distress, 312
aerobic enzymes, 175
disaccharides, 308
aerobic system, 171-73
Distance Run, 50, 51
beginner's guideline, 166
DOMS (Delayed Onset Muscle Soreness), 37
carbo-loading and fat-loading, 174-75
Doritos, substitute for, 349
fueling, 177, 189, 189
Double Arm Swing, 233
glycolytic system, 169-71
Double-Leg Hops, 211
heat, 175-77, 176
doubles, 259
nutritional impact of training, 178-89
"down a quart" approach, 249
phosphagen system, 168-69
Downhill Running, 52
photo instruction, 178-89
draft, 371
races and, 173, 175
Dugas, Jonathan, 291
training overview, 167
Dumbbell Arm Swings, 63
training rundown, 177
Dumbbell Bench Press, 62
environment-specific gear, 21-22
Dumbbell Row, 62
enzymes, 170, 175
dynamic stretching, 42, 75-76
epinephrine (adrenaline), 229
Epsom salt bath, 342

BUILD Y

E
erythropoietin (EPO), 224, 228-29
Easy Distance Run, 49, 50
essential amino acids, 318
Easy Morning Oats or Groats-Rice Cooker Tech-
essential fatty acids, 326
nique, 303
estrogen, 230
eating, as motivation, 7
even-paced running, 14
eccentric muscle contractions, 37
even splits, 27
effort, 370-71, 373
evolution, running, 10, 12-13

OUR RUNNING BOD

Egg-and-Avocado Sandwich, 309
extended runs, 249
eggs, 309, 322-23, 327, 355
extracellular matrix, 80
Eggs Tonnato, 323
800-Meter-Pace Training, 147-48, 148, 185, 185
F
elastic recoil, 29, 84-85
facilitated diffusion, 156
electrophysiology, 193
fads, 11-12
Elliptical Machine, 159
fartlek, 14, 28, 49
ElliptiGO Bicycle, 159
fascia, 88-89
endocrine system, 192, 222
fascicles, 36
See also hormones
fast glycolysis, 169-70
endorphins, 230
fast starts, 257, 372
endosymbiotic theory, 139
fast-twitch fibers, 36, 37-38, 155, 156, 195
endurance exercise, 321
fatigue, 41, 197-99, 244-49, 247
energy system, 165-89
fats, 325-34

\boldsymbol{Y}

about, 165-66, 168
about, 324-25

421

INDEX

fats (continued)
Four O'Clock and Eight O'Clock Lunge, 237
aerobic system and, 172-73
free radicals, 290, 297
benefits of, 325
Freestyle Aerobics, 160
loading, 174-75
Fresh Ginger Ale, 304
monounsaturated, 328, 330
friendship, 7
omega-3 fatty acids, 328, 330
Fries, James, 5, 8
omega-6 polyunsaturated fatty acids, 328
Front Lunge, 236
polyunsaturated, 328, 330
frozen yogurt, 350
recipes, 332-34
fueling, 177, 189, 189
recommended amounts, 330-31
fun, 8
runner requirements for, 329-30
fundamentalism, running, 257
saturated, 328-29, 330-31
trans fat, 301-2, 329, 331

G

unsaturated, 325-28
gadgets, 22-23
See also nutritional impact of training
Gas Pedals, 107
fat-soluble vitamins, 337
gear, 17-23
fiber, 312
about, 17-19
\boldsymbol{Y} fibrocartilage, 86
basic, 18-21
1500-Meter Pace Training, 124-25, 125
beginner's guideline, 18
figs, 309, 341, 344
Cinderella, 23
fish, fatty, 327
environment-specific, 21-22
Fitzgerald, Matt, 246
gadgets, 22-23
$5 K$ pace training, 34, 127, 127-28, 183, 183
pants, 21, 22, 23
5K race, 276, 364, 366
replacing old, 23
5K Road and Trail Reps, 134, 134
shirts, 20, 23
Flat-Footed Marching, 209
shoes, 19-20, 23
Foam Roller Routine, 101-3
shorts, 20, 23
food
sports bras, 21, 23
processed, 295-96, 296, 337
Gerschler, Woldemar, 14, 116
produce, 300, 302
Gibala, Martin J., 142, 143
real, 296, 297
Gibala intervals, 145, 146
real packaged, 299-302
glucagon, 230
OUR RUNNING BOD superfoods, 297, 298-99
Gluteals-AIS, 106
supplements versus, 297, 299
Glutes-Foam Roller, 103
trust and, 302
glycemic index/loads, 310-12
Food and Drug Administration (FDA), 336
glycogen depletion, 174, 246
foot strike, 87-88
glycolytic system, 169-71
Foot Work, 107
goal fitness, 258
BUILD Y force, 41
goal pace, 363-64
400-Meter-Pace Training, 146, 147, 186, 186
goat cheese, 309
422

INDEX

GPS watches, 22
Hill Run, 52
granola, 310
hills, value of, 259
Greek yogurt, 298, 310
Hill Strides, 52
Groaners, 236
Hip Adduction, 96
groats, 303
Hip Flexor and Quadriceps-Static Stretch, 77
group workouts, 250
hip strength, 42
Guacamole Eggs, 323
Holloszy, John O., 141
Holmér, Gösta, 14
H
homeostasis, 222-23, 225
half marathon, 278, 367
hormones, 221-39
Hamstring-AIS, 104
about, 221-23
Hamstring-Foam Roller, 101
balancing, 230-31

Hamstring-Static Stretch, 76-77
beginner's guideline, 222
hard-easy approach to training, 14, 259
cortisol, 229
hard workouts, recovery between, 283, 284
endorphins, 230
Harvard School of Public Health, 297
epinephrine (adrenaline), 229
hats, 21
erythropoietin, 224, 228-29
health, 5, 231
estrogen, 230

BUILD Y

See also specific topics
glucagon, 230
heart, 114-17, 115
human growth hormone, 225-26, 227
See also stroke volume
insulin, 229
heart attacks, 117
kettlebell routine, 232-34
heart rate, maximum, 113, 116
performance-enhancing drugs, 223-24
heart rate monitors, 22
photo instruction, 232-39
heat, 175-77, 176
Running Circuit, 234-39
OUR RUNNING BOD

Heel Dips, 83-84, 109
testosterone, 226-28
Heel Raises-Bent Knee, 67
thyroid hormone, 230
Heel Raises-Straight Knee, 66
training overview, 225
Henderson, Joe, 11
training rundown, 231
HGH (human growth hormone), 225-26, 227
types, 222
high-fat diet, 174
Household Props Post-Run Injury Prevention
High-Intensity Interval Training (HIIT), 145-46,
Routine, 107-10
146
human growth hormone (HGH or GH), 225-26, 227
high-intensity workouts, 200-201
Hummus Eggs, 322
High Knees, 210
Hunter, Iain, 88
high-quality protein, 318
Hutchinson, Alex, 119, 230, 248
High Skipping, 208
hydration belts, 22
HIIT (High-Intensity Interval Training), 145-46, 146
hydrogen ions, 152, 154-55
Hill, Archibald, 13-14, 153
See also pH

\boldsymbol{Y}

Hill Repeats, 133, 133
hypertrophy, 39
423

INDEX

I
defined, 27
ice baths, 12
Gibala intervals, 145, 146
ice cream, substitute for, 350
high-intensity interval training, 145-46, 146
icing, limited, 291
race-effort intervals, 249
Iliotibial (IT) Band Stretch—Static Stretch, 78
stroke volume, improving, 116
Inchworm Plank, 53
Tabata intervals, 11, 143, 145, 146
incomplete protein, 318
Timmons intervals, 145-46, 146
inhibition, reduced, 195
Wingate intervals, 145, 146
injuries from injuries, 288
inventory, taking, 371
injury, 85-86, 227, 365
iron, 339-40
injury prevention, 287-91
Iron Cross, 239
about, 287

IT Band-Foam Roller, 102
beginner's guideline, 288
lack of, 258
J
running injury types, 288-89
jackets, 21
training, 289-91
jargon, 25-29
training schedule and, 262
jogging, 48, 180, 180
Yinnovation, 10, 13-15
Johnson, Jay, 34, 225, 226-27, 232, 234
inorganic phosphate, 246
Jumpouts, 95
inspiration, 10, 15
Jumpouts-Sideways, 96
insular cortex, 248
Jurek, Scott, 352
insulin, 229
intensity, 11, 200-201, 262, 363
K
intermediate fibers, 36, 37, 155, 156, 195, 196
Kale, Kale, and Kale (Kale Three Ways), 343-44
intermediate runner training schedules
kettlebell routine, 232-34
5K race, 276
Khannouchi, Khalid, 167
10K race, 277

Kickboxing, 160
competitive runners, 270-71
kicking late, 371
half marathon, 278
knees, 81, 85-86
marathon, 279
Kolkhorst, Fred W., 167
non-competitive runners, 268-69
time-constrained runners, 274-75
L
OUR RUNNING BOD intermittent exercise, 321
labels, food, 300
International Society of Sports Nutrition, 320-21
lactate, 119, 154-56, 171-72
intervals and interval training
lactic acid, 13-14, 27, 153
about, 14
Lateral Barrier Jumps, 216
alternation intervals, 149, 149-50
lateral collateral ligament (LCL), 85-86
Billat intervals, 146, 146
Lateral Speed Runners, 56
BUILD Y blend intervals, 149, 149, 150
laxity, ligament, 86
Cruise Interval Training, 129, 130
Leg Lifts, 60
424
INDEX

Leg Swings: Forward and Backward, 75
matched time runs, 250
Leg Swings: Sideways, 76
maximum heart rate, 113, 116
Lemon Risotto with Avocado and Salmon, 333
Mayo Clinic, 354
lentils, 298
McDougall, Christopher, 11
Lieberman, Daniel, 12-13, 87
MCTs (transport proteins), 155-56
life-threatening injuries, 289
meals
ligament, 85-86
pre-workout, 177
Linguine with Anchovies and Things, 314-15
recovery, 179, 180, 181, 182, 188
lipolysis, 172-73
medial collateral ligament (MCL), 85-86
Loewi, Otto, 193
Medicine \& Science in Sports \& Exercise, 81
long duration exercise, 172-73
Mediterranean diet, 352-54
Long Run, 132, 132-33, 363
medium runs, 257
Long Skipping, 209
meniscus, 86
long slow distance (LSD), 11
Meyerhof, Otto, 153

Lower Back and Hip Abductors-Static Stretch,
mid-race mini-battles, 372
78
Mileage, 150, 200
Lower Back-Foam Roller, 103
mile-pace running, 184, 184
low mileage and high intensity, 11
mile splits, 27

BUILD Y

LSD (long slow distance), 11
mile world records, 13
Lunge, 68
milk, chocolate, 309
Lunge Clock, 100
minerals, 336, 337, 339-41
Lunge Walk, 99
minimalist running, 11
lunge work, 99-100
minimalist shoes, 19
lungs, 121-22
missed workouts, 262
Lutz, Kai, 248
mistakes, common, 257-58, 372

OUR RUNNING BOD

Lydiard, Arthur, 14
mitochondria
400-meter-pace training and, 146
M

800-meter-pace training and, 147
Maglischo, Ernest W., 152, 154, 246
about, 138-41
Magness, Steve, 156-57, 225, 226, 228
defined, 28
marathon
described, 137
fueling, 189, 189
maximum, 141, 141-44
practicing race intensity, 363
muscle size and, 43
taper, traditional, 364
origin of, 139
training schedule, 279
overloaded, 170
tune-up races, 367
VO max and, 139-41
2
Marching Bridge, 58
See also powerhouses
Marcora, Samuele M., 244
modeling, 82
Margulis, Lynn, 139
Modern Deviled Eggs Six Ways, 322-23
\boldsymbol{Y}
Marks, Andrew, 245
monosaccharides, 308
425

INDEX

monounsaturated fats, 328, 330
photo instruction, 47-78
Monster Walk, 94
Proprioceptive Neuromuscular Facilitation
monster workouts, 257
stretching, 70-75
Moran, Laurence A., 153
resistance training, 42
Moses, Edwin, 12
Runner 360, 53-58
motivation, 3-8
Runner's Weight Room Routine, 59-69
about, 3-5
running, 38-41
beginner's guideline, 4
running workouts, 47-52
brain function, 7
sore, 290
cautions, 4
static stretching, 76-78
charity, 7
stretching, 42, 44-45
competition, 7
training overview, 38
eating, 7
training rundown, 46
friendship, 7

See also muscle fibers
fun, 8
muscle spindles, 44-45
muscle mass, maintaining, 7
musculotendinous zone, 83
nature, 7
myofibrils, 39
\boldsymbol{Y} physical health, 5
myofilaments, 39
results, 8
myosin, 39
stress relief, 5, 7
myotendinous junction, 83
stride length, maintaining, 7
weight loss, 5, 6
N
motor-unit recruitment, 194-96
nasal strips, 12
MP3 players, 22-23
National Academy of Sciences, 312
multi-pace approach, 41
National Institutes of Health, 297
muscle fibers
National Runners Health Study, 117
contraction, increasing, 118
nature, 7
conversion, 45, 45-46
negative splits, 27, 250, 363
fast-twitch, 36, 37-38, 155, 156, 195
nervous system, 191-220
intermediate, 36, 37, 155, 156, 195, 196
about, 191-94
ladder of, 40, 40-41
balance, 197, 217-20
range of, 259
beginner's guideline, 192
OUR RUNNING BOD size of, 43-44
fatigue, 197-99
slow-twitch, 36-37, 155, 156, 195-96
motor-unit recruitment, 194-96
muscles, 35-78
photo instruction, 203-20
about, 35-36
Plyometrics, 211-16
beginner's guideline, 36
proprioception, 196-97, 217-20
damage to, 247
running economy, 199, 199-202, 201
BUILD Y dynamic stretching, 75-76
Technique Drills, 203-10
mass, maintaining, 7
training overview, 194
426
INDEX
training rundown, 202
O
neuromuscular control, 42
oats, 303, 345
neurons, 191, 192, 193
oligosaccharides, 308
New England Journal of Medicine, The, 117
olive oil, 327
night, recovery at, 283
omega-3 fatty acids, 328, 330
95-Second Kettlebell Routine, 232-34
omega-6 polyunsaturated fatty acids, 328
Noakes, Timothy, 172-73, 174, 244, 246, 247, 249
100 percent workouts, 365
non-competitive training
Orbits, 107
about, 256, 258
organic produce, 302
beginning/returning runner schedule,
osteoarthritis, 81
264-65
osteoblasts, 82
intermediate runner schedule, 268-69
osteoclasts, 82
nonessential amino acids, 318
Oven Roasted Kale, 344
Nurmi, Paavo, 14
overanalysis, 372
nutrients, 335-45
overload injuries, 288
about, 335-37
Overnight Oats or Groats-Slow Cooker Tech-
hormonal balance and, 231
nique, 303
human growth hormone and, 227
overthinking, 372

BUILD Y

minerals, 336, 337, 339-41
overtraining, 260
real versus processed food, 296
overuse injuries, 288
recipes, 343-45
oxygen, 170, 247
supplements, 336, 337-38
oxygen uptake system, 139-41
vitamins, 335, 336, 337, 338-39
water, 341
P
See also carbohydrates; fats; protein
pace

OUR RUNNING BOD

nutritional impact of training, 178-89
air temperature and, 176
5K/10K pace running, 183, 183
effort versus, 371, 373
800m pace running, 185, 185
increasing beyond aerobic threshold, 119
about, 178
table, 374-76
cross training, 187, 187
training schedule and, 262
jogging, 180, 180
pace training tables
marathon fueling, 189, 189
3K, 126
mile-pace running, 184, 184
5K, 127
regular runs, 181, 181
10K, 128
resistance training, 188, 188
1500 Meter, 125
sprinting, 186, 186
Cruise Interval, 130
tempo runs, 182, 182
Long Run, 132
walking, 179, 179
Tempo, 131
nutritional yeast, 341-42
pants, 21, 22, 23

\boldsymbol{Y}

nuts, 327
PCL (posterior cruciate ligament), 85
427

INDEX

peanut butter and jelly sandwiches, 310
PNF Quadriceps Stretch, 74

Peanut Butter Cup Smoothie, 322
polysaccharides, 308
peptides, 222
polyunsaturated fats, 328, 330
"perfect" race, 372-74
Pool Running, 161-62
performance-enhancing drugs (PEDs), 223-24
popcorn, 349
periodization, 14, 366
popped rice snacks, 349
Peripheral Fatigue theory, 244
Pose Method, 11
pH, 151-63
posterior cruciate ligament (PCL), 85
about, 151-52
post-run routines, 262
beginner's guideline, 152
post-workout recovery, 283
cross training, 158-63
potassium, 340
lactic acid, 153
powerhouses, 137-50
photo instruction, 158-63
400-Meter-Pace Training, 146, 147
training overview, 154
800-Meter-Pace Training, 147-48, 148
training rundown, 157
about, 137-38
phantom injury, 365
Alternation and Blend Intervals, 149, 149-50
phosphagen system, 168-69
beginner's guideline, 138
\boldsymbol{Y} photo instruction
high-intensity interval training, 145-46, 146
about, 262
Mileage, 150
cardiovascular system, 124-35
mitochondria, 138-41
connective tissue, 91-110
mitochondrial biogenesis, 141, 141-44
energy system, 178-89
photo instruction, 145-50
hormones, 232-39
running workouts, 145-50
muscles, 47-78
training overview, 138
nervous system, 203-20
training rundown, 144
pH, 158-63
practicing race intensity, 363
powerhouses, 145-50
Prefontaine, Steve, 373-74
physical health, 5, 231
prescription drugs in supplements, 336
See also specific topics
pre-workout meals, 177

Pinsent, Matthew, 140
processed food, 295-96, 296, 337
pizza, cold, 310
produce, 300, 302
Plank Pups, 56
Prone Pedestal, 237
OUR RUNNING BOD Plank Rotations, 57
Prone Pedestal Leg Raise, 238
Plyometrics, 211-16
proprioception, 28-29, 196-97, 217-20
PNF Calf Stretch \#1: Gastrocnemius, 71
Proprioceptive Neuromuscular Facilitation (PNF)
PNF Calf Stretch \#2: Soleus, 72
stretching, 42, 44, 70-75
PNF Glute Stretch, 72-73
protein, 317-24
PNF Hamstring Stretch, 70-71
about, 317-18
BUILD Y PNF Hip Adductor Stretch, 73
aerobic system and, 172-73
PNF Hip Flexors Stretch, 74-75
amino acids, 318
428

INDEX

amount needed, 320-21
pace table, 374-76
carbohydrates and, 177
"perfect" race, 372-74
complementary, 319-20
race strategy, 370-71
complete versus incomplete, 318
race-effort intervals, 249
diet plans emphasizing, 351
race jitters, 365-66
as hormones, 222
race seasons, recovery between, 284-85
human growth hormone and, 227
race strategy, 370-71
injury prevention training and, 291
racing flats, 20
protein powder, 319
rain running gear, 21
quinoa, 320
rate coding, 194
recipes, 322-24
RBCs (red blood cells), 120
protein powder, 319
real food, 296, 297
Pumpkin Pudding, 357
real packaged food, 299-302
Push-Ups, 61, 239
recipes
pyruvate molecules, 169, 170, 171
about, 302
Almond Cherry Pie Oat Bars, 345
Q

Banana Almond Smoothie, 309
Quadriceps-AIS, 105
Banana Chia Breakfast Pudding, 343

BUILD Y

Quadriceps-Foam Roller, 102
Best Oats and Groats Ever, 303
Quadriceps-Static Stretch, 77
Black Bean and Quinoa Burger, 323
Quick Feet, 207
Butternut (or Pumpkin) Pudding, 357
Quick Hops, 216
Chocolate Beet Cake, 305
Quick Sauté Kale, 343
Cold Avocado Soup, 332
quinoa, 320
Custom Homemade Hummus, 355-56
Easy Morning Oats or Groats-Rice Cooker

OUR RUNNING BOD

R
Technique, 303
race approach, 361-67
Egg-and-Avocado Sandwich, 309
about, 361-62
Eggs Tonnato, 323
beginner's guideline, 362
Fresh Ginger Ale, 304
periodization, 366
Guacamole Eggs, 323
race jitters, 365-66
Hummus Eggs, 322
tapering, 364, 366
Kale, Kale, and Kale (Kale Three Ways), 343-44
training for competition, 363-64
Lemon Risotto with Avocado and Salmon, 333
training for completion, 362-63
Linguine with Anchovies and Things, 314-15
tune-up races, 366-67
Modern Deviled Eggs Six Ways, 322-23
race day, 369-76
Oven Roasted Kale, 344
about, 369-70
Overnight Oats or Groats-Slow Cooker Tech-
beginner's guideline, 370
nique, 303
effort versus pace, 371, 373
Peanut Butter Cup Smoothie, 322
\boldsymbol{Y}
mistakes, common, 372
Quick Sauté Kale, 343
429
INDEX
recipes (continued)
resistance training, 42, 188, 188, 227
Roasted Asparagus with Poached Eggs, 355
resistance tubing loop/resistance band loop rou-
Salmon + Horseradish Eggs, 322
tine, 93-99
Secret Healthy Pancakes, 314
Respiration Trainer, 135
Slow Braise Kale, 343-44
rest, 172, 262
Spicy Maple Hot Chocolate, 315-16
resting heart rate, 113-14
Stuffed Tortilla Chiles with Feta, Corn, and results, as motivation, 8

Black Beans, 315
returning runner training schedules
Sweet and Spicy Nuts, 332
competitive, 266-67
Sweet Potato Fries, 304
non-competitive, 264-65
Tangerine and Almond Cake, 333-34
Ridge, Sarah, 87
Wasabi + Sesame Eggs, 322
Roasted Asparagus with Poached Eggs, 355
Wheat Berry Salad with Figs and Feta, 344
Robergs, Robert A., 153
White Bean Blondies with Sea Salt, 323
routine, changes in, 366
Wild Mushroom Lasagna, 356
rule of specificity, 38-39, 156, 291
recovery, 281-85
Runner 360, 53-58
about, 281-83

Runner's Weight Room Routine, 59-69
\boldsymbol{Y} beginner's guideline, 282
Runner's World, 17, 18
from daily grind, 284
running approach, 255-60
between hard workouts, 283, 284
about, 255-56
meals for, 179, 180, 181, 182, 188
beginner's guideline, 256
at night, 283
choosing, 256, 258
in periodization, 366
competitive versus non-competitive training,
poor, 257
256, 258
post-workout, 283
mistakes, common, 257-58
between race seasons, 284-85
sustainability, 258
between repetitions, 283
time management, 258
snacks for, 184, 185, 186, 187, 309-10
training principles, 259-60
training schedule and, 262
Running Circuit, 234-39
red bell peppers, 299
running economy, 27, 199, 199-202, 201
red blood cells (RBCs), 120
running history, 9-15
reduced taper, 364
about, 9-10
OUR RUNNING BOD Reindell, Hans, 14, 116
beginner's guideline, 10
remodeling, 82
evolution, 10, 12-13
repetitions
fads, 11-12
5K Road and Trail Reps, 134, 134
innovation, 10, 13-15
defined, 27
inspiration, 10, 15
race pace, 200
running socks, technical, 21
BUILD Y recovery between, 283
running workouts
rule of, 259
3K Pace Training, 125-26, 126
430
INDEX
5K Pace Training, 127, 127-28
Scorpion, 239
5K Road and Trail Reps, 134, 134
Scorpion Fighter, 55
10K Pace Training, 128, 129
scurvy, 335
400-Meter-Pace Training, 146, 147

Sears, Barry, 351
800-Meter-Pace Training, 147-48, 148
Seated Toe Taps, 108
1500-Meter-Pace Training, 124-25, 125
seaweed snacks, roasted, 350
Alternation and Blend Intervals, 149, 149-50
second-guessing syndrome, 365
Beginner's Fartlek, 49
Secret Healthy Pancakes, 314
Cruise Interval Training, 129, 130
serotonin, 247
Distance Run, 50, 51
set point theory, 350
Downhill Running, 52
shirts, 20, 23
Easy Distance Run, 49, 50
shoes, 19-20, 23
High-Intensity Interval Training, 145-46, 146
shortcuts, legal, 371
Hill Repeats, 133, 133
Short Hill Sprints, 220
Hill Run, 52
shorts, 20, 23
Hill Strides, 52
sickness, 227
Jog/Easy Run, 48
Side Leg Lift, 235
Long Run, 132, 132-33

Side Lunge, 235

BUILD Y

Mileage, 150
Side Steps, 93
Respiration Trainer, 135
Sidewinder Plank with Leg Lift, 55
Strides, 51
simple carbohydrates, 308
Tempo Training, 130-31, 131
Single Arm Swing, 234
Walking, 47
Single-Leg Deadlift, 57
Walk/Jog, 48
Single-Leg Depth Jumps, 214
Run Repetition \#1, 235
Single-Leg Hops, 212
OUR RUNNING BOD
Run Repetition \#2, 236
Single-Leg Squat, 65
Run Repetition \#3, 237
size principle, 194-95
Run Repetition \#4, 238
skate skiing, 163
Russian Oblique Twist, 61
skeletal muscle, 36
Ryun, Jim, 113-14
Skipping, 208
sleep, 227, 283

S

Slow Braise Kale, 343-44
saccharides. See carbohydrates
slow glycolysis, 171
Sagan, Dorion, 139
slow-twitch fibers, 36-37, 155, 156, 195-96
salmon, 299, 322, 333
smooth muscle, 36
Salmon + Horseradish Eggs, 322
snack cakes, substitute for, 349
salt, 301
snacks
sarcomeres, 39
recovery, 184, 185, 186, 187, 309-10
saturated fats, 328-29, 330-31
swaps, healthy, 349-50
\boldsymbol{Y}
Schleip, Robert, 88
snow running gear, 21-22
431

INDEX

Snowshoeing, 162
training schedule and, 262
socks, 21
stretch reflex, 44-45
sodium, 341
strides, 7, 42, 51
soreness, muscle, 290
stroke volume
Soupers, 193
3K Pace Training, 125-26
South Beach Diet, 351
5K Pace Training, 127
Sparkers, 193
10K Pace Training, 129
specificity-of-training rule, 38-39, 156, 291
1500-Meter Pace Training, 124
speed work, 11, 170, 257, 364
heart, 113, 116
Spicy Maple Hot Chocolate, 315-16
Hill Repeats, 133
spikes, 20
Stuffed Tortilla Chiles with Feta, Corn, and
splits, 27
Black Beans, 315
sports bras, 21, 23
submaximal running speeds, 199
sports drinks, 301
suffering, shortening, 371
sprinting, 146, 147, 186, 186
sugars, sly, 353
Squat, 67, 232
summation, 194
Squat-Thrust Climbers, 54
superfoods, 297, 298-99
Y Squat to Press, 233

Supergirl/Superman Plank, 58
static stretching, 42, 76-78
Supine Pedestal, 237
Stationary Bikes, 161
Supine Pedestal Leg Raise, 238
Step Aerobics, 160
supplements
Step-Downs, 109
about, 337-38
Step-Ups, 63
complaints about, 336
Step-Ups with Dumbbells, 64
food versus, 297, 299
steroids, 222
fueling and, 177
Steudel-Numbers, Karen L., 13
minerals/vitamin overdose caused by, 336
stiffness, tendon, 84
prescription drugs in, 336
streaking, 12
regulation, lack of, 336
strength-building phase, in periodization, 366
strength of, 336
strength/power exercise, 321
sustainability, 258
strength training, 290-91
sweat, 175
stress fractures, 82-83

Sweet and Spicy Nuts, 332
OUR RUNNING BOD stress relief, 5, 7
sweet potatoes, 299, 304
stretching
Sweet Potato Fries, 304
dynamic, 42, 75-76
Swimming, 162
injury prevention training, 290
swishing and spitting technique, 243
muscles, 42, 44-45
Proprioceptive Neuromuscular Facilitation, 42,
T

BUILD Y

44, 70-75
T3 (triiodothyronine), 230
static, 42, 76-78
T4 (thyroxin), 230
432
INDEX
Tabata, Izumi, 143
training schedules, 261-79
Tabata intervals, 11, 143, 145, 146
6 -week 5 K race (intermediate and advanced),
Tangerine and Almond Cake, 333-34
276
tapering, 364, 366
6 -week 10 K race (intermediate and advanced),
Technique Drills, 203-10
temperature, 175-77, 176, 245-46
6 -week half marathon (intermediate and
tempo runs
advanced), 278
about, 15
8-week marathon (intermediate and
defined, 27-28
advanced), 279
nutritional impact of training, 182, 182
12-week advanced runners (competitive),
running economy, improving, 200
272-73
running workouts, 130-31, 131
12-week beginning and returning runners
10K pace running, 128, 129, 183, 183, 201
(competitive), 266-67
10K race training schedule, 277
12-week beginning and returning runners
10 percent rule, 259
(non-competitive), 264-65
tendon, 83-85
12-week intermediate runners (competitive),
tendon injury, 83-84
270-71
Terjung, Ronald L., 141
12-week intermediate runners (non-competitive),

BUILD Y

terms, 25-29
268-69
terraced training, 14
12-week time-constrained runners (intermedi-
testosterone, 226-28
ate and advanced), 274-75
3K Pace Training, 125-26, 126
about, 261-62
three-week rule, 259
trans fat, 301-2, 329, 331
thyroid hormone, 230
Trappe, Scott, 141
thyroxin (T4), 230
Treadmill, 158
OUR RUNNING BOD
tights, 21, 22
Treffene, Bob, 142
time-constrained runners,
tricking the brain, 249-50
274-75
triiodothyronine (T3), 230
time management, 258
Trunk Extensors (Lower Back)—AIS, 106
Timmons intervals, 145-46, 146
Tucker, Ross, 87, 88, 245-46, 248-49
Toe Taps, 215
tune-up races, 250, 366-67
tortilla chips, 349

Two-Leg Balance on the Wobble Board, 219
total fat, 330
Towel Toe Curls, 107
U
trail shoes, 19-20
undertraining, 260
training
underwear, 22
for competition, 256, 258, 363-64
uneven pace, 372
for completion, 362-63
unsaturated fats, 325-28
principles of, 259-60
urine, 341
\boldsymbol{Y}
training flats (trainers), 19
US Department of Agriculture (USDA), 321
433
INDEX
V
diet plans, 350-52
VanOrden, Tim, 352
healthy weight guidelines, 348
ventricular chambers, enlarging, 116
losing a pound a week, 348, 350
Vertical Depth Jumps, 213
Mediterranean diet, 352-54
vests, 21
as motivation, 5, 6
vitamin B6, 338
race times, effect on, 6
vitamin B12, 338
recipes, 355-57
vitamin C, 335, 338
snack swaps, healthy, 349-50
vitamin D, 338-39
sugars, sly, 353
vitamin $K, 339$
weight room routine, 59-69
vitamins, 335, 336, 337, 338-39
Weight Watchers, 351-52
VO max
Wharton, Phil, 104
2
about, 13-14
Wheat Berry Salad with Figs and Feta, 344
defined, 26-27
White Bean Blondies with Sea Salt, 323
described, 140
whole grains, 300
lipolysis and, 172
Wideouts, 236
measuring, 140
Wild Mushroom Lasagna, 356
Y running economy and, 199-200, 201, 202
Windshield Wipers, 57
vocabulary, 25-29
Wingate intervals, 145, 146
volume, 250, 262
Wobble-Around the Clock, 92
wobble board, 91-92, 291
W
Wobble—Forward and Backward, 91
Walking, 47, 179, 179
Wobble-Side to Side, 92
Walk/Jog, 48
Wooden, John, 282
Walkout/Jogout, 94
Wall-Scheffler, Cara M., 13
Y
Wall Sit, 66
Yoder Begley, Amy, 352
warming down, 259, 262
yogurt, 298, 310, 350
warming up, 259, 262, 364, 372
warm-weather running gear, 21
Z
Wasabi + Sesame Eggs, 322
Zone diet, 351
watch, taking off your, 249
OUR RUNNING BOD watches, GPS, 22
water, 341
watermelon juice, 301
water-soluble vitamins, 337
weight gain, 312
weight guidelines, healthy, 348
BUILD Y weight-loss program, 347-57
about, 347-48
434

INDEX

ABOUT THE AUTHORS

Pete Magill is a senior writer and columnist for
Thomas Schwartz runs the popular website
Running Times magazine and the 2013 USA Mas-
TheRunZone.com. His personal training website ters Cross Country Runner of the Year. He is the is RunningPRs.com. He is an exercise physiologist fastest-ever American distance runner over age and coach in Meridian, Idaho.

50 in the 5 K and 10K. He lives in South Pasadena, California.

Melissa Breyer is the coauthor of True Food and is a Green Living columnist for Discovery Channel's Treehugger.com. She lives in Brooklyn, New York.

Document Outline

- Foreward
- Introduction
- Part 1: Build Your Running Knowledge
- 1. Build Your Running Motivation
- 2. Build Your Running History
- 3. Build Your Running Gear
- 4. Build Your Running Vocabulary
- Part 2: Build Your Running Body-Components and Workouts
- 5. Build Your Running Muscles
- 6. Build Your Running Connective Tissue
- 7. Build Your Running Cardiovascular System
- 8. Build Your Running Powerhouse
- 9. Balance Your Running.pH
- 10. Build Your Running Energy System
- 11. Rewire Your Running Nervous System
- 12. Build Your Running Hormones
- 13. Build Your Running Brain
- Part 3: Build Your Running Program-Principles and Schedules
- 14. Build Your Running Approach
- 15. Build Your Training Schedule
- 16. Build Your Running Recovery
- 17. Build Your Running Injury Prevention
- Part 4: Build Your Running Diet-Protein, Carbs, Calories, and Nutrition
- 18. Build Your Running Diet with Real Food
- 19. Build Your Running Carbohydrates
- 20. Build Your Running Protein
- 21. Build Your Running Fats
- 22. Build Your Running Nutrients
- 23. Build Your Running Weight-Loss Program
- Part 5: Build Your Race Strategy
- 24. Build Your Race Approach
- 25. Build Your Race
- Injury Prevention
- Glossary
- Further Reading
- Acknowledgments
- Index
- About the Authors

[^0]: » Fast-twitch (Type IIx): These large fibers are

[^1]: » Accidents: These could be spraining an antoo much, and training too little."

[^2]: " Supplements are strong: Many contain active ingredients that have strong biological effects in the body, making them potentially

