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Foreword
It is a pleasure to write a foreword to this book on stem cell
therapy, edited by Nagwa El-Badri, at a very opportune time
when cautious clinical trials are under way by responsible
clinicians. Unfortunately, hyped-up claims for stem cells of
miraculous cures are recorded almost daily by the media. This
undermines serious science, since it raises hopes and
expectations in vulnerable people, fearful and often in pain.
They may spend their whole life savings in a useless treatment
that could even harm them.

The chapters in this book span the whole field of current
stem cell biology, both experimental and clinical. There is a
chapter on bone marrow transplantation where hematopoietic
stem cell transplants have been used for many years with
increasing success in the treatment of leukemia and lymphoid
malignancies. The results have been particularly good overall
in the treatment of children. It is against this background that
more recent work in a variety of different stem cell procedures
has been pursued, especially since the dramatic experiments
were described of nuclear transfer with cloning of Dolly the
sheep and the potential of embryonic stem cells. Recently,
induced pluripotent stem cells (iPSCs), pioneered by
Yamanaka in Kyoto, showed that skin and fibrous tissue cells
can be dedifferentiated into cells that have many
characteristics of embryonic stem cells and have the
theoretical advantage that the iPSCs could be used as
autografts and avoid the ethical worries of destroying a
fertilized egg.

Adult stem cells have been identified in most tissues, and
the most available source is adipose tissue. Fat stem cells will
differentiate in culture and have been used often uncritically in
the treatment of more than 20 diseases, varying from
osteoarthritis to spinal cord injury. Unfortunately, few studies
have provided credible evidence of efficacy, good results often
being recorded by mere anecdote. Concerns would apply to
the use of adult stem cells in neurological diseases, and
unfortunately some published clinical trials were later



retracted. Experiments were reported in a mouse model of
Alzheimer’s disease treated with stem cells in which the mice
appeared to develop memory improvement after treatment,
learning how to navigate a water maze.

Umbilical cord blood banks have been established in many
countries and provide human leukocyte antigen (HLA) typed
blood with useful properties. Cord blood can be used to
generate the iPSCs. Cells from the dental pulp grow well in
culture and differentiate into a variety of types, especially
neural cells. There have been great expectations on the
possibility of using stem cells in the treatment of liver disease
in view of the ability of the liver to regenerate after damage. It
would seem likely that some of the functions of isolated liver
cells could be of therapeutic value, but we are still a long way
from being able to grow the full structural anatomy of a liver
in the laboratory or in vivo from stem cells. Stem cell
treatment for vascular disorders and autoimmune disease has
been disappointing, although anecdotal reports of good results
have been published. Bone marrow stem cells have also been
differentiated into insulin-producing cells, which proliferate
after transplantation into immune-incompetent diabetic mice.

There is considerable hope that micro- and
nanotechnologies will be used in stem cell therapy. These new
techniques are still at an early stage, but they do open the
possibility of novel approaches. This book describes a number
of different types of scaffold on which to seed stem cells,
including a bio-scaffold produced from amnion.

This volume is an important contribution to a rapidly
expanding field that clearly has great therapeutic promise,
especially in the context of bone marrow transplantation. Bone
marrow is special in that transplantation of the stem cells into
the bloodstream home naturally to bone marrow niches, where
they assume a normal physiological role. It is important that
studies with stem cells be done in a scientific manner with
appropriate controls and unbiased, long-term assessment.

Roy Calne



Preface
Over the past century, the human life span has almost doubled
owing to technological advancements. Thanks to modern
medications, sterile techniques, antibiotics, and preventive
health care, people are living longer, and critical health issues
have changed from infectious epidemics to diseases associated
with aging. Today, chronic illnesses top the list of the causes
of morbidity and mortality in almost every country:
cardiovascular diseases, diabetes, cancer, and
neurodegenerative disorders. This paradigm shift has created
new challenges and calls for new treatments. Symptomatic
therapies and temporary relief for chronic illness can no longer
accommodate the expanding needs of an aging population and
the extended life span that older people now enjoy without
providing similarly enjoyable healthy living. This has created
a need for new therapies that aim at curing chronic diseases
and not just palliating them. It was thus inevitable that stem
cell research would gain substantial momentum since it was
first discovered that stem cells could save lives following
lethal irradiation.

The first modern bone marrow transplant was performed in
the 1950s. Unlike blood transfusions, which failed to save
victims of nuclear accidents, cells in marrow transplants seem
to have the capacity to sustain the production of blood cells.
These cells were dubbed hematopoietic stem cells (HSCs). To
date, HSCs are the most and best researched and characterized
cells. A vast array of specialized equipment is now available
on the market that can be used to purify HSCs to a clinical
grade for direct infusion into patients. Diseases now routinely
curable by HSC transplantation include leukemia, lymphomas,
multiple myeloma, and many disorders of the blood and
lymphoid tissue. Many clinical trials have also shown
promising therapy for solid organ diseases, such as breast
cancer and autoimmune diseases. However, HSC
transplantation is a complex and expensive procedure that puts
patients, who must endure long absences from work and
prolonged recovery issues, under significant physical and
financial stress. Furthermore, HSC transplantation entails a



long search for a matched donor and significant perioperative
immune suppression, causing significant perioperative issues
and higher morbidity and mortality. These challenges
regarding the consistency and safety of treatment begged for
alternative cells that would bring better therapeutic outcomes.

Within the bone marrow lies another population of stem
cells, characterized by multilineage differentiation into stromal
cells such as fibroblasts, bone, fat, and cartilage cells. These
are called mesenchymal stromal cells (MSCs) (or, more
commonly and less accurately, mesenchymal stem cells).
MSCs have quickly gained popularity over HSCs and became
the preferred cells for the treatment of nonhematopoietic
disorders, for several reasons. Mainly, MSCs are easy to
culture and relatively safe and offer a low-cost transplantation
procedure. MSCs were first obtained from the bone marrow
and then from other tissues, including umbilical cord, placenta,
and adipose tissue. Today, we can collect MSCs from almost
any tissue in the body. They can be expanded with relative
ease, as plastic adherent cells, to large numbers, based on
patient needs. They can be autologous or allogeneic, but
because of their low immunogenicity and favorable immune
functions, especially their immune suppressive qualities, they
have some advantages in terms of transplant procedures. In
this regard, they are considered safer than HSC
transplantation, which necessitates the vigorous immune
suppression of often already debilitated patients. Because of
the ease of their culture and expansion, they are also the
preferred candidates for scaffolds, for purposes of tissue and
organ engineering. Plausibly, there has been a surge of clinical
trials that have disproportionately favored MSCs.

Surveying the several thousand publications and clinical
trials using stem cell therapy—hematopoietic disorders aside
—MSCs appear to be the most utilized stem cells in
experimental transplantation. In many of these experiments
and trials, MSCs are transplanted without prior differentiation
into the desired cell population. Nevertheless, reports on
improvements in the symptoms and signs of recovery are
consistent. Many scientists argue that the efficacy of MSCs is
not attributable to their multipotency or contribution to the



reconstitution of the damaged tissue by replacing diseased
cells with healthy ones. Rather, they work because of
paracrine or immune-modulating effects, which improve the
microenvironment of the affected organ and promote growth
factors and endogenous stem cells. New technologies and
tracking methodologies will help provide a better
understanding of the mechanism of restructuring a diseased
tissue following stem cell treatment. Whether infused stem
cells contribute to restructuring damaged tissue, which was
initially thought to be the ultimate target of stem cell therapy,
remains to be verified.

Recently, sporadic clinical trials using embryonic stem
cells (ESCs) and induced pluripotent stem cells (iPSCs) started
in centers mainly in Asia and the USA. Although these efforts
are not covered in this book, much hope rests on such trials.
ESCs are considered “de facto” stem cells. They can robustly
differentiate into cells of multiple lineages both in vitro and in
vivo. When injected into animal models, they form teratomas,
composed of a mixture of tissues that correspond to all
lineages. They have longer telomeres and express embryonic
genes. Among all types of stem cells, ESCs have a unique
flexibility and unmatched capacity for differentiation into the
desired cell populations. However, many issues need to be
overcome before ESC use becomes a reality in routine clinical
settings. For example, the reliability and sustainability of the
differentiated cell type remain issues as does the safety of
transplanted cells. Ethical considerations have also hampered
ESC research, although restrictions are being relaxed in
several countries in response to public awareness and strict
regulations. Much anxiety over ESC research has been
relieved with the introduction of iPSCs.

Indeed, since the first cloning of frogs by Gurdon and
colleagues in the fifties, and later, the famous sheep Dolly in
the nineties, it has become apparent that our understanding of
biology, embryology, and organ formation has been severely
deficient. It also became apparent that cell manipulations by
chemicals or additives could change cells in fundamental ways
not considered previously. Yamanaka’s work, which won him
the 2012 Nobel Prize in Physiology or Medicine, achieved



what many had only dreamed of: changing somatic cells into
ESC-like cells. Using four transcription factors, Yamanaka’s
group induced pluripotency in an adult fibroblast. No longer
should the scientific community endure the controversies of
using ESCs. This technique, however, is still far from perfect.
Some of the transcription factors used to induce pluripotency
were oncogenic and could stimulate tumorigenesis. Many
ongoing efforts are improving the safety of iPSCs; however,
issues with the reliability of differentiation and long-term
safety remain unresolved.

Where do we stand now, and is the use of stem cells for the
treatment of non-hematopoietic disorders close to being a
reality? The answer to this question varies depending on many
factors. Our group has recently performed meta-analyses to
evaluate the use of stem cells in the treatment of diabetes
mellitus. It was interesting to find that among the 4000+
studies that appeared in response to the key words “diabetes”
and “stem cells,” only 22 trials were eligible for inclusion in
our study on using stem cell transplantation for the treatment
of uncomplicated diabetes. The discrepancy between the
benchtop and bedside is indeed significant. This analysis led to
several conclusions, most importantly, that systematic, well-
controlled clinical trials are severely lacking in the area of
treatment of diabetes using adult stem cells. It is not
unreasonable to generalize this finding and extend it to other
applications of stem cell therapy for cardiovascular diseases,
neurodegenerative disorders, and urogenital diseases. Our
study showed that the type of stem cell, the source of the cells,
the route of administration, and dose all contribute to the
outcome of stem cell therapy. Patient-related factors that
supported a more favorable outcome included earlier
intervention, lack of complications, and overall health of the
treated patient. Universal conclusions from our study and
others reveal the critical need for fine-tuning of stem cell
therapy in a much better and more systematic approach than
the current practice. This fine-tuning, which encompasses
factors related to the diseases, stem cell transplant ation,
conditioning protocol, and patient will all ultimately determine
the success or failure of the transplant.



The prevalence of diseases of aging, the lack of
satisfactory therapy for today’s many intractable illnesses, and
the anxiety experienced by patients and their families over
finding a cure have all driven stem cell research onto a fast,
not well-controlled track. As a result, much hype has diluted
efforts to systematically design clinical trials and critically
evaluate outcomes. Embarking on writing this book at this
time is thus an attempt to provide an overview of a work in
early progress. Some of the clinical trials covered here are
mature, and data are available in large, reproducible outcomes
to be recommended for patients on a routine basis. On the
other hand, many tissue and organ engineering efforts, as well
as utilization of ESCs and iPSCs, are still almost exclusively
experimental, and results are too preliminary to recommend
for routine practice. Technological advances in the fields of
nanotechnology and material science should, however,
accelerate stem cell therapy at unprecedented rates. These
technologies should allow for advances in studying the
biology of stem cells and enhancing their application in vitro,
for both diagnostic and therapeutic purposes. The book covers
some of those promising technologies and how they impact the
study of biology in general and stem cells in particular. We
expect that next-generation stem cells will be those which
have been studied and manipulated using technologies that are
just being developed and will revolutionize their applications
in the very near future.

Nagwa El-Badri
6th of October City, Giza, Egypt
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Hematopoietic stem cell transplantation (HSCT) is currently
the only stem cell treatment modality with well-accepted
clinical efficacy. Similar to adults, HSCT is commonly used
for the treatment of hematological malignancies, solid tumors,
and acquired aplastic anemias; but in childhood there are
additional indications that patients may benefit from HSCT
these include metabolic diseases, immunodeficiency
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syndromes, osteopetrosis, inherited bone marrow failure
syndromes, and hemoglobinopathies.

1.1 Pediatric HSCT Applications
1.1.1 In Malignancies
1.1.1.1 Pediatric Acute Myeloid Leukemia
In patients with high-risk acute myeloid leukemia (AML),
survival rates of patients who receive HSCT from human
leukocyte antigen (HLA) matched related donors at complete
remission (CR)-1 are better (55–72 %) compared to those who
receive chemotherapy alone. Therefore, HSCT at CR-1 is
indicated in high-risk AML patients. However, almost 60 % of
patients do not have an HLA-matched related donor, and in
these patients the treatment is planned according to indications
determined by the European Group for Blood and Marrow
Transplantation (EBMT) (Table 1.1) [1]. In the pediatric
population, response to initial induction therapy and
cytogenetic findings are consistent prognostic markers. The
low-risk group includes patients with favorable karyotypes,
including t(8;21), inv(16), t(15;17), and, in some studies,
t(9;11), t(16;16), and FAB-type M3. The poor-risk group
includes patients with adverse karyotypic abnormalities,
including −5, −7, del(5q), abn(3q), and complex karyotypes
and patients with poor treatment response. The patients who
have neither favorable nor high-risk features are considered
those with intermediate risk [2]. It is recommended that
patients with low-risk features be treated with standard
chemotherapy; on the other hand, patients with intermediate
features should be considered for HSCT in the presence of a
related donor. Relapse of a patient at any time with AML is
considered an indication for HSCT from the best available
donor [1]. In the pediatric age group, the addition of total body
irradiation (TBI) to the conditioning of patients who undergo
HSCT at CR-1 showed no additional benefit to transplant
outcome, and considering the long-term potential deleterious
effects of TBI, its use was not suggested for AML patients. In
most cases, patients were conditioned with busulfan and



cyclophosphamide; however, some regimens add melphalan to
athe busulfan, cyclophosphamide regimen [3]. On the other
hand, conditioning regimens including treosulfan and
fludarabine have been reported to be associated with lower
transplantation-related mortality (TRM) [4].
Table 1.1 Indications for hematopoietic stem cell transplantation in pediatric
patients with AML

Disease
status

Sibling donor Matched
unrelated/1 Ag-
mismatched
related

Mismatched
unrelated/>1 Ag-
mismatched related

Autologous

AML CR-
1—low
risk

HSCT not
recommended

HSCT not
recommended

HSCT not
recommended

HSCT not
recommended

AML CR-
1—high
risk

HSCT Decision of
clinician

HSCT not
recommended

HSCT

AML CR-
1—very
high risk

HSCT HSCT Decision of
clinician

HSCT not
recommended

CR-2 HSCT HSCT HSCT HSCT

>CR-2 Decision of
clinician

Inadequate
evidence

Inadequate evidence HSCT not
recommended

CR complete remission, Ag antigen, HSCT hematopoietic stem
cell transplantation

Autologous HSCT has been studied as a consolidation
therapy for patients without allogeneic-related donors;
however, the results suggest the noninferiority of
chemotherapy alone or alternative donor HSCT to autologous
HSCT [5]. Currently autologous HSCT is not suggested for
patients with AML at CR-1 [5].

Patients with infant AML or those with FAB-type M7,
who have no related donor, should be considered for HSCT
from an unrelated donor. Additionally, the patients who do not
achieve remission with the initial induction treatment should
be considered for HSCT as soon as possible since the extended
use of chemotherapeutics in these patients may add to
transplant toxicities without beneficial effect [1].



The targeting of donor T cells against leukemic cells of the
patient is called graft versus leukemia (GVL), and GVL
accompanies graft-versus-host disease (GVHD). The
advantages of GVL development on the long-term outcome
and eradication of AML is unclear. T-cell depletion from a
harvest is not related to the relapse of AML following HSCT.
However, patients who develop chronic GVHD have been
reported to relapse less frequently [6]. Moreover, AML
patients who develop mixed chimerism following HSCT are
considered candidates to receive donor lymphocyte infusions
(DLIs) to prevent relapses [7].

1.1.1.2 Pediatric Acute Lymphoblastic
Leukemia (ALL)
Improvements in current chemotherapy protocols have led to
survival rates of around 85 %. High-risk ALL patients and
relapsed ones are being preferentially treated with HSCT.
Because of the poor prognosis of patients with t(9;22) with
chemotherapy, it is recommended that these patients receive
transplants from a matched sibling donor at CR-1. Currently,
most patients with Philadelphia positive (Ph+) ALL undergo
HSCT at CR-1 using the best available donor [8]. Five-year
event-free survival (EFS) rates using mismatched family
donors or unrelated donors are almost 50 % in these patients.
On the other hand, the use of intensive chemotherapy plus
tyrosine kinase inhibitors has increased the survival rates of
these patients, and there is emerging evidence for reserving the
HSCT option for those Ph+ ALL patients who do not achieve
molecular response, although this approach is still not a well-
accepted standard of care in these patients.

On the other hand, patients with extreme hypodiploidy
(fewer than 44 chromosomes) have been reported to have EFS
rates of around 20 ± 10.3 % with standard chemotherapy [9],
and such patients have also been proposed to be indicated for
HSCT at CR-1.

Since the outcome of patients with T-cell ALL with very
high white blood cell count at diagnosis has been reported to
have less promising outcomes, these patients have been



recommended to undergo HSCT at CR-1, although this
approach is not definitive.

Infants with t(4;11) Mixed-lineage leukemia (MLL)
rearrangement have a worse prognosis compared to those who
do not have this karyotype, and these patients and infants with
higher white blood cell count at diagnosis or those with poor
prednisolone response also have worse outcomes. Infants with
t(4;11) with the aforementioned higher-risk features have been
recommended to undergo HSCT; however, a recent report
found no difference in the disease-free survival rates of these
patients when compared to standard chemotherapy [10, 11].

Furthermore, the assessment of early response to treatment
is a good indicator of prognosis. The minimal residual disease
(MRD) follow-ups and bone marrow blast percentages by the
end of induction may have an effect on the decision to do
HSCT. The MRD positivity just prior to HSCT also has a
negative impact on HSCT outcome [12]. Patients with
pediatric ALL may also see beneficial effects of GVL after
HSCT. Patients with ALL who develop early (defined as
relapse occurring during therapy or within 18–36 months from
diagnosis) bone marrow relapse are indicated for HSCT using
related or unrelated donors at CR-2.

The long-standing conditioning regimen preferentially
used for ALL patients has been TBI and cyclophosphamide.
The lesser toxicity of fractionated TBI compared to single-
dose TBI has prompted the use of fractionated TBI for
conditioning. Additionally, TBI/etoposide has replaced the
classical TBI/cyclophosphamide [8, 13]. In the case of a
contraindication for TBI use, such as high doses of previous
irradiation or in infant patients, TBI is replaced with
intravenous busulfan. On the other hand, pediatric ALL
patients with t(4;11) to be transplanted after conditioning with
busulfan, cyclophosphamide, and melphalan should have
better outcomes [8].

1.1.1.3 Pediatric Chronic Myelogenous
Leukemia



The only curative treatment option for pediatric Ph+ Chronic
Myelogenous Leukemia (CML) is HSCT. Especially in the
presence of a matched sibling donor, survival rates are around
87 %, and the success rate of HSCT is good, especially in the
chronic phase of CML, but much lower in other phases of the
disease [14]. The long-term adverse effects of tyrosine kinase
inhibitors are unknown, and currently the suggestion of
lifelong use of tyrosine kinase inhibitors makes HSCT a good
curative therapeutic option. However, careful monitoring of
the response to tyrosine kinase inhibitors presents a safer
alternative, and patients with poor response to tyrosine kinase
inhibitors are considered HSCT candidates. Patients who fail
to respond tyrosine kinase inhibitors are strongly suggested to
undergo HSCT from a matched donor, related or unrelated. In
the absence of an available donor, second-generation tyrosine
kinase inhibitors might be considered [15].

Although cytogenetic and molecular remission could be
achieved with tyrosine kinase inhibitors, the longer life
expectancy of children may put HSCT still as a first-line
curative therapeutic option, especially when made within 1
year of diagnosis.

Monitoring for bcr/abl transcripts in peripheral blood with
polymerase chain reaction (PCR) is strongly recommended 1,
3, 6, 9, and 12 months post-HSCT and then every 6 months.
Positive bcr/abl transcripts after HSCT are not uncommon (20
%) and can be successfully treated with donor lymphocyte
infusions (DLIs). The induction of GVL with DLIs is most
efficiently achieved with patients with CML. Donor
lymphocyte infusions may induce molecular remission and
prevent relapses in such patients [16]. The potential risks of
DLI are GVHD development or bone marrow aplasia. The
efficacy of DLI at chronic phase is 75 % and between 13.5 and
33 % when made at accelerated and blastic phases of CML.

1.1.1.4 Hodgkin and Non-Hodgkin
Lymphoma
HSCT is not the first-line treatment of pediatric and adolescent
patients with Hodgkin and non-Hodgkin lymphoma. In both



discases, HSCT is indicated in resistant patients or in
recurrence of the discase. Besides autologous HSCT
applications, allogeneic HSCT is also increasingly being used
for the treatment of patients with lymphoma. Autologous
HSCT should be considered for chemosensitive relapse of
mature B-cell lymphoma. The addition of rituximab (anti-
CD20 monoclonal antibody) before or after HSCT for B-cell
lymphoma may further improve the outcome of HSCT [17].
Refractory or relapsed T-cell lymphoblastic lymphoma is
treated similarly to T-cell ALL, and allogeneic HSCT from the
best available donor is the standard of care after the
achievement of remission with salvage therapy. In patients
with non-Hodgkin lymphoma, allogeneic HSCT is usually
considered for relapsed and refractory lymphoblastic
lymphoma and anaplastic large cell lymphoma cases or
following recurrence subsequent to autologous HSCT. Patients
with Hodgkin lymphoma who are responsive to chemotherapy
may benefit from autologous HSCT [18, 19].

1.1.1.5 Neuroblastoma and Other Solid
Tumors
In patients with high-risk solid tumors, mainly autologous
HSCT and less commonly allogeneic HSCT might be applied;
allogeneic HSCT has been associated with better outcomes.
The most commonly used conditioning regimen is
busulfan/melphalan. The most extensive data in pediatric solid
tumors are in patients with advanced-stage neuroblastoma
[20]. The conditioning with busulfan/melphalan as compared
with a carboplatin approach has ended up with lower rates of
relapse in patients with advanced-stage neuroblastoma.
Treatment of MRD during the post-HSCT period with cis-
retinoic acid as a differentiating agent has a favorable impact
on relapse rates with minimal toxicity [21]. On the other hand,
anti-GD2 antibody treatment also has been shown to have a
favorable impact on survival rates when used after HSCT [22,
23]. Of the common complications during the post-HSCT
period, short stature, gonadal failure, and hearing loss must be
closely monitored.



There is an experience with autologous HSCT subsequent
to high-dose chemotherapy in patients with medulloblastoma,
primitive neuroectodermal tumor, and germ-cell tumor, mostly
applied in patients with recurrent disease and, to a lesser
extent, those with unfavorable features at the first remission.

1.1.2 In Nonmalignant Diseases
1.1.2.1 Immunodeficiency Disorders
HSCT is the only curative treatment modality in most primary
immunodeficiency syndromes, primarily for patients with
severe combined immunodeficiency (SCID). In patients with
SCID, HSCT from sibling donors and HSCT within 6 months
of diagnosis have better outcomes. On the other hand, patients
with T-B-SCID have worse outcomes, as do patients who have
comorbidities prior to HSCT, including pneumonia, sepsis,
viral infections, or malnutrition [24]. In HSCT from a matched
sibling donor in patients with SCID, survival rates are as high
as 90 %. Related to the underlying cellular immunological
defect, SCID patients with a matched related donor do not
require conditioning or GVHD prophylaxis. This special
situation causes T cells of the patient to be of donor origin,
whereas myeloid and erythroid cells to be derived from host
cells during post-HSCT period [25]. The outcome of HSCT
from phenotypically identical relatives or HLA-matched
unrelated donors is less favorable compared to matched sibling
donors and a conditioning regimen, and GVHD prophylaxes
are required in transplants from such donors [25]. Intravenous
busulfan/fludarabine or treosulfan/fludarabine are the most
preferred conditioning regimens [26]. In patients with SCID
who lack a matched sibling donor, the use of cord blood as
stem cell source may have an advantage of producing lesser
rates of GVHD. On the other hand, the slower engraftment of
cord blood HSCT, in addition to the absence of viral-specific
cytotoxic T cells in such transplants, should be considered
[27]. Patients who lack a matched sibling donor may undergo
T-cell-depleted haploidentical transplantation. These patients
may have high rates of graft failure and opportunistic
infections. However, the advantages are the high donor



availability related to the use of parents as donors and less
cytoreductive conditioning. T-cell functions appear several
months after haploidentical transplantation in grafted patients
[28]. The graft rejection rates in such haploidentical
transplantations may be as high as 20 %. These risks of
haploidentical HSCT increase the use of matched unrelated
donors for SCID patients who lack a matched sibling donor.
However, patients who undergo unrelated HSCT will mandate
the use of conditioning regimens. Survival rates as high as 97
% have been reported with matched sibling donors, 79 % in
HSCT using T-cell-depleted grafts from mismatched related
donors without conditioning, 66 % using mismatched related
donors with conditioning, and 58 % after cord blood HSCT
[29]. T-B- and radiosensitive patients, including those with
DNA ligase 4 deficiency and cernunnos deficiency are
suggested to be conditioned with lesser intensity regimens
such as fludarabine/cyclophosphamide [26, 27].

Other immunodeficiency disorders excluding SCID should
be conditioned prior to HSCT. In patients with Wiskott-
Aldrich syndrome, unless HSCT has been done, patients are
usually lost due to bleeding, infections, or the development of
lymphoproliferative diseases. In a series of 194 patients with
Wiskott-Aldrich syndrome, the overall survival rate with
HSCT has been reported to be as 84 %.

Patients who were splenectomized prior to or subsequent
to HSCT have been reported to have increased risk for
developing fatal sepsis. Additionally, patients who underwent
HSCT before 2 years of age were found to have better
outcomes compared to those who underwent HSCT after 5
years of age [30].

Among patients with severe chronic neutropenia
(Kostmann syndrome), more than 90 % respond to
recombinant human granulocyte-colony stimulating factor (G-
CSF) treatment. HSCT is reserved for severe chronic
neutropenia patients who are unresponsive to G-CSF
treatment. Patients who are unresponsive to G-CSF treatment
are those with G-CSF receptor mutations who have 40 % risk
of myelodysplastic syndrome/AML and 14 % of sepsis-related
mortality within 10 years of follow-up [27].



Among the other immunodeficiencies that benefit from
HSCT are leukocyte adhesion defects, Omenn syndrome,
chronic granulomatous disease, and Chédiak-Higashi
syndrome.

Familial hemophagocytic lymphohistiocytosis may
develop in the setting of an underlying immunodeficiency,
including X-linked lymphoproliferative syndrome and
Griscelli or Chédiak-Higashi syndrome or related to a primary
genetic defect in PRF1, UNC13D, STX11, or STXBP2 genes
[31]. Three-year survival rates after HSCT conditioned with
busulfan and cyclophosphamide ± etoposide have been
reported to be 64 %. The survival rates increase to 71 % in
transplants from matched related donors, 70 % using matched
unrelated donors, and 54 % using haploidentical family donors
or mismatched unrelated donors [27]. One of the major
determinants of HSCT success is the remission in the disease
criteria just prior to HSCT with the preceding treatment
regimens. Reduced intensity conditioning for transplantation
of patients with hemophagocytic lymphohistiocytosis is under
investigation, but the initial results indicate that mixed
chimerism and graft failure are major post-HSCT issues. Thus,
the use of reduced intensity conditioning should not be
preferred, particularly when the source of the stem cell is cord
blood.

1.2 Inherited Metabolic Disorders and
Osteopetrosis
Allogeneic HSCT is a therapeutic option for select cases of
lysosomal and peroxisomal disorders. The basic criteria for the
selection of indicated patients are based on clinical findings,
the rate of progression, and the specific diagnosis. Established
neurological findings are usually not restored after HSCT;
therefore, advanced cases do not benefit from the transplant. In
these metabolic disorders, one of the determinants of HSCT
success is the post-HSCT enzyme levels of patients. Thus, the
preference for noncarrier HLA-matched members will further
improve the transplant outcome in these patients. In lysosomal
diseases the correction of the disorder results from the donor



leukocytes that engraft in the host tissue and secrete the
deficient enzyme. The secreted enzymes are endocytosed by
the neighboring cells through mannose-6-phosphate-mediated
receptors or direct transfer [32].

Peroxisomal diseases benefit from HSCT not only by the
replacement of the lacking enzyme but also with the
immunosuppression and the inhibition of the perivascular
inflammation following HSCT. The transfer of metabolically
normal host-derived cells to the tissues of the host, including
the central nervous system, is a very crucial determinant of
HSCT success. Microglial cells are mononuclear cells of the
central nervous system that have a phagocytic function and are
derived from hematopoietic stem cells [33].

Among lysosomal diseases, allogeneic HSCT has the best
outcome in mucopolysaccharidosis type I (Hurler syndrome)
and is considered investigational for other diseases. Upper
airway obstruction, hepatosplenomegaly, and corneal clouding
usually benefit from HSCT in patients with Hurler syndrome
[34]. Hydrocephalus, growth, and developmental
abnormalities may also improve, but to a lesser extent.
Skeletal abnormalities of patients usually do not improve
following HSCT. In a recent study of 258 children with Hurler
syndrome, enzyme levels were superior with HLA-matched
umbilical cord blood transplantation, compared to other donor
sources. However, carrier siblings were included in the study,
and this may have contributed to the lower outcome in the
matched sibling group [35].

Sphingolipidoses are a group of lipid storage disorders and
include Tay-Sachs, Niemann-Pick, Gaucher, Fabry, Krabbe,
and metachromatic leukodystrophy. Enzyme replacement
therapy is not available currently for Krabbe and
metachromatic leukodystrophy, and HSCT is the only
potential curative treatment option in these patients. However,
patients with advanced neurological findings usually do not
benefit from the treatment. The early onset/infantile forms of
both diseases benefit most from HSCT if transplantation was
made before symptoms appeared [36].



X-linked adrenoleukodystrophy (ALD) is a peroxisomal
disorder, and cerebral ALD is the most severe phenotype.
Patients with ALD are asymptomatic in early life and usually
become symptomatic by the end of the first decade.
Additionally, some patients are asymptomatic throughout their
lives. Patients have typical MRI changes that are scored using
the Loes severity scoring system, and those with lower scores
have better outcomes, related to a less severe disease.
Allogeneic HSCT is currently the only curative treatment
option for patients with cerebral ALD. Patients with lesser
neurological deterioration and lower Loes scores benefit more
from HSCT [37].

Malignant infantile osteopetrosis is a disorder of osteoclast
dysfunction. The natural course of autosomal recessive
malignant infantile osteopetrosis often comprises severe
complications and death during childhood. Currently, the only
curative therapy is HSCT [38]. An increasing number of
genetic defects are being described in osteopetrosis. Among
these TCIRG1, CLCN7, OSTM1, and RANK are known as
intrinsic defects, and the RANKL defect is defined as an
extrinsic defect. In the RANKL defect the bone biopsy exhibits
the absence of osteoclasts, and these patients do not respond to
HSCT since RANKL is produced by osteoblasts [38, 39]. Of
the intrinsic defects, patients with OSTM1 have severe
progressive neurological problems, and HSCT is
contraindicated in this subset. Therefore, OSTM1 and RANKL
defects should be ruled out prior to HSCT [38, 39].

The absolute indications for HSCT in malignant infantile
osteopetrosis include hematological failure and imminent
visual loss including the nystagmus and narrowing of the optic
nerve foramina. The relative indications include multiple
fractures and severe bone malformations.

If the donor is HLA matched, the bone marrow is preferred
as the stem cell source, and no graft manipulation is required.
Osteopetrosis patients are prone to veno-occlusive disease
(VOD) development (as high as 63.6 %) [40]. The risk
decreases with the use of intravenous forms of busulfan and
fludarabine, instead of oral busulfan and cyclophosphamide,
and with prophylactic use of defibrotide [41]. One third of



children develop pulmonary arterial hypertension during 90
days post-HSCT and may easily be misdiagnosed as having
pneumonia. These patients may benefit from prostacyclin and
nitric oxide [42]. Another complication during the post-HSCT
period is severe hypercalcemia that is common after
engraftment. Recently two patients with RANK mutation who
developed severe hypercalcemia were successfully treated
with a monoclonal RANKL antibody, namely, denosumab [43].

For patients with a RANKL mutation, since they do not
benefit from HSCT, mesenchymal stem cell transplantation is
being considered as an alternative treatment approach.

The indications for HSCT in inherited metabolic disorders
are summarized in Table 1.2 [36].
Table 1.2 Indications for HSCT in inherited metabolic disorders (Adapted from
Ref. [36])

Disease Indication for
HSCT

Comment

Mucopolysaccharidoses

Hurler (MPS IH) Standard –

Hurler/Scheie (MPS IH/S) Optiona ERT first-line therapy

Scheie (MPS IS) Optiona ERT first-line therapy

Hunter, severe (MPS IIA) Investigationalb Only early or asymptomatic

Hunter, attenuated (MPS IIB) Investigationalb Only early or asymptomatic

Sanfilippo (MPS IIIA) Investigationalb Only early or asymptomatic

Sanfilippo (MPS IIIB) Investigationalb Only early or asymptomatic

Sanfilippo (MPS IIIC) Investigationalb Only early or asymptomatic

Sanfilippo (MPS IIID) Investigationalb Only early or asymptomatic

Maroteaux-Lamy (MPS VI) Optiona ERT first-line therapy

Sly (MPS VII) Optiona  



Disease Indication for
HSCT

Comment

Leukodystrophies

X-ALD, cerebral Standard –

MLD, infantile Unknownc –

MLD, juvenile Optiona Only early or asymptomatic

MLD, late onset Standard Only early or asymptomatic

GLD, early onset Optiona Neonate, screening diagnosis, or
second case in known family, not
for advanced disease

GLD, late onset Optiona Not for advanced disease

Others

Fucosidosis Optiona  

Alpha-mannosidosis Standard  

Aspartylglucosaminuria Optiona  

Farber Optiona  

Tay-Sachs, early onset Unknownc  

Tay-Sachs, juvenile Investigationalb Neonate, screening diagnosis, or
second case in known family

Sandhoff, early onset Unknownc  

Sandhoff, juvenile Investigationalb Neonate, screening diagnosis, or
second case in known family

Gaucher I (non-
neuronopathic)

Optiona  

Gaucher II (acute
neuronopathic)

Unknownc ERT first-line therapy

Gaucher III (subacute
neuronopathic)

Unknownc  

Pompe Investigationalb Limited benefit of ERT



Disease Indication for
HSCT

Comment

Niemann-Pick type A Unknownc ERT available

Niemann-Pick type B Optiona ERT first-line therapy

Niemann-Pick type C Optiona in type
C2

Only early or asymptomatic

Mucolipidosis type II (I cell) Investigationalb
 

Wolman syndrome Optiona  

Multiple sulfatase deficiency Investigationalb
 

MNGIE (mitochondrial
neurogastrointestinal
encephalomyopathy)

Optiona Not in advanced disease

MPS mucopolysaccharidoses, ERT enzyme replacement
therapy, ALD adrenoleukodystrophy, MLD metachromatic
leukodystrophy, GLD globoid cell leukodystrophy
aOption: HSCT is effective, but another therapy is increasingly
considered the first choice or insufficient published evidence
for HSCT to be considered standard
bInvestigational: possible a priori reason for HSCT
cUnknown: no published evidence that HSCT is beneficial

1.3 Acquired and Inherited Bone Marrow
Failure Syndromes
In both acquired and inherited bone marrow failure
syndromes, HSCT is a widely accepted therapeutic option.
The differential diagnosis of acquired and inherited forms of
bone marrow failure is crucial in order to make a decision
regarding the conditioning regimen.

Bone marrow failure, clonal cytogenetic abnormalities,
and MDS/AML are indications for HSCT in patients with
Fanconi anemia. In Fanconi anemia patients who develop bone



marrow failure, HSCT is recommended prior to transfusions
(×20) or before the initiation of androgen treatment [44].

The best outcome in HSCT is achieved using matched
sibling donors in Fanconi anemia. On the other hand, despite
the absence of phenotypical findings of Fanconi anemia, all
sibling donors should be tested with DEB- or MMC-induced
chromosomal breakages in order to rule out the presence of
Fanconi anemia, since 20 % of Fanconi anemia patients do not
have the physical marks of the disease. In the case of the
absence of a sibling donor, matched related donors are the
second choice. In the initial series, 5-year survival rates of
around 85 % have been reported in matched sibling donor
transplants after conditioning with low-dose
cyclophosphamide and 4Gy thoracoabdominal irradiation [45].
However, in recent years, to decrease the early- and late-term
consequences of irradiation (GVHD and malignancies),
irradiation is replaced with fludarabine-based regimens.
Because of the underlying DNA repair defect, Fanconi anemia
patients are very sensitive to conventional conditioning
regimens. Fludarabine-based conditioning regimens, capable
of intense T-cell immunosuppression, have been reported to
lead to early, stable engraftment with minimal toxicity in
patients with Fanconi anemia [46]. Hematopoietic stem cell
transplantation still represents the only option able to
definitively cure the bone marrow failure associated with this
disease, as well as to prevent/treat myeloid malignancies,
although it does not prevent the occurrence of solid tumors,
mostly head and neck squamous cell carcinoma. In a recent
EBMT report of 795 patients with Fanconi anemia, being
older than 10 years of age at the time of HSCT, the use of
peripheral blood stem cells, and the history of chronic GVHD
were found as significant risk factors for the development of
post-HSCT secondary malignancies [47].

There is no consensus guideline for the conditioning or
even the pre-HSCT treatment of patients with Fanconi anemia
who developed advanced MDS or acute leukemia. In a recent
study of 21 patients with advanced MDS or acute leukemia,
pre-HSCT remission induction chemotherapy offered no



additional benefit, and the overall 5-year survival rate was
reported as 33 % [48].

The only therapeutic modality for patients with
dyskeratosis congenita after the commencement of bone
marrow failure or leukemia development is HSCT. However,
in these patients HSCT has potential early- and late-term
complications with high mortality rates. Infections and fatal
pulmonary complications are the primary early complications,
whereas diffuse vasculitis and pulmonary fibrosis are the
potential late-term complications [49]. The development of
post-HSCT secondary malignancies is less common than in
Fanconi anemia [49].

Among Diamond-Blackfan anemia patients, almost two
thirds of patients are responsive to medical treatment with
steroids; however, some patients who are initially responsive
may lose response over time. Patients who are unresponsive to
steroids or those who have additional cytopenias not restricted
to anemia are potential candidates for HSCT [50]. One of the
major determinants of transplant outcome in patients with
Diamond-Blackfan anemia is a preceding iron accumulation
prior to HSCT, which is reflected by the unfavorable outcome
in patients who underwent HSCT after 10 years of age [50,
51]. The absence of erythroid precursors in these patients
related to disease biology itself puts additional iron loading
risk on the transfusional iron burden, and patients with
Diamond-Blackfan anemia accumulate iron much earlier than
those with other transfusion-dependent anemias. The initial
reports of allogeneic transplants from unrelated donors have
been associated with poor outcomes; however, a recent series
of 13 patients with Diamond-Blackfan anemia, which included
the bone marrow as the stem cell source from both sibling and
unrelated donors, reported a 5-year survival of 100 %,
although three of the patients developed graft failure [52].
Related donors should be genetically tested for disease related
to the incomplete penetrance characteristic of the disease, even
if the donor is asymptomatic.

1.4 Hemoglobinopathies



Risk classification for HSCT in patients with thalassemia
major has been suggested by Lucarelli et al. and is known as
the Pesaro classification [53]. According to the Pesaro
classification, hepatomegaly, hepatic fibrosis evaluated with
liver biopsy, and history of inadequate iron chelation are used
to classify patients into three risk classes. Accordingly,
patients who do not possess any of the aforementioned risk
factors are classified as class I, those who have one or two are
classified as class II, and patients with all of the risk factors
are classified as class III Pesaro criteria. The overall and
thalassemia-free survival rates in class I patients were reported
to be 94 % and 87 %, whereas in class II patients they were 84
% and 81 %, respectively. However, in class III patients,
thalassemia-free survival was reported to be as low as 58 %,
related to high graft rejection rates and increased transplant-
related mortality [54]. Ineffective erythropoiesis and chronic
transfusions cause iron burden in thalassemic patients. The
choice of conditioning regimen should suppress the bone
marrow hyperactivity related to ineffective erythropoiesis, but
it also should not add much to the organ toxicities related to
pre-HSCT iron loading. The most preferred regimen for class I
and II patients is intravenous busulfan and cyclophosphamide
(200 mg/kg/total dose). In some centers, thiotepa is added to
this regimen for patients under 4 years of age, and some other
centers add antithymocyte globulin for all ages. In class III
patients, a regimen called Protocol 26 is widely used, based on
increasing the immunosuppression. Protocol 26 includes pre-
HSCT hypertransfusion of patients to maintain hemoglobin
levels above 14 g/dL and intravenous deferoxamine,
hydroxyurea, azathioprine, fludarabine, busulfan, and
cyclophosphamide (160 mg/kg/total dose) [55].

Although most data on HSCT outcomes in thalassemic
patients are from matched sibling donors, there are emerging
data of transplant outcomes using alternative donors. In a
recent Italian study of 60 patients, two thirds of the patients
received transplants from unrelated donors after conditioning
with a treosulfan-based regimen and were reported to have a
5-year thalassemia-free survival rate of 84 % [56].



Since there is no excretory mechanism for iron in the body,
iron-decreasing management strategies are considered after
HSCT. Phlebotomy is a simple and cheap way of decreasing
iron load during the post-HSCT period, but it should be
reserved for patients with acceptable hemoglobin levels.
Patients who are inappropriate for phlebotomy may be
chelated with iron chelators [57].

Allogeneic HSCT is a curative therapeutic option for
patients with sickle cell anemia. Compared to thalassemia
major, there are much restricted data on the HSCT outcome of
patients with sickle cell anemia related to the clinical
heterogeneity of patients, causing some patients to have milder
phenotypes and the advent of pneumococcal prophylaxis,
which decreases the disease-related mortality. The potential
indications for HSCT in patients with sickle cell anemia are
the history of stroke, recurrent painful crises or recurrent acute
chest syndrome despite the use of hydroxyurea, and
alloimmunization in patients who should be under a chronic
transfusion program [58].
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2.1 Introduction
In 2014, the global prevalence of diabetes mellitus (DM) was
estimated to be 9 % among adults aged 18 years and older [1].
Type 1 DM (T1DM) accounts for 5–10 % of diabetic patients.
Its pathogenesis involves autoimmune-mediated destruction of
the pancreatic islets. Maintenance of appropriate glycemic
control is possible using exogenous insulin for life, which
imposes a burden on these patients. Transplantation of
pancreatic islets or an intact pancreas is an ideal alternative for
lifelong treatment. However, the shortage of cadaveric organs
and the need for immunosuppression are limiting factors for
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pancreatic transplantation. Type 2 DM (T2DM) accounts for
the majority of diabetic patients, with the highest prevalence in
the Eastern Mediterranean region and the Americas. The
disease can be initially treated by dietary modifications and
oral medication. Eventually, some 27 % of diabetic patients
become insulin dependent. Of these, less than half achieve the
recommended hemoglobin A1c (HbA1c) level for therapeutic
efficacy since exogenous insulin cannot provide the tight
glycemic control exerted by pancreas-derived insulin [2].

Recent progress in the field of regenerative therapies
provides the potential for the generation of surrogate ß-cells,
and efforts to engineer insulin-producing cells (IPCs) from
stem cells are gaining momentum. Recent studies on IPCs
from three sources, namely, embryonic stem cells (ESCs),
induced pluripotent stem cells (iPS cells), and mesenchymal
stem cells (MSCs), derived from a variety of adult tissues will
be reviewed in this chapter.

2.2 Embryonic Stem Cells
Cells of embryonic origin have the capacity for rapid
replication and the ability to differentiate into cells of all three
germ layers (trilineage differentiation). These two
characteristics make them an attractive source for the
generation of IPCs. Lumelsky and associates reported
successful differentiation of mouse ESCs using a five-step
protocol [3]. Segev et al. modified the Lumelsky protocol by
adding a step of suspension culture at the end of the
differentiation protocol [4]. These early reports were
challenged by Rajagopal and colleagues, who provided
evidence that both the presence of insulin inside the cells and
its apparent release are the result of insulin absorbed from the
culture medium [5]. Paek and coworkers suggested that insulin
release is the result of sequestration of insulin from the culture
mediim as well as from de novo synthesis [6]. In a series of
studies, Baetge and colleagues provided a proof of principle
and refined a protocol for the efficient differentiation of
human ESCs into insulin-secreting cells. Their differentiation
scheme mimicked the in vivo pancreatic development. This



was achieved by directing the cells through successive stages
toward definitive endoderm, gut-tube endoderm, pancreatic
endoderm, and finally pancreatic endocrine lineage [7–10].
The strategy of this group of investigators is to transplant the
resulting pancreatic progenitors within an encapsulation
device to prevent immunorejection. The grafted cells would
undergo further maturation into IPCs under the influence of
the in vivo milieu, a process that can take 3–4 months [11].
Using an undifferentiated human ESC line, successful
generation of putative IPCs was reported by Pagliuca and
associates [12]. These cells share significant functional
features within normal human beta cells. Their reported
method of differentiation involved a complicated multistep
protocol that lasts up to 6 weeks. These authors suggest that
using their differentiation protocol, hundreds of millions of
glucose-responsive ß-cells from human pluripotent stem cells
can be produced. It is clear that important progress in
differentiating ESCs into IPCs has been achieved. However,
the use of embryonic cells suffers from two drawbacks: their
teratogenicity and immunogenicity. These two problems could
be contained if such cells are transplanted within an
encapsulation device.

2.3 Induced Pluripotent Stem Cells
Yamanaka and his groups were the first to prove that by
forcing the expression of a small number of factors, terminally
differentiated cells could revert back to a pluripotent state [13,
14] and were termed induced pluripotent stem cells (iPS cells).
Initial derivation of iPS cells utilized retroviral-mediated
introduction of Oct3/4, Sox2, Klf4, and c-Myc (Yamanaka
factors). Later, nonviral methodologies were introduced.
Repeated transfection of plasmids containing the Yamanaka
factors resulted in the production of iPS cells without evidence
of plasmid integration [15, 16]. The iPS cells generated from
somatic cells are expected to resolve problems that pertain to
embryonic cells. The use of embryonic cells has been limited
to certain established clones; accordingly, immunorejection is
considered a major obstacle for cell therapy. In contrast,
patient-derived iPS cells would theoretically not suffer



immunorejection since they are autologous. However, the
efficiency of their generation remains low [17]. Moreover, the
formed iPS cells show unlimited proliferative activity and
form teratomas upon transplantation [18]. They also carry
epigenetic memory characteristic of the somatic cell of their
origin. This favors differentiation along lineages related to the
donor cells [19].

The pluripotency of generated iPS cells provides a
potential for their differentiation to IPCs. Tateishi et al. were
probably the first to report the possibility of generating
insulin-secreting isletlike clusters from iPS cells derived from
human skin fibroblasts [20]. Using a three-step differentiation
protocol, iPS cells derived from mice fibroblasts were
differentiated into IPCs by Alipio and associates [21]. These
cells were able to reverse hyperglycemia in diabetic mouse
models. Zhu and colleagues developed a four-stage protocol to
generate IPCs from rhesus monkey iPS cells. The resulting
cells could secrete insulin in response to glucose stimulation,
and when they were transplanted into diabetic mice, the blood
glucose levels were reduced in 50 % of the treated animals
[22]. Jeon et al. generated iPS cells from Non obese diabetic
(NOD) mouse embryonic fibroblasts and from NOD mouse
pancreatic epithelial cells. They applied a directed
differentiation protocol to induce the formation of functional
pancreatic beta cells. They found that the iPS cells derived
from NOD mouse pancreatic epithelial cells differentiated
more readily into IPCs. Transplantation of these cells in
diabetic mice could normalize their blood glucose levels [23].
In a more recent report, human iPS cells derived from both
fetal and adult human tissues were differentiated in vitro into
pancreas-committed cells. At the end of in vitro
differentiation, approximately 5 % of cells became insulin
positive. When transplanted into immunodeficient mice, the
transplanted cells lost their insulin secretion capacity in
response to glucose stimulation. Histology of the graft
demonstrated a mixed population of cells containing
pluripotent, neuronal, and mature pancreatic cells [24].

It is abundantly clear that the utilization of iPS cells to
form IPCs requires further refinements and optimization



before their application can be clinically meaningful.

2.4 Mesenchymal Stem Cells
Earlier studies by Friedenstein and colleagues reported that
bone marrow stroma could generate bone, fat cells, and
cartilage following heterotropic transplantation in mice [25].
This suggested the existence of non hematopoietic bone
marrow precursor cells with skeletal and adipogenic potential.
The notion of a stromal stem cell was proposed subsequently
by Owen [26]. The term mesenchymal stem cells(MSCs) was
popularized by Caplan to refer to plastic-adherent cell
preparations isolated from a variety of tissues [27]. Recently,
leading investigators of mesenchymal cell therapy concluded
that convincing data to support the “stemness” of these
unfractionated plastic-adherent cells are lacking [28].
Therefore, the term mesenchymal stromal cells has been
suggested, allowing the abbreviation “MSCs” to be
maintained. Several independent studies have demonstrated
that MSCs can differentiate not only into mesodermal but also
ectodermal and endodermal lineages [29]. Based on these
findings, the term multipotent mesenchymal stromal cells
appears to be the most scientifically accurate descriptor of this
plastic-adherent population. The term mesenchymal is
maintained to imply the origin, but not the differentiation
potential, of these cells [30]. The International Society for
Cellular Therapy proposed three criteria to define MSCs [30].
First, MSCs must be plastic adherent when maintained in
standard culture conditions using tissue culture flasks. Second,
95 % of the MSC population must express CD105, CD73, and
CD90 as measured by flow cytometry. In addition, these cells
must lack expression (≤2 %) of CD45, CD34, CD14, and HLA
class II. Third, the cells must be able to differentiate into
osteoblasts, adipocytes, and chondrocytes under standard
culture in vitro differentiating conditions.

MSCs can be derived from a variety of human tissues and
have a high capacity to replicate. They are easy to cultivate
and expand and can maintain their multilineage potential
following prolonged culture conditions [31]. In addition they



are nonteratogenic and their utilization is free of any ethical
consideration. All of these reasons have rendered them a good
tool for use in regenerative medicine, including in potential
therapeutic use for DM.

MSCs derived from different sources were coaxed using
different approaches to differentiate into IPCs. The bone
marrow [32–34], adipose tissue [35], umbilical cord, umbilical
cord blood [36, 37], fibroblasts [20], endometrium [38], and
liver cells [39] are among several tissues that are rich in
MSCs. Of these, the bone marrow and adipose tissue offer
distinct advantages in view of their availability, abundance,
and the extent of their documentation in the literature. To this
end, two approaches were used for their differentiation into
IPCs: genetic manipulation or directed differentiation.
Transfection with genes important in pancreatic development
was reported by several investigators. Karnielli et al.
transfected human bone marrow stem cells with a virus vector
carrying a rat PDX-1 gene. The extent of differentiation of
these cells toward the β-cell phenotype was evaluated. The
authors reported that the treated cells expressed all four islet
hormones but lacked the expression of NeuroD-1. Cell
transplantation into streptozotocin (STZ)-induced diabetic
immunodeficient mice resulted in their further differentiation,
including the induction of NeuroD-1 and reduction of
hyperglycemia [34]. Porcine bone marrow stromal cells were
electroporated with an insulin-expressing plasmid vector.
When these cells were engrafted in the liver of STZ-induced
diabetic pigs, partial but significant improvement in
hyperglycemia was observed [40]. For directed differentiation,
many protocols were evaluated using culture media rich in
glucose [41, 42]. Initial experiments used cells of murine
origin [43–45]. Subsequently, MSCs derived from human
tissues were tried [23, 35, 46]. The early reports demonstrated
variable degrees of success but were met with skepticism since
it was argued that MSCs should not differentiate toward an
endocrine pancreatic lineage.

In our laboratory [32], bone marrow cells were obtained
from three adult diabetic and three nondiabetic volunteers.
MSCs were isolated, expanded, and differentiated using a



three-stage protocol. Cells were cultured in a glucose-rich
medium containing several activation and growth factors.
Initially, mercaptoethanol was used to induce the cells toward
a pancreatic endocrine lineage. Subsequently, nonessential
amino acids, basic fibroblast growth factor, epidermal growth
factor, and B27 supplement were added. Finally, activin A and
nicotinamide were supplemented. At the end of differentiation,
approximately 5 % of cells were positive for insulin and c-
peptide by immunofluorescence. Insulin and c-peptide were
coexpressed by the same cells (Fig. 2.1 ). Electron microscopy
with nanogold immunolabeling demonstrated the presence of
c-peptide granules in the rough endoplasmic reticulum. The
differentiated cells expressed transcription factors and genes of
pancreatic hormones similar to those of pancreatic islets.
Furthermore, there was a stepwise increase in human insulin
and c-peptide release in response to increasing glucose
concentrations. Transplantation of these cells into diabetic
nude mice resulted in control of their diabetes. The sera of the
treated mice contained human insulin and c-peptide with
negligible levels of mouse insulin. When the kidneys bearing
the transplanted cells were removed, rapid return of diabetes
was noted. In summary, evidence was provided that MSCs can
indeed be differentiated into IPCs. Nevertheless, two
observations remained to be addressed. First, improvement of
the yield of IPCs following directed differentiation of human
bone marrow-derived mesenchymal stem cells (HBM-MSCs)
is needed. Second, an explanation of the ability of transplanted
cells to cure diabetic nude mice in spite of the modest yield of
IPCs in vitro is also required.

Fig. 2.1 Immunofluorescence staining of differentiated HBM-MSCs (a selected
field). (a) Positive staining for intracytoplasmic insulin granules (green) with
counterstaining for DAPI (blue). Positive staining for c-peptide (red) with



counterstaining for DAPI (blue). Electronic merge of insulin and c-peptide staining.
The coexpression of insulin and c-peptide (yellow) was detected in the same cells

In a subsequent study, we compared the efficiency of the
original protocol in which mercaptoethanol was used for the
induction of differentiation of HBM-MSCs into IPCs with two
other agents: conophylline and trichostatin [47]. The yield of
functional IPCs was again modest and comparable among the
three protocols (~3 %). This is in agreement with the data of
other investigators who reported that the proportion of IPCs at
the end of in vitro differentiation was small irrespective of the
employed protocol. In view of its simplicity and the short
period required for its completion, only 10 days, the
trichostatin-based protocol is currently our traditional method
for directed differentiation of HBM-MSCs into IPCs. Several
laboratories have also reported that, although the proportion of
IPCs generated in vitro from MSCs was meager, they could
induce euglycemia when the cells were transplanted into
diabetic nude mice [48, 49]. Without providing clear evidence,
it was suggested that this was the result of further maturation
of the implanted cells in vivo. To confirm this finding, we
carried out a series of experiments in our laboratory [50].
HBM-MSCs were obtained from three insulin-requiring type 2
diabetic patients. Following expansion, cells were
differentiated according to a trichostatin-A/GLP protocol. One
million cells were transplanted under the renal capsule of 29
STZ-induced diabetic mice. Mice were euthanized 1, 2, 4, and
12 weeks after transplantation. The IPC-bearing kidneys were
immunolabeled, the number of IPCs counted, and the
expression of relevant genes determined. The diabetic animals
became euglycemic 8 ± 3 days after transplantation. The
percentage of IPCs from the harvested kidneys increased
gradually to reach a peak of ~18 % at 4 weeks after
transplantation without a substantial change thereafter (Fig.
2.2). Relative gene expression of insulin, glucagon, and
somatostatin showed a similar increase. We concluded that the
ability of the transplanted cells to induce euglycemia was due
to an increase in the numbers of IPCs. It is reasonable to
assume that the in vivo milieu contains factors that promote
the maturation of the transplanted cells. It was reported that
the source of these factors can be from the regenerating



pancreas after it had sustained a toxic or traumatic injury [51].
It was shown that cytosolic extracts from the regenerating
pancreas have the potential to initiate neogenesis in STZ-
induced diabetic animals [52]. An extract obtained from a
regenerating pancreas 2 days after 60 % pancreatectomy was
utilized with success for differentiation of rat mesenchymal
cells into IPCs [53]. Further studies to identify the factor(s)
secreted during pancreatic regeneration can provide an
important tool for achieving the efficient differentiation of
HBM-MSCs into IPCs.

Fig. 2.2 Histology of IPC-bearing kidneys harvested from mice 4 weeks after
transplantation. (a) Hematoxylin and eosin staining revealed the implanted cells
beneath the renal capsule. (b) Positive immunofluorescence staining for insulin
(green) and c-peptide (red). Electronic merge (yellow) reveals the coexpression of
insulin and c-peptide in the same cells

It is clear that only a subset of MSCs is capable of
trilineage differentiation [54]. The identification, sorting,
expansion, and subsequent differentiation of this
subpopulation can result in the production of sufficient IPCs
with adequate functional capacity. Previous reports by
Catherine Verfaillie’s group described a culture system for
MSCs that favors the selection of a subpopulation of primitive
cells referred to as multipotent adult progenitor cells (MAPCs)
[55]. A variety of other cells derived from postnatal tissues
that demonstrated pluripotency were more recently reported:
unrestricted somatic stem cells (USSCs) [56], marrow-isolated
adult multilineage-inducible cells (MIAMIs) [57], and very
small embryonic-like (VSEL) stem cells [58]. However, all of
them were associated with controversies regarding lack of
reproducibility and skepticism. The intermediate filament



protein nestin has been detected in several cellular phenotypes
during embryonic and adult life. It was proposed that the
expression of nestin may reflect the multipotential and
regenerative abilities of cells [59]. Kabos et al. described a
method for isolating nestin-positive cells from adult bone
marrow [60]. Using this method, successful differentiation of
nestin-positive subset of bone marrow-derived pancreatic
endocrine cells was achieved by Milanesi and colleagues [61].
However, superiority of this method over the use of
unfractionated cells in terms of the number or functionality of
the generated IPCs was not shown. Recently, Kuroda and
colleagues isolated what they defined as multilineage-
differentiating stress-enduring (Muse) cells cultured from skin
fibroblasts or bone marrow stromal cells [62]. These cells
were positive for both CD105, a mesenchymal cell marker,
and stage-specific embryonic antigen-3 (SSEA-3), a human
pluripotency marker. Muse cells were indistinguishable from
other MSCs in adherent culture, but when they are transferred
to suspension culture, they form characteristic cell clusters that
are capable of self-renewal as well as differentiation into all
three germ layers. To our knowledge, the differentiation of
these cells into IPCs has not been reported yet.

2.5 Mesenchymal Stem Cells and Diabetic
Complications
Uncontrolled or poorly controlled DM promotes the
development of serious complications. These result essentially
from vascular pathologies. Microvascular affections manifest
as retinopathy, nephropathy, and debilitating neuropathies.
Macrovascular involvements lead to accelerated cardiac
disease, sexual dysfunctions, and diabetic foot ulcers.

MSCs have the ability to migrate and home in injured
tissues, where they act by secreting trophic factors and
paracrine mediators, leading to their regeneration. As a result,
research efforts are now directed not only to generating IPCs
but also to use unmodified MSCs in the management of
serious diabetic complications. Experimental evidence shows
that MSCs can reverse the manifestations of diabetic



neuropathy [63] and retinopathy [64]. MSCs were utilized
with success in the treatment of rabbit ulcer model [65]. It was
also reported that MSCs ameliorated podocyte injury and
proteinuria in a rat model with type 1 diabetic nephropathy
[66]. A possible role for MSCs in the regeneration of
intervertebral disk was suggested by Huang et al. [67]. Given
the capacity of MSCs to home to damaged tissues, their
possible role in the management of infertility or reproductive
disorders was also reported [68]. Out of 86 diabetic patients,
treatment with bone marrow-derived MSCs promoted ankle
nonunion healing in 70 [69].

2.6 Concluding Remarks
To establish persuasive proof that a certain type of stem cell
has been successfully differentiated into IPCs, Calne and
Ghoneim [70] defined the following criteria: (1) coexpression
of insulin and c-peptide by the same cells, (2) demonstration
of insulin storage granules, (3) identification of specific gene
expression similar to those of pancreatic ß-cells, (4) stepwise
increase in insulin and c-peptide release as a function of
increasing glucose concentration in vitro, (5) cure of
hyperglycemia following cell transplantation in diabetic
animals, and (6) prompt return of diabetes when these cells are
removed. It is abundantly clear that stem cells, embryonic
cells, and induced pluripotent or mesenchymal stem cells met
these criteria at the experimental level. For the translation of
these research findings to a clinical application, additional
questions need to be answered: How many functioning cells
are needed per kilogram body weight? How long will these
cells remain functioning? What is the optimal site for their
transplantation?

In August 2014, the US Food and Drug Administration
(FDA) approved an Investigational New Drug (IND)
application for the treatment of patients with type I DM to be
carried out by a biotechnology company in San Diego,
California (ViaCyte). Pancreatic progenitor cells derived from
a human embryonic cell line will be transplanted within a
device to prevent allogeneic rejection. Their strategy depends



on spontaneous maturation of the grafted progenitor cells into
IPCs in the body. It is a first step and will not be the last.
Medical history indicates that innovations are always
incremental. The potentials of Muse cells are great owing to
their pluripotency, the lack of teratogenicity, and the
possibility of their use in an autologous fashion. The caveat in
using these cells is that, with expansion, they lose their
pluripotency marker and tend to differentiate into cells of their
tissue of origin. Meanwhile, the potential applications of
unmodified MSCs for the treatment of diabetic complications
are ever growing.
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3.1 Introduction
Stem cells are divided into three main groups: embryonic stem cells (ESCs), fetal stem cells, and
adult stem cells. They vary in terms of their accessibility, ease of culture, and potency to give rise to
a multitude of cell types.

ESCs, derived from the inner cell mass of human blastocysts, can potentially proliferate
indefinitely and are capable of giving rise to all types of cells in the human body. But the use of
human embryos raised ethical debate within and outside the scientific community, hampering their
clinical use.

For therapeutic purposes, somatic pluripotent stem cells are the most extensively investigated
group. They include (1) neural and progenitor stem cells residing in the central nervous system
(CNS), (2) mesenchymal stem cells found in the bone marrow and other regions of the human
body, and (3) induced pluripotent stem cells (iPSCs), among others. These cells hold the
potential to act on a multitude of target sites of injury in the nervous system to alleviate the
devastating disease symptoms where single-molecule-based pharmaceutical drugs did not bring
many benefits [1, 2]. This chapter discusses these three types and others that have been investigated
in clinical trials for the treatment of neurological diseases.

Mechanism of action: Stem cells share a similar therapeutic mechanism of action owing to their
ability to replace or regenerate damaged tissue either (1) directly by differentiating into the different
neuronal subtypes depending on the environmental cues in the damaged area or, most importantly,
(2) indirectly through their numerous paracrine effects, including the secretion of growth factors
and axon guidance molecules, which stimulate neuronal and axonal regeneration. They also produce
numerous immune-modulating cytokines and chemokines that alleviate the inflammatory processes
found in many neurological diseases, thereby contributing to the support, remodeling, and
metabolism of the toxic macromolecules in the affected area.

Neurotrophic factors (neurotrophins): These are a family of large protein molecules secreted by
cells of the developing nervous system and supporting glial cells. They are responsible for the
survival, repair, and differentiation of neurons of the peripheral nervous system (PNS) as well as the
CNS. This family of proteins includes nerve growth factor (NGF), neurotrophin-3 (NT-3), basic
fibroblast growth factor (bFGF), brain-derived neurotrophic factor (BDNF), insulinlike growth
factor (IGF), neurotrophic factor-4/5 (NT-4/5), and ciliary neurotrophic factor (CNTF).

Neurotrophins have been the target of extensive research and clinical trials for the treatment of
neurological conditions. For example, the cognitive function of Alzheimer’s disease animal models
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was improved without altering Aß or tau pathology via the potent effects of BDNF secreted by stem
cells [3].

3.2 Types of Stem Cells Available for Neurological Disease Modeling
and Treatment
In this section, we will go over the main characteristics of the different types of stem cells used in
clinical trials in terms of plasticity, proliferation, and expression of specific molecular markers and,
finally, their therapeutic significance.

3.2.1 Neural Stem and Progenitor Cells
Neural stem cells (NSCs) were first described by Altman in 1960 [4, 5], contradicting the
established notion at that time that the nervous system had no regeneration capabilities. A wealth of
data has now proven that neurogenesis exists in the adult human spinal cord and in two main areas
of the brain [6], one being the subventricular zone (SVZ) along the wall of lateral ventricles, where
NSC-derived neurons migrate to the olfactory bulb and the striatum [7], the second being the
subgranular zone (SGZ) of the hippocampus whose NSCs integrate the dentate gyrus.

NSCs and neural progenitor cells (NPCs) are both unspecialized, self-renewing cells with a
differentiation capacity within the neural lineage. Progenitors have less self-renewal capacity and
are more committed to neural differentiation.

3.2.1.1 Plasticity
A NSC must have the differentiation potential to give rise to the three neuronal components of the
nervous system, namely: neurons, astrocytes, and oligodendrocytes. Environmental cues or the
“niche,” including growth factors and CNS region-specific intrinsic factors, influence the fate of
adult NSCs. Understanding these elements is important in therapy where unipotency or replacing a
specific neuronal subtype is the key in repair and regeneration (Fig. 3.1).

Fig. 3.1 Multipotency of induced neural progenitor stem cells (iNPSCs). Expression of marker genes: nestin and Sox2 by iNPCs,
GFAP by astrocytes, Tuj1 and MAP2 by neurons, Olig2 and Mbp by oligodendrocytes. DAPI stained all nuclei. Fluorescent
microscopy. Cheng L, Hu W, Qiu B, Zhao J, Yu Y, Guan W, et al. Generation of neural progenitor cells by chemical cocktails and
hypoxia. Cell Research. 2014;24(6):665–79

3.2.1.2 Proliferation
The self-renewal ability is a unique feature of stem cells. NSCs undertake symmetrical and
asymmetrical types of divisions in vivo [8]. NPSCs have a lesser self-renewal capability than NSCs
and are more readily differentiated. Numerous protocols have been developed for the in vitro
growth and large-scale proliferation of NSCs/NPSCs isolated from the human CNS [2]. Two-
dimensional (2D) or three-dimensional (3D) tissue culture settings are used. The fibroblast growth
factor (FGF) and the epidermal growth factor (EGF)—for late-emerging neural stem cells—are the
main needed factors. In addition, telomerases are commonly used to prevent senescence related to a
prolonged in vitro expansion time.

3.2.1.3 Expression of Molecular Markers
Intracellular as well as surface markers are available for the immunocytometric and hystocytometric
detection of neural stem cells with flow cytometry and fluorescent microscopy, respectively. Those
markers include nestin (an intermediate filament found in neuroepithelial stem cells), PSA-NCAM
(a polysialylated neural cell adhesion molecule), and Sox2. Sox2 is highly expressed in adult NSCs,
is one of the earliest functional markers of neuroectodermal specification in the embryo, and plays a



key role in neural lineage specification. Many other neural markers exist, such as TUJ-1, Mash1,
Nkx2.2, Sox1, Pax6, Otx1, Otx2, NeuroD1, and Doublecortin (Dcx).

3.2.1.4 Therapeutic Effects
NSCs are capable of producing neurotransmitters that accelerate remodeling and healing in addition
to all the shared mechanisms of action with other stem cells. Their differentiation potential is
restricted to the neuronal lineage, eliminating the risk of cartilage or bone formation post-
transplantation. On the other hand, adult NSCs are not readily accessible, and the use of fetal-
derived or embryonic stem cell-derived NSC therapies is not ethically accepted in general. A new
approach has recently emerged, with FDA approval, using NSCs/NPCs differentiated from other
types of stem cells in clinical trials [9, 10] (Table 3.1).
Table 3.1 Examples of clinical trials using neural stem/precursor cells to treat neurological disorders
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pt post-transplant, NA information not available. Giusto E, Donega M, Cossetti C, Pluchino S.
Neuro-immune interactions of neural stem cell transplants: from animal disease models to human
trials. Exp Neurol. 2014;260:19–32. External link. Please review our privacy policy

3.2.2 Mesenchymal Stem Cells
Mesenchymal stem cells (MSCs) are adult multipotent stem cells found in many tissues including
fat, muscle, and umbilical cord, with the bone marrow being the first and most studied source.
MSCs are a heterogeneous population of cells. Fate mapping studies have shown that bone marrow
(BM) MSCs originate from the paraxial mesoderm, but not in an exclusive manner. Another
subpopulation of MSCs originating from the neural crest (NC), NC-derived progenitors, was proven
to exist [8, 11]. This helps explain MSCs’ ability to differentiate into neural progenitor and neuronal
cells. It also reinforces the link between the nervous and the hematopoietic systems. It was
demonstrated that nestin + MSCs are NC progenitor cells that persist in the adult BM, skin, dental
pulp, and other tissues. The developmental origin of MSCs could be even more diverse, which
explains their heterogeneity, the need for subpopulation characterization, and the diverse therapeutic
potential [12].

3.2.2.1 Plasticity
MSCs must differentiate into osteoblasts, adipocytes, and chondroblasts in vitro using the
appropriate induction medium. The differentiation is verified histologically using special stains or
using the appropriate gene primers with real time polymerase chaine reaction (RT PCR). In
addition, MSCs have been found to differentiate into many types of cells, including myocytes,
neurons, and glia cells, using favorable culturing conditions.

3.2.2.2 Proliferation
MSCs must be plastic adherent when maintained in standard culture conditions of DMEM or alpha-
MEM supplied with fetal bovine serum or its human substitutes. This feature is shared with
fibroblasts in addition to the morphological similarities between them (Fig. 3.2). Accordingly, the
Mesenchymal and Tissue Stem Cell Committee of the International Society for Cellular Therapy
added in 2006 two more criteria regarding the plasticity and expression of markers to define MSCs.

Fig. 3.2 Mesenchymal stem cells (MSCs). Light microscopy 5× magnification. Courtesy of Dr. Dana Hattab, Cell Therapy Center,
Jordan University

3.2.2.3 Expression of Molecular Markers
The minimal surface marker expression criteria to define human MSCs are as follows: MSCs must
express CD105, CD73, and CD90 and lack expression of CD45, CD34, CD14 or CD11b, CD79α or
CD19, and HLA-DR surface molecules [13]. In addition, other markers have been used to
characterize and isolate the different MSC subpopulations, including CD271, CD146, CD56
(NCAM), CD166, CD106 (VCAM), CD14, HLA-ABC, CD29, CD44 (HCAM), and GD2. It is
worth noting that none of these markers is unique to MSCs and that the percentages of expression of
the positive markers differ depending on the source of MSCs, among other factors.

3.2.2.4 Therapeutic Effects
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Unlike induced pluripotent stem cells (iPSCs) or induced neural stems cells (iNSCs), MSCs do not
contain any risks related to viral transfection. This explains the relatively high number of clinical
trials investigating their therapeutic benefits. These include two complementary lines: the
immunomodulatory approach and the regenerative approach.

Immunomodulatory approach: MSCs have been found by numerous groups to have potent
immunomodulatory effects, which can be relevant in treating neuroinflammatory diseases. MSCs
suppress T cells, B cells, natural killer (NK), and dendritic cell activation and proliferation and are
able to promote FoxP3 regulatory T cells [14–16]. Grafted MSCs are able to modify the
inflammatory environment by shifting the macrophage phenotype from M1 to M2 and by reducing
the levels of tumor necrosis factor-α and other inflammatory cytokines [17, 18]. They are thought to
do so as a result of the variety of cytokines and chemokines they produce, both continuously and as
a result of activation [19]. The influence of these cytokines on the milieu of injury is favorable and
promotes inherent regeneration.

Neuroregenerative approach: In vitro and in vivo animal studies on human MSCs revealed the
ability to promote post-injury neuronal functional recovery. This is achieved through their
production of neurotrophic factors that induce the survival and regeneration of host neurons such as
brain-derived neurotrophic factor (BDNF) and nerve growth factor-β (β-NGF) [19, 20].
Neuroectodermal differentiation has also been confirmed by several studies. MSCs may
differentiate into neurons directly or give rise to intermediate NPSCs/NSCs capable of generating
neurons, oligodendrocytes, and astroglial cells [21, 22]. The differentiated neurons show
electrophysiological functional properties concomitant with the upregulation of neural-specific
genes. Assuming the in vivo conditions of the transplanted MSCs are favorable, this effect can be
expected to be reproduced in patients. To increase the therapeutic potential of MSCs, there is a focus
now on their proper characterization and on determining more specific molecular markers of the
different subtypes forming heterogeneous populations.

3.2.3 Induced Pluripotent Stem Cells
IPSCs are differentiated adult cells that return to their pluripotent state by in vitro manipulation,
which results in the production of dedifferentiated and multipotent cells. In 2007, Yamanaka and his
team published their work on the first successful induction of pluripotent stem cells from human
skin fibroblasts by retroviral transfection of four transcription factors: Oct3/4, Sox2, c-Myc, and
Klf4 [23]. These cells had a high telomerase activity resembling that of ESCs and were able to
differentiate into cells of neuronal and cardiac lineages. This work was reproduced by different
groups using a variety of somatic cells and including the usually discarded disc-derived cells [24].

Although not identical to ESCs in terms of their gene expression profile, there are many
similarities between ESCs and iPSCs in terms of morphology, surface marker expression, feeder
dependence, and in vivo teratoma formation capacity [24]. This makes iPSCs an appealing and less
controversial source of stem cells for regenerative medicine. iPSCs are also readily differentiated
into many cell types including neurons and myocytes. For neuronal differentiation, induction media,
though expensive, are used in a variety of protocols. Small molecule signaling pathway inhibitors
including DMH, a BMP inhibitor, are a cheaper substitute for the growth factors used in commercial
media and were found to produce less heterogeneous cultures. These small molecule inducers of
neuronal differentiation can be used in different combinations and concentrations to produce any of
the four main neuronal sublineages: dopaminergic, GABAergic, serotonergic, and cholinergic/motor
neurons.

3.2.3.1 Plasticity
iPSCs can be induced to differentiate in vitro into cells of the three germ layers. This is
accomplished by cultivating iPSCs in suspension for about a week to form embryoid bodies, which
are subsequently transferred to gelatin-coated plates for further culturing. The attached cells
differentiate freely into cells expressing molecular markers of ectodermal, endodermal, and
mesodermal cells. Immunocytochemistry is used to detect, for example, the glial fibrillary acidic
protein (GFAP) and bIII-tubulin as ectodermal markers; α-smooth muscle actin (α-SMA), desmin,
and vimentin as mesodermal markers; and a-fetoprotein (AFP) as endodermal marker of iPSC
differentiation [23].

3.2.3.2 Proliferation



Following transfection with the dedifferentiating growth factors, the self-renewing ability of iPSCs
is maintained for months. For that, conditions similar to ESC cultures are required. These include
fibroblast feeder cells, ESC-conditioned media, and basic fibroblast factor to obtain differentiated
neurons from iPSCs (Fig. 3.3).

Fig. 3.3 Induced pluripotent stem cells (iPSCs). Light microscopy 5× magnification. Courtesy of Nidaa Ababneh. Pathology
Department, Oxford University

3.2.3.3 Expression of Molecular Markers
Human iPSCs do not express stage-specific embryonic antigen (SSEA), but they do express known
human embryonic stem cell (hESC)-specific surface antigens, including SSEA-3, SSEA-4, tumor-
related antigen (TRA)-1-60, TRA-1-81, and TRA-2-49/6E (alkaline phosphatase), and NANOG
protein.

In addition, iPSCs express many undifferentiated ESC marker genes at levels similar to those
found in hESC lines. These markers include T3/4, NANOG, SOX2, growth and differentiation
factor 3 (GDF3), reduced expression 1 (REX1), fibroblast growth factor 4 (FGF4), embryonic cell-
specific gene 1 (ESG1), developmental pluripotency-associated 2 (DPPA2), DPPA4, and telomerase
reverse transcriptase (hTERT) [23].

3.2.3.4 Therapeutic Effects
The therapeutic potential of iPSCs in neurological disease treatment is high (Fig. 3.4). Yet concerns
remain over epigenetic and transcriptome aberrations as well as tumor formation related to this
technology [5]. Extensive molecular studies of iPSC cultures to understand and eliminate any
harmful risks will pave the way to many clinical applications. Because the importance of iPSCs
relies on their ability to differentiate into any neuronal cell type and even subtype, they are of
significance for many neurodegenerative diseases characterized by the dysfunction or loss of a
specific neuronal sublineage. iPSCs’ ability to give rise to mitotically active NSCs/NPSCs is also
promising in cases of spinal cord injury (SCI) and other neurological conditions.



Fig. 3.4 Multipurpose use of iPSCs: (a) Disease modeling using patient iPSCs for “multi-omics” and “drug discovery.” (b) Onsite
reprogramming instead of “cell transplantation.” (c) iPSCs from a large cohort of patients can be used in clinical trials and for patient
stratification. Inoue H, Nagata N, Kurokawa H, Yamanaka S. iPS cells: a game changer for future medicine. The EMBO Journal.
2014;33(5):409–17

Cell transplantation: Although tested on many neurological animal models for years, it was not
until 2013 that the Japanese government approved the first clinical study using human iPSCs.
Autologous retinal pigment epithelium (RPE) cells derived from human iPSCs were to be used to
treat six patients with age-related macular degeneration [25]. The proof of safety and efficacy of the
iPSC technology in the treatment will encourage the initiation of many more trials around the world.
The transplant ation of safe human leukocyte antigen (HLA)-matched iPSC-derived NSCs, neurons,
and glial cells is promising for the treatment of many neurological diseases [26]. This technology
should resolve issues of rejection and at the same time eliminate risks of transplanting autologous
cells with inherent aberrations.

Disease modeling and drug screening: Neuronal subtypes derived from a patient’s iPSCs are
considered a recapitulation of the individual’s cellular phenotype and genotype. This approach has
been used in clinical trials to stratify patients into responders versus nonresponders to a therapeutic
drug. It can be used either for screening patients for a clinical trial or to explain results of clinical
trials where the patients’ response is variable [24]. One of the most significant issues that still need
to be addressed in disease modeling is that iPSC-derived neuronal cells are not as mature as adult
patients’. Much research is ongoing to improve the maturity status of generated cells to better reflect
the patients’ own “neuronal cells.”

Gene correction: The heterogeneity of iPSC clones resulting from somatic trans-differentiation
can be an advantage when searching for autologous regenerative cures for genetic disorders. For
instance, Hong Ma et al. isolated wild-type mitochondrial DNA (mtDNA) iPSCs from
heteroplasmic fibroblasts of patients with the most common neurological mitochondrial DNA
mutation syndromes [27]. These wild-type, mutation-free iPSCs produced cells with normal
metabolic functions. Transplanting these rescued cells would alleviate symptoms affected by the
heteroplasmy or the relative levels of wild-type to mutant mtDNA within each cell.

3.2.4 Induced Neural Stem Cells/Induced Neural Progenitor Cells
This is a novel approach that could be developed via direct lineage reprogramming of nonneuronal
cell types, bypassing the need for pluripotent stem cells. Human fibroblasts and cord blood stem
cells, as well as peripheral blood cells, have been reprogrammed into self-renewing NSCs, capable
of giving rise to neurons and glial cells. This was achieved via the ectopic expression of all
predefined transcription factors such as Sox2 or Oct4, Klf4, and c-Myc [10, 28, 29]. Direct
conversion into postmitotic functional neurons has also been achieved by many groups, with the
potential of use for modeling and treating neurodegenerative disorders [30, 31] (Table 3.2).
Table 3.2 Induced neural stem cell (iNSC) versus induced pluripotent stem cell (iPSC) technologies

Cell type Advantages



Cell type Advantages

Induced neural stem cell (iNSC) technology Multi sample analysis, cost and time effective, and cellular maturation of neural
progenitors

Induced pluripotent stem cell (iPSC)
technology

Gene editing, unlimited resource, can differentiate into a large variety of cells

3.2.4.1 Plasticity
In contrast to iPSC technology, which can produce a multitude of cell types, iNSCs and iNPCs can
be used to generate neural stem/progenitor cells and neurons specifically.

3.2.4.2 Proliferation
iNSCs achieve a stable neuronal state independent of viral transgene expression and can be
expanded for more than 20 passages. Human neonatal foreskin fibroblasts are used as feeder layer
for the culturing and expansion of iNSCs after transfection in the presence of hESC culture medium
and the addition of bFGF. For neural differentiation, separated cells are grown on coated culture
plates with or without astrocytes as a feeder layer. The human astrocyte layer seems more effective
in directing the maturation of neurons [26].

3.2.4.3 Markers of the Generated Neurons
Similar markers for NSCs are used to characterize iNSCs, including Sox2 and nestin, while
neuronal markers and neuronal sublineage markers are used to characterize the resulting neurons
and glia. Examples of these markers include b-Tubulin, Map2, and the inhibitory GABA marker.

It is thus suggested that “a combination of the induced neural stem cell (iNSC) technology and
the induced pluripotent stem cell (iPSC) technology has been used to produce functional neurons.
These neurons have a superior neural culture purity and are generated by the transfection of only
one transcription factor, either neurogenin-2 (Ngn2) or NeuroD1” [32].

3.2.5 Glial-Restricted Progenitor Cells
As their name indicates, glial-restricted progenitor (GRP) cells are self-renewing with a limited
differentiation potential. They can give rise to oligodendrocytes and astrocytes but not neurons.
They can be found in the developing mammalian brain and spinal cord. Most studies involving glial
progenitor cells investigated their effect on the developing nervous system of model animals. Later,
it was found that these cells have promising regenerative and remyelinating effects on the adult
nervous system in animal models of multiple sclerosis (MS) and transverse myelitis. This would be
possible by replenishing the demyelinated regions by oligodendrocytes, the myelinating cells of the
CNS [33]. The protocol of their isolation and expansion was adopted by Q Company, after which
these cells are sometimes called Q-cells. This company secured the approval to use these cells for
the treatment of amyotrophic lateral sclerosis (ALS) [34].

According to the Q-cell protocol, human GRP cells are isolated from aborted fetal brain tissue,
followed by manual and enzymatic dissociation to yield a single cell suspension. GRP cells are then
purified by magnetic beads coated with anti-A2B5 antibody, which is the selective surface marker
for GRP cells [35]. Subsequently, purified GRP cells are cultured and expanded for three passages
in neural media supplemented with bFGF.

The estimated number of oligodendrocytes needed for transplantation is between 4–5 × 103

cells/mm3 of lesion. Because the source of these cells is not abundant, they are made immortal by
viral transduction with the myc-oncogene with a reporter marker for analysis. The astrocytic
differentiation of GRP cells at the site of the lesion is also beneficial owing to the neurotrophic
factors they produce, which counteract the inhibitory environment in the lesion [33].

3.2.6 Glial Cells
Although glial cells are terminally differentiated cells, olfactory ensheathing cells (OECs) and
Schwann cells (SCs) have been used in clinical trials in protocols similar to stem cells for the
treatment of neurological diseases. Therefore, they are discussed briefly in what follows.



3.2.6.1 Olfactory Ensheathing Cells
OECs are glial cells that are responsible for the continuous regeneration of olfactory axons
throughout the adult life in mammals. OECs are isolated from aborted human fetal olfactory bulb,
cultured for three passages, and characterized by immunohistochemistry with antibodies targeting
an OEC-specific surface marker, neurotrophin receptor p75 [36]. Alternatively, OECs are isolated
from the adult nasal mucosa under local or general anesthesia and cultured and expanded for about
4 weeks for autologous transplantation procedures [37].

OECs ensheathe axons spanning both the CNS and PNS parts of the primary olfactory pathway.
In vitro coculture data demonstrated their ability to support the sprouting of new nonolfactory bulb
axons. Their transplantation into animal models proved they could support axonal regeneration in a
multitude of sites in the nervous system. This phenomenon was attributed in part to their diverse
secretome consisting of glial cell line-derived neurotrophic factor (GDNF), NGF, BDNF, and
neuregulins, which are well-known neurotrophic factors.

The wealth of in vitro and in vivo data in favor of OECs led to the initiation of clinical trials
exploring their safety and efficacy in treating patients with SCI, amyotrophic lateral sclerosis, and
other conditions [34, 37]. It is worth mentioning that there is a debate over the nomenclature of
these cells and their role; some groups call them nasal stem cells, while others call them olfactory
ectomesenchymal stem cells capable of neurogenesis [38].

3.2.6.2 Schwann Cells
SCs are PNS glial cells equivalent to CNS oligodendrocytes. They are mainly responsible for the
myelination of axons of peripheral nerves. In addition, SCs allow damaged PNS axons to regrow
and myelinate after damage. Interestingly, SCs have been found in the spinal cord at injury sites.
They dedifferentiate and secrete growth factors, leading to schwannosis in humans and neuromatous
structures. For years, in vitro and in vivo studies investigated their effects on CNS axons. SCs were
isolated from both fetal and adult peripheral nerves, cultured, and expanded. Viral oncogene
transfection is usually performed to obtain large cell numbers, except in one protocol that used
autologous serum deprivation and addition to obtain safer cells for clinical trials [39]. Over the
years, the safety of SCs has been established, and the potential of SCs in promoting the survival and
regeneration of CNS axons was demonstrated in several clinical trials for the treatment of SCIs and
ALS. The first FDA-approved clinical trial for treating paralysis is ongoing, whereas the safety of
the treatment has been demonstrated in the first patient [40].

3.2.7 Hematopoietic Stem Cells and Mononuclear Cells
Hematopoietic stem cells (HSCs) give rise to all cellular blood components, including mononuclear
and multinuclear cells, in addition to platelets and red blood cells. They are easily isolated from
marrow, cord blood, and peripheral blood using antibody-coated beads against CD34 and CD45
specific markers. ESCs and iPSCs are good experimental sources of HSCs (Fig. 3.5).
Immunocompatible, HLA-matched allogeneic bone marrow and peripheral blood transplants were
the first type of stem cells successfully used in treating hematopoietic diseases. Recent
advancements in HLA-matching technology have increased the success rates of these myoablative
therapies. The role of HSCs, referred to as a mononuclear subset, in the treatment of neurological
disorders has been investigated. In the first human trial, umbilical cord blood mononuclear cells
were administered to an infant with cerebral palsy via a peripheral injection. Functional
neuroregeneration was observed to proliferate via the stimulation of endogenous NSCs. A CD133-
expressing subset of HSCs has been found to have superior homing capabilities to neural sites of
injury. On the other hand, HSCs had lower survival rates in the brain unless combined with
immunosuppressants [41].



Fig. 3.5 Lineage hierarchy of bone marrow perivascular stromal cells (including MSCs) and hematopoietic stem cells [SCF and
CAR are rare populations of mesenchymal stem/progenitor cells (MSPCs) highly enriched for factors implicated in HSC
maintenance, including CXCL12 and SCF]. Ugarte F, Forsberg EC. Haematopoietic stem cell niches: new insights inspire new
questions. The EMBO journal. 2013;32(19):2535–47

In a clinical trial for the treatment of MS, patients were subjected to intense immunosuppression
followed by autologous HSC transplantation. The results were compared to those with patients
receiving mitoxantrone (MTX), which is traditionally used in the treatment of MS. After a 4-year
follow-up period, the group that had received HSCs showed a significant reduction in disease
activity measured by magnetic resonance imaging (MRI) [42].

A debate exists on whether the beneficial effects of mononuclear cell-derived HSCs should be
attributed to a MSC subpopulation of mononuclear cells. This highlights the need to properly
differentiate between the two neighboring and complementary types of cells found in the bone
marrow.

3.3 Induction of Neural Subtype Differentiation as a Tool for
Neurorestorative Therapy
The development of efficient protocols to induce specific types of neurons from different stem cells
and later characterize them has been an active area of research. This successful differentiation using
either growth factors or small molecules has helped scientists explore therapeutic options in several
diseases.

The benefits of this approach can be by direct restoration of lost damaged neurons or the use of
these neurons in the characterization of the diseases, as well as pharmacological screening of these
cells.

For Parkinson’s disease, in vitro differentiation of dopaminergic neurons is an important tool.
Cholinergic neurons are known to be affected in Alzheimer’s patients. In the same manner, the
degeneration of a specific subset of GABAergic neurons, the medium-sized spiny neurons (MSNs),
is well characterized in Huntington’s disease, while in amyotrophic lateral sclerosis, cholinergic
motor neurons are the ones affected [24].

3.4 Routes of Stem Cell Administration, Homing, and In Vivo
Tracking
The route of stem cell administration is an important issue to consider when planning a clinical trial
for CNS diseases in order to obtain the best outcome. The choice of local or systemic
transplantation mode depends on the neurological disease and on the presence of focal or multifocal
lesions on the target [1]. Also, the ability of stem cells to home to the target site of injury needs to
be considered when choosing among intravenous, subcutaneous, and intrathecal routes.

The intravenous route of stem cell injection is the least invasive but may not be the most
efficient. Stem cells have been shown to reach the CNS via this route using the necessary
machinery. This includes the extension of podia, followed by rolling and adhesion and firm



adhesion to the endothelial cells, allowing their extravasation to different body tissues [43]. Cells
transplanted via this route have been found to accumulate in the lungs and spleen [44]. Methods to
overcome this drawback are being investigated by different groups, while others have suggested
immunomodulatory benefits in the CNS due to splenocyte stem cell interactions [45].

On the other hand, intrathecal transplantation of stem cells results in higher engraftment in the
CNS site of injury. Many molecules have been found to direct stem cell homing into the site of
injury, which is improved by their in vitro prior exposure to inflammatory cytokines [46].

MSCs, for instance, have been found to highly express matrix metalloproteinases (MMPs),
which allow them to cross the basement membrane barrier and home to the desired site. Stem cell
homing ability could also be related to their expression of different chemokine receptors responsive
to chemokines released at the site of injury.

Our knowledge of the homing and precise effects of stem cell transplantation on patients is
being hindered by in vivo tracking issues. These include finding safe and effective molecules, of
long life span, to label the stem cells, in combination with the appropriate imaging technologies that
localize stem cells with minimum artifacts. There are also issues related to the choice of controls in
such tracking experiments. Most of the knowledge in this field resulted from in vitro or animal
tracking experiments using contrast agents that cannot be reproduced in humans, such as 5-bromo-
2′-deoxyuridine (BrdU), green fluorescent protein (GFP), and enhanced (eGFP) labeling.
Nanotechnology has potential in this regard, where nanoparticles bound to different contrast
molecules such as iron oxides are being used along with MRI. Few tracking studies have been
conducted on human subjects, while outcome assessment has relied on clinical findings in most
trials [47, 48]. The tracking durations in those studies was no more than 2 months, which is
sufficient for tracking homing only. Thus, advances in tracking techniques are necessary to provide
conclusive evidence of the therapeutic efficacy of MSC transplantation. Table 3.3 summarizes
tracking options that have been used in clinical trials treating neurological diseases with stem cell
transplantation.
Table 3.3 Stem cell tracking tools used in different clinical trials to locate stem cells after injection

 First
author/year

Number
of
patients

Disease Number
of
cells/type

Delivery
method

Imaging
modality

Labeling
technique

Cell
retention/survival
(%)

Study
observations

Studies based on
nuclear
medicine
techniques
(SPECT, PET,
GC)

Hofmann et
al. [59]

9 STEMI 2–4.5 ×
109
BMC

ICA
ICV +
ICA

PET 18F-FDG
BMC or
18F-FDG
CD34+
fraction
of BMC

2 (ICA, 1.5 h);
3.8 (ICV + ICA,
1.5 h); 25 (ICA,
CD34+, 1.5 h)

Homing only
to perfused
area of
delivery
artery, no
retention
after ICV,
higher
retention for
CD34+ cells

 Karpov et
al. [60]

44 Transmural MI
9

9 × 107
BMMNC

ICA SPECT 99 mTc-
HMPAO

6.8 (2.5 h); 3.2
(24 h)

No
differences in
cardiac
function
between
control and
treatment
groups

 Kang et al.
[61]

20 STEMI PBMNC ICA
ICV

PET 18F-FDG 1.5 (ICA, 2 h); 0
(ICV, 2 h)

Cell
retentions in
old and new
infarcts were
not different

 Correa et al.
[62]

1 Ischemic stroke 3 × 107
BMMNC

OTW
LCMA

SPECT 99 mTc-
HMPAO

n/a Substantial
amount of
delivered
cells in brain

 Schächinger
et al. [63]

19 Acute–chronic
MI

1.5 × 107
PBMNC

OTW
ICA

GC 111In-
oxine

6.9 (1 h); 2 (3–4
days)

Reduced
retention in
chronic
compared to
acute MI



 First
author/year

Number
of
patients

Disease Number
of
cells/type

Delivery
method

Imaging
modality

Labeling
technique

Cell
retention/survival
(%)

Study
observations

 Silva et al.
[64]

30 STEMI 1 × 108
BMMNC

OTW:
ICA or
ICV

SPECT 99 mTc-
HMPAO

10.3 (ICA, 24 h);
3.1 (ICV, 24 h)

Six-month
LVEF
improvement
is correlated
with cell
retention and
higher in
ICA group

 Barbosa da
Fonseca et
al. [65]

6 Ischemic stroke 1–5 ×
108
BMMNC

MCA SPECT
WB GC

99 mTc 1.7 (2 h) Uptake
primarily in
hemisphere
with stroke
lesion

 Barbosa da
Fonseca et
al. [65]

6 Chagasic
cardiomyopathy

1–10 ×
108
BMMNC

ICA SPECT
WB GC

99 mTc 5.4 (1 h); 4.3 (3
h); 2.3 (24 h)

Homing not
correlated
with number
of cells
administered;
poor uptake
in areas with
perfusion
deficit

 Vrtovec et
al. [66]

40 DCM 1 × 108

CD34+
from
PBMNC

ICA, IM GC 99 mTc-
HMPAO

4.4 (IC, 18 h);
19.2 (IM, 18 h)

Six-month
LVEF
improvement
is correlated
with cell
retention and
higher in IM
group

Studies based on
magnetic
resonance
imaging (MRI)

Zhu et al.
[67]

2 Brain trauma NPC Stereo-
tactical
injection

3 T MRI SPIO n/a Migration of
cells from
injection site
to border of
lesion, signal
persistent for
7 weeks

 Callera and
de Melo
[47]

16 Spinal cord
injury

0.7 × 106

CD34+
from
PBMNC

Lumbar
puncture

1 T MRI Antibody:
SPIO

n/a Cell
migration 35
days after
injection,
cells were
not detected
in 50% of
patients

Nguyen, Patricia K., Johannes Riegler, and Joseph C. Wu. “Stem cell imaging: from bench to
bedside.” Cell stem cell 14.4 (2014): 431–444

STEMI ST elevation myocardial infarction, BMC bone marrow cells, ICA intracoronary artery
infusion, ICV intracoronary vein infusion, IM intramyocardial delivery, PET positron emission
tomography, 18 F-FDG 18F-fluorodeoxyglucose, MI myocardial infarction, BMMNC bone marrow
mononuclear cells, SPECT single-photon emission computed tomography, 99 m Tc-HMPAO 99 mTc-
hexamethylpropyleneamine oxime, PBMNC peripheral blood mononuclear cells, OTW over the
wire balloon infusion, LCMA left cerebral middle artery, GC gamma scintillation camera, LVEF left
ventricular ejection fraction, MCA middle cerebral artery, WB GC whole body gamma scintillation
camera, DCM dilated cardiomyopathy, SPIO superparamagnetic iron oxide nanoparticle, NPC
neuronal progenitor cells

3.5 Animal Studies: The Transition Between Preclinical and Clinical
Trials
Animal studies are still a prerequisite for any clinical trial, mainly to prove safety and to provide
evidence for the efficacy of the therapeutic agent for neurological diseases, although it has been
recognized that there are significant differences between humans and animal nervous system cells.



Hippocampal neurogenesis, for example, is more active in humans than in mice and declines in a
less dramatic manner with age [49]. Also, many promising therapeutic results in rodent models
could not be reproduced in humans. The number of registered clinical trials using human stem cells
is far less than in vitro and animal studies. Both will be discussed subsequently for the main
neurological diseases that remain without satisfactory treatments to date either because of the low
efficacy or very high cost.

Safety issues related to tumor formation and viral transfection have hampered the use of iPSC
technology in clinical trials so far in all diseases, although encouraging results from animal studies
have been demonstrated by many groups for most neurological ailments.

3.6 The Case of Spinal Cord Injury: The Need for Bioscaffolds
SCI is a result of a complete or incomplete cut in any of the thoracic, lumbar, or sacral regions of
the spinal cord, the main cause being vehicle or sports accidents or violence-related incidents. The
available treatments are primarily surgical decompression or pharmacologically by administering
high doses of methylprednisolone, which do not save patients from the debilitating results of the
injury. SCI patients generally suffer from quadriplegia or paraplegia, loss of sensation, severe pain,
and often urinary tract and other infections [50]. These symptoms are due to immediate
posttraumatic axonal and blood vessel damage and inflammatory response to phagocytose debris. At
a later stage, a scar of the extracellular matrix (ECM) is formed, surrounded by astrocytes that
secrete several axonal growth inhibitors such as chondroitin sulfate proteoglycans [50], thereby
forming a physical and chemical barrier against the healing and regeneration processes.

3.6.1 Animal Studies
Numerous studies have been reported using human iPSC-derived NSCs for SCI treatment in rat and
mice induced spinal cord injuries. In most studies, the transplanted cells engrafted the host,
differentiated into neural lineages, and showed functional locomotor improvement [51]. In addition,
SCI was induced in nonhuman primates, and iPSC-derived NS/PCs were transplanted. The results
were encouraging; there was neuronal differentiation, remyelination of axons due to differentiated
oligodendrocytes, and gain of motor function with no tumors [52]. Similar results were observed
when human NSCs were used in primate as well as chronic rodent SCI models with the addition of
neurotrophic agents at the site of injury [50]. MSCs were also extensively studied using different
tracking methods to understand the precise mechanism of action with respect to regeneration and
attenuation of the posttraumatic inflammatory response.

3.6.2 Clinical Trials
As a result of the encouraging data related to the use of NSCs, a clinical trial was launched in 2011
by a Swiss company using fetal-derived NSCs to treat patients suffering from complete and
incomplete SCI. Positive results were demonstrated with a gain of sensation in 6 patients out of 12
recruited and 8 analyzed.

Many sources of MSCs have been used in clinical trials, and they all proved to be safe (Fig.
3.6). Because SCI affects mainly healthy individuals, the use of autologous MSCs raises no
questions regarding the inherent properties of the isolated stem cells. Consequently, both allogeneic
and autologous MSCs have been administered to SCI patients via many routes, with encouraging
results in most trials. A difference in results was observed in one study between acute cervical
injury patients who improved significantly, while only a mild improvement was observed in chronic
SCI patients.



Fig. 3.6 Application of MSCs as a treatment for SCI. The MSC secretome is believed to be a key player in the promotion of
neuroregeneration and neuroprotection, as well as the modulation of the inflammatory response. Assuncao-Silva RC, Gomes ED,
Sousa N, Silva NA, Salgado AJ. Hydrogels and Cell Based Therapies in Spinal Cord Injury Regeneration. Stem Cells Int.
2015;2015:948040

Hematopoietic CD34+ bone marrow cells were injected intrathecally into chronic SCI patients.
Their magnetic labeling proved their homing to the site of injury, but no clinical improvements were
observed [47].

Another phase I/II clinical trial of autologous BM-derived mononuclear cell therapy for SCI
patients showed neurological status improvement in one-third of patients [53].

OECs were also transplanted in two clinical trials; the first proved safe with no clinical
improvement, while the other proved safe and showed locomotor improvement in 11 of 20 chronic
SCI patients with tissue replacement at the site of injury [37].

3.6.2.1 Recommendations for Future Studies
With time, SCI becomes inevitably chronic and results in a multifactorial inhibitory environment
with scar formation, hence the need for a combinatorial therapy approach. In addition to stem cells,
bioscaffolds and neurotrophic factors can be incorporated for the best therapeutic outcome. The use
of bioscaffolds along with stem cells is promising because they can physically mimic the CNS
tissue to be replaced. Many types of biomaterials have been tested, with natural-based hydrogels
being the most appealing for neuronal regeneration. These hydrogels are composed of
macromolecular-based components with a high water content that can act as a filler at the site of
injury. Examples of natural hydrogels are fibrin, collagen, agarose, gellan gum, and chitosan. They
meet certain required criteria in terms of biocompatibility, biodegradability, and porosity. They are
also permeable to nutrients, waste products, and ions [50]. Encouraging animal studies resulted
from using different stem cell types in combination with a variety of hydrogels. It is thus highly
recommended for future trials to incorporate the use of hydrogels in their attempt to treat SCI with
stem cells. In addition, a closer look at stem cell secretome would enable the identification of potent
neurotrophic factors, which would then be simultaneously and repetitively injected into the site of
SCI to accelerate the healing process.

3.7 Amyotrophic Lateral Sclerosis: A Case of No Prevention and No
Effective Conventional Treatment
ALS is another neurological disease for which patients and physicians are eager to see effective
stem cell therapy. This is reflected by the wealth of animal studies followed by numerous clinical
trials that have used almost all the existing stem cell types as well as their progenitors. This was
encouraged by the absence of effective pharmaceutical drugs, pushing some companies to adopt
stem cell types for clinical research.

ALS is a devastating neurodegenerative disorder that leads to paralysis and respiratory
insufficiency with a life expectancy of 2–5 years from onset. It is characterized by the progressive
degeneration of motor neurons in the spinal cord, cortex, and brain stem. While 5% of ALS is
familial due to genetic alterations, 95% of the cases are sporadic with unknown etiology. It has been
proposed that hyperexcitability and neurodegeneration of the corticospinal motor neuron precede
the symptoms [54, 55]. Accordingly, the intraspinal route is used to deliver stem cells to the dying
neurons, while intrathecal injections help the injected stem cells reach the brain. Systemic injections
of stem cells into the blood stream as well as intramuscular administration have been used. The
regeneration of nerves in the affected areas is the ultimate goal of all experimental and clinical



studies on ALS treatment. One approach explored by many groups is the replacement of damaged
neurons by new transplanted ones. The challenge in this disease is in the long distance the axons of
the transplanted neurons need to travel in order to reach the muscle they innervate. The distance is
much shorter during the developmental stages when the axon first makes contact with the muscle in
response to specific environmental cues. It would then be more realistic to expect stem cells to
counteract the inhibitory, inflammatory environment that is consequent to degeneration. A more
permissive environment would promote the survival of existing neurons through the release of stem
cell secretome.

Table 3.4 compares the design and outcome of many published clinical trials in this field. The
first trial was performed in 2003, where Mazzini and his group aimed to assess the safety of
autologous MSC injection in ALS patients [34]. Autologous SCs were also used by a few groups
and proved to be safe and promising [56]. Scientists continue to use experimental animal models to
explore new treatment approaches. In a recent study, gene therapy was combined with stem cell
transplantation in a murine ALS model. Umbilical cord mononuclear cells were transfected with
epidermal growth factor protein (EGFP). The results were encouraging, and the mice showed better
survival, motor and explorative activities, and grip strength [41]. Such combinatorial approaches
will be needed in future clinical studies to improve the efficacy of transplanted stem cells.
Table 3.4 Reported clinical trials using different types of stem cells for the treatment of ALS

 Type of cell Method of
delivery

Study type Results Study

Sample size

1 OECs Intraspinal Efficacy Delayed progression + beneficial effects using
ALSFRS-R

[68]

First: 15—OECs, 20—
control

0.07 vs. 6.12 score deterioration over 4 months
between treated sample and control

[36]

Second: 42 OECs   

2 Autologous MSC Intraspinal Phase I Safe and feasible [69–72]

Intrathecal Safety + efficacy Safe. Trend toward disease stability using
ALSFRS-R

[73, 74]

Motor
cortex

 Safe + extension of median survival time [75, 76]

4 T cell + MSC + NPC therapy Intravenous Sample size 7 Improved median survival [77]

Safety and preliminary
survival results

5 Endogenous MSC mobilization
with G-CSF stimulation

– Pilot study Safe but no significant effect found on disease
progression using ALSFRS-R

[78]

7 NPC Intraspinal Phase I only Phase I: safe and feasible [57, 58,
79]

Sample sizes 6 and 12

There is definitely room for innovation in this area to make results stemming from clinical trials
using stem cells more reliable and ethical at the same time.

3.8 Control Group Selection and Ethics
Although the use of controls in clinical trials usually provides more confidence in the results and
conclusions, the use of placebo in stem cell transplantation is debatable in devastating neurological
diseases, both from an ethical and scientific point of view. From an ethical point of view, the
potential treatment in stem cell transplantation cannot be exchanged with placebo in patients with
short life expectancies owing to the severity of the diseases. This is especially true when the follow-
up periods are no less than a year, when time means aggravation of the clinical status.

In addition, institutional review boards (IRBs) are unlikely to approve putting patients through
invasive procedures related to the harvest of stem cells or their transplantation without any expected
benefits. On the other hand, from a clinical and scientific point of view, there are no true controls in
many neurological disorders. Neurologists agree that in many conditions, it is very hard to find



matching patients presenting the same clinical features, and thus the patients cannot be accurately
compared.

While many clinical trials include sham patient groups, some innovative ideas have been used,
including injecting the control group at a delayed period of 6 months. Other groups have considered
patient history as the control comparing the post- to the preinjection time period. In this way, every
patient is his/her own control, which saves the control group the delay period. Also, in cases where
the affected regions are bilateral such as muscle dystrophies and ALS, unilateral injection is a good
alternative, where only the neurosurgeon would know the treated side while the rest of the team
would be blinded when assessing the patient’s progress.
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4.1 Introduction
Aging is associated with cellular or molecular damage that
ultimately induces the development of various chronic
diseases such as cardiovascular diseases (CVDs),
neurodegenerative diseases, type 2 diabetes mellitus (T2DM),
and cancer [16]. These diseases have been shown to be
associated with an aging immune system. The immune system
cells include lymphoid and myeloid lineage cells; lymphoid
cells, including T and B cells, which play an important role in
adaptive immunity; and myeloid cells, including
megakaryocytes, erythrocytes, monocytes, and
polymorphonuclear leukocytes. One report has indicated that
aging is associated with alterations in the T-cell and B-cell
compartments and with a decline in immune functions [69].
Moreover, hematopoietic stem cells (HSCs) show aging-
related changes, including an increase in myeloid cells and a
decrease in lymphoid cells [74]. One report has shown that the
number of T- and B-cell progenitors decreased with aging,
resulting from higher rates of apoptosis, while the number of
memory T cells increased with aging [68].

The thymus is a lymphoid organ, and aging-related
changes result in a reduction in thymic lymphopoiesis and a
disruption of the thymic architecture [55]. The thymus mainly
consists of T-cell precursors, thymocytes, and thymic
epithelial cells (TECs). T-cell progenitors from the bone
marrow enter the thymus and differentiate into mature cells by
negative and positive selection, and the mature T cells then
enter the peripheral blood [65]. Subsets of T cells include



helper, cytotoxic, memory, regulatory, and natural killer T
cells. Memory T cells are antigen-experienced T cells and are
classified into central memory and effector memory T cells.
Phenotypic and functional changes in the effector memory T
cells are features of immunosenescence. Naïve T cells respond
to pathogens that enter the body, but in the elderly, there is a
reduction in immune responses to new pathogens, suggesting
that the number of naïve T cells also diminishes with age.
Such reductions are associated with decreased numbers of
signal joint T-cell receptors [27].

Moreover, thymic cellularity decreases with age even
when there is no change in the major thymocyte subsets. As
well, thymocyte development in the older thymus shows more
resistance to apoptosis than in the young [8]. TECs provide
signals during thymopoiesis and are thus important for thymic
involution, but one report indicated that adipocytes infiltrate
the aged thymus, affecting the TECs [23]. Moreover,
accelerated thymic aging is primarily a function of stromal
cells, and stromal gene expression changes in the aged thymus
[32]. Thus, preventing aging-related changes in the immune
system and any loss of function in the thymus should help
ameliorate aging-related diseases.

Stem cells include embryonic stem cells (ESCs), induced
pluripotent stem cells (iPSCs), and tissue-derived stem cells
such as bone marrow (BM), umbilical cord blood (UCB), and
adipose tissue-derived stem cells, which are used to treat a
range of diseases [60]. Stem cell treatments involve the use of
stem cells to replace damaged tissues and help heal diseases.
In this chapter, we focus on stem cell treatments for aging-
related diseases such as CVDs, neurodegenerative diseases,
T2DM, osteoporosis, and cancer.

4.2 Stem Cell Biology
ESCs are derived from 5-day preimplantation embryos and are
able to differentiate into endoderm, mesoderm, and ectoderm
cells. Somatic stem cells are found in many organs but can
only differentiate into all cell types of the organ. Somatic cells
can be induced into iPSCs by inserting transcription factors



[64], and these iPSCs can directly differentiate into other cell
types. Both these stem cells have self-renewal and
differentiation capacity. Some reports have indicated that
mouse fibroblasts can directly reprogram themselves to
become neural stem cells [34], cardiomyocytes [39],
bipotential hepatic stem cells [106], and endothelial cells [54].
However, the restricted proliferative and lineage potential of
the resulting cells limits the scope of their potential
applications.

Stem cell aging is related to reactive oxygen species
(ROS), DNA damage, and mitochondrial dysfunction with
aging [71]. ROS has been shown to affect stem cell functions
in aged human mesenchymal stem cells (MSCs) [92], and one
report showed DNA damage in stem cells and that DNA
damage affects stem cell functions with aging [9]. Aged HSCs
showed age-related nontelomeric DNA damage in these stem
cells in aged humans. Moreover, aging reduces the capacity
for the repair of double-strand breaks, contributing to the age-
associated accumulation of DNA damage [79]. Sirt1 is a class
III histone deacetylase within the sirtuin family of related
proteins that is uniquely dependent on NAD+ for catalysis.
Sirt1 has been implicated in processes as varied as
metabolism, differentiation, cancer, stress response, and aging
[14]. One report showed that Sirt1 function decreases in
human MSCs with aging [107]. In contrast, mitochondria
regulate different metabolic and signaling pathways, but it has
been reported that mitochondrial function decreases with aging
[13].

Age-related hematologic changes are reflected by a decline
in bone marrow cellularity and a declining adaptive immunity
[33, 61]. Aging is associated with profound alterations in the
innate immune system, as exemplified by alterations in the T-
cell and B-cell compartments, a functional decline in
monocytes and macrophages, low expression of Toll-like
receptors from activated splenic and peritoneal macrophages,
and an altered secretion of several chemokines and cytokines
[59]. Stem cell transplantation has been used to replenish stem
cells in case of degenerative diseases such as osteoporosis,
diabetes, and neurological diseases [46, 82]. Intrabone



marrow-bone marrow transplantation (IBM-BMT) can replace
both HSCs and MSCs, meaning that hematopoietic recovery is
rapid even in donor-recipient combinations across major
histocompatibility complex (MHC) barriers. Thus IBM-BMT
has been proven to be the best method for allogeneic BMT
[51]. In our experience, IBM-BMT has succeeded in
experimental animals in the treatment of aging-related diseases
such as osteoporosis, AD, T2DM, and cancer (Fig. 4.1). These
results suggest that the transplantation of stem cells may
improve immune dysfunction and slow the aging process,
which has been borne out in experimental studies [40].

Fig. 4.1 IBM-BMT improves aging-related diseases

4.3 Stem Cell Treatments for
Cardiovascular Diseases
CVDs are a major cause of death worldwide. Cell-based
therapies, such as those based on BM-derived stem cells,
skeletal myoblasts, resident cardiac stem cells, ESCs, and
iPSCs, have reportedly been used for cardiomyocyte
regeneration. Moreover, the transplantation of BM-derived
stem cells, MSCs, and cardiac stem cells has been reported to
be useful in the treatment of CVDs [21]. MSCs, which are able



to differentiate into myocardiocytes in vitro and in vivo and
are able to repair a damaged myocardium, are mainly isolated
from BM, adipose tissue, and UCB [6, 15]. MSCs strongly
inhibit the maturation and functioning of monocyte-derived
dendritic cells, alter the natural killer cell phenotype, and
suppress the proliferation and cytokine secretion of natural
killer cells [80, 91]. One report has shown that, in animals,
treatment with MSCs is probably safe and effective following
acute myocardial infarction [77]. Furthermore, the
differentiation of human MSCs into myocardiocytes was
reported in the healthy heart [96], and transplanted MSCs were
able to improve myocardiocyte damage and regeneration in
the ischemic area [88]. MSCs have been used to treat
ischemia-related heart diseases in phase I/II clinical trials,
suggesting that MSC treatment is a potential therapy for CVDs
[20]. A very recent review summarizes the use of MSCs to
treat CVDs, from basic to clinical studies [43]. CD34+ BM
stem cells have also been used to treat cardiac diseases
clinically [30].

One report showed that ESC-derived myocardiocytes
improved infarcted heart function in a rat model [52]. And yet
another report showed that human ESC-derived
myocardiocytes suppressed arrhythmias when the
differentiated cells were transplanted into the injured heart in a
guinea pig model [89]. Moreover, human ESC-derived
cardiomyocytes can generate large-scale myocardiocytes in the
infarcted monkey heart, although there was no improvement in
arrhythmic complications [19]. Human iPSCs were generated
from human fibroblasts using transcription factors OCT4,
SOX2, NANOG, and LIN28. Functional myocardiocytes were
induced from iPSCs, showing responsiveness to β-adrenergic
stimulation [108]. One review suggested that iPSCs might be a
source of cells for repairing damaged myocardiocytes [103].

4.4 Stem Cell Treatment for
Neurodegenerative Diseases
Aging-related neurodegenerative diseases mainly include
Alzheimer’s disease (AD) and Parkinson’s disease (PD). AD



and PD are the most common forms of dementia in the elderly,
with β-amyloid plaques, neurofibrillary tangles, and
neurodegeneration being hallmarks of AD and β-amyloid
fibrils having been shown to lead to calcium influx and
neuronal death [22]. The pathologic features of PD show that
dopaminergic neurons decrease in the midbrain, resulting from
the activation of microglia [42]. Both AD and PD have been
shown to be associated with oxidative stress that was induced
by an imbalance between oxidant and antioxidant agents.
Oxidative stress induces damage to macromolecules and
disrupts the reduction/oxidation (redox) signaling. Moreover,
reports have shown that mitochondria contain many redox
enzymes and generate ROS, resulting in mitochondrial
dysfunction in AD and PD [26, 38].

Pharmacological therapies for AD and PD are mainly
aimed at relieving symptoms, but stem cell therapy has the
potential to not only regenerate new neurons and replace
damaged neurons but also to modulate the immune system.
Stem cells have been shown to secrete neurotrophic factors
that modulate neuroplasticity and generate new neurons [25].
One report has shown in an animal model that stem cell
transplantation improves cognition and memory by increasing
acetylcholine levels [75]. Moreover, BM-derived MSCs were
able to remove β-amyloid plaques from the hippocampus and
to reduce β-amyloid deposits in an AD mouse model [83].
Induced neurons from BM-derived MSCs improved learning
and memory in Abeta injured mice [101].

BM cells have also been shown to increase the number of
activated microglia and to reduce amyloid deposits via
phagocytosis of Abeta and to thereby prevent the progression
of AD [90]. We used allogeneic IBM-BMT to transfer normal
BM stem cells to senescence-accelerated mouse prone
(SAMP) 8, an AD model mouse, which we used for examining
the effects of IBM-BMT on spatial learning and memory
ability. Analyses of water maze tests showed the impairment
of spatial memory in SAMP8 to have been ameliorated [58].
Human neuron-like cells differentiated from UCB-derived
MSCs decreased Abeta deposition and improved memory
deficits in this AD mouse model [104]. Furthermore, adipose-



derived MSCs were injected into the cerebrum, and these cells
activated microglia and ameliorated the neuropathological
defects in AD mice [66]. There is a report showing that neuron
progenitor cells differentiate from ESCs and help ameliorate
AD when transplanted into an animal model of AD. This
report also showed that ESCs could differentiate into
astrocytic and neuron-like cells that ameliorated memory
impairment [95]. Human ESCs differentiated into ganglionic
eminence-like cells, and learning and memory were improved
when these induced cells were transplanted into AD mice [63].

In contrast, one report showed that neuron-like cells could
differentiate from human BM-derived MSCs and improve PD
in an experimental animal model [102], while another showed
that human UCB-derived MSCs could improve damaged
neurons in PD animal models [62]. Human neural crest-
derived stem cells differentiated into dopaminergic neurons in
vitro and improved rotational behavior functions when these
differentiated cells were transplanted into PD rats [70].
Undifferentiated mouse ESCs can secrete dopamine after
mitomycin treatment, suggesting it would be beneficial for
treating PD [1]. iPSC-derived neuron-like cells benefited PD
when these cells were transplanted into a PD rat model [35].
One review has suggested the clinical use of stem cell-based
therapies for PD, although this potential is limited by ethical
and practical considerations [31]. One report showed that
dopaminergic neurons could be induced from human ESCs,
iPSCs, and nonhuman primate iPSCs and are useful for PD
therapy [93]. Thus, advanced stem cell therapy seems to be a
potential clinical approach to the treatment of
neurodegenerative diseases.

4.5 Stem Cell Treatment for T2DM
T2DM, in which there is impaired insulin sensitivity and loss
of beta cells, is associated with obesity as well as lifestyle and
nutritional factors, while there are also genetic factors related
to its development [4]. General therapies for T2DM, such as
those using diets and drugs, fail to maintain normal blood
glucose levels all the time, and islet or pancreas



transplantation is limited by a lack of donors. Thus, stem cells
have been the focus of studies into alternative treatments in
experimental animals and clinical applications. One report
showed that BM-derived MSCs can differentiate into insulin-
producing cells and that these induced insulin-producing cells
improved hyperglycemia when transplanted into diabetic mice
[28]. Moreover, multiple intravenous BM-derived MSC
injections normalized hyperglycemia in rats in which T2DM
had been induced by a high-fat diet and streptozotocin [36].
When human BM-derived MSCs were cocultured with human
islets and proinflammatory cytokines such as interferon-γ and
TNFα were added, the BM-derived MSCs were shown to
protect human islets from cytokines [105]. Autologous BMT
was shown to decrease insulin requirements, which correlates
with stimulation of C-peptide in T2DM patients [11].
Furthermore, one report suggested that the implantation of
autologous BM mononuclear cells for the treatment of T2DM
not only is safe and effective but also partially restores the
function of islet beta cells and helps maintain blood glucose
homeostasis [37]. Another report showed that functional beta
cells could be generated from human pluripotent stem cells in
vitro and that these differentiated cells expressed markers of
mature beta cells and secreted insulin in response to glucose
[73]. We previously described how BMT could reduce high
blood glucose levels in KK-Ay mice, a T2DM mouse model
[57]. We also used a combination of IBM-BMT and thymus
transplantation (TT) to treat the db/db mouse, another T2DM
mouse model, because this mouse exhibits a marked reduction
in the size and cellularity of the thymus [48]. Our results
showed that IBM-BMT + TT increased insulin sensitivity and
decreased blood glucose levels from a normalization of the
ratio of CD4:CD8 in the peripheral blood, an increase in
adiponectin levels, and enhanced insulin receptor sensitivity
[56].

ESC-derived insulin-producing cells have been shown to
reverse hyperglycemia in streptozotocin-treated diabetic mice
when transplanted into these mice [78]. Human ESCs
effectively differentiated into islet-like cells, and these insulin-
producing cells ameliorated hyperglycemia in NOD/SCID
diabetic mice when transplanted into these mice [12]. On the



other hand, iPSCs can differentiate into insulin-producing cells
responding to glucose stimulation, thereby improving the
hyperglycemia in T2DM mouse models [5]. In conclusion,
stem cells are potentially invaluable agents for the treatment of
T2DM.

4.6 Stem Cell Treatment for Osteoporosis
Osteoporosis is a degenerative bone disease characterized by
decreased bone mass and microarchitectural alterations.
Osteoporosis is defined as a bone mineral density below the
mean peak bone mass of young healthy adults. MSCs may
differentiate into osteoblasts, but the capacity to do so
decreases with age [87]. Therapeutic strategies include
nonpharmacological treatments such as vitamin D
supplementation and physical activity and pharmacological
treatments to decrease bone resorption or directly stimulate
increases in bone mass. Drugs such as bisphosphonates and
denosumab, as well as hormone replacement therapy, have
been used to treat osteoporosis [10]. Basic experiments have
shown that cytokines such as IL-6, TNFα, and TGFβ play an
important role in the regulation of osteoblastogenesis and
osteoclastogenesis. One report indicated that strontium
ranelate acts on lineage allocation of MSCs by antagonizing
the age-related switch in osteoblasts to adipocyte
differentiation via mechanisms involving the nuclear factor of
activated T-cell and Wnt signaling, resulting in increased bone
formation and an attenuation of bone loss in senescent
osteopenic mice [81]. Importantly, MSC differentiation into
osteoblasts or adipocytes is regulated by transcription factor
activity, Wnt signaling, hedgehog signaling, and BMP
signaling in the BM [41]. The senescence-accelerated mouse
prone (SAMP) 6 is a mouse that shows accelerated senescence
and that spontaneously develops osteoporosis [17]. When such
mice were treated with IBM-BMT, the BM microenvironment
was normalized, the IL-11, IL-6, and RANKL levels
increased, and the imbalance between bone absorption and
formation was ameliorated, resulting in the prevention of
osteoporosis in these mice [94, 98]. Human UCB-derived cells
improved the balance between osteoblastic and osteoclastic



activity, resulting in decreased osteoporosis in these mice [2].
Moreover, human adipose tissue-derived stroma cells
increased serum osteocalcin levels and enhanced osteogenic
differentiation in ovariectomized nude mice [18]. Autologous
cultured osteoblasts were used to treat bone fractures and
showed significantly accelerated fracture healing without any
complications. This suggested that autologous cultured
osteoblast injection may be a useful therapy for bone fractures
[45]. Granulocyte colony stimulating factor (G-CSF)-
mobilized CD34+ peripheral blood cells were used
successfully to clinically treat tibial nonunion [50]. Human
ESCs may generate osteogenic cells, and human ESC-derived
MSCs may secrete bioactive factors to improve osteogenesis
[7, 47]. iPSCs from mice were induced to differentiate into
MSCs, and these induced MSCs were able to differentiate into
osteoblasts [53].

4.7 Stem Cell Treatment for Cancer
Cancer is strongly related to aging and can be classified into
five major categories according to the histology: carcinoma,
sarcoma, myeloma, lymphoma, and mixed types. Cancer
treatment mainly includes surgery, radiotherapy,
chemotherapy, and immunotherapy. Although radiotherapy
and chemotherapy slow the development of cancer, these
interventions are prone to side effects. Immunotherapy is an
effective method in which immune cells such as T cells are
able to recognize aberrant proteins from tumor cells and either
destroy the tumor cells or inhibit their growth [67, 85].
Allogeneic stem cell transplantation (ASCT) has been proven
to be a useful method of treating hematological malignancies
via donor-derived lymphocytes, which are used to eradicate
residual tumor cells [76]. ASCT has also been shown to be an
effective immunotherapy for leukemia [72]. Leukemia is a
group of hematologic malignancies that includes acute and
chronic myeloid leukemia. Some leukemia cells express CD80
and CD86, and some leukemia cells may express MHC class I
and II, which can be recognized and eradicated by T cells
[100]. We performed experiments to treat leukemia by
allogeneic BMT using leukemia-bearing mice induced by EL-



4 cells. EL-4 cells are derived from the thymoma of mice and
can induce the mimicking of leukemia in mice. Our results
showed that IBM-BMT + TT prevented the growth of
leukemia by improving mitogen responses to both T and B
cells and significantly increased IL-2 production, with IL-2
having been reported to protect against allogeneic BMT-
induced GVHD [84, 109]. Thus, IBM-BMT has proven to be
useful for the treatment of aging-related diseases.

HSC transplantation is a useful therapy for hematological
malignancies, but this intervention also induces graft-versus-
host disease (GVHD), which injures the thymus, including
inducing the apoptosis of TECs and delaying T-cell recovery
and thereby injuring the immune system [97]. Allogeneic HSC
transplantation is a general therapy for cancer and
immunodeficiency disorders and helps by reconstituting the
immune system. Human leukocyte antigen, which is the
human version of MHC, allows the immune system to
distinguish between self- and non-self-derived proteins or
cells. Specifically, T-cell reconstitution is affected not only by
aging but also by human leukocyte antigen, which is
mismatched after allogeneic HSC transplantation [86]. One
report showed that allogeneic HSC transplantation was a
potential treatment for non-Hodgkin’s lymphoma [3]. Naïve
stem cells enhanced host antitumor immune responses to
decrease the proliferation of tumor cells [44]. Moreover, one
report showed that human MSCs, which express IL-12, have
antitumor effects in mice [29]. ESCs had an antitumor effect
when injected with a lung cancer cell line into mice [24].
iPSCs were generated from mature CD8+ T cells, and these
iPSCs were able to generate CD4+CD8+ double-positive cells,
which then generated an abundance of CD8+T cells, specific to
human tumor antigen, suggesting this approach may be a
therapy for cancer [99]. Human natural killer cells, a kind of
lymphocyte that prevents tumor growth, have been used for
anticancer therapy. The use of induced natural killer cells from
iPSCs should thus be a useful therapy for cancer [49].

4.8 Conclusion and Future Direction



Immune dysfunction, including defective T cells and B cells,
may accelerate the aging process in experimental animals, and
stem cell treatments have been shown to be a valuable strategy
for the treatment of aging-related disorders in such animals
(Fig. 4.2). Future studies will focus on related mechanisms
through which stem cells improve or ameliorate aging-related
diseases. Additionally, we will attempt to determine whether
stem cells can be used to prevent or treat other aging-related
diseases

Fig. 4.2 Stem cell treatment for aging-related diseases
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5.1 Introduction
Stem cells (SCs) have the potential to divide indefinitely and
differentiate into different specialized tissues and organs. This
self-renewal and differentiation potential makes them valuable
for tissue repair [1]. There are several types of SCs, based on
their differentiation potential: totipotent, pluripotent,
multipotent, unipotent, and induced pluripotent [2].
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Totipotent SCs have the highest differentiation potential,
with the ability to differentiate into any tissue cell type.
Examples of this SC type are the zygote and morula.
Pluripotent SCs can differentiate into cells from the three
different germ cell layers but not extraembryonic tissues.
Embryonic SC (ESC), a derivative of the inner cell mass of the
blastocyst, is an example. Multipotent SCs are capable of
differentiating into organ-specific cell types. Examples include
hematopoietic, mesenchymal stem cells, and neural stem cells.
In contrast, unipotent SCs can give rise to only one defined
cell type, such as epithelial cells.

Induced pluripotent stem cells (iPSCs), on the other hand,
are reprogrammed cells, where differentiated cells are induced
to express ESC genes, thereby behaving like one. They are
capable of differentiating into cells of any tissue [2].

Under normal conditions, SCs are in a quiescent state, and
they become stimulated to divide and regenerate tissues when
tissue damage ensues. The niche, which is the
microenvironment for SCs, is crucial for this process through
its unique characteristics such as proximity to the blood
stream, presence of certain cytokines and growth factors, and
low oxygen tension. This allows optimal cell-cell interaction
and interaction with surrounding molecules [3].

5.2 Erectile Dysfunction
Erectile dysfunction (ED) is the inability to achieve or
maintain penile erection satisfactory for sexual intercourse [2].
It negatively impacts the quality of life and relationships of
patients with their partners [4]. ED affects 52 % of men aged
40–70 years, with growing prevalence with increased age [5].
Several treatment options are available for ED, including
lifestyle modifications (such as exercise and weight loss), oral
phosphodiesterase 5 inhibitors (PDE5Is), intraurethral
alprostadil (MUSE®), intracorporal (IC) injections, vacuum
erection devices, and surgery (including penile
revascularization and penile implants). Despite the success of
many of these options, several factors limit their use. For
instance, there are contraindications for the use of PDE5Is in



patients taking nitrates (due to serious hypotension). Some
patients become intolerant to side effects, in addition to the
high cost, and the fact that not all patients achieve a
satisfactory outcome [6]. These options are not directed at
curing ED but rather providing symptomatic management,
thereby encouraging the development of a curative therapy for
ED, such as SC treatment [7].

Several conditions are associated with ED through
different mechanisms. Aging causes diminished response to
cavernosal nerve stimulation [8] and decreases nitric oxide
(NO) levels through increasing levels of reactive oxygen
species (ROS), resulting in endothelial dysfunction [9]. In
addition, structural changes also occur with aging, including
degenerative changes in elastic fibers and reduction of smooth
muscles with the abundance of collagen fibers [10]. Diabetes
mellitus (DM) is associated with reduced smooth muscle and
endothelial cells and reduced cavernosal NO [11].
Hyperlipidemia results in endothelial and neuronal
dysfunction by reducing levels of cavernosal NO [12].

Despite the development of nerve-sparing radical
prostatectomy (RP) to reduce the incidence of post-RP ED,
cavernosal nerve (CN) may occur in nearly 20 % of patients at
2 years after nerve-sparing RP [13]. This is likely due to
smooth muscle apoptosis and fibrosis, neurapraxia, and
reduced NO production [14]. Radiation-based therapies cause
ED through similar mechanisms [15].

5.2.1 Types of SC Therapy Used in ED
Several SC types have been studied in the treatment in ED.
ESCs improved erectile function in a CN injury ED model in
the first study investigating the use of SC therapy in ED [16].
Because of ethical concerns, however, no further studies were
done using these cells. In one study, vascular endothelial
growth factor (VEGF)-transfected endothelial progenitor stem
cells (EPSCs) demonstrated improvement in erectile function
in DM rat models [17]. Several preclinical studies have shown
the beneficial effect of bone marrow-derived stem cells
(BMSCs) on erectile function in aging, CN injury, and DM rat



models [18–20]. Skeletal muscle-derived stem cells (SKMSC),
which are easily obtained through muscle biopsy, have been
shown to improve erectile function in a CN injury and aging
ED rat models [21, 22]. Neural crest SCs showed the potential
to differentiate into smooth muscle cells (SMCs) and
endothelial cells in the rat penis [23]. Adipose tissue-derived
stem cells (ADSCs) are the most widely used type of SCs in
ED [7]. They improve erectile function by promoting
angiogenesis and through direct transformation to neurons,
smooth muscle cells, and endothelial cells and also through the
release of stimulatory cytokines such as VEGF and fibroblast
growth factor (FGF) [24–26]. Testicular and human urine SCs
have also been studied [27].

5.2.2 Methods of SC Delivery
SC performance may be potentiated by modifying their
characteristics via manipulation of their genes or by incubating
them with scaffolds, growth factors, or other substances. The
therapeutic effect of SC injection may be via migration of
these cells to the injury site [28]. Intravenous injection of
adipose stem cells (ADSC) showed improvement of erectile
function [28]. Moreover, IC SC delivery for ED treatment is
by far the most popular route for SC administration in ED.
SCs achieve their regenerative effect by either secreting
growth factors into the blood stream or migrating to major
pelvic ganglia (MPG) [7]. Technical difficulties in the direct
injection of SCs into the MPG limit the utilization of this route
[16, 29]. Periprostatic injection with or without simultaneous
IC injection has also been tried [30–32]. Intraperitoneal
injection of SCs was less effective than IC injection in
restoring erectile function in CN injury mouse models [33].
Table 5.1 summarizes the preclinical SC studies performed on
ED.
Table 5.1 Preclinical stem cell studies for erectile dysfunction

Trial
year

First
author

Animal model Stem cell type Method of
transplantation

Reference

2004 Bochinski CN injury rat Allogeneic ESC IC or Intra-MPG [16]



Trial
year

First
author

Animal model Stem cell type Method of
transplantation

Reference

2006 Kim CN injury rat Allogeneic
SKMSC

IC [22]

2007 Bivalacqua Aging rat Allogeneic
BMSC

IC [20]

2008 Nolazco Aging rat Mouse SKMSC IC [87]

2009 Fall CN injury rat Allogeneic
BMSC

IC [19]

2010 Garcia DM rat Autologous
ADSC

IC [88]

2010 Huang Hyperlipidemia
rat

Autologous
ADSC

IC [12]

2010 Albersen CN injury rat Autologous
ADSC

IC [89]

2010 Kendirci CN injury rat Allogeneic
BMSC

IC [90]

2010 Abdel Aziz Aging rat Allogeneic
BMSC

IC [91]

2011 Lin CN injury rat Autologous
ADSC

Nerve graft [92]

2011 Woo CN injury rat Allogeneic
SKMSC

IC [93]

2011 Gou DM rat Allogeneic EPC IC [17]

2011 Qiu DM rat Allogeneic
BMSC

IC [18]

2012 Qiu DM rat Allogeneic
BMSC

IC [94]

2012 Qiu Radiation
injury rat

Allogeneic
ADSC

Intra-MPG [28]

2012 Qiu CN injury rat Autologous SVF IC [24]

2012 Kovanecz CN injury rat Mouse SKMSC IC [95]

2012 Kim CN injury rat Allogeneic
BMSC

CN scaffold [29]



Trial
year

First
author

Animal model Stem cell type Method of
transplantation

Reference

2012 Sun DM rat Allogeneic
BMSC

IC [96]

2012 Fandel CN injury rat Autologous
ADSC

IC [97]

2012 Nishimatsu DM rat Allogeneic
ADSC

IC [98]

2012 Ryu DM mouse Syngeneic SVF IC [25]

2012 Piao CN injury rat Human ADSC CN scaffold [99]

2012 Ma TA injury rat Autologous
ADSC

SIS graft [39]

2013 Castiglione TA injury rat Human ADSC Intratunical [40]

2013 Jeong CN injury rat Human ADSC CN scaffold [100]

2013 Kim CN injury rat Human ADSC CN scaffold [101]

2013 You CN injury rat Human BMSC IC +
periprostatic

[31]

2013 You CN injury rat Human ADSC IC +
periprostatic

[32]

2013 Choi CN injury rat Human testis SC Periprostatic [30]

2013 Ying CN injury rat Autologous
ADSC

IC [102]

2013 He DM rat Allogeneic
BMSC

IC [103]

2013 Liu DM rat Human ADSC IC [104]

2014 Ryu CN injury
mouse

Allogeneic
clonal BMSC

IC + IP [33]

2014 Ying CN injury rat Autologous
ADSC

Vein graft [105]

2014 Das DM mouse Human SVF IC [106]

2014 Gokce TA injury rat Autologous
ADSC

Intratunical [107]



Trial
year

First
author

Animal model Stem cell type Method of
transplantation

Reference

2014 Ouyang DM rat Human USC IC [27]

2014 Lee CN injury rat Human ADSC IC [108]

2014 Song CN injury
mouse

Allogeneic SVF IC [109]

2014 Mangir CN injury rat Autologous vs.
allogeneic
ADSC

IC [110]

2014 Bae CN injury rat Human ADSC IC + hydrogel [111]

2015 You CN injury rat Autologous
ADSC vs. SVF

IC [112]

2015 Gokce TA injury rat Allogeneic
ADSC

Intratunical [113]

IC intracavernosal, MPG major pelvic ganglia, ESC
embryonic stem cell, SKMSC skeletal muscle-derived stem
cell, BMSC bone marrow-derived stem cell, ADSC adipose-
derived stem cell, CN cavernosal nerve, EPC endothelial
progenitor cell, DM diabetes mellitus, SVF stromal vascular
fraction, TA tunica albuginea, SIS small intestinal submucosa,
IP intraperitoneal, USC urine-derived stem cells

5.3 Peyronie’s Disease
Peyronie’s disease (PD) affects 3 % of men, resulting in pain
and penile deformities such as curvature, indentation, and
shortening [34]. While the exact pathogenesis of PD is not
completely understood, the most likely mechanism for its
etiology is repeated microtrauma to the penis during sexual
intercourse in genetically susceptible individuals, leading to
inflammation and fibrous plaque formation in the tunica
albuginea and corpus cavernosum [35]. Transforming growth
factor (TGF)-β1 and other local inflammatory mediators are
thought to play an important role in abnormal fibrogenesis and
scar formation [35]. PD is thought to cause ED directly, most
likely through veno-occlusive dysfunction [35, 36]. Incising or
excising the plaque followed by patch grafting the tunica is



also done in severe PD cases to maintain penile length, which
can also increase the risk of ED [37, 38]. Advances in SC
research have allowed the development of porcine small
intestinal submucosa grafts seeded with SCs to reduce the risk
of ED [39]. ADSCs inhibited the development of ED in TGF-
β1-induced rat PD model, with a reduction of elastin tissues
and disordered collagen type III [40]. Further research using
SCs in PD is needed to reduce the risk of ED or ameliorate the
disease.

5.4 Infertility
Treatment of cancer can affect the fertility of the individual,
whether it is a surgical treatment, chemotherapy, novel target
therapy, or radiation. These treatment modalities can damage
germ cells, Sertoli cells (critical for germ cell development), or
Leydig cells (responsible for testosterone production). The
degree of damage depends on the type of cancer, the age of the
patient, and the modality of treatment. Cytotoxic therapy
would particularly affect spermatogonial stem cells (SSCs)
[41].

Through the isolation by cryopreservation of SSCs from
the prepubertal testes prior to cytotoxic therapy
commencement, hope is given to patients who are potentially
undergoing a sterilizing treatment. The procedure is done
through a testicular biopsy followed by cryopreservation.
SSCs would be utilized then for in vitro spermatogenesis or
autologous transplantation into the patient’s testicles. Several
animal studies have shown the reproducibility of this
technique [42].

5.4.1 Urinary Incontinence
Urinary incontinence (UI), defined as the involuntary loss of
urine, affects 200 million individuals around the world. It
affects women two to three times more than men until age 80
years, after which the prevalence becomes equal between the
two sexes. It has been reported that 50 % of women
experience UI after the age of 20, and 50 % of those develop
stress urinary incontinence (SUI). There are other types of UI,



including urge UI and mixed UI. Oral pharmacotherapy fails
to ameliorate SUI, paving the way for surgical modalities such
as mid-urethral sling insertion. However, surgical therapy,
though effective, is invasive, and studies have examined the
utilization of less invasive treatment options for SUI, such as
SC therapy [43, 44].

The urethra is a structure composed of epithelium and
connective tissue, which includes striated and smooth muscles
and small blood vessels [45]. Striated and smooth muscle cells
were found to be reduced in humans and animal models of
SUI [45]. SCs can differentiate into any muscle type, in
addition to secreting musculogenic and angiogenic growth
factors, enhancing their regenerative effect. These properties
prompted the utilization of SCs in SUI [46]. ADSCs were
found to improve the urethral connective tissue, likely through
the production and processing of collagen and elastin [47].

5.4.1.1 Preclinical Studies
Initially, the concept of cell-based therapy for SUI included
the use of skeletal myoblasts to replace the deficient urethra
[48]. SCs were used subsequently instead of myoblasts. Yiou
et al. in 2002 reported the first preclinical study utilizing
SKMSCs in SUI treatment [49]. Autologous SKMSCs were
harvested from limb skeletal muscle and injected into the
injured skeletal urethral sphincter. SKMSCs were found to
accelerate sphincter muscle repair. After that, SKMSC was
utilized exclusively in all preclinical studies on SC therapy of
SUI until 2010; from there six preclinical studies were done
using BMSCs [50–55]. One of those studies involved seeding
a degradable silk scaffold to be used as a sling as well [53].
Umbilical cord blood stem cells (CBSCs) were also used in
one preclinical trial [56]. More recently, seven studies utilized
ADSCs in SUI [47, 57–62], including one study where fibroin
microspheres were used as a bulking agent [62]. Furthermore,
amniotic fluid stem cells (AFSCs) were used in four
preclinical studies [63–66]. Of note, all these studies produced
improvements in SUI.



Rat models are the most common animal models utilized
in SUI preclinical studies. Mice have been utilized in several
studies [63–66], including the first study by Yiou et al. [49].
Only one study utilized monkeys [67], and one study utilized
dogs [68]. Several techniques have been used to establish
animal models of SUI. A sphincteric injury model using
electrocoaugulation, muscle resection, cauterization, or
injection of myotoxin has been used. Sciatic and pudendal
nerve injury models using crush injury or transection have also
been developed. The delivery, vaginal distension, and
ovariectomy (DVDO) is the most widely used animal model
for birth injury [43, 69–71]. All these models suffer from their
short durability of 2–3 weeks [72–74]. Periurethral injection of
SCs is the most widely used method of administration in
preclinical studies; however, Lin et al. compared intravenous
and periurethral injection of SCs and identified improvements
in SUI in both routes [47].

Functional and histological assessments are used to assess
outcomes of SC use in SUI. Functional assessment is typically
achieved by either measuring leak point pressure (LPP) using
Crede or vertical tilt table methods or through electrical
stimulation of the urethral sphincter neurovascular bundle
[43]. The purpose of histological assessment is to locate SCs,
identify SC differentiation, and assess for tissue improvement.
It is typically done by sacrificing the animal and harvesting the
urethral tissue, followed by staining with H&E or trichrome.
To identify possible differentiation of transplanted SCs,
immunohistochemical and immunoelectron microscopy was
performed in several studies [43].

5.4.1.2 Clinical Studies
Five clinical trials, done by the same group of researchers,
have examined the effect of injected SKMSCs in male and
female UI between 2007 and 2008. They reported 80–90 %
improvement in UI [58, 75–79]. However, two of those trials
were retracted later citing ethical concerns [78, 79]. Carr et al.
showed that five out of eight women with SUI achieved total
continence using SKMSCs [80]. Lee et al. demonstrated 70–
80 % improvement in continence in 39 female patients with



SUI using CBSC [56]. A small case series utilizing ADSCs for
SUI was later retracted for unknown reasons [81]. Using
SKMSCs in 12 female patients with SUI, Sebe et al. showed
improvement in 10 out of 12 women but worsening of SUI in
2 patients [82]. The typical injection method in clinical trials
has been transurethrally, although Carr et al. utilized both
transurethral and periurethral routes and showed improvement
in incontinence using both routes [80]. In a small pilot study of
three male patients with SUI, Yamamoto et al. showed an
improvement in SUI using ADSC at 6 months [83]. Another
study using ADSCs showed 60 % improvement in SUI in 8
out of 11 male patients at 1 year [84]. A Polish study with a
longer follow-up of 2 years reported 75 % improvement in 16
female patients with SUI using SKMSCs, with 50 % of
patients achieving complete continence [85]. Most recently,
Kuismanen et al. showed improvement in SUI in three of five
female patients at 1-year follow-up using ADSCs with
collagen gel as a bulking agent [86]. Functional assessment in
clinical trials has been through measuring pad weights, bladder
diaries, and quality of life (QoL) assessment, in addition to
urodynamic (UDS) findings such as peak flow rate, postvoid
residuals, and maximal urethral closing pressure [43]. Table
5.2 summarizes the SC studies performed on SUI.
Table 5.2 Stem cell studies for stress urinary incontinence

First author Year of
publication

Animal
model/patients

Stem cell
type

Injection method

Yiou [49] 2002 Sphincter
injury mice

Autologous Periurethral

SKMSC

Lee [114] 2003 Sciatic nerve
transection rats

Allogeneic Periurethral

SKMSC

Yiou [115] 2003 Sphincter
injury rats

Autologous Periurethral

SKMSC

Cannon [116] 2003 Sciatic nerve
transection rats

Allogeneic Periurethral

SKMSC



First author Year of
publication

Animal
model/patients

Stem cell
type

Injection method

Chermansky
[117]

2004 Sphincter
cauterization
rats

Allogeneic Periurethral

SKMSC

Lee [118] 2004 Pudendal
nerve
transection rats

Allogeneic Periurethral

SKMSC

Yiou [119] 2005 Sphincter
injury rats

Autologous Periurethral

SKMSC

Kwon [120] 2006 Sciatic nerve
transection rats

Allogeneic Periurethral

SKMSC

Kim [121] 2007 Sciatic nerve
transection
nude rats

Human Periurethral

SKMSC

Mitterberger
[75]

2007 123 female
patients

Autologous Transurethral

SKMSC

Mitterberger
[76]

2008 63 male
patients

Autologous Transurethral

SKMSC

Mitterberger
[77]

2008 20 female
patients

Autologous Transurethral

SKMSC

Carr [80] 2008 8 female
patients

Autologous Transurethral/periurethral

SKMSC

Hoshi [122] 2008 Periurethral
injury rats

Allogeneic
and
xenogeneic
rodent

Periurethral

SKMSC

Furuta [123] 2008 Pudendal
nerve
transection
nude rats

Human Periurethral

SKMSC

Lin [47] 2010 Vagina Autologous Periurethral and IV



First author Year of
publication

Animal
model/patients

Stem cell
type

Injection method
distension rats

ADSC

Fu [57] 2010 Vagina
distension rats

Allogeneic Periurethral

ADSC

Kinebuchi
[51]

2010 Sphincter
injury rats

Autologous Periurethral

BMSC

Lim [124] 2010 Sphincter
injury rats

Human
CBSC

Periurethral

Lee [56] 2010 39 female
patients

Allogeneic Periurethral

CBSC

Zou [53] 2010 Sciatic nerve
transection rats

BMSC on
scaffold

Sling surgery

Xu [125] 2010 Pudendal
nerve
transection rats

Allogeneic Periurethral

SKMSC

Zhao [60] 2011 Pudendal
nerve
transection rats

Autologous Periurethral

ADSC

Kim [52] 2011 Pudendal
nerve
transection rats

Allogeneic Periurethral

BMSC

Corcos [50] 2011 Pudendal
nerve
transection rats

Allogeneic Periurethral

BMSC

Wu [59] 2011 Pudendal
nerve
transection rats

Allogeneic Periurethral

ADSC

Watanabe
[58]

2011 Pelvic nerve
transection rats

Allogeneic Periurethral

ADSC

Sebe [82] 2011 12 female
patients

Autologous Endourethral

SKMSC



First author Year of
publication

Animal
model/patients

Stem cell
type

Injection method

Yamamoto
[83]

2012 3 male patients Autologous
ADSC

Transurethral

Kim [63] 2012 Pudendal
nerve
transection
mice

Human
AFSC

Periurethral

Li [61] 2012 Vagina
distension rats

Autologous
ADSC

Periurethral

Chun [64] 2012 Pudendal
nerve
transection
mice

Human
AFSC

Periurethral

Badra [67] 2013 Pudendal
nerve
transection
monkeys

Autologous Periurethral

SKMSC

Stangel-
Wojcikiewicz
[85]

2014 16 female
patients

Autologous
SKMSC

Transurethral

Dissaranan
[54]

2014 Vagina
distension rats

Allogeneic Periurethral

BMSC

Gotoh [84] 2014 11 male
patients

Autologous
ADSC

Transurethral

Shi [62] 2014 Pudendal
nerve
transection rats

Autologous
ADSC with
silk fibroin
microspheres

Periurethral

Chun [65] 2014 Pudendal
nerve
transection
mice

Human
AFSC

Periurethral

Kuismanen
[86]

2014 5 female
patients

Autologous
ADSC with
collagen gel

Transurethral



First author Year of
publication

Animal
model/patients

Stem cell
type

Injection method

Deng [55] 2015 Pudendal
nerve crush +
vagina
distension rats

Autologous
BMSC

IV and IP

Williams
[68]

2015 Sphincter
injury dogs

Autologous
SKMSC

Periurethral

Choi [66] 2015 Pudendal
nerve
transection
mice

Human
AFSC

Periurethral

SKMSC skeletal muscle-derived stem cells, BMSC bone
marrow-derived stem cells, ADSC adipose-derived stem cells,
CBSC umbilical cord blood stem cells, AFSC amniotic fluid
stem cells, IV intravenous, IP intraperitoneal

5.5 Future Directions
ADSCs represent an easier SC type to obtain given the
availability of adipose tissue and ease of acquisition.
Therefore, future use of SCs would probably utilize ADSCs
more than other SC types. Current SUI animal models have
the disadvantage of short durability. The development of more
durable chronic type of SUI animal models is important to
accurately determine SC therapeutic effects. The method of
SC administration is still an area of active research as IV
administration has been shown to be equivalent to direct
injection into the damaged area. Further research is also
needed to improve the understanding of SC therapeutic
mechanisms, as cellular differentiation is not the only
mechanism and paracrine effects are likely involved. The
development of iPSCs represents a milestone in SC research,
and utilization of this technology in urology should be a future
goal. More clinical trials recruiting larger numbers of patients
are needed, and they should adhere to the highest standards of
ethical considerations.
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Tissues of reproductive origin represent a rich source of
important types of stem cells such as embryonic stem cells and
umbilical cord blood stem cells. A recent interest has also
developed in the heterogenic stem cell populations isolated
from the amniotic fluid, amniotic membrane, umbilical cord
Wharton’s jelly, and placenta. Furthermore, gynecologic
tissues, including uterine and vaginal tissues, are increasingly
being recognized as sources of autologous adult stem cells.
Each of these tissues has its unique biological and technical
features that make it an attractive option in one or more
clinical applications. For a broader outlook, several benign and
malignant disorders of the reproductive tract are now
acknowledged as a system disorder initiated at the stem cell
level. Female hormones, including sex steroids and their
metabolites, have a central role in controlling both physiology
and disease in women. As a result, and unlike other body
systems, the hormonal interplay with stem cells should be a
cornerstone of our understanding of the role of stem cells in
women’s health.

In this chapter, we would like to provide an overview of
two distinct directions relevant to the clinical applications of
stem cell therapy in this field: The first (A) includes clinical
applications that emerge from understanding the role of stem
cells in women’s reproductive system disorders, which should
be indirectly translated into therapeutics through targeting the
relevant stem cells. The second (B) includes the potential
applications of stem cell therapies in maternal and
reproductive health problems.

6.1 Targeting Stem Cells as Precursors of
Reproductive Pathologies
In physiological situations, stem cell expansion and
differentiation are strictly controlled by interconnected
microenvironmental factors, so that these functions are only
exerted for the repair of damaged tissues or within the scope of
a specialized regenerative function such as the remarkable



regeneration of the endometrium during the menstrual cycle or
pregnancy. However, it seems that this balanced control of
stem cell fate is occasionally disturbed, so that the most
common pathologies of the female reproductive system are of
a proliferative nature because of the uncontrolled proliferation
or differentiation of stem cells. Uterine fibroid, endometriosis,
endometrial polyps, and ovarian cysts are examples of such
proliferative conditions.

6.1.1 Uterine Leiomyoma
Uterine leiomyoma, commonly referred to as fibroid, is the
most common gynecologic tumor and one of the most
common benign tumors affecting women; it affects around 70–
80% of women by the age of 50 [1]. They often present as
multiple tumors, and some attain very large sizes. Although
leiomyomas are known to arise from myometrial smooth
muscle cells, their exact clonal origin is debated [2]. However,
leiomyomas have been sex steroid hormone-dependent.
Accordingly, most medical treatment options are based on
reducing the effect of sex hormones [3]. A defined stem cell-
enriched population, known as a myoma-derived side
population, has been suggested to contribute to the
pathogenesis of uterine leiomyoma [4]. This population of
undifferentiated cells within the leiomyoma appears to
represent tumor-initiating cells that are possibly prompted by
paracrine mechanisms delivered from differentiated receptor-
sensitive co-cells. The paracrine signals may activate the Wnt/
β-catenin pathway and the transforming growth factor β3
(TGF-β3), which together stimulate stem cell proliferation and
differentiation toward abnormal leiomyomatous progeny [5,
6]. However, several other factors are involved in this process
that need to be interpreted together, such as chromosomal
abnormalities and the disproportionate expansion of the
extracellular matrix characteristic for fibroid, for a better
understanding of the pathogenesis of leiomyomas [7]. Few
clinical trials are ongoing to isolate leiomyoma stem cells from
patients undergoing myomectomy aiming to achieve further
characterization of these cells and to use them as therapeutic
targets [8].



6.1.2 Endometriosis
Endometriosis is a prevalent benign pathology that affects up
to 15% of women, mostly during their reproductive years. It is
a common cause of infertility, chronic pelvic pain, and related
sexual dysfunction [9]. Retrograde menstruation has been
accepted for a long time as an explanation of endometriosis,
where endometrial cells get access to the peritoneal cavity
through the fallopian tubes. However, controversy about its
pathogenesis has never settled, perhaps because the old theory,
proposed in 1925, did not explain the presence of
endometriosis in sites that are remote from the peritoneal
cavity. Accordingly, diverse etiologies were suggested,
including genetic, hormonal, immunogenic, and infective
factors [10]. Eventually, stem cell-related functions were added
to the list of hypotheses. Despite the recognized oversell of
stem cells as a cause and solution to almost every human
disease [11], the monoclonal origin of the glandular lesions
and the proliferative and multiple phenotypic nature of
endometriotic implants seem to favor the stem cell
contribution to this pathology [12, 13]. Moreover, some of the
old hypotheses, such as retrograde menstruation, the
embryonal rest theory, and the coelomic metaplasia theory,
share similar concepts and can be put in context with the new
stem cell theory of endometriosis. Despite common traits
between fibroid and endometriosis, including their hormonal
dependency and proliferative nature, and unlike fibroid, the
origin of lesion-initiating stem cells in endometriosis remains
difficult to locate, and its tendency to invade locally and
distantly adds undefined malignant-like behavior. For instance,
the expression of stem cell factors such as Musashi-1 was
found to significantly increase in both endometriosis and
endometrial carcinoma [14].

The suggested origins of endometriosis-initiating stem
cells include the endometrial epithelial or mesenchymal stem
cells (MSCs) [15], peritoneal cells, and bone marrow MSCs.
Because of the circulating nature of bone marrow-derived stem
cells, this theory may explain how endometriosis develops in
remote sites [16] (Fig. 6.1).



Fig. 6.1 The stem cell theory is one of many theories postulated for the
pathogenesis of endometriosis. It is believed that the stem or progenitor cells come
through the fallopian tubes during menstruation. Obtained with permission from
Oxford University Press [66]

6.1.3 Preeclampsia
Preeclampsia is a multisystem disorder that affects about 5–
10% of pregnant women and causes 15–20% of maternal
mortality in developed countries and around 70,000 death per
year worldwide [17]. Preeclampsia is associated with acute
grave fetal and maternal complications. With the exception of
pregnancy termination, there is currently no definitive
treatment for this disorder. Various etiologies have been
investigated for the pathogenesis of preeclampsia that support
its multifactorial origins. However, poor placental perfusion
and defective invasion of the trophoblast into the uterine blood
vessels seem to be central mechanisms [17, 18]. Trophoblastic
stem cells are pluripotent cells derived from the trophectoderm
and can differentiate into all types of cells that make
extraembryonic tissues [19]. The role of trophoblast stem cells
in the development of preeclampsia is supported by a number
of studies that demonstrated a difference in the expression
levels of stem cell markers in the placenta and umbilical cord
of preeclamptic women compared to normal women [20].
Similarly, the expression of miRNA in placental MSCs has
been found to be aberrant in cases of preeclampsia causing
impaired angiogenesis and cell migration [21, 22].



Additionally, preeclampsia disease models found that
trophoblastic stem cell defective differentiation may contribute
to the impaired placentation and vascular insufficiency
associated with preeclampsia [23–25].

On the other hand, the immunomodulatory and angiogenic
effect attributed to MSCs in vascular limb ischemia, where
placental stem cells significantly improved blood flow, was
extrapolated to preeclampsia [26], leading to recent
applications for FDA approval to use these cells in
preeclampsia patients [27]. It is, however, not clear how safe
such therapy would be, or how to justify its complexity, in
pregnant women.

6.1.4 Cancers Specific to Women
Like other solid cancers, cancer-initiating cells or cancer stem
cells (CSCs) have been isolated from women-specific cancers,
including breast [28], uterine [29], ovarian [30], and tubal [31]
cancers. The common feature of these findings was the
isolation of cells that are capable of self-renewal in vitro and
inducing histopathologically identical tumors in
immunocompromised mice. Uncommon cancers, such as
vaginal, vulval, and trophoblastic tumors, have not been fully
investigated, although indirect evidence of the role of CSCs in
these cancers exists [32, 33]. The isolation methods of CSCs,
however, have not been standardized and are becoming more
variable as more specific markers are identified. Although all
cancers share a universal malignant behavior, women’s cancers
encompass a wider tumor behavioral span. Breast cancer lies at
the top of the prognosis list, with a 5-year survival rate of more
than 90–95%, whereas ovarian cancer lies at the bottom, with a
very poor prognosis (5-year survival rate is only around 40–
45%), owing to its silent clinical course and late diagnosis and
treatment [34]. Therefore, the CSC hypothesis is of utmost
significance to ovarian cancer since it may help explain its
heterogeneous phenotypes, considerable resistance to
traditional chemotherapies, and fast recurrence [35]. While
most chemotherapies are directed against the metabolically
active well-differentiated cancer cells, quiescent CSC
populations could remain unaffected by chemotherapy.



Accordingly, innovations related to CSCs in fatal cancers
are highly endorsed by funding agencies. One of the rising
promising markers of CSCs is ALDH1A1, a cellular
detoxifying enzyme associated with an aggressive course of
cancer [36–38]. Its activity was distinctly linked to poor
clinical outcomes and resistance to chemotherapy in epithelial
ovarian cancer, which makes it a potential clinical diagnostic
and prognostic marker [39]. Ovarian CSCs have also been
identified by their ability to retain DNA dyes such as BrdU for
long times compared to rapidly dividing daughter cells and
progenitors [40]. This marker has helped the localization of
fimbrial stem cells that could be a source of cancer-initiating
cells in ovarian tumors [41]. This new understanding could
change the way ovarian cancer prevention is approached; for
example, in high-risk women, the fallopian tubes may be
surgically removed, compared to the current practice of simply
performing an oophorectomy.

6.2 Stem Cell-Based Therapies for
Women’s Reproductive Disorders
6.2.1 Vaginal Agenesis and Vaginoplasty
Mayer–Rokitansky–Küster–Hauser syndrome is a classic
example of vaginal agenesis. It complicates 1 in 4500 female
births [42]. The syndrome, which is characterized by an
absence of the vagina and the uterus, is traditionally managed
by vaginal reconstruction using various surgical techniques.
Although Abbè-McIndoe vaginoplasty is considered the
standard surgical procedure for the creation of neovaginas in
women with vaginal agenesis, the type of tissue lining used in
this procedure has been debatable. Because a skin lining was
associated with healing problems, surgeons have tried using
various other tissues, especially those that are thinner,
including the peritoneum, intestine, buccal mucosa, amnion,
and epidermal sheets. In 2007, the first case of vaginoplasty
with autologous vaginal tissue transplantation in a young
woman was reported. A full-thickness mucosal biopsy from
the patient’s vaginal vestibule was obtained and cultured for 1
week. The authors of this case reported preliminary



improvement measured by patient satisfaction and an absence
of surgical complications such as scarring and infection [43].
A few years later, a multilayered neovagina was constructed
using autologous muscle and skin-derived and expanded stem
cells that were further seeded on a biodegradable scaffold
molded into a tube-like structure before transplantation in four
women with this syndrome. This was a milestone study that
demonstrated the long-term success and safety of a stem cell-
based bioengineered organ. The women were able to have
normal sexual relations afterward without significant
complications [44]. One of the next-generation developments
of this model may possibly include the use of 3-D printing
methods to add more complex biomimetic details to the design
of the scaffolds on which stem cells grow [45].

6.2.2 Obstetric Fistulae
An obstetric fistula is a complication of prolonged and
neglected labor, suffered by women in poorly developed
healthcare settings [46]. It can lead to devastating outcomes in
terms of women’s morbidity and mortality. In this disorder, an
abnormal tract is created between the female reproductive
organs (either the uterus or vagina) and the urinary tract
(bladder, ureters, or urethra) or the lower gastrointestinal tract
(most commonly the rectum). Patients usually have total
urinary or fecal incontinence, resulting in an enormous impact
on the quality of physical, psychological, and social life.
Traditional surgical options require special expertise and the
reappearance of fistulae after primary surgery remains a
challenge. Furthermore, intractable fistulae could lead to repeat
surgeries (up to 12 repeat fistula surgeries in one patient were
reported) [47]. The repair failure is attributed to factors such as
poor healing due to tissue necrosis and inadequate
vascularization. Accordingly, stem cell-based therapies are
being investigated owing to their inherent regenerative
capacity to create new tissue to close the fistulous defect. In
addition, stem cells can revitalize the necrotic tissue around the
fistulous tract by introducing vital cells to provide essential
paracrine factors and cell–cell interactions. In real practice,
very few studies have investigated the effectiveness of stem



cell therapies in the treatment of reproductive tract fistulae in
humans [48]. Most notably, autologous or allogeneic adipose-
derived stem cells were used to treat intractable rectovaginal
fistulae, with varying success [47]. More recent attempts
showed that surgical closure was primarily required to close
the internal side of the defect, whereas stem cells were injected
in between the communicating ends with a long-term success
rate of 60% [49]. One of the factors that would enable faster
progress in achieving effective stem cell therapies in this hard-
to-treat pathology would be to provide fistula animal models,
such as a recently reported pig model of vesicovaginal fistulaa
[50]. Such models overcome the ethical barriers associated
with attempting unproven stem cell therapies in patients and
enable an objective comparison between various types and
protocols of stem cells without technical limitations.

6.2.3 Female Urogynecologic Disorders
In the last two decades, stem cells have been intensively
investigated as a potential treatment for a variety of
urogynecologic conditions. Stem cell applications in the
treatment of overactive bladder and stress urinary incontinence
are covered in detail in a dedicated chapter in this book.

6.2.4 Pelvic Organ Prolapse
Pelvic organ prolapse is one of the most common indications
for surgery in gynecologic practice [51]. Women with this
disorder could have one or more parts of their reproductive
organs descending below the normal anatomical level, causing
a multitude of symptoms and complications. Despite being
relevant to lifestyle and obstetric factors, a genetic element is
strongly suggested to produce defective connective tissue cells
and extracellular matrix composition [52]. Several surgeries
and forms of synthetic mesh, slings, and tapes have been used
to support the prolapsed part and revert it to its correct
location. However, the synthetic nature of these products has
resulted in serious complications, with the rate of vaginal mesh
erosion estimated to be 15.6% [53]. Accordingly, interest in
finding less invasive materials invited the consideration of



stem cell therapies as a biological alternative. Thus far,
researchers have proposed in vitro models or animal models of
stem cell-based biomaterials for the treatment of pelvic organ
prolapse. Although these bioscaffolds were suggested as an
alternative to the synthetic vaginal mesh, they were mostly
generic and could be used in other general surgical
applications [54–56].

One of the questions raised by this application relates to
the route of stem cell therapy in treating pelvic organ prolapse.
The intravenous route is quite questionable since adequate
homing and engraftment remain a challenge; however, some
evidence supports the idea that stem cells will home toward
inflamed and injured sites. For instance, tracking adipose-
derived stem cells showed their homing to the injured pelvic
organs and pelvic floor muscles [57].

6.2.5 Female Factor Infertility
6.2.5.1 Ovarian Failure
The term oogonial stem cells has been used to describe
germline cells that can be isolated from adult ovaries and
differentiated in vitro into oocytes. In 2012, oogonial stem
cells were isolated from both adult rat and human ovaries [58].
The cells, which are mitotically active, are isolated from adult
ovarian cortex and cultured to produce mature oocytes. During
culture, they were transfected with green fluorescent protein
(GFP). Oogonial stem cells were then injected again into
fragments of ovarian cortex, where they acquired a somatic
cell coverage of the produced oocytes and gave rise to
primordial follicles [58].

The success of this strategy will determine its use in the
treatment of incurable ovarian failure; one particular issue
related to this treatment is the fact that oocyte donation has
long-term social and psychological implications and is not
accepted in many communities [59, 60]. Oogonial stem cells
could also be helpful in young women with cancers who are
exposed to gonadotoxic therapies. However, this may require a
multistep culture technique that develops a stem cell into an



oocyte, primordial follicle (using ovarian cortical strips),
preantral follicle, and eventually antral follicles [60]. At this
stage, stem cell-derived immature follicles can be managed in
a manner similar to autologous immature oocytes that are
currently obtained from the ovaries of children and adolescents
for fertility preservation [61].

Induced pluripotent stem cells (iPSCs) have also been used
in mice for the generation of haploid cells that act as functional
oocytes and were fertilized in vitro to produce embryos [62].
This represents a substantial advancement in the field of
reproductive science because it could allow future treatment of
infertility even in the absence of ovarian tissue; somatic cells
can be manipulated to produce iPSCs and, subsequently,
oocyte-like cells [63].

6.2.5.2 Asherman Syndrome
Asherman syndrome, a disease characterized by partial or
complete uterine cavity obliteration and damage of the basal
endometrium, is an excellent indication for the application of
these discoveries. Endometrial tissue regeneration is one of the
anticipated stem cell clinical applications. Endometrial cells
have been successfully generated from both human embryonic
stem cells (hESCs) and iPSCs [64]. hESCs were differentiated
into Mullerian duct epithelium to serve as a model for studying
the development of the female genital tract [65].

An endometrial side population of cells was characterized
as endometrial stem/progenitor cells in both the functionalis
and basalis layers of the endometrium. The work of Gargett
and colleagues in this field is particularly significant. Both
mesenchymal and epithelial stem cells were isolated, with the
MSCs believed to be pericytes that reside around blood
vessels. Both of these cell types can be shed into the menstrual
blood with the functionalis layer. Therefore, menstrual blood
could serve as a noninvasive source of autologous stem cells
[66–68]. Endometrial biopsy, using minimally invasive
procedures, can also be used to obtain stem cell-rich tissue
from the basalis layer in cases such as Asherman syndrome. In
addition, bone marrow-derived stem cells were found to



increase their trafficking to the injured endometrium, while
they seem to make less of a contribution to normal cyclic
endometrial buildup during the menstrual cycle [69]. This may
explain the improved fertility observed in murine models of
Asherman syndrome following injection with bone marrow-
derived stem cells [70, 71]. A similar outcome of increased
endometrial thickness occurred in rat models of induced
endometrial thinning following direct uterine perfusion with
bone marrow stem cells [72]. In 2011, a published case report
described the success of this strategy in one patient with
resistant Asherman syndrome who had received intrauterine
infusion of a single-dose therapy containing 39 million
characterized bone marrow MSCs. The patient grew to a good
thickness a functional endometrium that enabled her to
conceive in the next few cycles using in vitro fertilization [73].
This was followed by reports of a similar cases who responded
to bone marrow stem cell treatment by an increased
endometrial thickness and resumption of menstruation [74].

As outlined, several promising options for endometrial
regeneration and treatment of Asherman syndrome exist,
including iPSCs, endometrial stem cells, and bone marrow
MSCs. Direct comparison between the efficiency and long-
term function of these different stem cell types should be the
next step to establish reproducible clinical protocols.

6.2.6 Intrauterine Fetal Stem Cell Therapy
Intrauterine stem cell therapy (IUSCT) refers to the treatment
of a variety of fetal genetic disorders through the
transplantation of either allogeneic or genetically modified
autologous stem cells. Ideally, stem cells are expected to be
engrafted into the recipient tissue, proliferate, and differentiate
into healthy specialized cells that make up for a genetically
defective function. It is hoped that this will solve incurable
fetal genetic disorders, which are considered to be perinatally
lethal or associated with significant disability and morbidity if
intervention is delayed to the postnatal period [75].

Recent advances in prenatal diagnostic techniques have
enabled early prenatal diagnosis of a wide variety of genetic



disorders. IUSCT has the advantage over postnatal therapy that
the immune system of the fetus at early gestation is still
immature, which is the basis for the unique immunologic
tolerance phenomenon described decades ago [76]. Such
tolerance allows for the engraftment of donor stem cells
without the need for myeloablation or the use of
immunosuppressive medications. Also, the sterile environment
inside the uterus facilitates remodeling of the fetal immune
system [77]. Another major advantage of IUSCT is the small
size of the fetus at early gestation compared to the postnatal
size, allowing the transfusion of higher concentrations of stem
cells [78]. These factors contribute to the promising potential
of IUSCT in managing a wide variety of genetic disorders.
Two main routes have been described for the delivery of
intrauterine stem cells: the intravascular route and the
intraperitoneal route; both are used under ultrasound guidance.
In contrast to the intraperitoneal route, it is believed that the
intravascular route is associated with a better cell uptake;
however, it is technically more challenging and associated with
higher complications [79].

IUSCT has been experimentally evaluated in a variety of
conditions that will be outlined in the following sections.

6.2.6.1 Hematological and Lymphatic
Disorders
Many congenital hematological disorders that have been
considered chronic with high morbidity and mortality (such as
thalassemia and sickle cell anemia) are now considered
potentially curable through hematopoietic stem cell (HSC)
transplantation. However, postnatal stem cell transplantation
has well-known problems related to donor matching and the
need for immunosuppression [75, 78]. The distinctive fetal
immunologic features combined with recent advances in early
prenatal diagnosis of many genetic disorders could help
overcome these difficulties and make intrauterine
hematopoietic stem cell transplantation (IUHSCT) a
potentially promising alternative. IUHSCT has been
extensively investigated in animal models and has shown



successful results [80–87]. However, in humans, IUHSCT
results have been conflicting. HSCs can be isolated from the
bone marrow, fetal cord blood, fetal liver [88], or, less
commonly, from mobilized peripheral blood [89].

Immunodeficiency Syndromes
The first successful IUHSCT was reported by Touraine et al.,
following prenatal diagnosis of bare lymphocyte syndrome,
which is one of the most severe immunodeficiency syndromes.
Although this case needed further postnatal stem cell
transplantation and sterile isolation, an improved success rate
and low rejection rate were reported with IUHSCT [90].
Sequentially, trials on patients with X-linked severe combined
immunodeficiency syndromes also demonstrated good
outcomes following IUHSCT [91–93]. However, despite these
successful reports, IUHSCT has not gained sufficient
popularity in the treatment of X-linked severe combined
immunodeficiency syndromes, owing to the fact that recipients
demonstrate split chimerism with selective engraftment of T
cells only as result of donor T cells’ advantage and
competitiveness [78], a finding that carries no actual advantage
compared to postnatal transplantation [94]. Moreover, trials of
IUHSCT for other immunodeficiency syndromes, such as
chronic granulomatous disease and Chediak–Higashi
syndrome, yielded disappointing results [95, 96].

Hemoglobinopathies
IUHSCTs have been investigated in a variety of
hemoglobinopathies, including sickle cell anemia and alpha-
and beta-thalassemias, as well as some cases of Rh
isoimmunization:

1. Alpha-thalassemia:
Homozygous alpha-thalassemia major (Hb Bart

syndrome) is an autosomal recessive disease.
Approximately 4.5% of the world’s population carry a
hemoglobinopathy gene. If both parents are carriers, the
fetus may be affected by the disease, which often leads to
severe fetal anemia and hydrops fetalis. Most fetuses with

 



this condition end as stillbirth or die in the early neonatal
period [97] unless supported by early intrauterine
exchange transfusions [97–101]. As this condition is now
diagnosed early in pregnancy through antenatal screening
programs available in several developed settings, it
became possible to identify pregnant women who are
potential candidates for IUSCT, who otherwise often opt
to terminate their pregnancy [102]. In practice, only three
cases of IUHSCT for the treatment of alpha-thalassemias
have been reported. Although one case demonstrated
microchimerism and tolerance, following IUHSCT by
paternal bone marrow cells, as evidenced by the
persistence of alpha-globin DNA signal on autopsy, the
donor stem cells did not show a survival advantage
compared with host cells [103]. Other cases showed no
engraftment of the donor cells [88, 103, 104].

2. Beta-thalassemia:
Beta-thalassemia is a common autosomal recessive

disorder with higher prevalence in certain ethnic groups,
for example, those of Mediterranean, Middle Eastern, East
Asian, and African descent [105]. Several cases with
prenatal diagnosis of beta-thalassemia were treated by
IUHSCT using different types of donor cells, for example,
paternal, maternal, and sibling bone marrow, fetal liver
and thymic cells, fetal blood, and paternal circulating
hematopoietic progenitor cells. While some of these cases
showed evidence of engraftment [106–108], all cases that
continued to survival became transfusion-dependent. The
successful chimerism in combined immunodeficiency
syndromes and poor results in thalassemias led Renda et
al. to try immunosuppression using low-dose
dexamethasone followed by IUHSCT using paternal
circulating hematopoietic progenitor cells. Although
microchimerism was demonstrated in one case by
identifying the ABO allele, donor DNA in peripheral
blood, and a hemoglobin value of 14.4 g/dL at 2 months of
age, both infants subsequently required repeated
transfusions [108].

 



3. Sickle cell anemia:
Sickle cell anemia is a single gene disorder caused by

the substitution of Hb-S for Hb-A in the beta subunit of
the hemoglobin molecule owing to mutation in the HBB
gene [109]. There is only one published case of IUHSCT
for sickle cell anemia, which was diagnosed prenatally as
homozygous sickle cell disease by chorionic villus
sampling at 10 weeks. IUHSCT with fetal liver cells was
carried out at the 13th week of gestation, with no evidence
of engraftment at birth [104].

 

4. Rh isoimmunization:
IUHSCT was investigated in pregnancies with

recurrent gestational failure due to Rh isoimmunization to
decrease disease severity and delay the need for
intrauterine blood transfusion until it could be safely
performed [110, 111]. Nonetheless, both reported cases
demonstrated failure of engraftment at the time of
cordocentesis and required repeated intrauterine blood
transfusions.

 

Possible Barriers to Successful Intrauterine Hematopoietic
Stem Cell Transplantation
There are a number of obstacles that warrant further
investigations before IUHSCT becomes a routine clinical
practice, most importantly:

– The strong functional competition between the already
present host hematopoietic cells and the donor cells.
Such competition is usually absent in postnatal
transplantation as a result of induced myeloablation
[77]. This could also be explained by the relative excess
of hematopoietic stem cells during fetal life compared
to postnatal life, leaving a limited intrauterine
hematopoietic niche for donor cell engraftment [112].



– The timing and presentation of foreign donor stem cell
antigens determine the successful occurrence of the
tolerance phenomenon documented in fetuses at an
early gestational age [77].

6.2.6.2 Osteogenesis Imperfecta
Osteogenesis imperfecta (OI) is a rare genetic disease with an
incidence of 1 out of every 20,000 births. It affects type I
collagen synthesis and is characterized by recurrent low
trauma fractures and deformities. Other features include short
stature, deafness, blue sclera, and dental changes [113, 114].
Most cases are inherited as an autosomal dominant disease.
The disorder has a spectrum of severity ranging from mild
cases to most severe cases that are perinatally lethal [115].
MSCs can be obtained from various accessible sources, such
as bone marrow, umbilical cord blood, amniotic fluid,
periosteum, trabecular bone, adipose tissue, dermis, muscles,
synovial membrane, and lungs [116]. Owing to their ability to
expand in vitro under normal culture conditions, small
amounts of MSCs can be used for transplantation purposes. In
addition, MSCs have a favorable low immunologic profile and
an ability to suppress T-cell activities, which makes allogeneic
transplantation possible. They also rely on chemotactic forces
to guide their homing to injured sites [79]. These features
suggest a promising role of MSCs in the treatment of genetic
disorders of mesenchymal origin, such as OI and muscular
dystrophies, and expanding the possibility for IUSCT by
overcoming immunologic barriers.

Animal studies of IUSCT for OI demonstrated evidence of
donor cell engraftment [117–119]. These studies also showed
increased survival [118]; decreased incidence of fractures [117,
119]; increased bone length, strength [117], and thickness
[117, 118]; and improvement of matrix quality, stiffness [118,
119], and bone mechanics [118].

With regard to human studies, one unpublished case
demonstrated no fractures or events during an infant’s first
year of life, and a bone biopsy showed 5% of the osteoblasts
were of donor origin [120]. The second case demonstrated a



higher level of engraftment (7.4%) and received
bisphosphonate therapy at the age of 4 months. However, three
fractures were reported by the age of 2 [121]. In conclusion,
although studies are limited, results are conflicting, and long-
term follow-up is usually absent, the use of MSCs in the
intrauterine treatment of OI represents a promising approach
for the treatment of such a lethal and deforming disease.

6.2.6.3 Storage Diseases
There are several reported cases of attempted IUSCT for
storage diseases. Of these, only one case with prenatal
diagnosis of globoid cell leukodystrophy showed evidence of
engraftment of donor cells; however, the fetus died at 20
weeks of gestation [122]. Other cases with globoid cell
leukodystrophy, Hurler’s syndrome, Niemann–Pick disease,
and metachromatic leukodystrophy were unsuccessful, with no
evidence of engraftment [96, 123–125].

As seen in the highlighted examples, IUSCT is a promising
alternative to postnatal stem cell therapy; it has the potential
benefit of avoiding immunosuppression and its associated
complications and providing a timely management for
disorders with high perinatal mortality and morbidity. To date,
patients who have been successfully treated by IUSCT are
those with immunodeficiency syndromes. Despite the paucity
of evidence based on human studies in most cases of
intrauterine fetal stem cell therapy, the most recent consensus
from experts in this field came in 2014 and confirmed that this
therapy is viable and its obstacles should receive adequate
research attention [126] (Table 6.1, reproduced with
permission from [127]).
Table 6.1 Potential applications of intrauterine fetal stem cell therapy

Immunodeficiency
disorders

Hemoglobinopathies
and Rh disease

Enzyme storage
diseases

Other genetic
disorders

Bare lymphocyte
syndrome

Congenital
erythropoietic
porphyria (Gunther’s
disease)

– Mannosidosis Dyskeratosis
congenita



Immunodeficiency
disorders

Hemoglobinopathies
and Rh disease

Enzyme storage
diseases

Other genetic
disorders

Cartilage-hair
hypoplasia

– Thalassemia Adrenoleukodystrophy Familial
hemophagocytic
lymphohistiocytosis

Chediak–Higashi
syndrome

– Thalassemia Fabry disease Hemophilia A

Chronic
granulomatous
disease (CGD)

Sickle cell disease Farber’s disease Infantile
osteopetrosis

Kostmann’s syndrome Erythrocyte
alloimmunization
(Rh
isoimmunization)

Fucosidosis Osteogenesis
imperfecta

Leukocyte adhesion
deficiency

Gaucher disease Shwachman–
Diamond syndrome

Omenn syndrome Globoid cell
leukodystrophy
(Krabbe’s disease)Severe combined

immunodeficiency
syndrome (SCID)

Wiskott–Aldrich
syndrome

Metachromatic
leukodystrophy

X-linked
immunodeficiency
with
hyperimmunoglobulin
M

Mucopolysaccharidoses
(MPS) I-H (Hurler’s
syndrome)

X-linked Bruton
agammaglobulinemia

MPS II (Hunter
syndrome)

MPS IIIB (Sanfilippo B
syndrome)

MPS IV-A/B (Morquio
syndrome)

MPS VI (Maroteaux–
Lamy syndrome)

MPS VII (Sly
syndrome)

Niemann–Pick disease
(types A and B)



Immunodeficiency
disorders

Hemoglobinopathies
and Rh disease

Enzyme storage
diseases

Other genetic
disorders

Wolman’s disease
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7.1 Introduction
While adult stem cells have a lower differentiation capacity
than embryonic stem cells (ESCs) and induced pluripotent
stem cells (iPSCs) [1–7], the use of adult stem cells bypasses
many of the ethical and safety issues that limit clinical
applications of stem cell therapy. Since the identification of
multipotent stem cells in the bone marrow 40 years ago [8],
bone marrow stem cells (BMSCs) have become the gold
standard in regenerative medicine because of their
accessibility, availability in both autologous and the allogeneic
settings, multipotency, and relative safety [1, 9, 10]. However,
the harvesting of BMSCs requires bone marrow aspiration,
which is still an invasive, relatively painful procedure that
yields low to moderate numbers of cells [1]. Recently, adipose
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tissue has been reported by many groups to be a safe, easy, and
efficient source of mesenchymal stromal cells (MSCs).
Compared to bone marrow, adipose tissue is abundant,
superficial, and easy to access, enabling the collection of
relatively large quantities of fat and harvesting large numbers
of cells. Furthermore, adipose tissue harvest contains larger
numbers of mesenchymal cells compared to bone marrow. One
gram of adipose tissue can yield roughly 2 × 106 cells, with 10
% of these cells believed to be adipose-derived stem cells
(ASCs) [11–13]. Since the ability to obtain and infuse large
numbers of cells is frequently considered a limiting factor in
cell transplantation therapy, adipose tissue provides a
significant advantage as a promising alternative source for
marrow stem cells [14–16].

ASCs can be expanded in vitro, and differentiate into cells
of different lineages, including adipogenic, osteogenic,
chondrogenic, myogenic and neurogenic lineages [14–20].
Despite this apparent multipotency, the suitability of ASCs to
differentiate in vivo into the desired cell populations is still
under investigation, and clinical trials utilizing ASCs are still
considerably few compared to in vitro studies, and to animal
experimentation.

In addition to multilineage differentiation potential, colony
forming unit fibroblast (CFU-F) is another pluripotency assay
that characterizes the “stemness” of ASCs. Compared to
marrow MSCs, ASCs have been shown to form tenfold more
CFU-F units [21]. Moreover, ASCs exhibit
immunomodulatory properties [22, 23] and seem to be more
genetically stable during long-term culture procedures [24]
compared to BMSCs [25]. Despite these advantages that make
ASCs an excellent candidate for clinical transplantation
settings, clinical trials using ASCS have not been similarly
promising. Comprehensive characterization of ASCS, and in
vivo tracking studies to confirm their origins and
differentiation potential are still lacking.

7.2 Isolation, Characterization and
Immunophenotype of ASCs



Unlike marrow MSCs, ASCs are significantly heterogeneous
populations of cells and can be collected from variety of
sources. In rodents, ASCs can be obtained from the fat pads of
rats, as first described by Rodbell and colleagues in the 1960s
[26–28]. In his protocol, the rat fat pads were minced into
small fragments, digested at 37 °C with type I collagenase.
After centrifugation, the supernatant which consisted of
mature floating adipocytes, was separated from the pellet that
consisted of the stromal vascular fraction (SVF). The latter
fraction contained adipocyte progenitors as well as cells of the
hematopoietic lineage.

In humans, ASCs can be isolated from several types of
adipose tissue, including visceral fat, subcutaneous fat, and
organ fat. Convenient sources of human fat include adipose
tissue waste that results from plastic reconstructive surgeries
and liposuction aspirates [29]. Liposuction material is an
especially convenient source of ASCs as the procedure
provides homogeneous, finely minced adipose fragments,
which can be efficiently subjected to enzymatic digestion.
Compared to whole adipose tissue fragments, where the
tissues are minced manually, liposuction products require less
time and effort for sufficient enzymatic digestion [30]. While
many reports show that ASCs can be collected in large
numbers compared to cells from bone marrow harvest,
conflicting data on the effect of the site and methods of
harvesting on the overall viability of the ASCs have been
reported. For example, in a study by Fraser et al. [31] the data
demonstrated that neither the harvesting technique nor the site
of harvest affected the number of collected ASCs.
Oedayrajsingh-Varma and colleagues investigated three
harvesting techniques (tumescent liposuction, fat resection and
ultrasound-assisted liposuction), and the results showed that
the harvesting procedure affected the recovery of ASCs,
whereas ultrasound-assisted liposuction resulted in the lowest
number of proliferating ASCs [12]. Since then, many groups
working independently have generated and refined methods of
isolation and characterization of ASCs [32–35]. However,
because of the small number of published studies and the
differences in the separation protocols, there is no consensus



on the optimal site of harvest, harvesting technique or
purification strategy.

Like bone marrow mesenchymal stromal cells (BM-
MSCs), ASCs are characterized based on adherence to plastic,
expression of phenotypic surface markers in their
undifferentiated state, and differentiation into cells of
chondrogenic, adipogenic, and osteogenic lineages when
cultured with the appropriate growth factors. Unlike ESCs,
undifferentiated ASCs cannot be characterized using well-
defined markers but by a combination of markers that are not
exclusive to ASCs but also shared by marrow MSCs, such as
CD271 [36], STRO-1 [37], STRO-3 [38] and MSCA-
1+CD56+ [39]. BMSCs and ASCs thus demonstrate very
similar cell surface marker expression patterns [40], and both
express the same cell surface marker characteristic for MSCs,
meeting the criteria set by the International Society for
Cellular Therapy (ISCT) [41]. Marrow MSCs, however, lack
the expression of CD49d, which is substantially expressed by
ASCs, while the latter lacks expression of CD106, which is
highly expressed on marrow MSCs [42]. This divergent
expression pattern is intriguing because CD106 is the receptor
for CD49d and the two molecules are important for
hematopoietic stem cell (HSC) homing to, and mobilization
from the bone marrow [43, 44]. CD29, CD73, CD13, CD90,
CD133, and MHC I surface molecules have been identified
with highly coherent patterns of expression on the cell surface
of ASCs (Table 7.1). Markers that are consistently and
strongly expressed by ASCs are CD73, CD44, CD29, CD13,
CD90, CD105, CD166 and MHC I, while markers of the
angiogenic and hematopoietic lineages, such as CD133, CD45
and CD31, were demonstrated to be lacking or modestly
expressed. As such, there is currently no consensus on uniform
markers that could be detected on ASCs and characterize their
phenotype consistently and reproducibly. The lack of
consistency may be in part due to our lack of knowledge on
the optimum type of fat source of ASCs, the heterogeneity of
donors, the inconsistent culture conditions, and the sensitivity
of the detection methods.
Table 7.1 Phenotype of freshly isolated human SVF and ASCs



CD Antigen SVF ASCs Ref.CD Antigen SVF ASCs Ref.

CD10 + + [34, 132]

CD13 + + [34, 41, 132]

CD19 − − [132]

CD24 + − [32, 132, 133]

CD29 + + [32, 34, 41, 134]

CD31 − − [132, 134, 135]

CD34 + − [32, 34, 41, 132, 134, 135]

CD44 + + [32, 34, 41, 132]

CD45 − − [34, 136]

CD71 + + [32, 41]

CD73 + + [32, 34, 41, 132, 134–136]

CD90 + + [32, 34, 41, 132]

CD105 + + [41, 134–136]

CD106 − − [132, 137]

CD146 − − [132, 133]

CD166 + + [32, 34, 41, 133, 135]

CD271 + + [32, 137]

MHC II − − [41, 133, 135]

STRO-1 + + [132, 133]

7.3 Immunomodulatory Properties of
ASCS
The unique immune profile of ASCs and MSCs in general
makes them attractive source for cell transplantation purposes.
The functional characterization of both marrow MSCs and
ASCs shows both cell types lack expression of MHC II
molecule, which renders them less immunogenic than other



cell types [41, 45]. In particular, ASCs were shown to inhibit
the production of proinflammatory cytokines and augment the
production of anti-inflammatory cytokines and antigen-
specific Treg cells [46]. Unlike marrow MSCs, however, full
characterization of the immune profile, and specifically, the
immunosuppressive properties of ASCs have not been
achieved yet. The immunosuppressive potential of ASCs has
been observed in experimental transplantation, where they
provided profound immunomodulatory properties and
protective effects against acute graft-versus-host disease
(GvHD) [47]. ASCs have been shown be immuneprivileged
[48], in addition to exerting an immunosuppressive effect and
inhibiting the proliferation of activated allogeneic
lymphocytes [48–50]. Moreover, ASCs have been
demonstrated to ameliorate the production of proinflammatory
cytokines by both CD4 T helper cells and CD8 cells, stimulate
the production of the anti-inflammatory cytokine IL-10 by T
lymphocytes and monocytes, and prompt the generation of
antigen-specific regulatory T cells [46]. In vivo, ASCs were
shown to promote engraftment of allogeneic stem cells and
treat or prevent severe GvHD in allogeneic transplantation
settings [47, 50]. Compared to marrow MSCs, ASCs were
shown to have more potent immunomodulatory effects, as
lower numbers of ASCs triggered the same level of
immunomodulation elicited by marrow MSCs [51], indicating
that ASCs present a viable, effective and easily accessible
alternative to marrow MSCs for immunomodulatory therapy
(Fig. 7.1).



Fig. 7.1 The immunomodulatory properties of ASCs are related to the
inflammatory status. Inflammatory mediators such as TNF-α, IL-1 and IL-17
produced by effector T cell in response to inflammation cause ASCs to migrate to
the inflammatory site. At the site of inflammation, these mediators stimulate the
production of immunosuppressive cytokines, such as TGF-β, IL-10, IL-6 and PGE-
2, which in turn inhibit effector T cells and stimulate regulatory T cells. Subsidence
of inflammation causes T cell activation and promotes cell-mediated immune
response

When considering the immunosuppressive effects of ASCs
for the treatment of GvHD and autoimmune diseases, caution
should be taken to avoid some of the undesirable effects
observed in experimental transplantation. Muehlberg and
colleagues showed that upon intravenous administration of
ASCs in mice, they home to the tumor site and support tumor
growth [52]. Yu and colleagues reported that cotransplantation
of human ASCs together with cancerous cells into BALB/c
mice, either subcutaneously or intracranially, supported tumor
growth [53]. Conversely, Kucerova and colleagues reported
that cytosine deaminase-expressing ASCs carry the cytosine
deaminase transgene to the site of tumor formation and
mediate a strong antitumor effect in vivo [54]. Similarly,
Grisendi and colleagues showed that ASCs are good
candidates for cellular vectors in TNF-related apoptosis-
inducing ligand (TRAIL)-based cancer therapy [55]. Cousin
and colleagues showed that ASCs strongly hinder the
proliferation of pancreatic ductal adenocarcinoma cells, both
in vivo and in vitro, by interfering with the proliferation of
cancerous cells and altering cell cycle progression [56]. These



conflicting reports may be explained in part by varieties in the
used protocols, both in vitro and in vivo. Although an
experimental model is never totally consistent with the
complex mechanisms in nature, the discrepancies in these
reports demonstrate that full biological characterization of
ASCs is still for the most part lacking. In absence of well-
characterized, pure populations of ASCs, the conflicting data
on their tumor-enhancing effect cannot be attributed to specific
cell population and defined mechanisms. The ASC-rich
vascular fraction contains several other cells, especially
vascular cells with high angiogenic functions that may
contribute to the observed effects on tumor formation

7.4 Preclinical Studies Using ASCs
There is an abundance of published studies in animal models
assessing the safety and efficacy of ASCs (reviewed in [57]).
The majority involves the use of rodents, owing to their low
cost, size, availability of antibody probes and access to inbred,
transgenic, and genetically modified strains. But a substantial
number of studies have used canine, ovine, porcine, and other
large animal models. Studies involving large animals have
suffered from a lack of comprehensive analysis owing to the
absence of appropriate monoclonal antibodies and reagents
used for cell tracking and immunophenotypic characterization.
Nevertheless, accumulating data on the safety and efficacy of
ASCs suggest readiness for applications in a clinical setting.

Myocardial Infarction: The therapeutic efficacy of ASCs
in experimentally-induced myocardial infarction (MI) has
been assessed by different groups [58–60]. In these studies, MI
was induced by left anterior descending coronary artery
ligation. The authors reported improved left ventricular
function and improved myocardial function by all
measurements including serial echocardiography, histology
and immunofluorescence. Left ventricular ejection fraction
and fractional shortening were improved and anterior wall
thinning was also attenuated after ASC treatment. Post-
mortem histological examination showed decreased fibrosis in
ASC-treated hearts, in addition to increased peri-infarct



density of both arterioles and nerve sprouts. Moreover,
immunofluorescence revealed that grafted ASCs underwent
cardiomyocyte differentiation [58]. Human ASCs survived in
injured hearts for up to 4 months, as detected by luciferase-
based bioluminescence imaging. These positive results have
encouraged clinical trials to assess the safety and feasibility of
human ASCs for the treatment of MI (NCT00442806).

Bone Defects: The potential of ASCs in treating bone
defects in animal models has been explored in several
preclinical studies [61–63]. To investigate their in vivo
osteogenic capacity to heal critical-size mouse calvarial
defects, ASCs were seeded onto scaffolds and implanted into
the bone defect. Significant intramembranous bone formation
and areas of complete bone regeneration were achieved as
shown by X-ray analysis, histology and live micro-molecular
imaging. Furthermore, the authors demonstrated that the
implanted cells participated to 84–99 % of bone formation by
chromosomal detection [61]. Moreover, different results have
supported the use of ASC-loaded scaffolds to facilitate spinal
fusion [62, 63]. In these studies, there was reduced infiltration
of inflammatory cells in the spinal fusion masses with ASC-
loaded scaffolds compared to scaffolds alone. Additionally, the
ASC-loaded scaffolds showed superior fusion mass
mineralization and better remodeling than scaffolds alone.

Diabetes Mellitus (DM): ASCs were shown in many
laboratories to differentiate into insulin-producing cells [20,
64, 65]. ASCs ameliorated hyperglycemia in experimentally-
induced DM, as after their administrating, fasting blood
glucose levels significantly decreased starting from the second
week after therapy [66–68]. Moreover, ASCs significantly
decreased pancreatic islet damaged induced by stroptozotocin
and increased the expression of insulin in pancreatic β cells.
Furthermore, their vasculogenesis and angiogenesis properties
facilitated engraftment and revascularization of donor
pancreatic islets when ASCs were co-transplanted with them
and reduced the islet mass required for reversal of diabetes
[69]. Additionally, immunomodulatory and anti-inflammatory
effects of ASCs could protect donor islets during the early



phase of transplantation and subsequently improve
engraftment of donor islets into the recipient organs [70].

Central Nervous System: The differentiation capacity of
ASCs into neuron-like cells expressing markers typical for
mature neurons has been reported by several laboratories [71–
73]. In addition to their neural differentiation capacity, the
therapeutic capacity of ASCs in animal models of diseases of
the central nervous system has shown promising results [74–
77]. Transplantation of ASCs in an animal model of stroke or
ischemia reduced both acute cerebral inflammation and
chronic brain degeneration, and promoted long-term functional
recovery [74, 75]. ASC transplantation has improved motor
functions in rat models of spinal cord injury [76]. In
experimental autoimmune encephalomyelitis, intravenous
administration of ASCs in an animal model of multiple
sclerosis, reduced disease severity via modulation of the
immune responses, and decreasing the severity of spinal cord
inflammation and demyelination, in addition to inducing local
neuroregeneration [77].

Cartilage Repair: Cartilage is an avascular tissue,
suggesting that an angiogenic signal would not be appropriate
when chondrogenesis was the intent. Lee et al. showed that rat
ASCs produced large amounts of vascular endothelial growth
factor (VEGF), which inhibited proliferation of chondrocytes
and increased their apoptosis [78]. However, culturing ASCs
with chondrogenic medium significantly reduced VEGF
secretion and the detrimental effects of the secreted factors on
chondrocyte regeneration. When ASCs were implanted in a rat
model of chondral cartilage defects, the degree of healing was
not significantly different from that of defects where no ASCs
were administered [78]. These data suggest the need for
methods to adapt. ASCs to for enhancing cartilage repair by
abolishing the damage caused by the secretion of VEGF and
other factors that inhibit cartilage regeneration and prevent
cartilage repair.

Gastrointestinal Tract (GIT): ASCs were recently shown
to suppress effector T-cell responses and have therapeutic
effects in some autoimmune diseases [79]. Systemic infusion
of ASCs ameliorated the symptoms and histopathologic



severity of colitis, eliminating diarrhea, body weight loss, and
inflammation and also increased survival in a murine model of
induced colitis [80]. This therapeutic effect was mediated by
down-regulating a wide range of proinflammatory cytokines
and by increasing IL-10 levels and activating regulatory T
lymphocytes. This suggests that ASCs can be an attractive
source of cell-based therapy for GIT disorders, and an
effective regulator of immune responses in these diseases.

Liver Disorders: The hepatogenic differentiation capacity
of ASCs has been investigated in both in vitro [19, 81–86] and
in vivo animal models [19, 81, 85]. Infusion of of ASCs in an
experimentally induced animal model of liver failure showed
enhancement of liver morphology and function. Transplanted
mice lived longer, and their liver showed higher proliferation
and less apoptosis [84, 87–89].

Vascular Disorders: The angiogenic potential of ASCs
have been investigated in an animal model of hind-limb
ischemia. Intravenous administration of ASCs in rodents’
ischemic hind limbs resulted in better post surgical recovery
and prognosis, and histological analysis revealed increased
vascular density and reduced muscle atrophy [90].
Interestingly, ASCs were superior to marrow MSCs in their
capacity to promote neovascularization in response to vascular
ischemia [91]. Administration of ASCs promoted recovery of
blood flow in the ischemic limb and boosted
neovascularization. In vivo, ASCs showed a significantly
higher laser Doppler perfusion index, and better in vitro tube
formation compared to marrow MSCs, suggesting that ASCs
can achieve highly desirable therapeutic neovascularization in
ischemic diseases.

7.5 Clinical Trials Using ASCs
When writing this chapter, the search for clinical trials
utilizing either SVF cells or ASCs yielded 141 trials after
exclusion of the withdrawn and terminated studies- of which
42 trials have been completed so far (http:// clinicaltrials. gov)
(Fig. 7.2). Only 3 of the ongoing trials are in phase III.
Evidently, there is much discrepancy between preclinical
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studies and clinical applications, and therefore applications of
ASCs remain for the most part, and up till publication of this
book, experimental. Data from these few clinical studies,
however, have been encouraging. Safety studies have been
most promising, as various forms of treatment, types of cells,
and methods of injection have all been well tolerated by
patients, with no or mild side effects reported. Slowly
emerging data on the efficacy of ASCs have been reported in
the following conditions:

Fig. 7.2 Ongoing clinical trials using adipose stem cells as identified on http:// 
clinicaltrials. gov

Graft-versus-Host Disease (GvHD): Fang and colleagues
reported several case studies where ASCs were administered
for treating severe and acute GvHD caused by allogeneic
hematopoietic stem cell transplantation [92–95]. In these
cases, marked improvement in acute GvHD symptoms, such

http://clinicaltrials.gov/


as diarrhea, skin rash, and liver function, was observed. In
another study, six patients with steroid-refractory acute GvHD
were infused with ASCs. In five out of six patients, the GvHD
was completely resolved.

The same group reported a case study where ASCs were
given as a salvage therapy in a case of chronic hepatic GvHD
that was resistant to immunosuppressive therapy. In this case,
hepatic inflammatory conditions were improved, as evidenced
by the decrease in autoreactive T-cell migration to the
inflammatory site, the decrease in production of interlukin1, 4
and interferon-γ by mononuclear cells, and the reduction of
mutant human leukocyte antigen (HLA)-1 molecules on
hepatic cells. Engrafted ASCs seem to have contributed to the
regeneration of the liver tissues [95].

Multiple Sclerosis: Autologous SVF cells were used to
treat three patients with relapsing-remitting multiple sclerosis
[96]. Each patient received two intravenous infusions with
autologous adipose derived SVF cells and multiple intrathecal
and intravenous infusions of allogeneic CD34+ and MSCs
over 9–10 days, with no significant side effect reported. In
addition to some improvements in functional neurological
testing, follow up showed an overall improvement of patients’
quality of life. However, because of the small number of
patients and the lack of robust analysis and long term follow
up, conclusive data about the therapeutic effect of SVF cells
on multiple sclerosis necessitate further clinical investigations.

Diabetes Mellitus (DM): In a study published in 2008,
Trivedi and colleagues performed the first trial to treat type
1DM using ASCs. Five diabetic patients were included in the
study. They received ASCs cotransplanted with unfractionated
cultured bone marrow cells. The study followed the patients
for a period of 2.9 months, and showed that all treated patients
had no reported side effects. Insulin requirements were
decreased by 30–50 %, and the level of serum c-peptide levels
was increased [97]. Overall improvement in the general health
and lifestyle was observed, and none of the patients reported
episode of ketoacidosis.



Fistulae: García-Olmo et al. reported using autologous
ASCs, collected from lipoaspirate to treat a young female
patient suffering from recurrent rectovaginal fistulae due to
crohn’s disease. The patient’s general condition improved,
there was good closure of the fistulae up to the 3 months
follow up period, and the patient reported absence of vaginal
flatulence and rectal incontinence through the vagina [98]. In
the phase I clinical trial by the same group, four patients with
crohn’s disease suffering from 9 perianal fistulae were treated
with autologous ASCs. The fistulae were followed weekly for
8 weeks. Six fistulae out of eight showed signs of healing, as
determined by complete reepithelization of the external
opening, while 2 fistulae did not heal. The ninth patient
experienced contamination of the cultured cells, and was
excluded from the study. No side effects were reported by the
patients during an average of 22 months following surgery.
Owing to these promising results, authors recommended
proceeding to phase II trials [99].

Multicenter, randomized controlled phase II clinical trials
by same group tested the safety of administering autologous
ASCs in the treatment of perianal fistulae. Thirty-five complex
perianal fistula cases (of cryptoglandular origin, of which 14
cases were associated with crohn’s disease) received local
injection of 20 million ASCs along with fibrin glue treatment,
or using fibrin glue alone. A second dose of ASCs was
administered if no healing was observed after 8 weeks.
Patients were evaluated at 8 weeks and after 1 year.
Coadministration of ASCs with fibrin glue improved the
healing of fistulae in both Crohn’s and non-Crohn’s patients,
better than the administration of fibrin glue alone. However,
17.6 % of the treated cases showed recurrence after 1 year. No
side effects were reported during the follow-up period, and the
authors established the safety of this form of treatment [100].

In a following randomized, single blinded, multicenter
phase III clinical trial, 200 adult patients suffering from
perianal crypto glandular fistulae randomly received 20
million ASCs with or without fibrin glue. Control patients
received fibrin glue alone and were followed up at 24–26
weeks, and after 1 year. If no healing was observed, the



patients received a second dose of treatment. During the
follow-up period, 40 % of the patients who received ASCs
with or without fibrin glue showed healing after 6 months,
while 50 % of the patients healed after 1 year. However, there
were no significant differences between the healing in patients
treated with stem cells alone compared to fibrin glue alone
[101].

In a different study to examine the therapeutic potential of
ASCs for healing fistulae associated with Crohn’s disease
[102], the researchers increased the number of administered
ASCs in direct proportion to the size of the fistulae. Fistulae
were loaded with ASCs in combination with fibrin glue after
intra-lesional administration of ASCs. Complete healing of the
fistulae was achieved in 27/33 patients (82 %) by 8 weeks
after cell therapy. No side effects related to the injected cells
were observed.

Bone Tissue Defects: In a follow up to preclinical studies
in which ASCs showed potential to treat bone defects, two
clinical case studies were reported where patients received
ASCs to repair the defects [103, 104]. In the first case, 7-year-
old girl, who had massive calvarial defects due to severe head
injury, failed fixation therapy to multifragment calvarial
fractures, which left her with an unstable skull. Owing to a
deficiency in the autologous cancellous bone from the iliac
crest, the calvarial deformity was treated with freshly isolated
autologous SVF cells coadministered with fibrin glue. New
bone was formed and near complete closure of the calvarial
defects, and clavarial continuity were achieved as determined
by CT scan.

In the second case, a patient who suffered
hemimaxillectomy was treated by reconstruction of the bone
defect using microvascular flab consisting of autologous ASCs
and beta tricalcium phosphate combined with bone
morphogenetic protein-2 (BMP-2) [104]. Autologous ASCs
were isolated and cultured using animal-free reagents in
combination with beta tricalcium phosphate, and BMP-2 in a
clean room in order to composite a flab. Mature bone structure
and vasculature were developed in the flab after a period of 8
months, and the flab was transplanted into the defect.



Postoperative healing was achieved, suggesting that the use of
autologous ASCs in microvascular reconstruction surgery
could be very promising in bone defects.

Osteoarthritis: Recently, Jo et al. carried out a clinical trial
to investigate the efficacy and safety of the use of intra-
articular injection of autologous ASCs as a therapy for knee
osteoarthritis. The trial was divided into 2 phases with a total
18 patients. In phase I, 9 patients were subjected to intra-
articular injection of low (1.0 × 107), mid (5.0 × 107), and high
doses (1.0 × 108) of ASCs, in 3 groups of patients with 3
patients in each group. In phase II, 9 patients received intra-
articular injection of high dose of ASCs. Results were
promising in those patients who had received a high doses of
ASCs. Western Ontario and McMaster Universities
Osteoarthritis index (WOMAC) score (a valid assessment of
knee and hip osteoarthritis where an increase in pain and
stiffness and a deteriorated function indicate high WOMAC
scores) was assessed 6 months post operatively. Reduction in
the size of the cartilage defect in medial femoral and tibial
condyles was determined by arthroscopy, and histological
examination showed that the volume of the cartilage was
increased. Interestingly, patients suffered no postoperative side
effects. The research group concluded that a high dose of
ASCs (1.0 × 108) was safe and effective in the treatment of
knee osteoarthritis, shown by enhancement of knee function,
decreasing pain, and increasing cartilage regeneration [105].

Neurological Defects: To test the efficacy of stem cell
transplant to repair spinal cord injury, Ra et al. infused 8 male
patients with a history of spinal cord injury for more than a
year with ASCs. A single dose of 4 × 108 ASCs was
intravenously administrated in these patients with follow up
period of 3 months. No side effects, especially incidences of
tumor formation, were observed during the follow-up period,
indicating that intravenous administration of ASCs maybe a
safe approach to treating spinal cord diseases [106].

Critical Limb Ischemia ( CLI ): ASCs were administered
to 15 male CLI patients who suffered ischemic resting pain in
one limb with/without nonhealing ulcers, and necrotic foot.



Multiple intramuscular ASCs injections were successfully
infused, with no complications during the mean follow-up
period of 6 months. Clinical improvement was shown in 66.7
% of patients. Five patients needed minor amputation during
the follow-up, and all amputation sites healed efficiently. At 6
months, significant enhancement was noted in functional tests,
such as claudication walking distance and pain rating scales.
Vascular collateral networks across affected arteries were
formed as determined by digital subtraction angiography at
baseline and 6 months after ASC implantation [107].

Cosmetic Applications: Koh et al. reported the use of
ASCs in the treatment of progressive hemifacial atrophy
(Parry-Romberg disease), a disease characterized by atrophy
of facial skin, dermis, fat, cartilage and bone. ASC therapy
was applied to enhance angiogenesis in order to improve
microfat grafting. 10 patients were subjected to injection of
microfat grafts in combination with ASCs or microfat graft
alone, and followed for an average period of 15 months.
Results showed that the survival of the graft that included
ASCs injections was better than that without ASCs. The
researchers concluded that microfat graft plus ASCs could be
used to treat progressive hemifacial atrophy, without the need
for the microvascular-free flap transfer that was previously
used in the treatment of such cases [108].

Yoshimura and colleagues used a novel procedure called
cell-assisted lipotransfer (CAL) to avoid side effects of the
lipo-injection for treatment of facial lipoatrophy and for breast
augmentation [109, 110]. In CAL, SVF is isolated from half of
a fresh adipose sample and then attached to other half of the
sample, so that fat in the other sample acts as a scaffold for
SVF cells in order to enrich the ASC-poor fat to become ASC-
rich fat. Six patients with facial lipoatrophy caused by lupus
profundus or Parry-Romberg syndrome were treated; three
patients were treated using CAL, while three patients received
conventional lipoinjection (non-CAL). Improvement in facial
contouring was achieved, and a better outcome was observed
in the CAL group [109].

In another study, 40 female patients underwent the CAL
procedure for cosmetic breast augmentation. The procedure



was effective without any observed side effect. No
postoperative fat atrophy occurred when the patients were
followed up for 2 months after the operation. Further clinical
studies were required to prove efficacy of this procedure [110].

Cardiomyopathy: To examine the efficacy of autologous
ASC infusion in no-option cases of ischemic cardiomyopathy,
Perin et al. carried out a randomized, placebo-controlled,
double-blinded clinical trial 21 patients were treated with
autologous ASCs via trans-endocardial injection, and 6
patients served as control. The patients were followed-up
postoperatively for up to 36 months for safety and efficacy of
the treatment. In comparison with the control group, ASC-
treated cases showed improvement in their total left
ventricular mass as shown by cardiac magnetic resonance and
wall motion score index. Furthermore, a decrease in inducible
ischemia for the 18-month follow up period was shown by
single-photon emission computed tomography. It was
concluded that trans-endocardial injection of autologous ASCs
in no-option ischemic cardiomyopathy patients enhanced
myocardial perfusion, ventricular function and exercise
tolerance in these cases [111].

7.6 Dedifferentiated Fat Cells
Mature adipocytes undergo dedifferentiation in ceiling culture,
giving rise to spindle shaped cells called dedifferentiated fat
cells, or DFAT cells. By dedifferentiation, adipocytes lose lipid
metabolism function while simultaneously acquire a
multipotent capacity [112, 113]. However, the mechanism of
DFAT cell dedifferentiation is still unclear. DFAT cells are a
homogeneous cell population compared to ASCs driven from
SVF, which are heterogeneous cell populations. Because
mature adipocytes are available in great abundance in adipose
tissue, DFAT cells are considered a promising source of
multipotent cells over ASCs [112, 114, 115].

DFAT cells were first isolated from the fat of the bone
marrow of metacarpal bones in neonatal calves, and later from
subcutaneous adipose tissue [116, 117]. After adipose tissue
digestion with the traditional incubation with collagenase, the



floating layer atop the digested fat is collected, filtered and
washed then cultured in a flask filled with DMEM with 20 %
fetal bovine serum for 7 days. Cells will adhere to the roof of
the flask, start to lose their rounded, unilocular appearance,
and gradually become spindle-shaped with the break of their
lipid droplet into multiple droplets, giving the cells a
multilocular appearance. This change is usually followed by
complete loss of the lipid droplet after 2–3 weeks in culture
[112, 114, 115].

7.6.1 Multipotency of DFAT cells
During the process of generating DFAT cells from mature
adipocytes, there is a downregulation of function regulating
genes, or genes that are involved in lipid metabolism, such as
ADIPOQ, LIPE, PDK4, LPL, FASN, PPARG and FABP4, and
simultaneous upregulation in cell proliferation genes (such as
SERPINE1, TIMP1, PLAU, SFRP2, AEBP1, PRRX2, PEG10,
IGFBP5 and ID2). Genes involved in cell migration, tissue
development and altered cell shape are also upregulated [113].
Interestingly, it has been demonstrated that DFAT cells express
pluripotency markers similar to ESCs such as OCT4, SOX2, c-
MYC and Nanog, in addition to having high alkaline
phosphatase and telomerase activity. The latter was shown to
be higher in DFAT cells compared to ASCs. Characterized as
pluripotent and generated by dedifferentiation, DFAT cells are
considered induced pluripotent stem cells [118]. While, DFAT
were shown to be similar, they are not identical to MSCs. For
example, DFAT cells exhibit fibroblast- like morphology,
express CD90, CD105, CD73, CD44 and CD29 surface
markers, and are negative for CD34, CD14, CD117, CD133,
CD271, CD45 and HLA-DR surface markers. They
differentiate into bone, fat and cartilage cells, and have distinct
immunomodulatory effects and especially immunosuppressive
functions [119]. DFAT cells, however, express the CD31
marker, which is not expressed by MSCs [118]

Mesodermal Lineage Differentiation: DFAT cells were
shown to differentiate into osteocytes, adipocytes and
chondrocytes in vitro [120]. Rabbit DFAT cells differentiated
into osteoblasts in titanium fiber meshscaffold [121].



Adipogenic markers (such as PPARγ, C/EBPα, C/EBPβ
C/EBPδ and SREBP- 1c) were still expressed, indicating that
fat differentiating ability is retained [112, 120, 122]. Similarly,
DFAT cells seem to retain their propensity for adipogenic
differentiation when administered in vivo. Subcutaneous
injection of DFAT cells over the sternum in mice led to fat pad
formation [122].

Myogenesis: When stimulated with myogenic inducing
factors, DFAT cells expressed MyoD and myogenin, formed
skeletal myotube in culture in addition to multinucleated cells
expressing myosin heavy chain [115]. DFAT cells
differentiated as well into smooth muscle cells, both in vivo
and in vitro. Human DFAT cells expressed smooth muscle
actin and contributed to bladder regeneration upon in vivo
injection [123]. DFAT cells promoted regeneration of the
urethera and uretheral sphincter, and improving sphincter
function by differentiation into smooth muscle [124].

Cardiogenesis: DFAT cells have been shown to express
cardiac markers when co-cultured with cardiomyocytes or in
methylcellulose media. In vivo, injection of DFAT cells into
rat ischemic heart lead to cardiac regeneration and
enhancement of cardiac vascularity [114]. Eight weeks after
DFAT cell injection in acute myocardial infarction rat model,
the expression of cardiac sarcomeric actin increased,
indicating the cells’ cardiomyogenesis potential. Furthermore,
capillary density was enhanced in the infarction area. It may
be concluded that DFAT cells enhance cardiac tissue
regeneration by cardiomyogenesis and improvement of cardiac
perfusion [114].

Angiogenesis: DFAT cells showed the capacity to
differentiate into endothelial cells, as shown by the formation
of vessel-like structured in matrigel. These observations led to
the proposal that both endothelial cells and adipocytes may
have a common origin. In vivo, DFAT cells have enhanced
vascularization of ischemic tissues. Injected DFAT cells
significantly increased capillary density. in ischemic muscle
tissue in mouse models of ischemia through neovessel
formation [18, 114]



Other Lineages Differentiation: Administration of DFAT
cells improved motor functions in rats that underwent spinal
cord injury. Cultured DFAT cells expressed neural markers
such as nestin, beta-III tubulin, and GFAP and have been
shown to express neurotrophic factors like BDNF and GDNF,
both in vitro and after transplantation [125]. Interestingly,
markers of lymphoid and myeloid lineages has also been
expressed in DFAT cells [113], further confirming their
multipotency.

7.7 Conclusions and Future Perspectives
ASCs have demonstrated many biological characteristics that
qualify them as a viable and effective source of cell based
therapies. The can be obtained in large numbers from several
accessible adipose tissues. They secrete myriad cytokines and
growth factors, which sustain and promote tissue regeneration,
such as hepatocyte growth factor and VEGF [126, 127],
perhaps to a higher extent than their bone marrow counterparts
[128]. Their immunomodulatory properties may support an
anti-inflammatory milieu and immunosuppressive functions,
all potentially of great benefit in supporting engraftment and
sustainability of the graft.

Nevertheless, so far, comparatively few clinical trials have
been carried out to evaluate the therapeutic effects of ASCs
compared with the substantial number of published pre-
clinical experimental studies [58]. Due to the potentially broad
application in the clinical setting, various methods to evaluate
the safety, reproducibility and quality of in vitro expanded
ASCs are urgently needed. Similar to other types of stem cells,
and because of the urgent need for regenerative therapy, ASCs
have been rushed into clinical applications despite many
questions on their safety, reproducibility, and standardization
techniques. Culture expanded cells still require xeno-
contaminants, such as bovine serum. Most of the highly
attractive immunomodulatory functions of ASCs were
performed on cells grown in bovine serum-supplemented
culture media. Sporadic reports on the tumor-enhancing
properties of ASCs, although not consistent, call for caution in



various clinical applications. Ensuring the genetic stability of
the used cells, before and after short-term culture, is necessary
for proper monitoring of their tumorogenic potential.

Many of the issues associated with the clinical applications
of ASCs stem from assuming similarities to marrow MSCs.
However, accumulating data suggest more differences than
similarities between the two types of cells. For instance, while
MSCs obtained from the bone marrow have shown consistent
characteristics regardless of the site or type of their bone
source, ASCs lack such consistency. There is substantial
evidence that the differentiation capability of ASCs may differ
according to the anatomic site of the fat and the donor’s age
and gender [129]. Furthermore, the key transcription factors
and molecular events that initially ascribe ASCs to a particular
lineage are still unknown. The heterogeneity of ASCs is
another factor that limits clonal analysis and accurate
biological characterization. Many stem cell criteria have been
attributed to cells within the adipose tissue, and were simply
categorized as adipose stem cells. Examples include pericytes,
endothelial progenitor cells and DFAT cells. Clearly, better
basic biological characterization is required to understand the
origin, lineage, phenotype, and functional characters of each
type of these cells. However, and despite of these limitations,
application of ASCs in the clinical setting is considered a
realistic option based on their impressive effects in
experimental transplantation, and promising benefits in
clinical medicine [130].

DFAT cells are another type of adipose tissue-derived cells
that share many benefits with ASCs. Both types of cells are
easily available as a byproduct of the increasingly popular
liposuction, and the abundance of fat tissue. DFAT cells are
more homogeneous and several-fold more abundant in cell
cultures compared to ASCs. Robust proliferative and
differentiation characteristics of DFAT cells are attractive
features for their development and applications in tissue
engineering and cell therapy. Given the recent characterization
of DFAT cells, long term analysis in culture, genetic stability
and understanding the mechanism underlying the generation of
these cells remain to be understood. Comparisons that favor



DFAT cells over induced pluripotent stem cells for higher
differentiation efficacy are probably premature [131].

The abundance of adipose tissue has thus created new
interest in newer types of stem cells that could be purified with
relative ease, and collected in large numbers. ASCs provide a
unique source for investigating novel medications for a large
array of acquired and inherited disorders, and to recognize
new molecular targets for drug discovery. Generating large
numbers of cells according to Good Manufacturing Practices
(GMP) is relatively simple compared to other types of stem
cells, including induced pluripotent stem cells. All these
factors underscore the high potential of ASCs in regenerative
medicine; nevertheless, many important questions on their
biology and long-term safety remain to be answered.

Moving ASCs from bench to clinic has been rushed due to
their attractive properties. However, extensive and systematic
evaluation of the safety, reproducibility and clinical quality of
in vitro expanded cells is lacking.
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Stem cells represent a wide range of cells from different
sources with varying self-renewal capabilities, proliferation
capacity, and differentiation potential. The term stem cell was
initially used to define a cell found in the bone marrow
capable of reproducing the full complement of blood cells [1].
With the identification of embryonic stem (ES) cells from
mouse and human preimplantation embryos, the definition of
stem cell was further delineated to include embryonic and
adult, or tissue, stem cells. ES cells are defined as self-
renewing cells that are pluripotent, capable of producing all
the cells of the developing fetus. Adult stem cells are defined
as stem cells with more limited differentiation potential, such
as hematopoietic stem cells (HSCs), and incapable of
producing all the cells of the developing fetus. Adult stem
cells have expanded to include muscle satellite cells, retinal
stem cells, neural stem cells, and mesenchymal stem cells
(MSCs). Unlike muscle, retinal, and neural stem cells, which
are found in specific tissues, MSCs have been isolated from a
variety of tissues, including adipose tissue, umbilical cord
tissue (CT), umbilical cord blood (CB), bone marrow (BM),
and peripheral blood (PB). Although adult stem cells do not
have the proliferation and differentiation robustness of ES
cells, they have a proven track record in regenerative
medicine. Bone marrow transplantation (BMT) has been a
standard of care for four decades and represents the best
example of cell-based therapy.

Umbilical CB is widely accepted as a rich source of
hematopoietic stem/progenitor cells for BMT. The first
successful human CB transplantation was performed over 25
years ago after Boyse observed that blood from a syngeneic
neonatal mouse could rescue a lethally irradiated mouse [2, 3].
Since then, over 35,000 CB transplants have been performed
to date [4]. CB has become an attractive source of HSCs
owing to its many benefits over BM and PB. First, CB
collection is a noninvasive procedure causing no harm or pain
to the donors. Second, the human leukocyte antigen (HLA)
matching requirements of CB are less stringent than those of
BM. CB is tolerated in patients with one–two HLA disparities
out of six HLA loci that are matched for CB, as compared to
an 8/8 HLA match required for BM or PB. The less stringent



matching criteria for CB render it a viable option for patients
unable to find a perfect BM match, notably for many minority
groups and persons of mixed ethnicity who are typically
underrepresented in the large BM registries. Importantly,
transplantation with umbilical CB is associated with a lower
incidence of graft-versus-host disease (GvHD) without
compromising graft-versus-malignancy (GvM) effects and
lower relapse rates compared to BMT. Lastly, since CB is
cryopreserved, it is readily available for transplantation, as
opposed to BM, which may take months from identification of
a suitable donor to the day of transplantation. Disadvantages
of CB are the limited number of cells per collection available
for transplantation, restricting their use predominantly to
pediatric patients. Additional consequences of a low cell dose
include delayed engraftment, increased infection rates, and
increased graft rejection.

The worldwide use of CB as a graft source for BMT has
been predicated upon the establishment of public CB banks.
More recently, the application of CB in the field of
regenerative medicine has gained momentum. These studies,
at least in the USA, have been dependent predominantly upon
private CB banks. This chapter will compare the different CB
banking models, review the use of CB for BMT, assess the
application of CB in regenerative medicine, and outline the
future application of CB in the field of induced pluripotent
stem cells (iPSCs).

8.2 Banks Around the World:
Characteristics of Public, Private, and
Hybrid Banks
Worldwide, stored CB units in public and private (family)
banks are estimated at more than four million units [4]. Public
CB banks process and store donated CB units, which are made
available to patients in need worldwide through multiple CB
registries, such as the National Marrow Donor Program
(NMDP), NetCord, and EUROCORD. CB registries operate in
a manner similar to that of BM registries. Pertinent
information of the CB unit, including HLA type and total



nucleated cell number, is listed on the CB registries and is
searchable by transplant centers worldwide. Fifty-eight
countries house 156 public CB banks [5], and the networking
of these public banks through the registries has created a
virtual bank of available CB units for use around the world
[6]. Approximately 730,000 CB units have been donated and
stored in public CB banks [4]. There is no cost to the family
associated with donating CB to a public bank. Public CB
banks recover their costs when they release a CB unit to a
transplant center. For public banks, the larger the inventory,
the greater the chance a match will be found for patients from
their inventory, but the costs of running a large program will
increase. Optimal inventory size, which balances cost and
patient needs, has been calculated to assist in forming budgets
for operating a public bank. Keeping an inventory of 50,000
units with diverse HLA types to ensure their eventual use
translates into a release fee of approximately $15,000/unit to
cover the costs of operations, although the actual average cost
of a released unit in the USA is approximately $40,000 [7].
This cost takes into consideration the processing and storage
costs associated with the CB units that are not used and
therefore do not generate a source of income for the public
bank. As the uses for CB increase, more units will be released
for patient treatment, and the cost of obtaining a publicly
banked CB unit should decrease.

Private (family) CB banks process and store CB for a
specific individual or family. CB units in a private bank are
not listed on registries and are not available for public use.
Ninety-four countries have private CB banks with an
estimated four million CB units banked solely for private or
family use. Private banks charge fees for CB collection,
processing, and storage. Typically, private banks have a range
of payment options, with most charging a one-time collection
and processing fee of US $1200–$1650 in North America and
a yearly maintenance fee of US $125–$150, bringing the total
cost of storing a unit for 18 years to US $3450–$4350. There
are generally no costs related to the release of a CB unit to the
family except for courier costs to transport the unit to the
treating hospital.



Both public and private CB banks have associated benefits
and limitations. For example, public banks increase the
likelihood of finding a match for patients in need without
financial cost to the donor; however, the donated unit may not
be available to the donating family if the need arise.
Additionally, the operating costs in the public banks are
covered by transplant centers, philanthropic groups, and
government funding, which may be unstable over time. Private
CB banks, on the other hand, store CB specifically for given
families, and it will be available only to the client if the need
arises. To address the limitations of both banking models,
different hybrid banking models are currently being explored
[8]. These models include CB banks that provide both public
donation and private storage options and innovations that
make privately banked CB units available to the public.
Among these innovations is a Spanish hybrid bank that
privately banks CB units but also lists them on a BM registry.
If a patient who could benefit from a banked CB unit is
identified, then the parents must donate the CB unit and are
reimbursed the storage fees. Similarly, several banks in
Germany offer parents the option to privately bank CB units,
which can be listed on registries for public use. However,
unlike the Spanish model, parents are under no obligation to
release the CB unit if it is a match to a patient. Finally, another
hybrid model involves dividing the CB unit into two portions;
80% is made available to the public at large while 20% is
maintained strictly for the private use of the family banking
the CB unit. It is assumed that the remaining 20% can be
expanded into a useful sample. Success in CB expansion is
covered in a later section.

CB banks are typically regulated by federal agencies.
Additionally, quality-minded CB banks would seek
accreditation from one of two voluntary, international
organizations, which are committed to promoting quality
practices, laboratory processes, and banking to achieve high-
quality CB units for administration to patients. These
organizations include NetCord-FACT and AABB. Many
private (family) banks have now obtained the same
accreditation as public banks [5].



8.2.1 Probability of Finding a CB Match
With the publication of large patient studies, it has become
clear that CB allows for less stringent HLA matching as
compared to BM or mobilized PB. A report by Eapen et al. on
503 children with acute leukemia demonstrated that the 5-year
leukemia-free survival rate was highest in the group that
received 6/6 HLA-matched CB units (60% survival).
Interestingly, survival rates were equivalent for the more
stringently 8/8 matched BM (38% survival) compared to the
single mismatched (5/6) CB units (45% survival with high
dose of cells). Recipients of CB that had two HLA mismatches
(4/6) had a survival rate of 33% [9]. The strict 8/8 matching
used in the Eapen study, which is required for a BM transplant,
limits the availability of potential donors, whereas the
allowance for HLA disparity with CB essentially increases the
donor pool. In a report on 553 patients searching for unrelated
donor BM or CB, the criterion for a suitable donor aimed for a
10/10 match for BM with a minimum of 8/10 HLA match. The
criterion for a suitable CB unit, on the other hand, was still
kept at 6/6 with a minimum of 4/6 HLA match and a cell dose
of at least 1.5 × 107 cells/kg. This study concluded that CB is
best for providing an appropriate donor source regardless of
race or ethnicity [10].

The optimal graft source for a patient in need of a BM
transplant is a perfectly matched sibling; however, only
approx. 30% of patients have such a match. The remaining
patients must turn to BM registries, marrow drives, or CB
banks to find a suitable match. At this point in their treatment
cycle, the need for a BM transplant means that all other
treatment options have been exhausted. Therefore, finding an
appropriate donor is critical. One of the advantages of CB
banks is they represent the range of ethnicities of our societies
better than BM registries, which tend have a high occurrence
of white European heritage represented. The better range of
ethnicities in the CB banks might be due to the fact that many
nonwhite majority countries have developed CB banks
compared to investing in BM registries. Additionally, in many
cases, the efforts of the public banks to recruit CB donors that
best represent the ethnic/racial diversity within their



immediate community result in a diverse range of CB units
that can be used worldwide. For example, the New York Blood
Center has exported 5300 CB units to 40 countries [11].

Using a criterion of 6/6 HLA match for CB and 8/8 HLA
match for BM, Gragert et al. estimated the probability that
different ethnic and racial groups would find an optimal match
within the 2012 NMDP database, which consisted of approx.
107 BM registrants and 186,166 typed UCB units, for adult
(≥20 years) or pediatric (<20 years) patients. Persons of white
European descent had the best chance of finding an optimally
matched graft, with a 75% likelihood of finding a BM donor, a
17% likelihood of finding a CB unit suitable for an adult
patient, and a 38% chance of finding a CB unit for a child. At
the other end of the spectrum, African Americans had a 19%,
2%, and 6% likelihood of finding these respective matches.
Similar results that emphasized the lack of available BM
donors for nonwhite Europeans were observed in a study using
a criterion of 10/10 HLA match for a suitable BM donor [10,
12]. Gragert et al. also reported that the likelihood of finding a
match improved greatly if the criteria were altered to find
acceptable, versus optimal, matches, i.e., minimum 7/8 HLA
match for BM and 4/6 HLA match for CB. In this scenario,
97% of the white European group found a BM match, while
96% of adults and 99% of children found CB matches. Among
African Americans found 76 % a BM match, while 24% of
adults and 95% of children found acceptable CB matches,
respectively.

When private CB banking first appeared, it was viewed as
being a source of autologous cells that would only be used by
donors in the rare case that their children had developed a
disease treatable with their own CB unit. The estimation of the
probability for such use was 1/100,000. Since CB is deemed to
have the same qualities as BM, the same diseases currently
being treated using BM could be treated using CB, with the
exception that CB contains fewer cells and therefore would be
limited to predominantly pediatric patients. Using these
limited criteria for treatment options, autologous CB, whether
stored in a public bank or a private bank, would have limited
usefulness. Allogeneic use greatly expands the potential end



users of any given banked CB unit. Obviously a CB unit in a
public bank, searchable by all treatment hospitals worldwide,
would have an increased chance of use compared to a CB unit
limited to family members. Studies estimating the use of a
family stored unit suggest the frequency of use would be
1/2700—1/4000. This is based on the frequency of specific
diseases where CB can be used for treatment [13, 14].
Interestingly, as reported by PGCB, the largest private CB
bank, Cord Blood Registry, San Francisco, California, USA,
has released 340 units for patient treatment from the 500,000
units stored, including use for regenerative medicine. The
actual frequency of use of CB stored at this private CB bank is
1/1470, about twofold more than predicted [5].

A study by Neitfeld et al. aimed to determine the
likelihood of a person requiring a BM transplant over his or
her lifetime [15]. Under different treatment scenarios such as
autologous versus allogeneic CB use, the lifetime probability
of a person requiring a BMT was between 1/100 and 1/400,
with the probability of use increasing with age. This brings up
the importance of developing CB for adults through expansion
of the cell population or the use of double-cord transplants;
both are discussed in what follows. Studies have also been
published that have used estimations and algorithms to
determine the optimal size of a CB bank to service the whole
country [16]. These studies usually conclude that only a few
thousand units will be sufficient to cover a whole population,
but the fact that many public banks are not limiting their use
only to members of the host country argues that larger banks
will be required. Also not addressed is why, with 23 million
registrants in the public BM registries, only 30–50% of those
seeking a BM unit actually find one. The complexities of any
transplant argue that theoretical calculations used to determine
an optimal stem cell donor underestimate the multitude of
parameters that must be considered.

8.3 Delayed Engraftment for Adult CB
Transplants: Problems and Solutions



CB as an HSC source for BM transplantation has the
advantages of high tolerance for HLA mismatches owing to
naïve T cells, reduced GvHD, presence of GvM effect, and a
more complete blood reconstitution compared to BM or PB
stem cells. These advantages are balanced against slower
immune reconstitution of neutrophils and platelets, which
results in the patient’s being more susceptible to opportunistic
infection, which can account for 23% of mortality [17]. The
delay in both neutrophil and platelet engraftment associated
with CB transplant can be offset by increased cell dose. For
adult patients this becomes an acute problem as the cell dose
from a single CB unit is limiting. Banked CB units can range
from 400 to 6500 million leukocytes/unit and for optimal
doses can reconstitute patients in a range of around 45 kg [18].

The low numbers of hematopoietic stem and progenitors
cells available per kilogram of patient body weight, combined
with a reduced ability of CB cells to home to the BM, result in
delayed engraftment. Studies that looked at immune
reconstitution after CB transplants found that there is a delay
in the recovery in neutrophils, platelets, and functional T cells
[9, 19, 20]. In one example comparing BM to CB as a donor
source, the median time to neutrophil recovery was 19 days
(9–33 days) for BM and 25 days (9–90 days) for CB. Platelet
engraftment was 27 days (12–285 days) for BM and 59 days
(12–237 days) for CB [9]. Mature T-cell recovery can take 9–
12 months following a CB transplant [21]. Although the
advantages to using umbilical CB include less stringent
matching criteria that still allow for good engraftment, strong
GvM, and reduced GvHD, the delayed reestablishment of
neutrophils and platelets results in increased infections. A
number of methods are being developed to reduce patients’
susceptibility to infection using temporary means, while the
donor hematopoietic stem/progenitor cells engraft and start
producing neutrophils, platelets, and T cells, while other
methods aim to improve the time to engraftment. Since HLA
matching and cell dose are indicators of the success of a CB
transplant, studies have focused on increasing the number of
cells a patient receives by using two CB units for transplant or
in vitro culture methods to expand the stem cells in a single
CB unit. Similarly, the combination of a CB transplant with a



haploidentical HSC transplant is another method being
investigated to increase the cell dose.

8.3.1 Double-Cord Blood Transplant
Although rich in hematopoietic stem/progenitor cells, a limited
number of cells can be retrieved from each umbilical cord.
Typically, a BM graft provides about 3 × 106 CD34+ cells/kg
recipient weight, while CB provides about 2 × 105 CD34+
cells/kg recipient weight. Despite the lower cell dose in CB,
cell engraftment and patient survival are similar to a BM graft.
Engraftment and survival are only compromised when cell
dose is lower than 1.7 × 105 CD34+ cells/kg recipient weight
[22]. Owing to its low cell dose, CB transplantation was
initially limited to small children. To make CB transplantation
available for larger children and adults, double CB
transplantations are performed. In double CB transplantation,
two partially HLA-matched CB units are transplanted into the
patient.

Analysis of 166 allogeneic HSC recipients consisting of 66
8/8 HLA-matched unrelated BM recipients, 45 7/8 HLA-
matched unrelated BM recipients, and 55 4/8–7/8 HLA-
matched double CB recipients revealed that the 3-year
transplant-related mortality was similar for all patient groups,
but the 3-year relapse rate was significantly decreased in the
double CB group. Furthermore, the 3-year disease-free
survival was significantly improved in the double CB group
compared to the single mismatched BM recipient group [23].

In a double CB transplant setting, typically one CB unit
will dominate and contribute to full-donor chimerism. Neither
CD34+ cell dose nor the degree of HLA match is an indicator
of the dominating unit as CB units with low CD34+ cell doses
(1.5 × 105 cells/kg recipient weight) were able to dominate and
contribute to full-donor chimerism. Studies suggest that the
number of CD3+ T cells in a CB unit is indicative of which
CB unit will dominate in a transplant. The naïve CD8+ T cells
contained within the donor CB units are exposed to the
alloantigens of the partner unit, which causes their activation.
The unit with the relatively higher content of T cells will have



an advantage and eventually reject the second CB donor unit
[24, 25].

8.3.2 Stem Cell Expansion
An alternative approach to increasing the cell dose of a CB
unit is the in vitro expansion of the HSC population within the
CB unit [26–28]. Expansion requires that a suitably matched
CB unit be thawed, cultured under appropriate conditions, and
transplanted into a patient. Methods incorporating growth
factor combinations can result in increases in CD34+ cells in
vitro, but no increase in actual long-term repopulating cells
[29]. In other studies, modest in vitro expansion of CD34+
cells (10–20-fold) resulted in significant, but modest, increases
in long-term repopulating cells [30, 31]. Clinical trials using
expanded cells have focused on safety issues. In trials
conducted to date, either a portion of the CB was expanded
and co-infused with the remaining unmanipulated portion of
the CB unit or the expanded CB unit was co-infused with a
second unmanipulated CB unit. These trials demonstrated the
safety of using in vitro expanded CB cells [29, 32]. Delaney et
al. used a modified double CB transplant using two different
CB units that could be tracked, and one of the CB units was
expanded. They demonstrated a significant reduction in time
to engraftment. Patients achieved an absolute neutrophil count
(ANC) of ≥500 cells/μL at 16 days compared to 26 days for
the control group, which received double-cord transplants with
non manipulated cords [33]. Interestingly, the expanded CB
unit was dominant during the short-term engraftment phase
but did not contribute to long-term engraftment for 80% of the
patients. Patients with strong early engraftment of the
expanded CB unit did have a faster neutrophil recovery time
demonstrating the advantage of using an expanded CB unit.
The lack of long-term engraftment of the expanded CB unit in
patients mirrors the nonobese diabetic (NOD)/severe
combined immunodeficient (SCID) mouse studies
demonstrating that large in vitro expansion of CD34+ cells
does not seem to include the long-term repopulating stem
cells.



Alternatives to cytokine-mediated expansion included the
coculture of HSCs with stromal cells as an attempt to recreate
the BM niche. Primitive HSCs require interaction with cells of
the BM niche, and MSCs isolated from BM grow well and
continue to secrete factors that support HSC growth. Although
MSCs isolated from CB are different from BM-derived MSCs,
CB-HSCs grow well on MSCs from an unmatched, unrelated
BM donor. A clinical trial assessing the properties of MSC-
expanded CB-HSCs demonstrated that total nucleated and
CD34+ cells were increased and the time to neutrophil
engraftment shortened, but like other studies using expanded
CB, the manipulated graft did not contribute to long-term
engraftment. Enhanced short-term engraftment, however, is
important for reducing non-treatment-related mortality due to
infection [34].

Recently, two studies using small molecules demonstrated
expansion of long-term repopulating cells. In the first study, it
was hypothesized that OCT4, a well-known pluripotency-
associated transcription factor, has a role in maintaining HSCs
during expansion [35]. OCT4 levels within a cell are critical
for determining whether a stem cell maintains a stem cell
identity or whether it differentiates [36]. Increasing the
transcription level of OCT4 in HSCs using a small molecule
activator, OAC1, along with cytokine supplementation with
TPO, SCF, and Flt3L enhanced the expansion of CB CD34+
cells. Although these three cytokines alone are capable of
expanding both short-term and long-term repopulating cells
[37], augmenting the cultures with OAC1 resulted in the
improvement in the number of colony forming units (CFU)
and a 3.5-fold expansion of HSCs as assessed by the SCID-
repopulating assay [38]. Interestingly, the mechanism of action
was via HOXB4 signaling, which had been demonstrated to
have a positive effect on HSC expansion [39]. OCT4 can bind
to HOXB4 and levels of HOXB4 were increased in OAC1-
treated cultures. Furthermore, the addition of blocking siRNA
prevented the OAC1-induced expansion of primitive HSCs.
This study has not yet been tested in a clinical trial.

In a second study using a similar cytokine-supplemented
medium, a screen of 5820 compounds was tested for their



ability to enhance the expansion of human long-term
repopulating cells. From this screen, six candidates were
identified, with one, a pyrimidoindole derivative, being
subjected to further testing. Both long-term repopulating
assays and serial transplantation into NOD/SCID gamma mice
identified a novel compound (UM721) that resulted in a 13-
fold increase in HSCs [40]. Expansion of HSCs has also been
successful with a copper chelator [41], Notch [33], and
coculture with MSCs [42], and each of these methods is
currently being tested in clinical trials [43].

8.3.3 CB/Haploidentical HSC Transplant
An alternative to a double CB transplant or an expanded single
CB transplant is a single CB unit combined with a
haploidentical BM or PB HSC transplant. As with a double
CB or an expanded single CB transplant, the goal of a
CB/haploidentical HSC transplant is to increase the cell dose
in order to shorten the time to neutrophil and platelet
engraftment [44] and, hence, increase patient survival rates in
the first 100 days. Since most family members share at least
one haplotype, closely related family members (parents,
siblings) are potential donors of haploidentical HSCs.

Similar to the double CB unit transplant where one CB
unit dominates and is engrafted, evidence from
CB/haploidentical transplants has demonstrated the presence
of both donor-derived cells over the short term with long-term
engraftment coming from the CB unit [45]. Another study
compared CB/haploidentical transplants to double CB
transplants and found the CB/haploidentical transplants
resulted in a shorter time to neutrophil engraftment with 75%
of the patients engrafted by 15 days versus more than 21 days
for the double CB transplants. Platelet engraftment occurred at
19 days following CB/haploidentical HSC transplant, versus
21–62 days for the double CB transplants, resulting in the
patients requiring 50% fewer platelet transfusions [46].
Additionally, recipients of a CB/haploidentical HSC transplant
had reduced hospital stays.



Overall, increased HSC dose, even if it comes from an
unmatched third-party donor, enhanced short-term
engraftment, which has a strong positive effect on patient
outcomes. Owing to the low matching success for patients of
nonwhite European ancestry and the lack of single CB units
with a sufficient cell dose to treat adults, the adoption of
double CB transplants or CB/haploidentical transplants
expands the potential of CB donations.

8.3.4 Engineered T-Cell Grafts to Enhance
Engraftment and Patient Survival
Adoptively transferred T cells found in an HSC graft can
undergo a rapid phase of proliferation after transplantation.
Antithymocyte globulin (ATG) can be given at the time of
HSC transplantation to prevent GvHD. ATG substantially
reduces immune competence in patients by reducing the
number of circulating T cells. Even in the presence of ATG,
some T cells escape and are clonally expanded. CB T cells
maintain their naïve T-cell phenotype during expansion
because they do not circulate through the patient’s thymus. As
a result, the T cells have a limited repertoire of T-cell
receptors, and any antigen stimulation that occurs results in
many cells entering apoptosis. Functional T cells are formed
later when blood lymphocyte stem cells (CD34+/CD38+)
engraft and undergo de novo thymopoiesis as the cells are
educated in the patient’s thymus. The rate of functional T-cell
recovery is dependent on the quality of the thymus, which is
determined through a balance of GvHD and conditioning
regimens, such as whole-body radiation, both of which can
damage the thymus and delay recovery. Analysis of the viral
targets of the early stage T cells versus the later-stage thymic-
dependent pathway revealed the latter contained a much larger
repertoire of T cells capable of battling infection [21].

After a single CB unit transplant, there is a lag phase
between engraftment and the late recovery of functional T
cells. One method to bridge this gap and provide the patient
protection from infection during this lag phase is the use of in
vivo expanded CB-derived T cells. Berglund et al. removed



5% of each CB unit that was being transplanted and used this
CB for T-cell expansion for later infusion. T-cell expansion
was completed using a combination of CD3 stimulation and
cytokine supplementation. The infusion of activated T cells
was performed a minimum of 3 weeks post-transplantation of
the remaining unmanipulated CB unit. The sample size was
small, but the goal to determine the safety of in vitro expanded
T cells was successful as none of the patients displayed
adverse reactions to the engineered product. This study
demonstrated the feasibility of using a portion of the original
CB unit as a T-cell source for expansion when allogeneic CB
is used for transplantation [47].

8.3.5 Improving Homing of Cord Blood
Stem and Progenitor Cells to Bone Marrow
Strategies to improve CD34+ cell homing to the marrow are
also being developed. This is important for both
unmanipulated and expanded CB units since engraftment is
dependent on cells’ ability to home to the BM. Successful
homing requires that the blood cells be captured by the BM
endothelium. This capture is mediated by P- and E-selectins
on the surface of the endothelium that interact with P-selectin
glycoprotein-1 (PSGL-1) found on the surface of CD34+ cells.
To be functional, PSGL-1 is posttranslationally modified by
sialylation and fucosylation of O-linked sugars. Studies that
neutralized P-selectin or PSGL-1 with antibodies showed
reduced homing, and 30% of CB CD34+/CD38low stem cells
do not bind P-selectin due to the lack of α1-3 fucosylation of
PSGL-1 [48, 49]. Hypothesizing that the ex vivo fucosylation
of CB CD34+ cells would enhance engraftment, Xia et al.
used GDP-fucose and 1–3 fucosyltransferase to add α1-3-
linked fucose. The treated CB cells were used to engraft
irradiated NOD SCID mice. The fucosylation of CD34+ cells
resulted in improved engraftment [49]. Using a strategy
similar to that of Xia et al., a clinical study was developed in
which patients received two CB units: one unmanipulated and
the other treated with GDP-fucose and 1–3 fucosyltransferase.
The study consisted of 22 patients and was compared to 31
historic controls. Median neutrophil engraftment was 17 days



(12–34 days) compared to 26 days (11–48 days) for the
untreated controls. Platelet engraftment was also improved,
with the treated group demonstrating a median engraftment of
35 days (18–100 days) compared to 45 days (27–120 days) for
the controls. These results were statistically significant [50].

8.4 Regenerative Medicine
Currently, clinical trials are under way to explore the
application of CB to the treatment of a number of neurological
disorders, including cerebral palsy (CP), encephalopathy,
stroke, and hearing loss. The rationale for the use of CB in
neurological disorders stems initially from the successful
application of CB for the treatment of various lysosomal
storage diseases or inborn errors of metabolism. These
diseases represent approx. 40 rare inherited disorders typically
caused by a deficiency in a lysosomal enzyme. The result of
the enzyme deficiency is the accumulation of undigested, or
partially digested, macromolecules within the lysosomes and
subsequent cellular death and organ dysfunction. The
manifestations of the disease are variable and depend on the
enzyme defect. For example, Hurler’s syndrome is due to a
lack of the lysosomal enzyme alpha-L-iduronidase, which aids
in the degradation of mucopolysaccharides. Children with
Hurler’s syndrome have both physical and mental impairments
and usually die between the ages of 5 and 10 years.

Allogeneic BM transplantations had previously been
shown to prevent the progression of certain lysosomal storage
diseases. Similarly, the effect of CB transplantation has been
investigated in this patient population. Transplantation of
unrelated CB into patients with Hurler’s syndrome results in
sustained engraftment and improved outcomes including
reduced organ dysfunction and improved neurodevelopment,
growth, development, and overall survival [51, 52]. CB
transplantation offers several advantages over BM or
mobilized PB: transplantation in children suffering from
lysosomal storage diseases, including quicker time to
transplant since allogeneic CB is readily available from public
CB banks, high rates of engraftment achieving full-donor



chimerism, and normalization of enzyme levels, which is
required for enhanced long-term survival. Today, CB is
considered the optimal choice for transplantation in children
with lysosomal storage diseases [53].

CB is thought to mediate its effects on patients with
lysosomal storage diseases via so-called cross correction,
whereby CB cells engraft into various nonhematopoietic
tissues throughout the body and produce and secrete the
normal enzyme, which is subsequently taken up and used by
the enzyme-deficient cells. Indeed, engraftment of CB in the
brain has been demonstrated through autopsy studies of
humans who died months after a CB transplant. These studies
identified predominantly donor-derived nonneuronal
microglial cells within the brain and, to a lesser extent, donor-
derived neurons, astrocytes, and oligodendrocytes [54].

Though CB was initially characterized as a rich source of
HSCs, over time it has become apparent that CB also contains
nonhematopoietic stem and progenitor cells, which can give
rise to a number of different cell types. Unrestricted somatic
stem cells from CB have been isolated from CB, expanded,
and differentiated into a variety of cell types, including neural,
liver, and pancreatic cells, along with chondrocytes,
osteoclasts, and cardiac myocytes [55]. CB is also a source of
MSCs and endothelial progenitor cells (EPCs); however, the
isolation of these cells from frozen CB units has been a
challenge. Less than 10% of frozen CB units yield MSC
compared to approx. 50% of fresh CB units that were
processed within 15 h of collection [56–59]. Vanneaux et al.
[60] reported that only 59% of frozen CB units produced EPCs
compared to 94% of fresh CB units. In general the yield of
angiogenic cells from both fresh CB or PB is low [61]. We
previously reported on a population of CD45+ CD34+ cells
derived from CB that can be isolated from frozen, banked CB
units and manipulated in a simple culture system resulting in
up to a 30-fold expansion of cells capable of differentiating
into MSC, endothelial cells, and muscle cells [62–64]. These
cells together form a multipotential stem cell (MPSC)
population with strong therapeutic indications. MPSCs are
unique in that they are CD34+ CD45+ but can give rise to



EPCs, circulating angiogenic cells (CACs), and the typical
MSCs. MPSCs can be derived from frozen CB with 100%
efficiency, and the culture method using FGF4, SCF, and Flt3-
ligand greatly increased the yield of cells per banked CB unit.
Importantly, following the production of MPSCs, the cells can
be refrozen without any loss of potency or viability [63].

The application of CB for the treatment of neurological
disorders has been tested in an array of animal models
including hypoxic-ischemic encephalopathy (HIE), CP, stroke,
traumatic brain injury, and spinal cord injury. In HIE models,
the administration of CB has been shown to decrease spastic
paresis after perinatal brain damage in neonatal rats [65] and
improve motor and cognitive performance [66]. Infusion of
CB in a rabbit model of CP demonstrated improved motor
performance in a dose-dependent manner [67]. CB reduced the
neurological deficit and infarct area in a rat model of stroke. In
a model of traumatic brain injury, CB, in conjunction with
granulocyte colony-stimulating factor, decreased
neuroinflammation, increased neurogenesis, reduced
hippocampal cell loss, and stimulated long-lasting recovery of
motor functions [68]. Finally, in spinal cord injury models, CB
administration results in increased hind limb motor activity
[69] and improved neurological function [70].

8.5 Cord Blood for the Treatment of
Cerebral Palsy
CP is a chronic condition due to an injury to the brain that
affects the communication between the brain and muscles,
resulting in uncoordinated movements and postures. The
injury often happens before birth, sometimes during delivery,
or soon after birth. CP is the most common cause of physical
impairment in children. Premature babies (born before 37
weeks) and babies with low birth weight (<2.5 kg) are at
greater risk of developing CP. The estimated prevalence of CP
is 2.0–2.5 per 1000 live births in Western populations [71].

Currently, there is no cure for CP. Patients are managed
through therapy to prevent or minimize physical deformities
and discomfort, improve and enhance mobility and motion,



and enhance their overall health to allow them to be as
independent as possible at school and in the community into
adulthood. Clinical trials are ongoing and investigating the
effect of both autologous and allogeneic CB infusion on this
patient population.

Two clinical trials studying the effect of allogeneic CB in
children with CP have been completed in Korea, and results
have been published [72, 73]. The first trial was a double-
blind, randomized, placebo-controlled trial designed to
determine the efficacy of CB treatment, in conjunction with
erythropoietin (Epo), in children with CP [73]. Epo was
included in this study because of its neuroprotective and neural
repair properties. One hundred and five CP patients between
the ages of 10 months and 10 years were enrolled in the study
and assigned to one of three treatment groups: (1) allogeneic
CB with Epo, (2) Epo with a placebo for CB, and (3) placebo
for both CB and Epo. Unrelated allogeneic CB was obtained
from the CHA Medical Center Cord Blood Bank. The CB
units provided a minimum therapeutic dose of 3 × 107 total
nucleated cells/kg and matched the patient for at least four of
six HLA types A, B, and DRB1. Patients in the CB/Epo group
were also treated with the immunosuppressant cyclosporine
for 3 weeks in an attempt to delay/prevent the rejection of the
CB cells.

All participants underwent an initial evaluation to establish
a baseline for various functional CP measurements. Four main
assessments were conducted: gross motor performance
measure (GMPM), gross motor functional measure (GMFM),
Mental and Motor scales of the Bayley Scales of Infant
Development-II (BSID-II), and the functional independence
measure for children (WeeFIM). The GMPM and GMFM
were used to measure gross motor ability, whereas the BSID-II
was used to measure neurodevelopmental progress. There
were no significant differences in baseline measurements
between the three groups. Functional assessments were
repeated 1, 3, and 6 months after the initial treatment.

Results from this study revealed significant improvements
at 6 months in all three treatment groups for most of the
functional assessments, as compared to the baseline



measurements. At 6 months, the CB/Epo group had
significantly greater improvements than the Epo or placebo
group in the GMPM, BSID-II, and WeeFIM measurements.
Epo alone, as compared to the placebo group, had a minimal
effect. Further analysis of the CB/Epo recipients indicated that
patients that receive a one-mismatched unit had significantly
better outcomes than those that received a two-mismatched
unit. A greater total nucleated cell (TNC) and CD34+ dose
also led to better outcomes on the GMFM and ESID-II scores,
respectively.

Imaging studies were conducted to assess structural and
metabolic changes within the brain of the patients. Fractional
anisotropy (FA) was used to assess the effect of treatment on
white matter integration in response to therapy. Significant FA
increments were measured in the CB/Epo group but not the
Epo or placebo groups. The changes in the GMPM score
measured at 6 months correlated significantly with the FA
changes. Positron emission tomography–computed
tomography (PET/CT), used to measure metabolic activity,
revealed differential activation and deactivation patterns for
the three treatment groups.

From this study the investigators concluded that CB/Epo
treatment improved motor and cognitive dysfunction in
children with CP and that this improvement was accompanied
by structural and metabolic changes within the brain. One
limitation with this study, however, was the lack of a CB-only
treatment group. This was addressed in a follow-up study
designed to look at the effect of CB alone on patients with CP
[72]. Again, this was a randomized, placebo-controlled,
double-blind trial. Thirty-six CP patients, ages 6 months to 20
years, were enrolled and treated with either allogeneic CB or
placebo. As before, CB recipients were also treated with
cyclosporine. CB units provided a minimum therapeutic dose
of 2 × 107 TNC/kg and were at least a 4/6 HLA match. Patient
assessments included GMGM, GMPM, and BSID-II scores
along with a measurement of muscle strength. Cytokine and
receptor measurements in blood samples were also included in
patient assessments to determine the effect of CB on the
inflammatory response.



Results of this study indicated that the administration of
CB in CP patients resulted in greater improvements in muscle
strength as compared to the placebo group after 1 and 3
months. CB recipients also showed significant improvements
in the GMPM score as compared to the placebo group at 6
months. Similar to the first study, higher CB cell doses and
better HLA matches resulted in greater improvements in the
patients.

In terms of cytokines and receptors, significant increases in
plasma pentraxin 3 (PTX3) were observed in response to CB.
CB treatment also resulted in a significantly elevated level of
Toll-like receptor 4 (TLR4) in blood cells compared to the
placebo group. PTX3 and TLR4 are both part of the innate
immune response, and both have been suggested to have
neuroprotective roles; thus, the authors have proposed that CB
may be eliciting its effect on CP patients through the innate
immune response.

While these two studies suggest allogeneic CB may be
useful for the treatment of patients with CP, the results are
confounded by the presence of cyclosporine. Cyclosporine, an
immunosuppressant, was used to delay/prevent the rejection of
CB in those patients treated with allogeneic CB. Along with its
immunosuppressant activities, however, cyclosporine has also
been shown to possess neuroprotective properties [74]. Future
studies with autologous CB will have to delineate the role, if
any, that cyclosporine plays in this patient population.

Three clinical trials investigating the effect of autologous
CB for the treatment of CP are ongoing in the USA. A Phase I
double-blind study being conducted in Texas will enroll 30
patients aged 2–10 years with CP. Fifteen patients will be
treated with either autologous CB or BM then monitored for
changes in gross motor skills and psychological assessments
for up to 2 years. Magnetic resonance imaging (MRI) will also
be conducted to assess changes in white matter tracts [75]. A
Phase I/II single-blind study being conducted in Georgia will
enroll 40 patients aged 1–12 years with CP [76]. These
patients will be treated with autologous CB then monitored for
changes in gross motor skills over a 3- to 4-month period.



The third and most advanced clinical trial, a Phase II
double-blind study being conducted at Duke University in
Durham, North Carolina, has enrolled 120 CP patients aged 1–
6 years [77]. Patients were infused with autologous CB and are
being monitored for neurodevelopmental improvements along
with morphological changes to the brain by MRI. Imaging
studies have demonstrated that the brain damage associated
with CP consists of diffuse damage or focal lesions in the
white matter. Preliminary results from the MRI studies of a
subgroup of patients in this study indicated a strong correlation
between increases in white matter connectivity and functional
improvement over the first 2-year period of this study. At the
time of publication, the investigators were still blinded, and it
was unknown whether the children with the improved GMFM
scores and the increased white matter connectivity were the
ones that received autologous CB [78]. The results of this
study are anticipated in the near future.

8.6 Treatment of Hypoxic-Ischemic
Encephalopathy with CB Cells
CB has also been tested in a clinical trial for infants with HIE.
HIE occurs in children who are deprived of oxygen during
delivery and can result in epilepsy, developmental delays,
motor impairments, neurodevelopmental delays, and cognitive
impairments. Infants born with moderate to severe HIE have
better outcomes when treated by moderate hypothermia;
however, more than 30% of patients die or survive with
impairment. In a Phase I trial, infants diagnosed with HIE
were subjected to moderate hypothermia and treated with or
without autologous CB. For this trial, the CB was volume and
red blood cell reduced and administered fresh with a target of
two doses within the first 48 postnatal hours. Twenty-three
patients were treated with CB compared to 83 patients treated
by hypothermia alone. Both patient populations were
monitored for adverse outcomes, including mortality, seizures,
and pulmonary hypertension. One-year neurodevelopmental
outcomes were assessed using the Bayley III scales, which



assess cognitive, language, and motor developmental domains
[79].

Administration of fresh CB to this patient population was
deemed safe as there were no differences in deaths, seizures,
or pulmonary hypertension between the two patient groups.
After 1 year, however, 76% of the infants treated with CB had
Bayley III scores ≥85% in all three test domains compared to
41% of the infants that were treated with hypothermia alone.
Though these results are intriguing, the number of patients
included in this study was small, and results will need to be
confirmed in a larger study.

Other ongoing clinical trials investigating the effect of CB
on neurological disorders include five trials for stroke, two
trials for autism, one for acquired hearing loss, and one for the
neurological defects associated with hypoplastic left heart
syndrome [80]. Four of the stroke trials are being conducted
on adults using allogeneic CB, while the fifth study involves
children using autologous CB. The trials for autism, acquired
hearing loss, and hypoplastic left heart syndrome all involve
the use of autologous CB.

8.7 The Future of Regenerative Medicine
with Umbilical Cord Blood and Tissue:
Using CB to Produce Induced Pluripotent
Stem Cell
Applications of CB have primarily been limited to
hematological diseases, but over the years, CB has been
applied to neurological injuries, including spinal cord injury,
stroke, ischemic brain injury, and CP. With the groundbreaking
discovery of iPSCs [81, 82] and with CB being an accessible
source of young somatic cells for reprogramming, the use of
CB will expand beyond hematological conditions. It is
important to keep in mind that current organ transplants for the
heart, lung, liver, and kidney use allograft donors. But these
transplants require extensive HLA matching to be successful,
resulting in a large number of patients who are unable to find a
suitable donor and long waiting lists for donor organs. Once a



suitable donor is identified and the transplant is completed, the
use of immunosuppression drugs is required to prevent graft
rejection. Ideally, being able to generate whole organs from
one’s own stem cells represents the future of regenerative
medicine. This is becoming more practical with the production
and increased understanding of iPSCs [81, 83, 84].

Takahashi and Yamanaka first demonstrated in 2006 that a
differentiated cell could be reprogrammed back to an ES cell-
like state by the forced expression of Oct4, Klf4, Sox2, and c-
Myc [81]. They termed these reprogrammed cells iPSCs.
Similar to ES cells, iPSCs have the ability to differentiate into
all three germ layers and the capacity to proliferate
indefinitely. The first reports described the reprogramming of
fibroblasts to iPSCs, but in recent years, groups have
generated iPSCs from a variety of somatic cell types,
including pancreatic beta cells, cardiomyocytes, neural cells,
renal epithelial cells, BM cells, PB cells, and CB cells. Among
all cell sources, CB cells offer several advantages over other
cell types. First, CB is easy to collect and the collection
process does not harm the donor. Second, CB cells are young
cells that have fewer acquired somatic mutations than adult
cells, and they proliferate well in culture. Third, CB is rich in
HSCs, and Eminli et al. showed that stem/progenitor cells are
easier to reprogram than terminally differentiated blood cells
[85]. Moreover, there are currently over four million banked
CB units, all of which are potential sources of iPSC lines, and
this number continues to grow. Units held in public banks are
HLA typed and all units have been characterized for viability
and cell number [86]. Importantly, these cells have already
been collected and stored, making them easily accessible
without having to go back to the original donor to obtain a
tissue or cell sample. In the future, it will be important to
incorporate into patient consent forms permission to generate
iPSC lines that could be available for regenerative medicine.

8.8 Methods of Generating Induced
Pluripotent Stem Cells



Since the discovery of iPSCs in 2006 [81], numerous methods
have been developed to generate iPSCs. These reprogramming
strategies can be broadly grouped as DNA-integrating or
nonintegrating methods, each having its own advantages and
disadvantages in terms of ease of use, cost, reprogramming
efficiency, and clinical application. Here we will describe
some of the commonly used genome-integrating and
nonintegrating methods of iPSC reprogramming.

8.8.1 Genome-Integrating Methods
Genome-integrating methods are used to stably integrate
transgenes into the host genome. Common genome-integrating
methods of reprogramming include retrovirus, lentivirus, and
piggyBac transposon systems. Stably integrated transgenes are
not diluted with cell division and therefore allow for higher
reprogramming efficiencies compared to nonintegrating
methods. While retroviral and lentiviral vectors are
permanently integrated into the host genome, piggyBac
transposons are excisable and allow for the generation of
transgene-free and footprint-free iPSC lines.

8.8.2 Retrovirus and Lentivirus
Early reports of iPSC generation mainly used retroviruses and
lentiviruses owing to their high infection and reprogramming
efficiencies [81, 82, 87, 88]. For both methods, transgenes are
randomly and permanently inserted into multiple sites on the
host genome. Transgene expression is often constitutive,
although drug-inducible systems are available, and transgene
silencing is required and a hallmark of fully reprogrammed
iPSCs. Retroviruses and lentiviruses are similar in many
aspects but they differ in the cells they can infect; retroviruses
can infect dividing cells only, while lentiviruses can infect
both dividing and nondividing cells.

8.8.3 piggyBac Transposons
Since having transgenes, especially oncogenic genes,
permanently integrated into the host genome is not ideal for



clinical use, an excisable method of iPSC reprogramming
using the piggyBac transposon system was developed [89, 90].
In this system, cells are transfected with a transposon encoding
the reprogramming factors and a nonintegrating plasmid
encoding the piggyBac transposase. The transposase
recognizes terminal repeats on the transposon and “cuts and
pastes” the transgene into the host genome at TTAA sites. The
piggyBac system can be modified to be a tetracycline (Tet)-On
or Tet-Off system, depending on the need. After stable iPSC
lines are established, transgenes can be removed without a
footprint by reintroducing the transposase. Multiple iPSC lines
must be screened to ensure complete removal of transgenes.

8.8.3.1 Nonintegrating Methods
DNA-integrating methods offer high reprogramming
efficiencies, but they are not clinically preferred methods of
generating iPSCs owing to several safety concerns. For
instance, there could be multiple transgene integration sites,
and these sites are random (or semirandom in the case of
piggyBac transposons) and could cause insertional
mutagenesis. In the case of retrovirus and lentivirus, transgene
integration is permanent, and although transgenes are silenced
for successful reprogramming to occur, there is the concern
that these transgenes will be reactivated during iPSC
differentiation. Transgenes can be removed in the transposon
system by the re-expression of the transposase, but numerous
iPSC lines must be screened to ensure that all transgenes are
excised.

Nonintegrative reprogramming strategies have been
developed to generate transgene- and vector-free iPSCs for
clinical use. In nonintegrating methods, transgenes are diluted
and removed passively through cell division and degradation
by the cell. However, since reprogramming factors are lost
with each cell division, reprogramming efficiency is often
compromised with these methods.

8.8.4 Sendai Virus



A nonintegrating viral alternative to retrovirus and lentivirus is
Sendai virus [91–93]. Sendai virus is a single-stranded RNA
(ssRNA) virus that replicates in the cytoplasm of the infected
cells. Since the virus does not produce DNA and only
replicates in the cytoplasm, no genomic material is integrated
into the infected cells. Virus vectors are diluted naturally with
cell division, or cells with viral vectors can be selected against
using an anti Sendai Virus-hemagglutinin-neuraminidase
antibody. However, since viral vectors replicate constitutively,
it is difficult to establish transgene-free lines. Efforts are being
made to make Sendai virus a safer alternative by accelerating
the removal of viral vectors. Ban et al. generated a
temperature-sensitive strain of Sendai virus by introducing a
point mutation in the viral polymerase-related gene [94]. In
these temperature-sensitive Sendai viruses, viral replication
arrests at a nonpermissive temperature, so the dilution of viral
vectors with cell division is quicker.

8.8.5 oriP/EBNA Episomal Vectors
oriP/EBNA1 episomal vector is another example of a
nonintegrating method of reprogramming somatic cells to
iPSCs [95–97]. The oriP/EBNA1 vector is derived from the
Epstein-Barr virus and can be introduced into cells without
viral packaging. The vector undergoes extrachromosomal
replication once per cell cycle. With drug selection, these
vectors can be maintained in about 1% of the transfected cells,
and when drug selection is removed, vectors are lost at approx.
5% per cell division. With this method, multiple iPSC lines
must be screened to ensure cell lines are free of vectors.

8.8.6 mRNA and Protein
Messenger RNA (mRNA) and protein methods of
reprogramming are nonintegrating and DNA-free methods of
reprogramming. Modified mRNA encoding the
reprogramming factors or proteins is transfected into cells to
initiate the reprogramming process. Warren et al. showed that
mRNA modified to improve translation, enhance RNA half-
life, and escape a cell’s antiviral response to ssRNA can



reprogram human fibroblasts to iPSCs [98]. Proteins must be
engineered to contain a transduction domain, such as poly-
arginine, to allow the protein to cross the cell membrane [99,
100]. Multiple, and often daily, cell transfections are required
to successfully reprogram cells owing to the rapid turnover of
mRNA and proteins. Although these methods can generate
transgene-free and vector-free iPSC lines, the methods are
labor intensive, and the reprogramming efficiency is often low
compared to other reprogramming methods.

8.8.7 Methods Used to Generate Cord
Blood iPSCs
Studies have shown that CB cells can be reprogrammed into
iPSCs using both genome integrating and nonintegrating
methods, namely, retrovirus, lentivirus, Sendai virus, and
episomal vectors. The ability to generate transgene-free CB-
iPSCs is important for clinical applications.

8.9 Current and Prospective Applications
of Induced iPSCs
Since its discovery about 10 years ago, groups have explored
the use of iPSCs in personalized and regenerative medicine,
specifically in disease modeling, drug discovery and
screening, and cell replacement therapy and tissue
regeneration.

8.9.1 Disease Modeling
One application of iPSCs is in disease modeling. In disease
modeling, cells from a diseased patient are reprogrammed into
iPSCs and differentiated into the affected cell type(s) to better
understand disease development and progression in vitro.
Since the establishment of human iPSCs in 2007 [82], iPSCs
have been generated from numerous diseases, including
muscular dystrophy, Down syndrome, Parkinson’s disease,
type 1 diabetes, Huntington disease, and various
cardiovascular diseases [101, 102]. By differentiating the



disease-iPSCs into the target cell types, groups have
successfully recapitulated disease phenotype in vitro. For
example, iPSCs have been differentiated into cardiomyocytes
to recapitulate the abnormal channel function phenotype of
long QT syndrome [103–107] and the contractile and electrical
abnormality of hypertrophic cardiomyopathy [108, 109].

Conventionally, immortalized cell lines and animal models
of human diseases are used to study the development and
pathophysiology of diseases. However, disease modeling with
iPSCs offers several advantages over conventional methods.
To start with, mouse models do not always accurately mimic
the human condition or mouse models do not exist for the
disease. Fanconi anemia is an inherited autosomal recessive
disease caused by defects in the Fanconi anemia pathway,
which results in genomic instability and the hallmark
spontaneous BM failure. Current mouse models of Fanconi
anemia display DNA repair deficiencies similar to the human
condition, but they do not exhibit the hallmark spontaneous
BM failure [110]. Moreover, the differences in gene order
between rodents and humans make it difficult to recapitulate
the human disease phenotype. For instance, mouse models
carrying the trisomic mutation for Down syndrome do not
display the same neurodegeneration and cranial anomalies as
the human condition [111, 112]. Lastly, mouse models are
often not available for complex, fatal diseases such as
hypoplastic left heart syndrome.

There are, of course, limitations to using iPSCs to model
diseases. Although iPSCs have proven successful in modeling
monogenic diseases, it is still technically difficult to model
diseases that are complex or involving multiple genetic
components, such as type 1 diabetes, and diseases with a long
latency period such as Alzheimer’s and Parkinson’s diseases.
However, groups are investigating methods of “aging” cells in
vitro by inducing environmental stress, such as oxidative stress
in cell culture. In addition, there are concerns that diseases
with a strong epigenetic component may not be faithfully
modeled with iPSCs since epigenetic marks are largely erased
during the reprogramming process. A last consideration for



using iPSCs to model diseases is whether it is realistic and
practical to model a disease with only one cell type in vitro.

8.9.2 Drug Discovery and Screening
A standard drug pipeline consists of four stages: drug
discovery, preclinical studies, clinical trials, and, if approved,
marketing. Preclinical studies involve the testing of the
candidate drugs on cell lines or animal models. If positive
effects are seen in preclinical studies, the candidate drugs enter
clinical trials, which consist of four phases. Phase I/II of
clinical trials focuses on assessing the safety and efficacy of
the drug on a small number of participants, while Phase III/IV
focuses on assessing the effectiveness of the drug in a larger
number of participants and long-term side effects of the drug.
From drug discovery to getting the drug to market can take
years and millions of dollars.

Unfortunately, many drugs do not make it through Phase
I/II clinical trials even if preclinical studies showed promising
results. The disparity in results may be due to the use of cell
lines and preclinical animal models that do not accurately
represent the human disease phenotype. Ideally, drug
discovery and screening should be performed on human
disease-bearing cells to reduce failure in the clinical trial
phase.

In addition to providing a platform to study disease
development and progression in vitro, cells differentiated from
diseased iPSCs can also be used for drug discovery and
screening. As mentioned previously, cardiomyocytes
differentiated from iPSCs generated from patients with long
QT syndrome exhibit properties of diseased cells [103–107].
Using these differentiated diseased cardiomyocytes, groups
have screened and identified drugs that improved disease
phenotype and eliminated drugs that exacerbated the
condition. For instance, Moretti et al. showed that the addition
of isoproterenol exacerbated the disease phenotype, while
treatment with propranolol helped reduced catecholamine-
induced tachyarrhythmia [103]. These results were replicated
by another study by Matsa et al., who confirmed the benefits



of using beta blockers propranolol and nadolol to reduce
disease phenotype of long QT syndrome [113]. As a second
example, Itzhaki et al. demonstrated that nifedipine, a calcium
channel blocker, can reverse disease phenotype [104].
Together, these studies demonstrate the validity and value of
using patient iPSC-derived cells for drug screening.

As alluded to earlier, there are several advantages to
including diseased patient iPSCs in preclinical studies of the
conventional drug pipeline. iPSCs can be patient and disease
specific, which opens the door to personalized medicine and
allows for high-throughput drug screening on a patient’s own
diseased cells and not surrogate cell lines and animal models.
From a safety point of view, using patient iPSCs as an
alternative to human participants for early drug evaluations is
advantageous as it does not put participants at risk of possible
drug toxicity. Lastly, a diverse collection of diseased iPSCs
can be generated from patients differing in genetic
background, age, gender, ethnicity, and disease severity. All
these factors may influence a patient’s drug responsiveness.
Hence, diseased iPSCs may provide a better representation of
the patient’s response to drug than conventional inbred mouse
models.

When using diseased iPSCs for drug discovery and
screening, several considerations must be made. First, as with
all cell culture studies, it is unclear whether and how culture
manipulations change cell phenotype. Next, it is also unclear
whether the response of a purified population of cells in vitro
accurately reflects the response of the tissue or organ as a
whole in vivo. Additionally, a reliable readout of cell function
must be identified and used to accurately assess drug function
and efficacy in vitro. Finally, it is important to address how the
drug will be metabolized in the body and its effects on other
tissues/organs.

8.9.3 Cell Replacement Therapy and Tissue
Regeneration
Like ES cells, iPSCs have the capacity to differentiate into
cells from all three germ layers. To direct the differentiation of



iPSCs down a specific cell lineage, researchers attempt to
replicate the conditions the cells would experience in the
developing embryo in the culture dish. iPSCs can be
differentiated in cell monolayers or as embryoid bodies,
although growth factors and small molecule concentrations
and length of treatment may differ between the two methods.
Differentiated cells are characterized by marker expression
and physiological or electrophysiological properties. Cell
function is often assessed by transplantation into animal
models of the disease of interest to evaluate cell survival and
engraftment and reversal of disease phenotype. Here, I will
focus on progress made in generating dopamine neurons and
pancreatic islets from human ES cells and iPSCs.

8.9.4 Dopamine Neurons to Treat
Parkinson’s Disease
Parkinson’s disease is a neurodegenerative disorder
characterized by the degeneration of dopaminergic neurons in
the substantia nigra pars compacta and the formation of Lewy
bodies. Patients with Parkinson’s disease typically experience
tremors, rigidity, postural instability, and bradykinesia. Some
of the current treatments include dopamine replacement
therapies, dopamine agonists, monoamine oxidase B (MAO-
B) inhibitors, and deep brain stimulations. However, these
treatments only treat the symptoms of the disease and do not
halt or stop disease progression. Moreover, these treatments
become less effective over time.

Since most of the symptoms are caused by the
degeneration of dopamine-producing neurons, it is logical to
think that replacement of these cells would reverse the disease
phenotype. Indeed, early studies on Parkinson’s disease used
fetal dopamine neurons to replace damaged tissues in patients
[114–116]. The transplanted fetal dopamine neurons survived,
and patients showed some clinical improvements. Since it is
unsustainable to transplant fetal tissues, groups are harnessing
the differentiation potential of embryonic and iPSCs to
generate dopaminergic neurons in vitro.



Several groups have developed protocols to direct the
differentiation of human pluripotent stem cells to
dopaminergic neurons [117–120]. These groups demonstrated
that gene expression, dopamine production, and the
electrophysiological properties of the differentiated neurons
were similar to those of endogenous neurons. When
transplanted into rodent models of Parkinson’s disease, the
dopaminergic neurons survived and grafted and were
functional as rodents showed improvements in behavioral and
motor-related symptoms.

8.9.5 Pancreatic Islet Cells to Treat Type 1
Diabetes
Type 1 diabetes is an autoimmune disease in which the
patient’s own immune system attacks and destroys pancreatic
beta cells and results in the lack of insulin production and the
inability to control blood glucose levels. Type 1 diabetes
accounts for about 10% of all cases of diabetes. Patients with
type 1 diabetes often develop complications such as diabetic
retinopathy, kidney failure, and cardiovascular disease.
Currently, type 1 diabetes is managed by daily insulin
injections. Although pancreas and islet transplantations are
available and can result in insulin independence or reduced
insulin dependence for patients, the lack of donors makes
these options unavailable for many patients. Moreover, long-
term graft failure is a reoccurring issue faced by patients.
Together these issues illustrate the need for a renewable source
of pancreatic beta cells to treat type 1 diabetes.

The ability to self-renew and differentiation into cells from
all three germ layers, including pancreatic beta cells, make
pluripotent stem cells an attractive cell source for pancreatic
beta cell production. The first report to demonstrate the
directed differentiated of human pluripotent stem cells into
pancreatic insulin-secreting and glucose-responsive cells dates
back to 2001 [121]. Since then, numerous studies have
reported the differentiation of human ES cells [122–129] and
iPSCs [125, 126, 130] into insulin-secreting pancreatic beta
cells. In addition to insulin secretion, these studies also



showed that the differentiated pancreatic beta cells were
glucose responsive, an important feature of functional
pancreatic beta cells.

8.9.6 Issues and Concerns with Using
iPSCs in Clinical Setting
There are several issues and concerns that need to be
addressed when translating iPSC research from benchtop to
bedside. First of all, low differentiation efficiency is a
reoccurring problem for differentiation protocols; therefore,
improving differentiation efficiency to achieve a relatively
pure population of target cells is a priority. On a related note,
unlike rodent models, humans require many more cells for
transplantation, and therefore the scalability of the
differentiation approach and cost of scale-up are important
technical and financial concerns in translational research.
Next, the major safety concern over using iPSCs in clinical
settings is the risk of teratoma formation. To minimize the risk
of teratoma formation, strict guidelines for proper monitoring
of cellular differentiation and stringent criteria for target cell
selection must be developed. Additionally, it is unclear
whether somatic mutations from the starting cells used for
iPSC generation and the mutations acquired during the
reprogramming process will affect cell differentiation and
function. This highlights the advantage of using young cells,
such as CB, for iPSC generation. Lastly, any newly developed
therapy should be compared to current treatment options to
ensure that the new therapies are superior with respect to
patient safety and quality of life.

To summarize, applications of CB have expanded
tremendously over the years. One of these applications is to
use CB cells as starting cells to generate iPSCs. Researchers
have harnessed iPSCs’ ability to self-renew and differentiate
into cells of all three germ layers and are applying them to
disease modeling, drug discovery and screening, and cell
therapy. Results from iPSC preclinical studies and safety
results from the first iPSC clinical trial in Japan that started 1
year ago show promising results. With these promising results,



there is great optimism in using iPSCs in the fields of
personalized and regenerative medicine.

CB cells has many properties that make them ideal starting
material for iPSC generation. About 80–100 mL of CB
containing approximately one billion cells can easily and
safely be collected from each discarded umbilical cord [18].
CB is also rich in young cells that have fewer somatic
mutations, proliferate better in culture, and reprogram into
iPSCs more efficiently than adult cells. Lastly, access to HLA-
typed and banked CB units worldwide is attractive and
desirable for time-sensitive treatments such as cell therapy.
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9.1 Dental Pulp Stem Cells: Discovery and
Terminology
The field of stem cell biology is growing and developing with
each passing day. Advancements in this field have led to new
discoveries and a better understanding of developmental as
well as pathological processes. Consequently, novel
therapeutic strategies are being introduced to modern medicine
based on these improvements, and that is just scratching the
surface.

Stem cells are characterized by their clonogenic
proliferation ability and a remarkable capacity for self-renewal
and multilineage differentiation [1]. In particular,
mesenchymal stem cells (MSCs) can be found in virtually all
adult tissues [2]. MSCs from the bone marrow were first
identified by their ability to adhere to tissue culture plastic.
Since they constitute a heterogeneous population in culture, an
attempt was made to define the characteristics of these
fibroblast-like cells by introducing minimal criteria. These
were discussed by Dominici and colleagues [3] based on the
proposal of the International Society for Cellular Therapy
(ISCT) in 2006, thus defining MSCs although insisting on the
term mesenchymal stromal rather than stem cells. The criteria
are as follows. First, MSCs must be plastic adherent when
cultured in standard conditions. Second, MSCs must express
CD105, CD73, and CD90 and lack expression of CD45,
CD34, CD14 or CD11b, CD79α, or CD19 and HLA-DR
surface molecules. Additionally, they must retain the ability to
differentiate into osteoblasts, adipocytes, and chondroblasts in
vitro [3].

In this context, numerous cells with MSC-like properties
have been successfully isolated from a variety of human dental
tissues [2]. These include alveolar bone-derived mesenchymal
stem cells (ABMSCs), dental follicle progenitor cells
(DFPCs), dental pulp stem cells (DPSCs) (Fig. 9.1), gingiva-
derived MSCs (GMSCs), periodontal ligament stem cells
(PDLSCs), stem cells from the apical papilla (SCAP), stem
cells from exfoliated deciduous teeth (SHED), and tooth germ



progenitor cells (TGPCs) [2, 4]. Of these, DPSCs have
attracted extensive attention. Despite the distinct
terminological differences between SHED and DPSCs, cells
with MSC characteristics can be obtained from the pulps of a
variety of teeth, namely, primary teeth, exfoliated primary
teeth, immature permanent teeth, mature permanent teeth, and
third molars [5] and, more recently, from the pulps of
supernumerary teeth, an otherwise discarded tissue [6].

Fig. 9.1 Isolation and characterization of rabbit dental pulp stem cells showing the
(a) removal of pulp tissue from the apical end of a rabbit incisor for culture, (b)
rabbit DPSCs 6 days after primary culture (20×), (c) passage 2 rabbit DPSCs after 6
days showing a confluent monolayer of cells (20×), and (d) confocal laser
microscope image of rabbit DPSCs positively stained with a CD271 mouse anti-
rabbit monoclonal antibody (original magnification ×40)

One continuous challenge in regenerative dentistry is to
identify the ideal cell source for regenerating the dentin/pulp
complex [7]. Certainly, the isolation and culture of cells from
the dental pulp have long been attempted by many
investigators [8]. These early isolated cells frequently
demonstrated alkaline phosphatase reactivity, partial
cytodifferentiation, and the ability to form mineralized nodules
when cultured in the presence of different substrates.



Adult dental pulp is a loose vascular connective tissue
surrounded by dentin and consists of a heterogeneous
population of cells: the potential preodontoblasts, fibroblasts,
stromal cells, endothelial and perivascular cells, neural cells,
and others. These cells maintain the homeostasis of dental
mineralized tissues. Most adult pulp cells are postmitotic, but
some cells may still divide and give rise to new pulp cells, able
to differentiate even into odontoblasts and to form new dentin.
All these cells and blood vessels are embedded in a specific
rich extracellular matrix, which creates a microenvironment
permitting repair processes [9–11].

In the year 2000, the term dental pulp stem cells was
introduced by Stan Gronthos and his colleagues. By
demonstrating that a clonogenic population of cells existed in
the pulp, they determined that a population of MSCs was
indeed present in pulp cell cultures. DPSCs display
multilineage differentiation potential giving rise to at least
three distinct cell types: osteo-/odontogenic, adipogenic, and
neurogenic cells [12]. DPSCs can also undergo differentiation
along chondrogenic and myogenic pathways [12].
Additionally, when these cells were combined with a
hydroxyapatite-tricalcium phosphate (HA/TCP) carrier and
implanted in an ectopic mouse model, dentin-/pulp-like
structures could be regenerated after 6 weeks. The transplants
were also found to express human-specific transcripts for
dentin matrix components, including bone sialoprotein,
osteocalcin, and dentin sialophosphoprotein (DSPP) [9].

DPSCs have also been isolated and characterized from
several species including rats [13], rabbits [14], and dogs [15,
16]. In an autologous transplantation model, canine DPSC
sheet fragments were able to regenerate a pulp-like tissue and
newly mineralized dentin [16] when implanted in
pulpectomized teeth. Furthermore, numerous cells that stained
positive for bromodeoxyuridine (BrdU) could be detected in
the pulp-like tissues, indicating that the transplanted cells
could proliferate and contribute to the regenerated tissue. Goat
DPSCs also reveal similar characteristics to human DPSCs
and yet display a higher proliferative capacity (unpublished
data).



Interestingly, DPSCs, like other dental tissue-derived stem
cells, may be more committed or have limited potency
compared to bone marrow mesenchymal stem cells (BMSCs).
This is because dental tissues do not undergo continuous
remodeling as does bone tissue [12]. Dental tissue is termed
ectomesenchyme, and DPSCs are neural crest-derived cells
that express nestin, which is a neural cell marker [17]. This
further distinguishes DPSCs from BMSCs as a unique cell
population.

However, postnatal dental pulp contains a diversity of cell
types. It has been estimated that less than 1% of these cells
have true stem cell-like properties [18, 19]. This has been
demonstrated by their ability to efflux the DNA-binding dye
Hoechst 33342 [17]. Similar to hematopoietic stem cells, this
allows the cells to be later sorted and to purify the stem cell
fraction, also called the side population. This side population
of DPSCs isolated from rats displayed reduction in number
with increasing age, a definite implication of pulp healing. The
expression of alkaline phosphatase (ALP) was also shown to
be less in side-population cells as compared to the main
population, indicating an earlier progenitor state of these cells
[19].

DPSCs have been frequently compared to another
population of dental tissue-derived MSCs: SHED [12].
Despite having lower proliferation rates than SHED, DPSCs,
unlike SHED, can successfully give rise to a complete
dentin-/pulp-like complex in vivo, while SHED can regenerate
dentin-/pulp-like structures only [20]. DPSCs are also a very
heterogeneous population, and although they do not show the
remarkable osteoinductive capacity of SHED, a subpopulation
of DPSCs has been distinguished with distinct osteogenic
potential in vivo [21]. DNA microarray analysis has shown
that osteoblasts derived from human pulpar stem cells
(ODHPSCs) revealed a list of up- and downregulated genes
when compared to normal osteoblasts in spite of having a
normal phenotype. A detailed overview of DPSC side and
subpopulations will be discussed in the following sections.

The objective of precisely identifying and sorting the
genuine stem cell population in the dental pulp is of vast



clinical importance for both stem cell-based and cell-free
regenerative approaches. In particular, in the realm of an
increased focus on cell migration and stem cell recruitment as
a prerequisite for tissue repair and regeneration, it will become
crucial to understand the dynamics of these sophisticated cells.

9.2 Characteristics of Dental Pulp Stem
Cells
As previously discussed, human DPSCs fulfill criteria for
MSCs [12]. They stain negatively for CD14, CD34, CD45,
MyoD (muscle), neurofilament (nerve), collagen type II
(cartilage), and peroxisomal proliferator-activated receptor
gamma 2 (fat) and stain positively for CD29 and CD44 [22,
23], stem cell factor (SCF), and CD117 (c-kit) [24], markers
associated with the endothelium as the CD106, CD146,
smooth muscle (α-smooth muscle actin), bone (alkaline
phosphatase, type I collagen, osteonectin, osteopontin, and
osteocalcin), and fibroblasts (type III collagen and fibroblast
growth factor 2) [12].

DPSCs are also positive for CD73, CD90, and STRO-1
[22, 25]. Other markers, such as the embryonic neural crest
cell marker, low-affinity nerve growth factor receptor
(LANGFR), or p75 neurotrophin receptor (CD271), have also
been shown to be expressed by DPSCs [14, 26, 27]. This
explains why these cells may have a major role in neuronal
regeneration [28].

The expression of embryonic stem cell markers has also
been found in DPSCs [5, 29]. DPSCs have been shown to
express Oct-4, Sox2, and c-Myc [30], key reprogramming
pluripotency markers. These transcription factors are known to
play a regulatory role in the stem cell self-renewal process.
Indeed, early human dental pulp cell cultures highly express
these markers, but this expression is markedly diminished in
later passages. This could be related to the explant culture
conditions used, which may reactivate reprogramming factors
to maintain pluripotency [30].



It is thus noteworthy to highlight that, although both
explant culture and enzymatic digestion techniques employed
for the isolation of DPSCs yield cell populations with very
similar properties, cells obtained by enzymatic digestion
appear to have higher mineralization potential in vitro [1].
This may explain why pluripotency may be better maintained
in explant culture conditions [30].

DPSCs also express Nanog, another important embryonic
pluripotency marker [31]. The concurrent expression of Nanog
and Oct-4 seems to be directly related to the cells’
proliferation rate. When Oct-4 and Nanog were depleted,
proliferation and osteogenic differentiation of the cells were
greatly reduced. In contrast, overexpression of these two
factors led to the enhancement of these properties. This might
indicate why DPSCs have shown to be a more efficient target
population for induced pluripotency studies than other somatic
cells [31].

Since the availability of consistent experimental models is
crucial particularly in the realm of regenerative endodontic
research, characterization of DPSCs from canine premolars
has produced important observations. This characterization,
although confirming the validity of the dog as a research
model for stem cell-based dental tissue-engineering
approaches, revealed distinct differences. Human DPSCs
appeared to have higher proliferation rates than canine DPSCs
[25]. While the expression of STRO-1 was lower in canine
DPSCs than human DPSCs, the expression of CD146 was
significantly lower in the latter as compared to canine DPSCs.

Furthermore, although displaying multilineage potential,
canine DPSCs showed lower adipogenic and neurogenic
potentials than their human counterparts, although they were
higher than human BMSCs [25]. Interestingly, CD73 and
CD90, two of the most important markers for MSCs, were
expressed in very low levels by canine DPSCs. Such
differences, among others, were explained by the difference in
the developmental stage of the teeth from which the DPSCs
were isolated: from canine premolars versus human third
molars. The latter may represent a population of lower
maturity. Differences in marker expression were attributed to



the lack of specific antibodies against canine antigens, and
although canine DPSCs displayed marked odontogenic
potential, these differences must be borne in mind when
applying the results of animal studies to clinical research.

In general, the gene expression [32] and phenotypic
profiles of human DPSCs are comparable to those of BMSCs,
with the exception of CD106, which is expressed at very low
levels in DPSCs (2.2%) as compared to BMSCs (66.3%). On
the other hand, DPSCs do not basally express bone
sialoprotein or the odontoblast-specific marker DSPP [12],
although some researchers have found that the latter is
expressed in nonodontogenically induced dental pulp cell
cultures but at low levels [22].

Studies of DPSCs have also demonstrated that these cells
have distinct immunosuppressive and immunomodulatory
properties both in vitro and in vivo [2, 33, 34]. Indeed, DPSCs
are capable of activating T-cell apoptosis in vitro [33]. In a
coculture model, the proliferation of allogeneic PBMCs in the
presence of DPSCs was significantly inhibited, although the
PBMCs had been stimulated with a T-cell mitogen [34]. This
inhibitory effect appeared to be stronger than that elicited by
BMSCs when used in the same experimental model.
Furthermore, DPSCs also suppressed B-cell proliferation.
These effects seem to be related to cytokine production
regulation by DPSCs where IL-10 was upregulated, while IL-
2, IL-17, and IFNγ were significantly inhibited in the presence
of DPSCs. The authors went on to further elucidate possible
mechanisms behind T-cell proliferation inhibition, showing
that a key factor in the immunosuppressive ability of DPSCs
could be the increased expression of TGFβ1 since the addition
of anti-TGFβ1 restored the ability of PBMCs to proliferate in
the presence of DPSCs [34].

The immunomodulation properties of DPSCs also clearly
involve their expression of Fas ligand. Fas ligand (FasL or
CD95L) is a type II transmembrane protein that belongs to the
tumor necrosis factor (TNF) family. Binding with Fas receptor,
FasL induces a caspase-mediated apoptotic process in many
cell types [33]. When the expression of FasL was knocked
down in DPSCs by siRNA, it reduced their ability to induce T-



cell apoptosis in vitro. While systemically infused DPSCs
showed the ability to ameliorate inflammation-induced colitis
in a murine model, this ability was completely lost when FasL
was knocked down in the injected cells, highlighting its role in
DPSC immunomodulatory mechanisms [2, 33].

Culture supplements can also influence the properties of
isolated DPSCs. In accordance with Good Manufacturing
Practices (GMPs), there has been an increased concern for
employing xeno-free products when designing cell-based
human therapies. For instance, human platelet lysate (hPL) has
been recommended as a substitute for fetal bovine serum
(FBS) for BMSCs [35] and DPSCs [23, 36]. We recently
showed that platelet-derived products could condition the
wound-healing microenvironment [37–39]. Being rich in a
large variety of factors and cytokines that interact during the
different phases of wound healing, platelet-rich derivatives can
represent a cost-effective, human source of nutrients for
culturing cells for therapeutic use.

Although the results of these studies have shown hPL to be
an effective substitute for animal-derived serum, their large-
scale applicability has been met with challenges. The
variability in preparation protocols and the lack of an adequate
understanding of how platelet-derived products affect cell
proliferation and differentiation are only some of these
challenges. Nevertheless, DPSCs can be favorably proliferated
and differentiated in hPL, showing in vitro and in vivo
performances that appeared to be superior than for DPSCs
cultured with 10% FBS [23]. Indeed, DPSCs cultured with 5%
hPL proliferated significantly higher than cells in FBS and
upon osteo-/odontogenic differentiation; those in hPL showed
higher mineralization capacity as well. Interestingly, this
seems to be a dose-dependent effect since 10% hPL inhibited
cell proliferation of DPSCs. This has also been shown with
other cell types [37]. Additionally, higher concentrations also
appear to affect other cell functions, such as cell migration and
angiogenic ability (unpublished data). These effects may be
related to the unique involvement of platelets in both the pro-
and anti-inflammatory processes of wound healing. However,
the use of human platelet-rich derived products warrants



further study as not only do they appear to be a promising tool
for cell-based human therapies, but they are also finding a
wide platform for application in translational sciences and
regenerative endodontic procedures in clinical settings [40–
42].

9.3 Origins and Niches of Dental Pulp
Stem Cells
One of the most important aspects of stem cell biology is
understanding the in situ “niche” or microenvironment where
stem cells lie in the body. The niche is responsible for
maintaining and controlling a quiescent stem cell population
that is capable of responding according to host requirements.

Within the dental pulp, a perivascular niche for dental pulp
MSCs has long been suggested [43–45]. Indeed, most isolated
DPSCs appear to have a phenotype consistent with pericytes.
Additionally, their preselection using the STRO-1 antibody
inferred a possible perivascular niche for these cells [43]. Both
CD146 and STRO-1, which can be precisely used for the
enrichment of DPSCs, appear to show colocalized expressions
on the outer wall of blood vessels in human pulp tissue, further
implying that the majority of DPSCs come from the
microvasculature. This is intriguing since both DPSCs and
pericytes are thought to arise from migratory neural crest cells
during embryogenesis [43]. In the rat dental pulp, cells co-
expressing CD146 and microtubule-associated protein 1B
(MAP1B) were found to be statistically higher in the coronal
pulp than in the radicular pulp or periodontal ligament. This
was also shown by the messenger RNA (mRNA) expression of
CD146, CD105, and CD166, which displayed a similar
distribution, indicating that the coronal pulp appeared to
harbor more stem cells than the other two regions [46].

The neurovascular bundle has also been identified as a
niche using lineage tracing in a mouse incisor model where the
Gli1 expression patterns were analyzed in Gli1-LacZ mice.
Gli1, which has been hypothesized as a marker for incisor
MSCs in vivo, was found to be expressed in the mesenchyme
surrounding the neurovascular bundle, centered on arteries and



accompanying nerves, but not veins or capillaries [44]. These
data elucidate the important role of nerves of the
neurovascular bundle in the MSC niche, particularly via the
expression of Sonic Hedgehog (shh) protein. Therefore, MSCs
in the mouse incisor originated from periarterial cells in vivo.
These periarterial cells, which did not express typical MSC
markers in vitro, supported incisor homeostasis and gave rise
to the entire MSC population. On the other hand, pericytes
made a minor contribution to homeostasis, and their role
appeared to be mainly related to injury repair. Indeed, incisor
MSCs displayed typical MSC markers in vitro, and yet they
were all derived from Gli1+ cells and not from NG2+ cells
(pericytes) [44]. Additionally, both glial cells and the
endothelium might also play important roles in the niche.

In a recent letter published in Nature, the role of glial cells
in the MSC niche in the mouse incisor was emphasized [45].
The letter actually described how a significant population of
MSCs during development, self-renewal, and repair of a tooth
was derived from peripheral nerve-associated glia. Glial cells
generated multipotent MSCs that produced pulp cells and
odontoblasts. It appears that Schwann cell precursors and
Schwann cells contribute to the development, growth, and
regeneration of teeth. The results of this paper also suggested
that Schwann cells and Schwann cell precursors are dormant
neural crest-like cells that can be recruited from nerves and
contribute to peripheral tissues and that these cells may be the
in vivo origin of neural crest-derived multipotent stem cells
identified in cultures of dissociated embryonic and adult
tissues [45].

Some studies have also attempted to identify the origin of
mesenchymal cells in the pulp using a double transgenic
mouse model to determine the contributions of neural crest-
derived or mesoderm-derived cells to teeth [47]. To
differentiate between the two origins, mice encoding P0-Cre,
Wnt1-Cre, Mesp1-Cre, and Rosa26EYFP allowed the tracing
of neural crest- or mesoderm-derived cells as YFP-expressing
cells. Wnt1 and P0 are expressed in early migratory neural
crest, and Mesp1, a transcription factor, is first observed at
E6.5 (early gastrulation stages), especially in nascent



mesoderm-derived cells. The authors found that approximately
90% of dental mesenchymal cells from E13.5 or 2-day-old
mice were Wnt1/YFP+, whereas only approx. 7% were
Mesp1/YFP+, indicating that almost the entire dental
mesenchymal cells were neural crest derived [47].
Furthermore, they showed that dental colony-forming unit
fibroblasts (CFU-Fs) capable of multilineage differentiation
and self-renewal consisted entirely of Wnt1/YFP+ (P0/YFP+)
neural crest-derived cells.

9.4 Subpopulations and Side Populations of
Dental Pulp Stem Cells: Significance for
Therapeutic Applications?
As previously mentioned, DPSCs represent a versatile and
heterogeneous population of cells that include sub- and side
populations of cells with special characteristics [18, 48–50].

While DPSCs isolated from aged dental pulps appear to
have reduced proliferation and differentiation capacities,
especially after repeated passaging, a subset of these cells can
retain these abilities regardless of donor age. Indeed, isolation
of DPSCs on the basis of their migratory ability in response to
granulocyte colony-stimulating factor (G-CSF) mobilization
has identified a characteristic subpopulation of DPSCs [48].
This subpopulation has been termed mobilized dental pulp
stem cells (MDPSCs) and exhibits increased expression of
angiogenic/neurotrophic factors with a higher trophic effect on
migration, immunomodulation, anti-apoptosis, and angiogenic,
neurogenic, and regenerative potentials than total DPSCs.
These properties are equally maintained in young and aged
MDPSCs [48]. In contrast to DPSCs, MDPSCs show very
limited age-related decline in their properties, indicating that
this population could be an important target for future
regenerative therapies, particularly in light of a continuously
aging population. Nevertheless, MDPSCs from aged pulps did
display slightly increased expression of senescence-related
markers, yet this did not affect their regenerative potential.



Particular side populations have also been isolated and
characterized from general populations of DPSCs. As
previously mentioned, the active efflux of Hoechst 33342 is an
efficient method to identify side populations of stem cells with
distinct characteristics. Indeed, side-population cells have been
found among porcine DPSCs continuously expressing Bmi1,
indicating a longer life span and higher proliferation rates
when compared to primary pulp cells [50]. The ability of side-
population cells to efflux the dye is mediated by the multidrug
resistance transporter of ATP-binding cassette G2
(ABCG2)/breast cancer resistance protein 1 (Bcrp1). These
cells appeared to be more primitive than the unfractionated
porcine DPSC population, and while the latter failed to
undergo chondrogenic differentiation, side-population cells
were very chondrogenic.

In rat dental pulp, approximately 0.40% of pulp cells in
young rats and 0.11% in aged rats comprised side-population
cells [18]. Side-population cells expressed higher levels of
nestin than the main-population cells, and while both side- and
main-population cells maintained their differentiation
capacities, the former seemed to be more primitive cells or
true stem cells. Another striking observation is that side-
population cells have also been isolated from human adult
dental pulp in response to ischemic culture [49, 51]. In these
studies, ischemic culture conditions were elicited by serum
starvation of the cells and culturing them in hypoxic
conditions (2% O2) for 48 h following an initial 24 h in
normoxic conditions. Side-population cells isolated following
ischemic culture were much greater in number (five times)
than those isolated from normally cultured cells. Expression of
the multidrug resistance transporter of ATP-binding cassette
G2 (ABCG2) also increased in side-population cells with
ischemic culture, highlighting a possible role of ABCG2 in
stem cell recruitment [49]. Since ABCG2 acts as a pump for
cytotoxins and since increased expression of this protein is
found around inflamed dental pulp tissue, this could indicate a
role of these so-called side-population cells in response to
injury by migrating to the site of damage upon their activation
by repair signals.



Among porcine primary dental pulp, side-population cells
with enhanced angiogenic properties have been isolated. When
porcine dental pulp cells with stem/progenitor cell properties
(initially characterized as CD34+, VEGFR2/Flk1+) were
further subfractionated into CD31−;CD146− and
CD31+;CD146− cells, distinct properties were found [52]. The
CD31−;CD146− cells expressed much higher levels of stem
cell markers compared to the CD31+;CD146− population.
These former cells also displayed enhanced neurogenic
potential. In addition, they had strong vasculogenic potential
both via direct differentiation and through paracrine-mediated
mechanisms since the conditioned medium of CD31−;CD146−

cells enhanced survival and proliferation of human endothelial
cells [52]. These observations underpin the importance of
adequately defining a true stem cell population with
therapeutic potential.

9.5 Dental Pulp Stem Cells in Health and
Disease
Being encased in a hard structure, dentin, the dental pulp’s
ability to expand and respond to injurious stimuli is limited.
The dental pulp tissue is hence commonly exposed to
inflammatory stimuli, and while chronic pulpal inflammation
may be detrimental to the tooth’s vitality, inflammation does
play a role in regulating angiogenic responses and wound-
healing processes such as reparative dentinogenesis.

Pulpal healing has been linked to the ability of pulp cells to
secrete growth factors including angiogenic and neurotrophic
factors [53]. Interestingly, short-term exposure to tumor
necrosis factor-α (TNF-α), a proinflammatory cytokine, was
shown to induce apoptosis in DPSCs by triggering the nuclear
factor kappa B (NF-kB) signaling pathway associated with an
upregulation of vascular endothelial growth factor (VEGF)
expression. On the other hand, prolonged exposure to TNF-α
resulted in increased proliferation of DPSCs with enhanced
angiogenic signaling. At the same time, the telomere length
and mineralization potential of DPSCs were significantly
reduced after prolonged exposure to TNF-α [54]. These results



indicate that chronic inflammation results in telomere
shortening with enhanced proliferation of DPSCs while
negatively impairing their differentiation potential.

Infection appears to be the most determinant factor in
whether or not pulpal healing will take place. When a “sterile”
inflammatory response such as that induced by the use of
calcium hydroxide or more recently mineral trioxide aggregate
occurs, the dentin-pulp complex usually heals by inducing
dentinal bridge formation. This acute local inflammatory
response has been shown to be triggered by the local rise in
pH seen in response to these materials [55]. This response
results in local tissue necrosis, thereby causing necrotic cells
to release low levels of inflammatory cytokines, which remove
the dead ells and may subsequently trigger a reparative
dentinogenic response. Molecular signals for repair are also
released from their sequestered locations within the dentin
extracellular matrix (ECM) [53]. These are imperative not
only for reparative dentinogenesis but for inducing repair
processes of angiogenesis and neurogenesis as well. These
signals include factors such as VEGF, platelet-derived growth
factors, transforming growth factor-β1 (TGF-β1), fibroblast
growth factor 2, and bone morphogenetic protein-2 and bone
morphogenetic protein-4. Complement activation also appears
to be directly involved in initiating the inflammatory response
as well as being involved in regeneration. For example, C5a
has been shown to be involved in the recruitment of pulp
progenitor cells, which express the receptor C5a.

Several of the current regenerative approaches have
targeted the mechanisms of releasing latent growth factors in
an attempt to trigger endogenous regeneration of the dentin-
pulp complex [55]. The use of low-power laser was recently
shown to enhance tertiary dentin formation by the activation of
latent endogenous TGF-β1, thus directing resident dental stem
cell differentiation [56]. Such a discovery sheds light on the
crucial role of TGF-β1 in low-power laser-induced reparative
dentinogenesis and enhances the concept of activating stem
cells for endogenous tissue repair, taking us closer to clinical
application of regenerative therapies.



Besides acidic signals coming from carious lesions, agents
such as ethylenediaminetetraacetic acid (EDTA) can also
release fossilized or latent growth factors upon removal of the
smear layer and surface demineralization of dentin. Contrarily,
agents such as 2-hydroxyethyl methacrylate (HEMA), which
is an important component of dental composite restorative
materials, besides being toxic to cells, have been demonstrated
to hinder the migration of DPSCs [57]. These observations
may explain why pulpal healing responses beneath dental
adhesives in vivo are quite poor and dentinal bridges are
seldom seen beneath these materials when they are used for
direct pulp capping.

As a result of this renewed interest in the
inflammation/regeneration interplay, research is now focusing
on scaffolds that can control inflammation, thereby indirectly
influencing pulpal regeneration. Macrophages appear to be
major contributors in inflammation/regeneration, particularly
the reversible switch between M1 (proinflammatory) and M2
(proresolving) macrophages [58]. Supporting this critical
transition from an M1 phenotype to an M2 phenotype may
well be the target of bioactive scaffold design for pulpal
regeneration in the future.

Owing to the immunomodulatory features of stem cells,
DPSCs themselves may also play a direct role in modulating
the inflammatory response of pulp after injury. One alluring
revelation is that DPSCs can be isolated not only from healthy
pulps but from inflamed ones as well [59]. Although these
cells exhibited lower proliferation rates than their counterparts
from normal tissues, they had similar immunophenotypes. It
appears that the inflammatory milieu has a negative impact on
the proliferation and differentiation capacities of DPSCs
isolated from inflamed pulps. Nevertheless, these cells
retained their ability to regenerate dentin/pulp complexes
when transplanted in an in vivo mouse model. The fact that
viable DPSCs can be isolated from inflamed pulp tissue offers
a new perspective on the previously limited source of DPSCs.

Similarly, DPSCs isolated from normal pulps appear
distinctly different from those isolated from deep carious pulps
in their proteomic profiles [60]. DPSCs isolated from dental



pulps under deep carious lesions actually displayed higher
proliferation rates than normal DPSCs. Most differentially
expressed proteins between these two populations were found
to be related to cell proliferation and differentiation, cell
motility and cytoskeleton, and antioxidative function. This
higher proliferation rate could be partly related to the
upregulated expression of T-complex protein 1 subunit beta
(CCT2) in DPSCs from deep carious pulps. Increased
expression of chloride intracellular channel protein 4 (CLIC4)
could also account for this observation and may additionally
play a role in the enhanced osteogenic differentiation of these
cells when compared to their normal counterparts [60]. DPSCs
from deep carious pulps were also found to express higher
levels of antioxidative proteins, which may protect these cells
from oxidative stress. Other proteins were found to be
downregulated in deep carious DPSCs, such as stathmin, a
protein with an essential role in regulating cytoskeleton
dynamics.

The dentin-pulp complex is definitely a unique tissue
whose intricacies we are just beginning to unravel. However,
recent discoveries of the various properties of DPSCs have
undoubtedly added to the puzzle of understanding the nature
of this tissue.

9.6 Neurogenic and Angiogenic Potentials:
Therapeutic Prospects?
We have already established that dental pulp stem cells have
distinct angiogenic and neurogenic potentials owing to their
specific origin and special characteristics. These properties
have led researchers to explore unorthodox applications for
these stem cells in various regenerative applications.

Human DPSCs express a variety of angiogenesis-related
molecules including both pro- and antiangiogenic factors [61,
62]. Vascular endothelial growth factor VEGF is highly
expressed by DPSCs, as are interleukin-8 (IL-8) and monocyte
chemotactic protein-1 (MCP-1), and these were all found in
both conditioned medium and in cell lysates. The latter two
appeared to enhance endothelial cell migration, an important



phenomenon in any revascularization strategy. Plasminogen
activator inhibitor-1 (PAI-1) and endostatin were found both at
the mRNA and protein levels. Using the chick chorioallantoic
membrane assay, DPSCs could also significantly induce blood
vessel formation [61]. Likewise, CD31−;CD146− side-
population porcine pulp cells could significantly induce
neovascularization in a model of mouse hind limb ischemia
[52]. Similarly, human DPSCs enhanced angiogenesis in a
mouse skin wound healing model via paracrine-mediated
mechanisms as they did not themselves engraft in the healing
tissue at the injury site [63].

It appears that both Akt and ERK pathways are involved in
DPSC-mediated endothelial cell migration, with VEGF
playing a crucial role [61, 63]. This has also been delineated
by the fact that the angiogenic capacity of murine DPSCs
appears to be VEGF receptor-2 (VEGFR2) dependent. In
coculture conditions with endothelial cells, DPSCs appear to
assume a pericyte location, highlighting a pericyte-like
function in addition to what was previously believed that
DPSCs lie in pericyte-like locations [64]. This represents true
data of the function of DPSCs as pericytic cells. Using an
angiogenic inhibitor as soluble Flt (sFlt), the amount of blood
vessels induced by murine DPSCs significantly decreased,
indicating that sFlt inhibited VEGFR2 and downstream ERK
signaling in DPSCs. Knockdown of VEGFR2 resulted in
downregulation of VEGFA, VEGF receptors, and ephrinB2
and decreased the angiogenic induction of DPSCs in vivo.

Culture conditions can additionally modify/enhance the
angiogenic potential of DPSCs [65]. By coculturing human
DPSCs with endothelial progenitor cells in the presence of
platelet-rich plasma (PRP), the expression of angiogenesis-
related markers such as VEGF, PDGF, Flk-1, and SDF-1 was
enhanced. This, coupled with the effect of PRP in vivo on
increasing endothelial progenitor cell tube vessel formation,
elucidates some of the important mechanisms by which the
regenerative potential of these cells can be enhanced for future
applications.

Although the angiogenic potential of DPSCs was the focus
of previous studies, their neurogenic potential is also quickly



gaining appeal. Transplantation of human DPSCs 24 h after
focal cerebral ischemia in a rodent model caused significant
improvement in forelimb sensorimotor function at 4 weeks
posttreatment [66]. Indeed, other studies showed that human
DPSCs could differentiate into Schwann-like cells and their
conditioned medium contained numerous neurotrophic factors
that play a role in neural regeneration [67]. Again, these
functions in vivo appeared to be mediated via paracrine
mechanisms rather than through merely neural replacement by
the DPSCs.

After complete spinal cord resection in rats, the injection
of human DPSCs led to a marked recovery of hind limb
locomotor functions when compared to the effects of bone
marrow-derived cells [68]. By inhibiting cell apoptosis in
response to injury and by inhibiting the action of many axon
growth inhibitors as well as differentiating into mature
oligodendrocytes, human DPSCs can act both directly and
indirectly via trophic mechanisms to treat spinal cord injury.
Human DPSCs can also confer neuroprotective and
neuritogenic properties to axotomized retinal ganglion cells,
opening up new arenas for their use in retinal nerve repair
[28].

9.7 Dental Pulp Stem Cells: From Tissue
Engineering to Regenerative Endodontics
The definite primary goal of using DPSCs has targeted the
regeneration or engineering of the dentin-pulp complex. There
have been numerous strategies involved, including the more
traditional cell-seeding approach onto a variety of scaffolds to
the more recent 3D-based scaffold-free culture techniques.
Throughout the previous sections, we discussed the versatility
of DPSCs as a MSC population with several examples of their
ability to regenerate dentin-/pulp-like tissue in vitro and in
vivo [69]. While several animal studies have been conducted,
efficient experimental models such as the tooth slice/scaffold
model may offer elegant approaches for translational research
in the field of dental pulp engineering [70].



It is now imperative to identify a new field called
regenerative endodontics. Regenerative endodontics is perhaps
the epitome of the clinical translation of regenerative dental
applications. While the terminology was introduced in 2007
[71], the field has greatly evolved since that time. It is defined
as the use of biologically based procedures designed to replace
damaged tooth structures such as dentin, root structures, and
cells of the pulp-dentin complex. Interestingly, the concept
behind this approach was actually introduced in the early
1970s by Nygaard-Ostby and Hjortdal [72]. They found that
when root canals of vital teeth were cleaned and bleeding was
induced, followed by partial filling of the root canal space,
new fibrous connective tissues were regenerated in the apical
portion, and healing was found. At that time, they did not find
healing to have occurred in any of the necrotic teeth included,
although the sample size was quite small.

Up until this time, the potential of the field has mainly
relied on so-called revascularization procedures, whereby
apical bleeding is induced in immature necrotic (dead) teeth
and the developing blood clot acts both as a scaffold and
vehicle for delivering bioactive molecules. The process of
initiating bleeding itself appears to trigger the recruitment of
endogenous stem cells via homing mechanisms. So the
concept relies on the classic definition of tissue engineering
and regenerative medicine whereby cells, scaffolds, and
morphogenic signals, as well as microenvironmental cues, are
involved in the regeneration process. However, there are many
challenges to this approach, such as that of regenerating the
dentin-pulp complex in mature teeth or when bleeding cannot
be induced. In such cases, the use of more complex
approaches becomes fundamental [73].

Several dental pulp engineering strategies have focused on
the delivery of appropriate morphogenetic signals and
designing suitable scaffolds (Fig. 9.2). Enhancing cell
attachment and the use of angiogenic factors (such as VEGF)
in injectable scaffolds (hydrogels) such as self-assembling
peptides are important strategies [74]. It is also crucial to
design strategies that can control or direct the fate of either
transplanted or recruited DPSCs once they arrive at the site of



injury. From a clinical perspective, eliminating infection,
modulating the inflammatory response, and stimulating
angiogenesis are key factors to guarantee a favorable
biological response. It is also important to identify key
morphogenic signals (their concentration and spatiotemporal
patterns of release are also important) involved in the process
of dentin/pulp repair and regeneration. As previously
mentioned, agents such as EDTA can release fossilized growth
factors from the dentin matrix, and these may themselves act
to recruit resident stem cells [57].

Fig. 9.2 Scanning electron microscope images of DPSCs seeded onto different
scaffolds showing typical formation of cellular aggregates and nodule-like
structures 12–14 days after culture without differentiation inducers (arrows). (a)
DPSCs cultured onto porous collagen scaffolds for 14 days (×1000); (b) DPSCs
cultured onto porous 50/50 poly(lactic-co-glycolic acid) sheet scaffolds for 12 days
(×1500)

The complete regeneration of pulp tissue following
pulpectomy has been shown in an autologous canine model
[75]. This approach relied on the transplantation of CD105+ in
addition to SDF-1 delivered via an implanted collagen
scaffold. The verification of the regenerated pulp tissue was
done via examination of both gene and protein expressions,
and it revealed the similarity of the regenerated pulp tissue to
the native pulp. It is noteworthy that these authors
intentionally widened the apical diameter to 0.7 mm to allow a
source of vascularization. The width of the apical diameter has
been suggested to be a determining factor for the success of
endodontic revascularization procedures [76].

In an attempt to simulate a more clinical approach, DPSCs
combined with PRP were injected into the prepared and
enlarged root canals of mature teeth in dogs [77]. The



regenerated tissues appeared to be cemental, periodontal-like,
and bone-like tissues rather than dentin-/pulp-like tissues, and
it appeared that this treatment did not produce any results
different from using the blood clot alone or DPSCs alone.

One intuitive approach was to combine the effects of
calcium hydroxide, a classic material routinely used for vital
pulp therapy procedures with DPSCs [78]. DPSCs pretreated
with a low concentration of calcium hydroxide had higher
mineralization ability compared to untreated cells. Extensive
dentin-like tissue was also regenerated in vivo upon the
autologous transplantation of calcium hydroxide-treated
DPSCs. Additional data demonstrated the effects of calcium
hydroxide on enhancing the migration, proliferation, and
differentiation of DPSCs, elucidating previously suggested
scenarios of the role of calcium hydroxide in dentin
regeneration following pulp capping procedures. Other
approaches have explored the use of a tissue-engineered
transplant composed of cell sheet fragments of DPSCs and
platelet-rich fibrin (PRF) granules as a more clinically directed
approach [16]. The implantation of the DPSC/PRF constructs
allowed the regeneration of homogeneous and compact pulp-
like tissues. A clear abundance of blood capillaries and
deposition of a neo-dentin matrix were found 8 weeks after
transplantation of these constructs.

While DPSCs can be appealing for cell-based therapies,
many issues remain to be explored, such as the ability of these
cells to regenerate a complete dentin structure. Although
several scaffolds have been used, the unique architecture and
composition of native dentin have directed some researchers to
devise scaffolds based on a natural dentin matrix [79]. Dentin
matrix scaffolds were prepared from human third molar dentin
tissues following exposure to citric acid and treatment with
EDTA. These were then seeded with DPSCs and ectopically
transplanted in the dorsum of nude mice. The results showed
that dentin-like tissue regenerated in the transplants and these
tissues were positive for two dentin-specific markers: dentin
matrix protein 1 (DMP-1) and DSPP [79]. Furthermore, cells
in the regenerated tissue stained positive against an antibody



for human mitochondria, indicating the direct participation of
the transplanted DPSCs in the regenerated tissue.

The shifting attention toward 3D naturally derived
extracellular matrix scaffolds has also introduced the concept
of a scaffold-free approach, namely, the use of pre-
vascularized microtissue spheroids [80, 81]. This approach
hypothesizes that by allowing the cells to self-assemble into a
3D tissue, the physiological interactions between the cells
better simulate the natural situation and eliminate the influence
of a secondary material. Using 3D agarose petri dishes
(micromolds), DPSCs could assemble into 3D spheroids 3
days following culture. These spheroids were then implanted
into pretreated root slices and transplanted ectopically in the
mouse. This system resulted in the regeneration of pulp-like
tissue similar to native tissue. Furthermore, when these
spheroids were cocultured with human umbilical vein
endothelial cells (HUVECs), the regenerated pulp-like tissue
was attenuated and displayed a significantly higher number of
blood vessels than in the transplants with DPSCs alone.

9.8 Dental Pulp Stem Cells and Bone
Tissue Engineering
DPSCs can also represent a suitable model for the study of
bone differentiation due to their osteogenic ability compared
with other cell types harvested from the adult human body.
This feature, together with their easy availability, high
accessibility in the oral cavity, and their resistance to
cryopreservation, makes DPSCs very interesting for use in
bone tissue engineering procedures in combination with
scaffolds [82]. It has been demonstrated that DPSCs, when
undergoing differentiation into preosteoblasts, deposit an
extracellular matrix that becomes calcified woven bone
without the need of osteoinductive templates, after in vivo
transplantation is remodeled into a lamellar bone.
Additionally, these cells appear to be good candidates for bone
tissue reconstruction protocols and bone regeneration models
because of their good cellular morphology and high bone
morphogenetic protein (BMP)-2 and VEGF secretion [83–86].



Numerous studies have evaluated the multipotency of
DPSCs. These studies have demonstrated that DPSCs are able
to differentiate into osteoblasts when cultured in osteogenic
medium supplemented with dexamethasone, β-
glycerophosphate, and ascorbic acid [2, 87]. Apparently, all
the characteristics of DPSCs have suggested that these cells
are more suitable than BMSCs for mineralized tissue
regeneration, particularly for orofacial bone regeneration [11,
43, 88, 89].

Consecutively, DPSCs have been used to enhance
osseointegration of titanium dental implants [90]. Titanium
(Ti) implants are popularly used in dentistry owing to their
good biocompatibilities, resistance to corrosion, and
mechanical properties. The fundamental aspect in the
performance of an implant is the mechanical and biological
behavior of its interface with the surrounding
microenvironment of the periodontium. A stable biological
and noninert interface between the biomaterial surface and the
surrounding tissue is a vital prerequisite both for immediate
implant loading and for the long-term success of such
implants. This interface is achieved by a biological process
(partially regulated by mechanical and material properties)
known as osseointegration of the implant, which is an intimate
connection of the implant within the bone by means of an
appropriate and sufficient growth of new bone on the surface
of the implant [91].

There is potential to enhance osseointegration of prosthetic
implants by modifying the biologic modulus at the implant
interface with osteoblast-like progenitor cells that are capable
of self-renewal and can be experimentally directed into an
osteoblast lineage in vitro. Human cells have been used to seed
porous metal implants. Embryonic stem cells, fetal osteoblasts,
and mesenchymal precursors such as adipose tissue-, bone
marrow-, or dental pulp-derived cells have high differentiation
potential in in vitro experiments, having not only demonstrated
good adhesion but also shown osteogenic differentiation,
proliferation, and mineralized matrix formation [92, 93].

DPSCs were challenged with two titanium surfaces, either
in plain cultures or in a roller apparatus within a culture



chamber, for hours up to a month. During the cultures, cells on
the titanium surfaces were examined for histology, protein
secretion, and gene expression. Results showed that complete
osseointegration using human DPSCs was obtained: these cells
were able to quickly differentiate into osteoblasts and
endotheliocytes and produce bone tissue along the implant
surfaces [93]. In a study done on dogs comparing BMSCs to
DPSCs, complete osseointegration of dental implants and
tissue-engineered bone was higher using DPSCs in
comparison to BMSCs and periosteal cells after 8 weeks with
the highest osteogenic level of bone-implant contact. The
authors concluded that DPSCs may be a good source of tissue-
engineered bone around dental implants [90, 94]. Since it has
been proven that even teeth with damaged dental pulps are
able to maintain their stem cells with high proliferative and
differentiation capacity, the validity of the dental pulp as a
source of stem cells may replace the bone marrow from iliac
crest [95]. This evidence lays the groundwork for the
possibility of local injection of DPSCs during implant
placement to enhance bone regeneration and implant
stabilization [96, 97].

Although the field of dental implantology has
revolutionized dental therapy for the past 40 years, it has not
yet met all expectations. During function, implants are
subjected to various constraints, such as twisting, bending, and
stretching; lateralization may become unbearable for the bone,
causing shear stresses and cellular damage by friction and
resulting in marginal bone loss over time [98, 99]. For these
reasons, polyether ether ketone (PEEK) was proposed as a
viable alternative material for dental implants because their
elastic modulus is close to the bone and computer-assisted
modeling presents promising clinical results [100]. To increase
the cell adhesion and osteogenic potential of PEEK surface
functionalization in vivo, the physicochemical surface
characteristics were modified by creating a synthetic matrix
from polyelectrolyte multilayers and protein deposition, then
spraying the surface with DPSCs, which resulted in superior
osseointegration of PEEK implants [101].



These observations have paved the way to clinical
application. Although the majority of studies evaluating in
vivo applications of DPSCs have been performed on animal
models, there have been a few clinical trials. In one study, 17
patients participated in a clinical study aiming to evaluate the
effect of DPSCs seeded onto a collagen sponge on bone
formation subsequent to DPSC transplantation in the
extraction sockets of third molars. After 3 months, significant
bone regeneration was found in the side that received the
DPSCs compared to the biomaterial alone. Using in-line
holotomography, an advanced phase-imaging method using
synchrotron radiation, this regenerated bone appeared to be
uniformly vascularized and composed of compact lamellar
bone. In this context, compact bone regenerated after DPSC
engraftment in the mandible could be considered of
fundamental importance to limit pathologic fracture and to
offer better quality of life in oral cancer patients [102, 103].
Human clinical trials using allogeneic DPSCs with PRP mixed
with tricalcium phosphate for the treatment of mandibular
osteoradionecrosis revealed appreciable bone formation from
the second month onward [104].

Another important issue for the clinical translation of
DPSCs for bone tissue engineering is donor age. It was shown
that DPSCs can be isolated from donors of all ages, including
patients up to 67 years old. DPSCs from aged donors show a
better proliferative ability at lower in vitro passages
(maximum p2). When DPSCs are cultured on nanostructured
hydroxyapatite (HA) scaffolds, they maintain their biological
properties. Although in monolayer conditions DPSCs derived
from the senior patient group showed a low proliferative
ability, when cultured on HA nanostructured granules and used
in vivo to repair critical size defects, they showed the same
ability as the younger group in terms of the time to repair the
defects and the quality of the extracellular matrix [105, 106].

9.9 Future Areas of Research
Based on all the characteristics of DPSCs, they will surely
become targets for the discovery of further cutting-edge



applications in tissue engineering and regenerative medicine
(Fig. 9.3). Their use has already been explored as therapeutic
tools to enhance wound healing and treat neurodegenerative
diseases. One important and perhaps still underrated tool is the
secretome of these cells, which may actually represent a
changing front in how regenerative therapies are designed for
clinical application, especially since the conditioned medium
of DPSCs has been shown to be a rich source of bioactive
molecules.

Fig. 9.3 Applications of dental pulp stem cells (DPSCs) in tissue engineering and
regenerative medicine

A unique structure that is currently under investigation in
MSCs is the exosome. Exosomes from various cells appear to
be involved in important physiological and pathological
processes such as immune responses, angiogenesis,
inflammation, tumor metastasis, spreading of pathogens or
oncogenes, and processes [107, 108]. Proteomic analysis of
exosomes from a variety of stem cells has revealed that they
could indeed be considered vehicles for drug delivery, thereby
further narrowing the gap between bench top and bedside
[109, 110]. Exosomes isolated from SHED have been
demonstrated to suppress carrageenan-induced acute
inflammation in mice [111] and appear to have antiapoptotic
functions on human dopaminergic neurons [112]. However, no
similar studies investigating the effects of exosomes from
adult DPSCs were found at the time this chapter was written;
thus, it may represent a rich new area of research.



Another area that warrants further research is utilizing
tools to trigger endogenous regeneration, i.e., rely on
endogenous stem cells rather than exogenously delivered cells
to induce dentin/pulp regeneration. For example, a recently
introduced nanoparticulate bioceramic putty (iRoot BP Plus)
could activate dental pulp cell migration, a mechanism that
apparently involves fibroblast growth factor receptor signaling
as well as mitogen-activated protein kinase and Akt pathways
[113]. This result was also observed in vivo in a rat pulp repair
model. The hypothesis that the release of chemotactic signals
can induce migration of endogenous dental pulp cells has also
been demonstrated by the fact that dental pulp cells could
effectively migrate into a 3D collagen scaffold in response to
stromal-derived factor-1 (SDF-1) and basic fibroblast growth
factor (bFGF) [114].

The seminal work by Jeremy J. Mao’s group in New York
in 2010 [115] showed that by implanting endodontically
treated real-size native human teeth in a nude mouse ectopic
model, the delivery of basic fibroblast growth factor or
vascular endothelial growth factor (bFGF or VEGF) yielded
recellularized and revascularized connective tissue that
integrated into the native dentinal wall in root canals. When
delivery of these factors (bFGF, VEGF, or platelet-derived
growth factor) was combined with a basal set of nerve growth
factor and bone morphogenetic protein-7, cellularized and
vascularized tissues were generated. This study represented
the first formal introduction of pulp regeneration via
chemotaxis-induced homing.

Similarly, the use of stem cell factor (SCF), a powerful
chemokine that binds to the c-kit receptor CD117, could
enhance the proliferation and migration of DPSCs [116]. Upon
in vivo implantation in a collagen scaffold in an ectopic mouse
model, neovascularization and cell recruitment were
significantly increased, indicating a role of SCF for inducing
cell homing, angiogenesis, and tissue remodeling.

Efficient drug delivery vehicles will still need to be
designed to promote the sustained and controlled delivery of
such chemotactic factors that can stimulate the migration and,
henceforth, differentiation of dental pulp stem cells in situ.



These strategies would also likely benefit cases in which the
remaining pulp tissue is inflamed, in light of the recent
discovery of potent DPSCs from inflamed pulps.

An impressive new clinical trial is under way based on the
ability to mobilize DPSCs in response to G-CSF. Mobilized
DPSCs in addition to G-CSF can completely regenerate the
pulp tissue in an in vivo pulpectomized model [117]. Although
good manufacturing procedures still need to be optimized, the
clinical implication of this approach is clear, especially since
this subset of cells appears to retain its characteristics
irrespective of the age of the donor. If one is to realize the true
clinical applicability of these cells in the near future,
particularly in the field of regenerative endodontics, it is
imperative to focus on strategies that are feasible, practical,
economic, and efficient (Fig. 9.4).

Fig. 9.4 Strategies for regeneration of dentin-pulp complex using DPSCs via
endogenous or exogenous regenerative strategies

9.10 Concluding Remarks



As the field of tissue engineering and regenerative medicine
continues to evolve, so does the clinical need for applicable
regenerative strategies that can be implemented in the clinic
that are also economic and easy to apply. The discovery of
DPSCs and their potential for regenerating the dentin-pulp
complex and their application in regenerative endodontics are
only a few of these strategies. As the aging population is
continuously growing, there is increasing demand for a better
quality of life, especially while living with diseases such as
diabetes, Parkinson’s, Alzheimer’s, and other
neurodegenerative diseases. Hence, the role of stem cells will
undoubtedly increase in the coming decades, and with more
understanding of the biology and pathology of these cells,
more efficient ways to utilize them for therapy will become
available. Stem cells derived from the dental pulp have shown
promise in several of these applications and will probably
become the focus of more studies and clinical trials in the very
near future.
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10.1 Introduction to Stem Cells



The field of stem cell research offers promising alternatives in
the treatment of several diseases. This chapter will attempt to
summarize recent breakthroughs in stem/progenitor cell
maintenance and differentiation related to the regeneration of
the genitourinary apparatus. Before discussing this matter
further, a brief introduction to stem cell biology will be
presented. In 1961, Till and McCullough reported the four
basic characteristics of a stem cell: self-renewal and
regenerative capacity, multipotency, and the ability to
differentiate into any other cell lineage [1].

10.1.1 Embryonic Versus Adult Stem Cells
and Their Properties
Adult and embryonic stem cells (ESCs) are the two major
types of stem cells, and they possess distinct properties [2, 3].
In adults, the bone marrow is the primary source of stem cells.
Adult stem cells are classified as (1) hematopoietic stem cells
(HSCs), which differentiate into either red blood cells or
lymphoid/myeloid lineage-specific white blood cells [4], and
(2) mesenchymal stem cells (MSCs) [5], which differentiate
into adipocytes, chondrocytes, and osteoblasts [6]. Adult
MSCs are also found in all postnatal organs and tissues, and
they play important functions in tissue injury repair and
general homeostasis [7]. These cells are some of the best
promising tools for regenerative medicine because of their
sustained proliferative capacity and their multipotent
differentiation potential [6, 8].

10.1.1.1 Embryonic Stem Cells and
Induced Pluripotent Stem Cells
ESCs, induced pluripotent stem cells (iPSCs), and postnatal
adult stem cells are interesting sources of stem cells for
regenerative medicine. ESCs are isolated from the early
morula stage embryo or from the inner cell mass of
blastocysts, are able to self-renew and expand, and have the
potential to differentiate into any type of somatic tissues [9]. In
fact, ESCs are potentially able to self-renew indefinitely



because their telomeres can remain intact. On the contrary,
adult stem cells, which are derived from different tissues, lose
telomeric DNA during aging. Indeed, their telomere
shortening has been reported both in vitro and in vivo during
cell division [2, 3].

In principle, forced expression of Oct-4, Sox2, c-Myc, and
KLF4 transcription factors can transform any somatic cells
into ESC-like cells, which have been termed induced
pluripotent stem cells, iPSCs. iPSCs appear to possess the
same potential and properties when compared to ESCs, while
their generation is not dependent on an embryo [10]. Even
with improved iPSC generation [11–13], reactivation of the c-
Myc retroviral transgene has been shown to increase
tumorigenicity of chimeric mice obtained via blastocyst
injection of selected iPSCs [14]. In later studies, it was
reported that murine iPSCs could be generated without the c-
Myc transgene. Chimeric mice derived from c-Myc-deficient
iPSCs did not develop tumors over the course of those studies.
Furthermore, the absence of the c-Myc transgene resulted in a
better isolation of iPSCs without drug selection [15, 16]. Both
ESCs and iPSCs have numerous medical applications due to
their pluripotency, but the relative difficulties with their
genetic manipulation and the ethical considerations
surrounding their use represent formidable limitations. In
contrast, postnatal adult stem cells are often
immunocompatible, and no ethical concerns related to their
use restrict their therapeutic potential.

10.1.1.2 Mesenchymal Stem Cell Biology
MSCs, which were first isolated from the rat bone marrow by
Friedenstein and Petrakova, demonstrated osteogenic
differentiation potential [17]. MSCs are multipotent stem cells
with high proliferative capacity and the ability to differentiate
into various cell types. For instance, they have the potential to
differentiate into adipocytes [18], cartilage [19], bone [20],
and nervous tissues [21–23]. Experimental procedures have
shown successful applications of MSCs in a collagen matrix to
repair Achilles tendon [24] and to regenerate muscles [25].
The identification of a specific markers that distinguish MSCs



is not yet available, but studies have reported that these cells
can express VCAM-1, Thy1, Sca-1, CD29, CD44, CD73,
CD105, CD166, and MHC class I, but lack CD45, CD11b, and
c-Kit expression (reviewed in [26]). MSCs have been used to
regulate immunological responses and treat degenerative
diseases, but concerns have been raised regarding their ability
to cure diseases in clinical trials [27].

For instance, MSCs can improve tissue repair because of
their self-renewal capacity and because they can induce
multilineage differentiation within a target site (reviewed in
[28]). MSCs exert immunomodulatory effects on tissues and
can direct residing stem cells or progenitor cells to the area of
injury [29]. Many treatments, especially for the management
of urogenital diseases, have used stem cell therapy. However, a
few animal experimentations and clinical trials have shown
promising results. For example, stem cells were used in
regulating the mechanisms involved in voiding deficiencies,
leading to the cure of stress urinary incontinence [30–33].
Other therapeutic effects of delivering MSCs to an injured site
have been reported in animal models of Cisplatin-induced
acute kidney injury [34], ischemia [35], Adriamycin-induced
nephrotic syndrome [36], and mesangioproliferative anti-
Thy1.1 glomerulonephritis [37]. A rat kidney transplantation
model has even been developed to study chronic allograft
nephropathy [38]. Most of these studies showed that MSCs
were able to provide a therapeutic environment via the
secretion of paracrine factors such as vascular endothelial
growth factor (VEGF), hepatocyte growth factor (HGF),
insulin-like growth factor-I (IGF-I) [39–42], and
erythropoietin [43]. These stem cells may also exert a
therapeutic effect because of their involvement in the secretion
of bioactive factors with antiapoptotic, anti-scarring, or
neovascularization effects. Heme oxygenase-1 (HO-1) [44],
the SDF-1-CXCR4/CXCR7 axis [45], and CD44/hyaluronic
acid interactions [46] were reported to contribute to the
important role of MSC-mediated protection in acute tubular
injury or renal ischemia-reperfusion injuries. Nonetheless,
many challenges remain to translate the promising animal
model results into clinical trials. For example, aberrant
differentiation of intraglomerular MSCs into adipocytes and



glomerular sclerosis was observed in an experimental setting
that aimed at preventing renal failure [47].

10.1.1.3 Extra-Embryonic-Derived Stem
Cells
The placenta is composed of three layers: the decidua, from
maternal origin, and the chorion and amnion, both from fetal
origin [48]. Placental mesenchymal cells are derived from fetal
origin [49], and the amniotic fluid of both murine and human
pregnant females has been identified as an alternative source
of MSCs [50, 51]. Amniotic fluid fills the amniotic cavity and
allows the exchange of substances between fetus and mother,
protects the developing fetus, and allows it to move and grow
within the cavity [52]. In 2003, cells expressing Oct-4, a
transcription factor expressed by ESCs and partially
responsible for the pluripotency of these cells, were isolated
from the amniotic fluid [53]. Extra-embryonic-derived stem
cells from the placenta are classified as amniotic mesenchymal
cells, amniotic epithelial cells, chorionic mesenchymal cells,
and chorionic trophoblast cells. In 2007, stem cells isolated
from the amniotic fluid were defined as multipotent stem cells
that do not form teratomas when implanted in
immunodeficient mice [54]. The lack of tumorigenic potential
of these MSCs could be considered an advantage over human
ESCs for medical applications. The ability of amniotic fluid-
derived MSCs to differentiate into adipocytes has not been
detected, suggesting that the adipogenic potential is present in
adult bone marrow cells but not in cells isolated during the
embryonic period [54, 55]. Furthermore, stem cells isolated
from the amniotic fluid were less differentiated when
compared to their bone marrow counterparts. It has also been
reported that these cells have shorter proliferative cycles [54,
55].

MSCs have been purified from the umbilical cord,
umbilical cord blood (UCB), and peripheral blood, although
the properties of the cells isolated from these various sources
present contradictory results. For example, some studies could
not detect the presence of MSCs in the UCB [54, 56], while



others could [57]. Umbilical cord MSCs showed a
cardiomyocyte-like phenotype [58], while UCB-MSCs seem
to contain two populations of cells, osteoclasts and
mesenchymal-like cells, whether the cord blood was harvested
from preterm or term deliveries [59]. UCB-MSCs cultured in
vitro give rise to cells that display mesenchymal progenitor
features. On the one hand, UCB-derived mononuclear cells
can give rise to adherent cells with an osteoclast phenotype.
These cells are multinucleated, express the common leukocyte
antigen CD45 and the osteoclast-related antigen CD51/CD61
(vitronectin receptor), and display a strong tartrate-resistant
acid phosphatase activity (as previously reported in [60, 61])
[59]. On the other hand, cells with the mesenchymal
phenotype have a fibroblast-like morphology and express
several mesenchymal progenitor-related antigens (SH2, SH3,
SH4, ASMA, MAB 1470, CD13, CD29, and CD49e) [6, 59,
62, 63]. A study by Erices and colleagues suggests that,
compared with term cord blood, preterm cord blood is richer
in mesenchymal progenitors resembling hematopoietic
progenitors [59]. Additionally, UCB-MSCs seem to possess
immunomodulatory capacities. Indeed, they may be able to
suppress lymphocyte proliferation and decrease
proinflammatory cytokine production (interferon gamma and
tumor necrosis factor) [64].

10.1.1.4 Endothelial Progenitor Cells and
Adipose-Derived Mesenchymal Stem Cells
Fat is an abundant and accessible source of stem cells.
Adipose tissue-derived stem cells (ASCs) are extracted from
adipose tissue and characterized as plastic-adherent and
multipotent cells [65]. ASCs are considered both MSCs, thus
progenitors of cell types derived from the mesoderm, and
stromal cells. As ASC cultures are passaged, the cell
populations become homogeneous and exhibit fibroblastoid
morphology. ASCs can be distinguished by the expression of
CD73, a marker of mesenchymal cells, in addition to the bone
marrow progenitor marker stromal-derived factor-1 [66]. It has
also been reported that ASCs are CD31+, CD34+/−, CD45−,



CD90+, CD105−, and CD146+. Studies have shown that
CD34+ ASCs have increased cell division potential, while
CD34− ASCs are more multipotent [67, 68]. Compared to
ASCs, endothelial progenitor cells (EPCs) are CD31−, CD34+,
CD45−, CD90+, CD105−, and CD146+ [69]. EPC have the
ability to differentiate into endothelial cells, which constitute
the lining of blood vessels [70, 71]. When uncontrolled, EPCs
participate in pathological angiogenesis, which contributes to
tumor growth. However, their presence in blood has also been
associated with better outcomes for cardiovascular disease and
wound healing in nontumorigenic settings [72–74].

10.2 Kidney Regeneration: Stem Cell
Approaches
Early renal lineage specification, nephric duct elongation, and
movement of the ureter towards the bladder are key events that
ensure normal renal and urinary tract function [75]. The
kidney is a highly specialized filtrating organ that eliminates
waste products from the circulation and preserves electrolyte
levels and pH balance of the body fluids and thus plays a key
role in proper maintenance of bone mineralization and blood
pressure. Most of these roles are carried out by the nephron,
the functional unit of the kidney [76, 77].

Acute renal failure causes injury to renal tubular epithelial
cells mainly. Over time, injured tubules regenerate via cell
proliferation from surviving dedifferentiated cells, from renal
stem cells that reside inside the kidney and migrate to the site
of regeneration, or from bone marrow-derived stem cells
(BMSCs) that are attracted to the injured epithelium and
undergo cellular differentiation [78]. Kidney stem cells are
found in the renal tubules and the papilla. Glomerular parietal
epithelial cells have self-renewing potential and can generate
podocytes and proximal tubular cells [79]. These progenitors
can grow and differentiate in response to renal injury, but they
often fail to correct injuries resulting from chronic renal
diseases in which, as a consequence, patients require long-
term dialysis or renal transplantation (reviewed in [80]).



10.2.1 Renotropic Factors and Kidney
Repair Mechanisms
Renotropic factors that induce remodeling and maturation of
the epithelium after renal injury or contribute to kidney
development have been identified over the years. Hepatocyte
growth factor (HGF), epidermal growth factor (EGF), IGF-I,
heparin-binding EGF-like growth factor, platelet-derived
growth factor, bone morphogenetic protein-7 (BMP-7), and
uterine sensitization-associated gene-1, a BMP antagonist, are
among the renotropic factors that can enhance kidney recovery
[81–87]. In contrast, activin A, a member of the transforming
growth factor-beta superfamily, has been identified as an
inhibitor of renal organogenesis [88]. Most of the renotropic
factors can promote tubular cell proliferation, but the exact
mechanisms involved in cell maturation are not completely
understood. It is also unclear whether these renotropic factors
can promote renal regeneration via the activation of some
renal stem/progenitor cells.

10.2.2 Cellular Therapy Strategies for
Renal Regeneration
Stem cells can be used for kidney repair. This form of therapy
is suitable for acute renal injury and acute renal failure. Stem
cell therapies often require stem/progenitor cells to
differentiate in a dynamic environment. Biochemical and
physiological events need to be coordinated in order for the
stem cells to properly engraft and function in vivo.

10.2.2.1 In Situ Tissue Regeneration
In situ tissue regeneration depends on mobilization of the host
endogenous stem cells or tissue-specific progenitors to the site
of injury. A role for BMSCs in promoting both endothelial and
epithelial renal cell proliferation in response to injury has been
reported [89]. Therefore, new therapeutic approaches have
focused on the enhancement of these progenitor cells’



recruitment and delivery to the kidney in order to treat organ
diseases and injury.

Stem cell factor and granulocyte colony-stimulating factor
are two cytokines reported to induce HSC homing to an
injured kidney, leading to an increase in the kidney’s ability to
recover from acute injury [90, 91]. Contradictory findings
regarding the use of these cytokines suggest that this protocol
of HSC mobilization is associated with granulocytosis, in
which a high concentration of activated granulocytes worsens
acute ischemic injury [92].

10.2.2.2 Exogenous Stem Cell Therapy
Studies have shown that transplantation of HSCs into injured
kidneys may play a role in vasculogenesis instead of actual
tubulogenesis [93]. The recruitment of BMSCs may not be
enough to induce kidney repair, which is mainly stimulated by
the proliferation of intrarenal and intrinsic epithelial cells [94–
96]. Nevertheless, HSCs may contribute to the repair
mechanism by secreting regenerative factors, rather than
replacing damaged cells [96].

The ability of MSCs to treat renal dysfunctions has been
demonstrated in many models of injury and is primarily
attributed to the cells’ capacity to secrete renotropic factors
such as VEGF, HGF, and IGF-I [40–42]. Other paracrine
factors, such as erythropoietin [43] or HO-1 [44], contribute to
the expansion of some renal cell populations and lead to better
recovery from injury when MSCs are implanted in the kidney.
Although renal implantation of MSCs has been shown to
prevent experimental kidney failure in some models, it has not
always been successful in the regeneration of intraglomerular
tissues. In fact, it has been reported that the technique leads to
aberrant differentiation of MSCs into adipocytes in the kidney
in addition to glomerulosclerosis [47].

ASC therapy has shown promising results for kidney
protection against various injuries, such as ischemia-
reperfusion injury, mainly by suppressing oxidative stress and
inflammatory responses [97] and by improving
revascularization in atherosclerotic renal artery stenosis



models [98, 99]. MSCs cultured in vitro with growth factors
derived from a neuronal cell line [100] or human embryonic
MSCs treated with VEGF before implantation [101] have
contributed to better renal repair mechanisms. In other models,
murine ESCs were reported to differentiate into renal epithelia
in response to nephrogenic factors [102] or to differentiate in
vitro into renal tubular cells [103]. Furthermore, murine ESC-
derived embryoid bodies hold the potential to induce
progenitors that can integrate into renal tubules in vivo [104],
which opens a multitude of treatment options when progenitor
cells are cultured in defined factors.

EP cells also show therapeutic potential as they have been
shown to successfully home to the kidney and to participate in
the restoration of renal function in the case of renovascular
disease [105, 106]. Research using human-derived amniotic
fluid stem cells is ongoing and shows encouraging results for
the treatment of kidney injuries, such as delaying tubular
necrosis and progression of renal fibrosis [107–109].
Similarly, human iPSCs have been successfully used to
generate nephrogenic intermediate mesoderm under various
conditions [110, 111]. The differentiation of human iPSCs into
kidney structures [112] will lead to the development of novel
therapies for many kidney dysfunctions and ultimately to the
reconstruction of renal components or even artificial kidneys.

10.2.3 Tissue Engineering for the
Treatment of Kidney Disease
The worldwide prevalence of chronic kidney disease is rapidly
increasing, but therapeutic options for end-stage disease,
namely, dialysis and transplantation, remain limited. Although
renal transplantation is the optimal therapy, it is limited by
organ donor shortage, rejection problems, and long-term
immunosuppressive drug use. To address these issues, the
concept of whole-kidney tissue engineering has emerged. The
kidney is composed of cellular components, extracellular
matrix (ECM), and blood vessels. Although many protocols
using electrospinning and 3D printing for the fabrication of
renal ECM have been proposed, it is extremely difficult to



regenerate an organ with such complexity and specificity as
the kidney. A promising alternative approach is through the
decellularization of the whole xenogenic or allogeneic kidney.
With this technique, which has been used in rodent, porcine,
and human kidneys [113–116], cell lysing solutions are
perfused through the renal vessels to remove antigenic
parenchymal tissues from the renal ECM.

The resulting ECM is supposed to regulate kidney
regeneration and differentiation when seeded with stem cells.
After verification of the decellularization process, the
recellularization process that follows aims to endothelialize the
renal vasculature and replenish the renal epithelial cells. Many
entry points have been explored for stem cell delivery,
including the renal artery, the renal vein, and the ureter, as well
as under the renal capsule. Different cell types have been used,
including neonatal kidney stem cells, adult renal stem cells,
human umbilical vein stem cells, ESCs, and iPSCs [117].
Recent reports have shown the feasibility of differentiating
iPSCs into specific renal progenitor cells (ureteric bud or
metanephric mesenchyme) with the potential to eventually
generate mature renal cells in large quantities [118].

10.3 Ureter Replacement Using Tissue
Engineering Advances
Ureteral tissue engineering has been undermined mainly
because of the false impression of a small number of cases
requiring complex surgical ureteral reconstruction. However,
with advances in endourology, the incidence of ureteral
damage has been increasingly reported, and ureteral defects
vary in size. While bridging short defects is usually surgically
achievable, the reconstruction of long defects require
extensive surgical repair that is not always possible and may
cause complications, including metabolic disorders and tissue
harvest problems. Hence, tissue engineering proposes novel
therapeutic alternatives utilizing urothelial-lined grafts.
Unseeded synthetic or naturally derived biomaterials have
been used for ureteral replacement in a few animal studies and
resulted in ureterohydronephrosis owing to the lack of normal



tissue formation [119]. Cell-seeded matrices seem to be the
ideal solution for tubular ureteral regeneration. Although many
scaffolds have been tried, none has been successful to date.
The ideal scaffold should withstand mechanical loads when
attempting to repair the unsupported ureter [120]. The seeded
cells should include both urothelial cells (UCs), to act as a
blood-urine barrier, and smooth muscle cells (SMCs), to
induce ureteral contractions for urine transport. Autologous
urinary tract cells are preferred [121], but if they are
unavailable, stem cells constitute a viable alternative. ASCs
and BMSCs have been explored in a few studies for ureteral
regeneration [122–124]. Tubular grafts made of bladder matrix
seeded with SMCs on one side and BMSCs on the other side
were implanted to replace 4-cm ureteral defects in rabbits after
being preimplanted for a 2-week conditioning period in the
rabbits’ omenta. This resulted in successful repair with no
stricture or hydronephrosis [123]. ASCs were differentiated
into UCs through indirect coculture protocol and seeded on
tubular polylactic acid (PLA)/collagen scaffolds [122]. Strong
evidence of differentiation into the urothelial lineage was
detected with cytokeratin-18 and uroplakin-2. When implanted
subcutaneously in athymic mice, the differentiated cells in the
graft survived, stratified, and exhibited urothelial markers. In
another study, ASCs were seeded on decellularized rabbit
aorta and cell-seeded scaffolds were used to replace a ureteral
defect. Sixteen weeks after animal implantation, the graft
consisted of a well-organized muscle layer and stratified
urothelium similar to the native tissue, and there was no
evidence of strictures or hydronephrosis [120].

10.4 Bladder Regeneration: Function-
Based Therapeutic Strategies
Due to its function as a dynamic reservoir of urine, the bladder
has distinctive structural and regulatory mechanisms that need
to be carefully considered when regenerative therapies are
considered. The bladder epithelium, or urothelium, has
cellular, intercellular, and architectural features that make it
expansible, durable, and resilient to lifelong persistent



irritation by urine [125]. Additionally, the detrusor muscle that
surrounds the mucosa has a peculiar pattern of fiber
arrangement to enable instant and complete emptying of the
bladder once it is contracted [126]. The neurological control of
the bladder and its urethral sphincter is regulated by
autonomic, sensory, and motor neural interactions [127].
Disturbance in one or more of these elements can result in
dysfunction in the vital process of urination, which could
significantly impair a patient’s quality of life and, in severe
cases, cause disability or even death.

Urine stem cells have been isolated and differentiated into
specialized cells to offer a readily accessible cell source for
various applications [128]. Although a general depot of adult
stem cells exists in the fat and bone marrow, lineage-specific
stem cells are believed to dominate in specific organs, such as
the skin and the cornea [102, 129]. Urothelial adult stem cells
are thought to be slow cycling in vivo (3–6 months),
clonogenic, highly proliferative, and located in protected sites.
These cells are commonly identified by their localization in
the basal layer of the urothelium and by being label-retaining
cells with high expression of β-4 integrin [130, 131]. The
identification and isolation of these cells are important for the
tissue engineering of urothelium-lined organs, including the
bladder, the urethra, and the ureters. Bladder smooth muscle
progenitor cells can be harvested from bladder biopsy and
expanded in vitro to be seeded on scaffolds.

10.4.1 Bladder Replacement Methods
After surgical removal of the urinary bladder, or cystectomy,
bladder reconstruction is a critical step in the patient’s life.
Significant morbidity and mortality often occur due to the
incorporation of intestinal segments into the urinary tract [132,
133]. Therefore, exploring new therapies is essential.

Tissue engineering using cell-seeded scaffolds has been
considered for urinary bladder reconstruction [134]. This
method involves the seeding of a scaffold with autologous
bladder SMCs and UCs. The use of autologous cells may not
always be possible, as in cases of cancer [135] or benign end-



stage bladder diseases [136]. In this situation, stem cells can
be isolated from other tissues, including the adipose tissue,
bone marrow, and amniotic fluid. They can be seeded on
scaffolds and transplanted in either differentiated or
undifferentiated form. However, current data show that in vivo
differentiation occurs only in a small percentage of the
delivered cells [137]. Stem cells have shown a good potential
for urothelial differentiation. This has been achieved by using
conditioned medium [138, 139] with or without growth
factors, such as all-trans-retinoic acid [140]. Both direct
culture (seeding stem cells with UCs) and indirect coculture
(using a Transwell migration assay (ThermoFisher Scientific,
Life Technologies Inc., Burlington, ON, Canada)) have been
attempted with variable outcomes, although cell-to-cell contact
in direct culture appears to be an enhancing factor for stem cell
differentiation [141, 142]. Stem cell differentiation into SMCs
is more feasible and can be achieved by the use of growth
factors [143] or coculture with SMCs [137].

iPSCs from adult tissues, such as skin fibroblasts, urinary
tract stromal cells, and urine-derived cells, have also been used
and were subsequently differentiated into UCs and SMCs
[144–146]. However, urinary tract-derived iPSCs are believed
to have superior differentiation properties than cells from other
sources, which should emphasize the epigenetic differences
between individual iPSC lines and stress on the importance of
organ-specific iPSCs for tissue-specific studies [144–146].

10.4.2 Stem Cell Therapy for the Treatment
of Voiding Dysfunction
Voiding dysfunction (VD), or disorders of urine storage or
emptying, can affect patients’ quality of life and interfere with
social activities. Current therapies for VD are insufficient and
often fail to correct the underlying pathophysiology of the
disease. Stem cell therapies have also been studied in this field
and were shown to cause positive clinical response, either due
to differentiation or, more likely, to indirect paracrine effect
associated with the release of growth factors and cytokines.
The latter mechanism could lead to modulation of local and



systemic inflammatory responses and mobilization,
stimulation, and differentiation of native stem cells in addition
to the enhancement of vascularization of regenerating tissues
and reduction of fibrosis [147]. A variety of stem cell types
have been explored for the treatment of VD, including the
bone marrow, skeletal muscle, and ASCs [148, 149]. ASCs are
the most popular cells owing to their easy harvest, high yield
of stem cells, and better smooth muscle differentiation
potential compared to other types [150]. They have been
shown to improve VD in animal models of bladder
overactivity and hypoactivity associated with different
etiologies, such as diabetes mellitus, radiation induced skeletal
muscle-derived multipotent stem cells transplantation for
bladder dysfunction reconstitution, or in the case of
hyperlipidemia [147–150].

In one study, a 79-year-old patient with a hypoactive
bladder managed with clean intermittent catheterization
underwent autologous muscle-derived stem cell (AMDC)
transplantation. The AMDCs were isolated from the thigh
muscles, expanded in vitro, and injected in the bladder wall.
During the 1-year follow-up period, the subject did not report
gross hematuria, urgency, frequency, or infection.
Functionally, there was a reduction in maximum cystometric
capacity from 844 to 663 mL. The patient was able to void
small amounts but continued to require self-catheterization 1
year after AMDC injection. The authors concluded that
intradetrusor injection of AMDCs is a safe, minimally
invasive, and a promising treatment option for bladder
hypoactivity [151].

10.4.3 Stem/Progenitor Cell Treatment for
Vesicoureteral Reflux
Primary vesicoureteral reflux (VUR) is a congenital anomaly
of the ureterovesical junction (UVJ) that is due to poor
valvular mechanism of the distal ureter and allows backflow of
urine from the bladder to the kidney. Stem cells and muscle
progenitor cell therapies are viable alternatives for the
recovery of this muscle defect at the ureteral orifice. One



clinical study utilizing autologous chondrocytes was
conducted in 29 children with VUR. Overall, VUR was
corrected in 24 of the 29 patients (83%) [152]. Despite the
high efficacy and safety of the procedure, this therapeutic
option is associated with high costs that limited its more
widespread use in clinical applications. In a porcine model,
autologous fibroblasts were injected at the UVJ using the
modified STING technique [153]. After the sacrifice of the
animals, the labeled implanted autologous fibroblasts were
detected at the UVJ, suggesting that in vitro-expanded
fibroblasts could survive in vivo and represented a potential
corrective therapy for VUR. Urine-derived stem cells appear
to be a good option for VUR treatment due to their easy
harvest, enhancement of vascularity, and readiness for muscle
differentiation [154].

10.4.4 Urinary Incontinence Treatment
with Stem Cells
Stress urinary incontinence (SUI) is a widespread disorder,
particularly in women [155], due to inherent predisposing
anatomical and physiological factors specific to the female
urethra. In addition, SUI is commonly initiated or aggravated
by female-specific physiological stages, such as pregnancy,
vaginal birth, and menopause, or pathological conditions like
uterine fibroids and tumors [156]. The current treatment of
SUI relies on pelvic floor exercises in mild cases and surgical
interventions in severe cases. The surgical methods aim to
provide support to the urethra using various artificial tapes or
autologous tissue slings. Each one of these methods has its
adverse effects and postoperative complications [157, 158].
More recently, the injection of bulking agents around or
through the urethra to treat SUI has gained some popularity.
Many agents have been used, with varying success and
complication rates. Collagen-, fat-, Teflon-, silicon-, and
carbon-coated beads are common examples of the various
agents that are used [159]. A recent systematic review in the
Cochrane database showed that current data are insufficient to
prove a benefit of these therapies. Indeed, saline injections
were found to have an effectiveness similar to that of bulking



agents, and serious side effects have been reported with some
of these agents [160]. Consequently, stem cell therapies have
emerged as the next generation of therapies in SUI and have
recently attracted attention. Animal studies have shown
potential benefit in treating SUI. Sectioning of the pudendal
nerves or vaginal distension is usually used to create animal
models mimicking SUI. Muscle-derived stem cells have been
the most widely used source of stem cells and are believed to
provide stem cells that are able to differentiate into committed
striated muscle cells more than other stem cell sources.
However, the use of many other sources of stem cells has been
attempted with comparable success. To evaluate the success of
stem cell therapy in SUI animal models, multiple outcome
measures have been used, including leak point pressure,
intravesical pressure, maximum bladder volume, urethral
functional length, maximum urethral closure pressure, and
morphological examination of the sphincter muscle and matrix
[161].

ASCs have been injected in rat models of SUI using
intravenous or transurethral routes and shown significant
improvement in terms of increased elastin content and voiding
function measured by cystometry [162]. Adding nerve growth
factor and PLA to ASCs for injection in the rat urethral
sphincter has improved stem cell proliferation in vivo in a
dose-dependent pattern. Such factors appear to improve stem
cell survival and functional performance of the urethra
compared to using ASCs alone [163]. Furthermore, human
amniotic fluid stem cells have a favorable safety pattern and,
owing to their low immunogenicity and tumorigenicity, seem
to be of potential benefit for the restoration of normal urethral
function in animal models of SUI [164]. A triple stem cell
therapy approach has used human amniotic stem cells
processed in the stage of early differentiation into three
lineages in vitro (myogenic, neurogenic, and endothelial). This
triple approach was able to improve SUI signs in the animal
model compared to using only one or two types of
differentiated cells [165]. A gene therapy strategy of inducing
urine-derived stem cells to overexpress VEGF showed
improvement of the sphincter composition, especially the
nerve fibers, muscle cells, and vascularization [166].



The reconstruction of stem cell-based tissue-engineered
slings to support the urethra has also been investigated. A silk
scaffold covered with bone marrow-derived MSC sheets was
implanted as a sling to support a rat’s urethra and showed
better matrix deposition compared to a silk sling alone [167].
Likewise, a combination of ASCs and silk fibroin
microspheres was able to maintain improvement in SUI longer
than silk fibroin microspheres alone [168].

10.5 Tissue Engineering of the Urethra: An
Advancing Solution for Long Segment
Urethral Defects
Multiple urethral pathologies necessitate extensive
reconstruction, which can be limited by a lack of donor
tissues. Regenerative medicine using scaffolds or cell-seeded
grafts has been applied in preclinical studies and clinical trials
[134]. Those techniques rely on the use of acellular matrices or
synthetic scaffolds, alone or seeded with urinary tract
progenitor/stem cells. Many preclinical and clinical trials have
been successful using synthetic or acellular matrices coupled
with progenitor cells from the bladder or buccal mucosa [169–
172]. Stem cells can be used as a source of cells and scaffolds
for the construction of tissue-engineered urethral grafts.
Considering the efficacious production of biomaterials from
human ASCs using the self-assembly technique, and because
of their favorable mechanical characteristics for bladder
replacement [173], an ASC-based scaffold is another
appealing alternative for urethral replacement. Many stem cell
types have been used for urethral tissue engineering, including
ESCs [174], BMSCs [175], ASCs [121, 176], and urine-
derived stem cells [176]. ASCs and urine-derived stem cells
are the most convenient and useful cell sources owing to their
simple harvest, high stem cell yield, and easy differentiation,
especially into SMCs.

ASCs have been used to replace the urothelium [121] and
smooth muscle [176]. In the former study, ASCs were
differentiated into UCs and seeded on bladder acellular
matrices for implantation in rabbits. The urethral continuity



and caliber were preserved, and the labeled differentiated UCs
survived and formed a multilayer structure. In the second
study, ASCs were chemically induced with 5-azacytidine to
differentiate into SMCs under the effect of mechanical
extension stimulation. The autologous induced cells, together
with oral mucosal epithelial cells, were seeded on a
polyglycolic acid mesh to replace urethral defects in dogs.
Those urethras architecturally resembled nearby native
urethras. Therefore, with their multiple advantages, ASCs can
significantly contribute to tissue engineering for urethral
replacement.

10.6 The Penis: Highly Developed
Strategies for Functional Restoration Using
Stem Cells
10.6.1 Tunica Albuginea
The tunica albuginea (TA) envelops the penile erectile bodies
and is composed of organized fibrillar collagen interlaced with
elastin fibers, which allow tunica expansion. It protects
erectile tissue, promotes penile rigidity and length, and
participates in the veno-occlusive mechanism. Penile
reconstruction might be required for various conditions,
including trauma, neoplasm, congenital anomalies, and
Peyronie’s disease (PD). Multiple surgical techniques have
been developed to simplify the functional and esthetic
restoration of the penis [177]. PD has two phases. The acute
phase is characterized by pain and induration, while the
chronic phase involves formation of a fibrous plaque causing
penile curvature. PD is a progressive disorder, with up to 48%
of men having disease progression if left untreated [178].
Evidence suggests that there is no benefit from medical
therapy and that surgery is the mainstay of treatment once
penile curvature occurs. However, surgeries for PD have
generally been challenging as a result of the limited
availability of suitable local tissues [179, 180].

Stem cells have been used in the treatment of PD.
Recently, Castiglione et al. injected ASCs intratunically in a



rat model of PD during the acute phase of the disease [181].
They prevented fibrosis and elastosis and maintained erectile
function. This treatment was not successful in terms of curing
well-formed plaques and their resulting deformities. As a
result of the unfavorable outcomes associated with off-the-
shelf grafts, there has been increased interest in cell-seeded
grafts as ideal TA grafts. Stem cells have been used to improve
the characteristics of these off-the-shelf grafts and reduce the
accompanying inflammation. In one study, allogeneic ASCs
were seeded on the small intestinal submucosa and implanted
in rats [182]. These cell-seeded grafts resulted in cavernosal
tissue preservation and maintenance of erectile response. Cell-
seeded grafts led to better outcomes with regard to the
architecture of the tunica and to erectile function than
scaffolds alone.

10.6.2 Erectile Dysfunction and Stem Cell
Replacement
Erectile dysfunction (ED) has been reported to have a
prevalence of no less than 52% [183] and to cause major
morbidity and distress for men and their partners [183]. The
main causes of ED include aging, diabetes mellitus, and
cavernous nerve injury during radical prostatectomy [184].
The imperfect efficacy and risk of complications associated
with existing therapies for ED have urged the scientific
community to look for new treatment modalities, including
stem cell replacement. All available treatment options for ED
tend to alleviate symptoms rather than correct the underlying
pathology. Stem cell therapy aims to replenish damaged
endothelial cells and SMCs and to prevent further apoptosis
and fibrosis. Among the different types of stem cells tested for
ED treatment, ASCs have been the most frequently
investigated, mostly because of their easy harvest, abundance,
and established efficiency in other medical venues and because
of the availability of separation devices. Both stromal vascular
fraction of the adipose tissue and ASCs have been successfully
used in ED research [185]. An in vitro model of the cavernous
tissue showed that ASCs contributed to the repair of
endothelial damage and decreased apoptosis resulting from



diabetes mellitus. ASCs also demonstrated the ability to
undergo differentiation into endothelial cells and SMCs [186].
When used in the treatment of ED due to type 1 or 2 diabetes
in rats, ASCs showed an increase in intracavernous pressure
and improvement of ED, together with improvement of blood
glucose levels [187, 188]. Autologous ASCs were able to treat
both acute and chronic (4 weeks) cavernosal nerve injury-
induced ED [185]. When used in combination with PDE-5
inhibitors or growth factors, ASCs had a synergic effect on
therapeutic efficacy [189, 190]. In a model of resected
cavernous nerves, ASCs were seeded on an autologous vein
graft or on the adipose tissue biomatrix and had beneficial
effects on penile histology and functional outcomes [191,
192].

Intracavernous injection of ASCs is the preferred stem cell
delivery method for ED, especially in the case of cavernous
nerve injury. It has been associated with the rapid
disappearance of injected stem cells from the penis, thereby
minimizing therapeutic efficiency in chronic disease models,
such as those of diabetes [193]. Other routes of delivery
include periprostatic injections [194], subtunical implantation
[195], and nerve or tunical grafts, coupled with biomaterials
[181, 189]. Although intravenous administration of ASCs has
shown efficacy in ED after radiation [196], it can be associated
with severe adverse effects. The main mechanism of ASC-
mediated repair in treating ED is largely dependent on
paracrine actions, with scant evidence of cell engraftment
[193].

10.7 Testicular Stem Cell Therapy for the
Treatment of Infertility and Hormonal
Deficiency
10.7.1 Infertility
Different modalities of antineoplastic treatment, including
radiotherapy, new targeted therapies, and cytotoxic drugs, may
result in permanent damage to both testicular germ cells and
somatic cells (Sertoli and Leydig cells). Attempting to



preserve fertility in those patients, especially children, is of
fundamental importance. In a 2014 study where the testicular
tissue of cryopreserved newborn mice was cultured on agarose
gel after thawing, it displayed spermatogenesis up to sperm
formation. Microinsemination was achieved with round
spermatids and sperm, leading to eight offspring that grew
well and mated successfully. In vitro spermatogenesis of
cryopreserved tissues appears to be a potential approach to
fertility preservation in male cancer patients in the future
[197].

10.7.2 Hormone Replacement Therapy
Long-term exogenous testosterone therapy is associated with
serious side effects, including excessive erythropoiesis, bone
density changes, and even infertility [198]. To overcome these
problems, the transfer of Leydig cells from normal men’s
testes to hypogonal men has been proposed in order to provide
adequate endogenous testosterone. In a rat model, isolated
Leydig cells from the testes of normal rats were injected into
castrated rats in an encapsulated form to isolate them from the
hosts’ immune system. The castrated rats kept serum
testosterone levels up to 40% of normal levels for a maximum
period of 43 days without any human chorionic gonadotropin
stimulation [199].

10.8 Conclusions and Future
Considerations
Many challenges face the extensive use of stem cells for
patient treatment in clinical practice. Strenuous methods to
characterize transplanted cells and the lower therapeutic
efficacy of stem cells in chronic diseases in comparison to
their efficacy in acute injuries are among those difficulties.
Specific technical problems relating to the transplantation of
human cells in animals and new delivery procedures present
further challenges in the design and execution of preclinical
animal studies for stem cell therapies. Moreover, stem cell
integration within tissues must be improved. The best
condition in which stem cells can be delivered still needs to be



defined, especially the use of differentiated versus
undifferentiated stem cells. It would be exciting to explore
whether predifferentiation of stem cells before transplantation
would improve their effects without affecting their secretome
power. Lastly, there is no final agreement concerning the
optimal number of cells per treatment, the number of cell
injections, or even the best mode of delivery. Hence, following
animal models for long periods, consistent protocols, and
further clinical trials are required to confirm stem cell
therapeutic efficacy and safety before widespread use.

In the search for novel therapeutic alternatives in the
treatment of urogenital diseases, different types of stem cells
have been the focus of numerous in vitro and in vivo studies.
Stem cells can be used alone for cellular therapy or coupled
with scaffolds for tissue engineering of genitourinary organs.
Although limited clinical trials have been performed to date,
those available show encouraging results. More in vitro
experiments, in vivo implantations, and well-designed clinical
trials are required to ensure their efficacy before common use.
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11.1 Introduction
The immune system is the body’s form of defense and helps to
protect it against infectious organisms such as bacteria and
viruses. The immune system typically attacks and kills foreign
infectious agents and does not recognize and kill the body’s
normal cells. However, the immune cells sometimes recognize
and attack normal self-cells; this is called autoimmune disease
(AD). AD reflects a dysfunctional condition of the immune
system, in that it cannot identify self-antigens as self.

When ADs occur, some cells of the body are killed,
causing functional disability and morbidity in tissues or
organs. ADs are the third most common category of disease in
the USA, after cancer and heart disease, affecting
approximately 5–8% of the population [1], with a higher
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prevalence in women [2, 3]. Some tissues and organs
commonly affected by ADs include the endocrine system,
connective tissue, gastrointestinal tract, heart, skin, and
kidneys. To date, more than 80 ADs have been identified,
which include 15 common diseases that are divided into two
groups. The first group is organ-specific ADs, in which
immune cells attack specific cells in one organ. Examples of
these include type 1 diabetes, Addison’s disease, Hashimoto’s
thyroiditis, Graves’ disease, Sjögren’s syndrome, vitiligo,
pernicious anemia, glomerulonephritis, myasthenia gravis,
Goodpasture’s syndrome, autoimmune hemolytic anemia,
idiopathic thrombocytopenic purpura, and pulmonary fibrosis.
The second group is systemic ADs, in which immune cells
attack numerous different cells in some organs, such as
systemic lupus erythematosus (SLE), rheumatoid arthritis,
systemic sclerosis (SS), ankylosing spondylitis, and
polymyositis.

ADs are currently treated by conventional approaches
based on immunosuppressive drugs, such as corticosteroids,
cyclophosphamide, azathioprine, and methotrexate. However,
these drugs are not effective in some patients and have high
rates of side effects and toxicity [4, 5]. For a long time, some
mechanisms and features of ADs were clearer, and some novel
therapies were developed that brought tremendous benefits
and few side effects. This chapter summarizes and analyzes
certain mechanisms of stem cell transplantation to treat ADs
and discusses the roles and potential of stem cell therapy for
treating ADs.

11.2 Hematopoietic Stem Cell
Transplantation
11.2.1 Hematopoietic Stem Cells
Hematopoietic stem cells (HSCs) have a long history from
discovery to application. The first suggestion of the existence
of HSCs was presented in 1956, when Ford et al. determined
that transplantation of the spleen and bone marrow could save
patients subjected to previously lethal doses of radiation in



World War II [6]. However, the existence of HSCs was
subsequently confirmed in these tissues by Becker et al. [7] in
mouse and rat models [7]. HSCs in humans were characterized
and cultured in the 1980s [8–10].

HSCs have now been identified as adult stem cells that can
self-renew for a long time and differentiate into all types of
blood cell. They can be isolated from various tissues,
including adult bone marrow, some fetal tissues (liver, spleen,
thymus), the umbilical cord, and peripheral blood. HSCs from
these sources have been shown to express common markers,
such as CD34, CD38, CD90, CD133, CD105, CD45, and c-
kit, and are negative for lineage markers (lin−), such as
lymphocytes and monocytes. However, human and mouse
HSCs exhibit numerous differences in this regard. Markers of
mouse HSCs include CD34low/−, SCA-1+, Thy1.1+/low, CD38+,
c-kit+, and lin−, but those of human HSCs include CD34+,
CD59+, Thy1/CD90+, CD38lo/−, c-kit/CD117+, and lin−.
Nonetheless, HSCs form heterogeneous populations that
contain some cells that do not express these markers. For
example, in humans, HSCs have been reported to have the
marker profile of CD34−CD38− [11, 12] or to lack the
expression of c-kit [13].

Clinically, most laboratories have used the second two-
platform methods: the ISHAGE protocol, published by the
International Society of Hematotherapy and Graft
Engineering, to determine and count HSCs using flow
cytometry. Using this method, an HSC is recognized from the
profile CD34+CD45dim [14, 15]. HSCs were first applied
clinically in 1968, when they were used to treat sex-linked
lymphopenic immunological deficiency in a 5-month-old boy
in the form of the bone marrow cells of his sister, aged 8 years
[16]. The second case involved the treatment of a 2-year-old
child with Wiskott–Aldrich syndrome, who received an
allograft from a sister, herself having X-trisomy (47,XXX)
[17]. HSC transplantation is currently used to treat several
diseases, not only of hematologic origin, but also
immunological disorders, solid tumors, and inborn errors of
metabolism.



11.2.2 Hematopoietic Stem Cells for ADs
Preclinically, autologous, syngeneic, and allogeneic HSC
transplantations have been performed in animal models of
autoimmune diseases, including experimental autoimmune
encephalomyelitis [18, 19], experimental autoimmune
myasthenia gravis [20], adjuvant-induced arthritis [21],
collagen-induced arthritis [22], type 1 diabetes (NOD mice)
[23], and SLE-like ADs (MLR/lpr mice and NZB/W F1 mice)
[24, 25]. The results from these studies showed that HSC
transplantation can cause diseases to go into remission or can
induce immune tolerance.

HSCs were used for the first time for autoimmune diseases
in 1997, specifically for severe and therapy-refractory
autoimmune diseases [26]. The European Bone Marrow
Transplantation (EBMT) database PROMISE is the largest
database of transplanted patients with autoimmune diseases,
currently including data on more than 1000 such patients from
172 institutions in 27 countries. Pilot studies were conducted
on SS [26, 27], rheumatoid arthritis [28], SLE [18, 29, 30],
multiple sclerosis (MS) [29], and hematological ADs, such as
idiopathic thrombocytopenia [31], autoimmune hemolytic
anemia, and Evans syndrome, which showed that HSC
transplantation had improved in patients with such conditions.

For example, the study of Gratwohl et al. [32] showed that
autologous HSC transplantation helped the 5-year progression-
free survival rate to reach more than 50% [32]. Some clinical
benefits were also recorded as structural changes, such as
fibrosis and microvessel rarefaction, both typical features of
SS after HSC transplantation [33, 34]. Although HSC
transplantation has been used to treat various ADs, MS is its
main indication. To date, more than 12 trials have been
conducted with more than 400 patients treated in this way
[35]. A review of these trials showed that the rate of disease
stabilization reached 70% and patients showed improvement
for at least 3 years after transplantation. The second most
common disease treated by HSC transplantation is SLE. In
these patients, HSC transplantation was also associated with
good results; namely, the 5-year disease-free rate was



approximately 50%. Transplant-related mortality was also
reported to vary from 4 to 12% depending on the institution
[36, 37]. In other ADs, HSC transplantation also achieved high
rates of remission, such as 11 of 12 patients with severe,
therapy-refractory Crohn’s disease achieving remission [38]
and 50% of patients with the same condition remaining
insulin-independent at a median of 30 months after HSCT,
among those with type I diabetes mellitus [39].

11.2.3 Mechanism of HSC Transplantation
for ADs
Although reports have shown that HSC transplantation can
cure ADs, the exact mechanism behind this therapy remains
unclear. To date, in almost all studies, it has been considered
that HSC transplantation removes the autoreactive effector and
inflammatory cells that cause ADs. It was hoped that the
newly transplanted HSCs would reset the immune system (Fig.
11.1). However, the HSC transplantation procedure actually
destroyed almost all immune cells of the “diseased” immune
system. After HSC transplantation, it was hoped that the de
novo generation of naïve T lymphocytes would occur and a
normal immune system could replace the old one. However,
Tehlirian et al. [40] showed that the reinfusion of HSCs could
cause aplasia. They demonstrated that high-dose
cyclophosphamide therapy without the reinfusion of stem cells
could still be an effective treatment for SS [40]. In fact,
lymphotoxic chemotherapy such as cyclophosphamide
reduced the effects of autoantibodies as well as the toxicity of
autoreactive T cells.



Fig. 11.1 Three approaches to treating ADs based on stem cells: immune
correction, immune modulation, and gene correction. The immune system can be
corrected by HSC transplantation, while immune modulation is usually performed
by MSCs. The latest approach, related to gene correction, is also recommended in
some recent studies

However, some of the following lines of evidence suggest
that HSC transplantation also plays roles in reestablishing
immunological tolerance: (1) autologous HSC transplantation
leads to an increased number of regulatory, FoxP3-positive T
cells [41]; (2) the reactivation of thymic function after
autologous HSC transplantation may lead to a tolerant,
“juvenile” immune system [42, 43]; and (3) antithymocyte
globulin directly targets long-living, autoantibody-producing
plasma cells by complement-mediated lysis and apoptosis
[44].

According to this principle, ADs could be effectively cured
by HSC transplantation; however, relapses also sometimes
occurred after treatment. This is related to (1) the persistence
of autoreactive cells such as long-lived plasma cells [45], (2)
de novo emergence of AD in a highly predisposed host, and
(3) polymorphisms of genes involved in the innate immune
system [46].



11.3 Mesenchymal Stem Cell
Transplantation
11.3.1 Mesenchymal Stem Cells
Mesenchymal stem cells (MSCs) are adult stem cells that can
be isolated from various sources. They were first discovered in
the 1960s and called MSCs by Friedenstein et al. [47]. MSCs
are multipotent stem cells that can differentiate into various
types of mesoderm cell, such as osteoblasts, adipocytes, and
chondroblasts. In recent studies, MSCs were demonstrated to
be able to differentiate into other germ layer cells, such as
neurons, beta cells, and hepatocytes.

In contrast to HSCs, MSCs can be isolated from various
sources, such as adipose tissue [48, 49], peripheral blood [50–
52], umbilical cord blood [53–55], banked umbilical cord
blood [56, 57], umbilical cord [58, 59], umbilical cord
membrane [60], umbilical cord vein [61], Wharton’s jelly [62],
placenta [63], decidua basalis [64], and ligamentum flavum
[65]. They could also be isolated from amniotic fluid [66, 67],
amniotic membrane [68, 69], dental pulp [70, 71], chorionic
villi of human placenta [72], fetal membranes [73], menstrual
blood [74, 75], breast milk [76, 77], and urine [78, 79].
Although MSCs from these different sources are not identical,
they exhibit some common characteristics, which are
considered to be minimal criteria for defining MSCs [80], as
follows:

1. MSCs must adhere to plastic under standard tissue culture
conditions.

 

2. MSCs must express some specific markers, such as CD73,
CD90, and CD150, and lack the expression of CD14,
CD34, CD45 or CD11b, CD79 alpha or CD19, and human
leukocyte antigen - antigen D related (HLA-DR).

 

3. MSCs must successfully differentiate into osteoblasts,



adipocytes, and chondroblasts in vitro.  
Given their high differentiation potential, MSCs have been

preclinically and clinically applied for the treatment of
degenerative diseases, such as for repairing injured cartilage
and promoting the healing of bone. Moreover, MSCs have a
special feature related to immune modulation or
immunosuppression, which led to their transplantation being
considered as a novel therapy for ADs.

11.3.2 MSC Transplantation for ADs
MSCs have been successfully applied for both preclinical and
clinical treatments of various ADs, such as SLE [81–83], CD
[84, 85], multiple system atrophy (MSA) [86, 87], MS [88,
89], and amyotrophic lateral sclerosis (ALS) [90–92].

11.3.2.1 Crohn’s Disease
CD, also known as Crohn’s syndrome or regional enteritis, is a
type of inflammatory bowel disease that can affect the
gastrointestinal tract [93]. CD usually has some characteristic
signs and symptoms, such as abdominal pain, diarrhea, fever,
and weight loss [93]. Other complications outside the
gastrointestinal tract have also been detected, including
anemia, skin rash, arthritis, eye inflammation, and fatigue.

The first report on the application of MSCs in the
treatment of CD was published in 2005. The results showed
that the local injection of MSCs from adipose tissue led to the
healing of fistulas without side effects [94, 95]. These results
were confirmed by a recent study by the same group in 2015
[96]. To date, more than ten clinical trials using MSCs on
more than 500 CD patients have been conducted. Almost all
trials used adipose stem cells, but a few used bone marrow-
derived MSCs (BM MSCs) (Table 11.1). Both autologous and
allogeneic MSCs could improve the disease. Regarding the
route of administration, it is noteworthy that only one study
used the intravenous injection of allogeneic MSCs from bone
marrow [98]; in almost all trials, the cells were delivered
intralesionally.



Table 11.1 Clinical trials using stem cells for the treatment of Crohn’s perianal
fistula

Study design Source of
cells

Results Year Reference

Phase I clinical study (n
= 4)

ASC
(autologous)

Complete closure: 50%
of patients 75% fistulas

2005 [94]

Open-label,
multicenter, phase II
study (n = 14)

ASC + fibrin
glue
(autologous)

Fistula healing: 71% vs.
14%

2009 [95]

Prospective study (n =
10)

MSC
(autologous)

Reduction in CDAI,
PDAI, and
pain/discharge PDAI
scores

2011 [97]

Open-label phase II
study (n = 10)

MSC
(allogeneic)
IV

Reduction in CDAI and
fistula drainage

2011 [98]

Retrospective follow-
up of Garcia-Olmo
phase II study (n = 5)

ASC + fibrin
glue
(autologous)

58% sustained fistula
closure at end of follow-
up by mean 3 years

2012 [99]

Open-label,
multicenter, dose
escalation phase I study
(n = 10)

ASC
(autologous)

Healing in 50%
receiving ≥2 × 107
cells/mL

2013 [100]

Open-label,
multicenter, phase II
study (n = 42)

ASC
(autologous)

Fistula closure in 82%
PP, 67% ITT analysis

2013 [101]

Open-label pilot study
(n = 24)

ASC
(allogeneic)

Complete closure: 56.3% 2013 [102]

5-year follow-up of
2011 study (n = 10)

MSC
(autologous)

37% fistula relapse-free
4 years later

2015 [84]

1-year follow-up of
2013 study

ASC
(autologous)

Complete closure
maintained in 75% at 2
years ITT analysis

2015 [103]

Retrospective, open
label (n = 3 with CD)

ASC
(allogeneic
and
autologous)

Healing in 2/3 CD fistula
patients

2015 [96]

Double-blind, placebo-
controlled study, phase
II

MSC
(allogeneic)

Healing up to 85% 2015 [104]



Source: Clinicaltrials.gov. ASC adipose-derived stem cell, CD
Crohn’s disease, CDAI Crohn’s disease activity index, ITT
intention to treat, IV intravenous, MSC mesenchymal stem
cell/mesenchymal stromal cell, PDAI pouchitis disease activity
index, PP per protocol, SC stem cell

Regarding the dose to be administered, the suitable dose of
MSCs has yet to be fully determined. Some trials used varying
doses ranging from 3.5 × 106 to 30 × 106 cells [94]; in another
study, 15.8 × 107 cells were used [101]. Interestingly, in a
recent study, Molendijk et al. showed that a dose of 9 × 107

MSCs had the best response rate, which was greater than those
of 107 and 3 × 107 cells [104].

11.3.2.2 Multiple Sclerosis
MS is the most common autoimmune inflammatory
demyelinating disease of the central nervous system (CNS),
which eventually leads to demyelination and axonal loss. Its
main cause is an immune response to myelin proteins. There
are three forms of disease evolution. About 80% of patients
have the relapsing-remitting form, and two-thirds develop a
secondary progressive form 10–15 years after disease onset;
the remaining 20% of patients develop a progressive form
right at onset, namely, primary progressive multiple sclerosis.

The first report on the use of autologous MSCs delivered
intrathecally for treating MS showed that their transplantation
was not associated with a significant clinical improvement and
caused adverse events in ten patients [105]. In more recent
studies, Yamout et al. [106] and Karussis et al. [107] showed
that MSC transplantation helped to increase the proportion of
CD4+CD25+ regulatory T cells, decreased lymphocyte
proliferation, and decreased activated markers of dendritic
cells (DCs) [106, 107].

Certain clinical benefits were identified in a recent study in
which autologous MSCs were infused into patients with MS.
Specifically, their visual function [108] improved, and they
exhibited transient disease stabilization [109]. In almost all
clinical trials to date, it was autologous MSCs that were



transplanted. In addition, MSCs were isolated from bone
marrow and were administered to patients in one of two ways:
(1) intravenous injection and (2) the introduction of cells
directly into the cerebrospinal fluid via an intrathecal injection.
Although no clinical trials have yet compared the efficacy and
safety of MSC transplantation between these two approaches,
some independent trials showed that intrathecal injection may
be less safe than its intravenous counterpart. In fact, certain
side effects were detected in MS patients who had undergone
the transplantation of BM MSCs, particularly in one patient
who received a very high dose of cells [106]. Regarding the
efficacy of these approaches, results have shown that
introducing cells directly into the cerebrospinal fluid via an
intrathecal injection may be more effective for improving
symptoms than an intravenous injection.

Two mechanisms have been hypothesized to explain the
roles of MSCs in MS. The first is related to the
immunomodulation performed by MSCs. Intravenously
injected MSCs would promote the release of cytokines, trophic
factors, and microvesicles. These factors can suppress chronic
autoimmunity and CNS injury [110, 111]. The second
mechanism is related to the differentiation of MSCs into
neurons. Studies have shown that MSCs can penetrate the
blood–brain barrier and enter the CNS [112, 113]. The
delivery of cells directly into the cerebrospinal fluid results in
being as close as possible to lesions without the risk of spinal
cord damage, facilitating their differentiation into neurons.

Recently, MSCs were differentiated in vitro into neural
progenitors (MSC-NPs). In animal models, the transplantation
of MSC-NPs was shown to improve neurological functions
[110]. Following this preclinical trial, a clinical trial was
approved in the USA for the transplantation of MSC-NPs to
treat MS patients. From the initial results, no adverse effects
were noted in the first ten patients treated [114].

11.3.2.3 Systemic Lupus Erythematosus
SLE is a systemic autoimmune disease which can affect the
skin, joints, kidneys, brain, and other organs. Other common



symptoms include chest pain, fatigue, fever, general
discomfort, malaise, hair loss, mouth sores, sensitivity to
sunlight, and skin rash.

The transplantation of MSCs for SLE patients produced
remarkable results. Almost all clinical trials showed that MSC
transplantation was effective for conditions across the SLE
spectrum. Sun et al. [115] successfully treated some SLE
patients who were unresponsive to monthly intravenous
cyclophosphamide and oral prednisone (≥20 mg/day) [115].
All patients significantly improved at 1, 6, and 12 months’
follow-up, as shown by clinical symptoms, urinary protein,
and immune cell functions. In particular, the level of T
regulatory cells increased at 3 months’ follow-up, and no
complications were detected after 12–18 months’ follow-up
[115].

In a larger trial, Liang et al. [116] showed that the
transplantation of allogeneic BM MSCs from non-HLA-
matched healthy family members effectively improved clinical
and serological features. Surprisingly, proteinuria decreased
significantly 24 h after transplantation. Anti-double-stranded
DNA antibodies also decreased significantly at 1 month and 3
months post-transplantation [116].

In a recent phase II study, Wang et al. [117] used
allogeneic umbilical cord-derived MSCs (UC-MSCs) to treat
SLE. With 4 years of follow-up (mean 27 months), patients
exhibited better clinical results, with an overall survival rate of
94%; in addition, approximately 50% of patients achieved and
remained in clinical remission at 4 years, although disease
relapse occurred in 23% of the patients [117]. Similar results
were also recorded in clinical trials using allogeneic BM
MSCs. No difference in the clinical efficacy was found
between allogeneic BM MSCs or UC-MSCs. MSC infusion
was also shown to promote remission in multiorgan
dysfunctions including lupus nephritis [81], diffuse alveolar
hemorrhage [118], and refractory cytopenia [119].

In the last year, the first multicenter clinical trial involving
the transplantation of allogeneic UC-MSCs to treat SLE was
reported. The results showed that 32.5% of patients achieved a



major clinical response and another 27.5% of patients
achieved a partial clinical response during a 12-month follow-
up [82]. According to this study, several patients experienced
disease relapse after 6 months, indicating the need to repeat
MSC transplantation after 6 months.

11.3.2.4 Systemic Sclerosis
SS is a systemic connective tissue disease. The characteristics
of SS include essential vasomotor disturbances, fibrosis, and
subsequent atrophy of the skin, subcutaneous tissue, muscles,
and internal organs.

In contrast to other ADs, few clinical studies have used
MSC transplantation to treat SS. In a recent study by Akiyama
et al. [120], allogeneic MSCs were transplanted into five
patients with SS. The results showed that this transplantation
triggered the induction of T-cell apoptosis, lymphopenia, and
Treg induction, leading to skin ulcer healing in one case and
significant improvements in the skin score, Health Assessment
Questionnaire results, and autoantibody titer in the entire
group [120].

11.3.3 How Can MSCs Cure ADs?
11.3.3.1 MSCs Regulate Immune System
Activities
In contrast to other stem cells, MSCs have a remarkable
capacity to regulate immune responses, both in vitro and in
vivo. MSCs were demonstrated to affect the immune system
cells, namely, T lymphocytes [121–123], B lymphocytes [124–
126], natural killer (NK) cells [127, 128], and DCs [129, 130].
MSCs were found to suppress T-cell proliferation induced by
cellular or nonspecific mitogenic stimuli [122], alter the
cytokine secretion profile of naïve and effector T cells [121],
and promote the expansion and function of Treg cells [123]. In
the case of B lymphocytes, MSCs can also inhibit their
proliferation [125], affect their chemotactic properties [126],
and suppress their terminal differentiation [124]. For NK cells,



MSCs were approved to alter their phenotype and suppress
proliferation, cytokine secretion, and cytotoxicity against
targets expressing HLA class I [127, 128]. Finally, in DCs,
MSCs can influence the differentiation, maturation, and
function of monocyte-derived DCs [130]; suppress DC
migration, maturation, and antigen presentation [129]; and
induce mature DCs into a novel Jagged-2-dependent
regulatory DC population [131] (Fig. 11.2).

Fig. 11.2 Some mechanisms of MSCs for autoimmune diseases. To date, at least
three ways for MSCs to affect ADs have been identified. (1) MSCs can modulate
the host’s immune system; (2) MSCs can home and differentiate into specific cells
that replace the injured cells in some tissues; (3) MSCs release cytokines and
growth factors that can inhibit fibrosis as well as apoptosis, trigger the self-renewal
process of stem cells, and stimulate angiogenesis

These effects of MSCs are related to certain bioactive
molecules (Table 11.2). Almost all of these molecules are anti-
inflammatory agents, such as IL-10, prostaglandin E2, and
interleukin-1 receptor antagonist. Important molecules related
to antiproliferative activity include transforming growth factor



β-1 (TGFβ1), hepatocyte growth factor (HGF), and human
leukocyte antigen G isoform (HLA-G5).
Table 11.2 Important bioactive molecules secreted by MSCs and their functions

Bioactive molecules Functions

Prostaglandin-E2 (PGE2) Antiproliferative
mediators [132]

Anti-inflammatory [133]

Interleukin-10 (IL-10) Anti-inflammatory [134]

Transforming growth factor β-1 (TGFβ1), hepatocyte
growth factor (HGF)

Suppress T-lymphocyte
proliferation [122]

Interleukin-1 receptor antagonist Anti-inflammatory [135]

Human leukocyte antigen G isoform (HLA-G5) Antiproliferative for naïve
T cells [136]

LL-3 Antimicrobial peptide and
reduce inflammation [137]

Angiopoietin-1 Restore epithelial protein
permeability [138]

MMP3, MMP9 Mediating
neovascularization [139]

Keratinocyte growth factor ALVEOLAR epithelial
fluid transport [140]

Endothelial growth factor (VEGF), basic fibroblast
growth factor (bFGF), placental growth factor (PlGF),
and monocyte chemoattractant protein-1 (MCP-1)

Enhance proliferation of
endothelial cells and
smooth muscle cells [141,
142]

In some AD animal models, MSC transplantation
regulated the immune system functions (Table 11.3).
Table 11.3 Immunomodulatory effect of mesenchymal stromal cells in animal
disease models

Disease model Anti-inflammatory MSC
effects

References

Type 1 diabetes ↑ Regulatory T cells [143–146]

TH1 → TH2 [144, 145]



Disease model Anti-inflammatory MSC
effects

References

↓ Inflammatory T cells [143, 145]

↑ Tissue repair [144, 147, 148]

Pancreatic islet transplantation ↑ Islet survival [149–151]

↑ Regulatory T cells [149, 151]

↓ TH1 cytokines [151]

↓ T-cell responsiveness [150]

Experimental autoimmune
arthritis

↓ Inflammatory cytokines [152–155]

↑ Regulatory T cells [132, 152, 154,
156]

↓ T-cell responsiveness [125]

↑ IL-10 [154–156]

↓ TH1/TH17 cells [154, 156]

↑ TH2 cells [132, 154]

Graft vs. host disease ↓ Autoantibodies [157]

↓ Inflammatory cytokines [158–161]

↑ Regulatory T cells [162]

↓ T-cell proliferation [161]

↓ TH1 cells [163]

Experimental autoimmune
encephalomyelitis

↓ T-cell responsiveness [164]

↓ Autoantibodies [165]

↓ CNS infiltration [165–167]

↓ Inflammatory cytokines [166–168]

TH1 → TH2 [169]

↓ TH17 cells [168]



Disease model Anti-inflammatory MSC
effects

References

Inflammatory bowel disease ↓ Inflammatory T cells [120, 170, 171]

↓ Inflammatory cytokines [170–173]

↓ T-cell responsiveness [170]

↓ Growth factor
expression

[172]

↑ FasL-mediated T-cell
apoptosis

[120]

↑ Regulatory T cells [170, 171, 173,
174]

↓ Intestinal CD4+ T-cell
infiltration

[170, 171, 173]

↑ Anti-inflammatory
cytokines

[120, 170, 171,
173, 174]

Systemic lupus erythematosus ↓ Anti-dsDNA antibodies [115, 175–177]

↓ T-cell frequency [177]

↑ Regulatory T cells [115]

↑ Anti-inflammatory
cytokines

[175]

↓ Inflammatory cytokines [175]

↓ Plasma cells [115]

↓ TH17 cells [115]

Experimental autoimmune uveitis ↓ Inflammatory cytokines [178, 179]

↑ IL-10-producing B cells [178]

↓ TH17 cells [178, 180]

↓ TH1 cells [178]

↓ Inflammatory T cells  

↑ Regulatory T cells [181]



Disease model Anti-inflammatory MSC
effects

References

↑ IL-10 [178]

11.3.3.2 MSCs Contribute to the Repair of
Injured Tissue
The immune responses involved in ADs can result in tissue
injury, resulting in reduction of physiological functions, and
death of local cells. MSCs could differentiate into tissue-
specific cells to replace injured cells.

MSCs could also produce factors that trigger tissue
healing. For example, they were demonstrated preclinically
and clinically to be a source of cytokines and growth factors,
which affect injured cells in the vicinity [182]. The MSC
secretome has been shown to be responsive to stress, including
physiological changes (hypoxia or anoxia), small-molecule
stimulation, and cytokine treatment [183].

11.4 A Comparison of Allogeneic MSC
Transplantation and Autologous HSC
Transplantation
It appears that ADs can be treated by both HSC and MSC
transplantation. However, to date, no comparative studies have
been undertaken to determine which therapy is more suitable.
Based on various recently published independent clinical
trials, initial observations showed that MSC transplantation
has some advantages over HSC transplantation. For example,
in the treatment of SLE using both HSC and MSC
transplantation, allogeneic MSC transplantation showed
superior clinical efficacy comparable to that of HSC
transplantation (Table 11.4). Almost all outcome data showed
that allogeneic MSC transplantation is better than autologous
HSC transplantation, in particular that the cost for MSC
transplantation is lower than that of autologous HSC
transplantation.



Table 11.4 Comparison of allogeneic MSC and autologous HSC transplantation

 Allogeneic MSC transplantation
(references)

Autologous HSC
transplantation

Overall survival rate
(%)

92.5–94 [82, 117] 81 ± 8 [184]

Rate of clinical
remission (%)

50–60 [82, 117] 20–66 [185]

Rate of relapse (%) 17.5–23 [82, 117] 32 [185], 56 ± 11 [184]

Rate of TRM (%) 0 [82, 117] 2–12 [36, 185]

CYC conditioning
regimen

Not necessary [117] Necessary

Cost 20,000 60,000 [186]

CYC cyclophosphamide, TRM transplant-related mortality

11.5 Conclusion
ADs have poor progression, which is related to injury to cells
as a result of abnormal immune system activities. For a long
time, ADs were treated using immunosuppressive drugs with
low efficacy. After more than 10 years of stem cell
transplantation for ADs, patients can now anticipate the
development of novel methods using stem cells to treat their
diseases. Theoretically, HSC transplantation should reset a
patient’s immune system; however, this technique is expensive
and difficult and has a high rate of relapse. MSC
transplantation however is a promising alternative therapy. In
contrast to HSCs, MSCs have both high differentiation
potential and high immunomodulating functions. Preclinically
and clinically, MSCs can correct the patient’s immune
response, which significantly reduces autoimmune reactions.
In fact, in an increasing number of updated and reported
clinical trials, MSCs have been used to effectively treat
different types of ADs. Despite that some of the mechanisms
of therapy remain unclear, along with the limitation of a small
number of patients, these initial results are encouraging and
show that MSC transplantation is especially promising in
treating AD.
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12.1 Introduction
The liver is the largest gland in the body, and it performs
several hundred vital functions, predominantly related to
metabolism and homeostasis. It is important in amino acids,
proteins and enzyme synthesis, energy storage (glycogen and
fat storage), production of cholesterol and bile, and
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detoxification and elimination of drugs and xenobiotics.
Hepatocytes, the major cell type in the liver, carry out most of
the aforementioned functions. Some of the other cell
populations in the liver are constituted by cholangiocytes,
Kupffer cells, sinusoidal endothelial cells, stellate cells,
stromal cells, and hematopoietic cells, with each one of them
having a specific function. Moreover, being the central organ
for a diversity of vital functions, the liver serves as a prime
example of regeneration because it holds a major regenerative
capacity following loss of up to three quarters of its mass due
to partial hepatectomy or toxic injury. This adaptive response
and robustness of liver regeneration is crucial to ensure the
body’s metabolic functions, and thus, an unhealthy liver may
have a profound negative impact on metabolism and
homeostasis. Hence, novel therapies that ensure some degree
of recovery from liver disease, are greatly sought worldwide.
This chapter describes some of the most common liver
diseases and several novel regenerative therapies that are
currently in development or already translated into the clinical
setting.

12.2 Liver Diseases
A variety of factors, such as toxins, infectious agents,
immune-mediated insults, tumors, and hereditary defects, can
cause various liver diseases. Depending on the severity and
duration of the insult, the result may be either acute liver
failure (ALF) or chronic liver disease (CLD). According to the
American Liver Foundation, more than 30 million people in
the USA have a liver disease. CLD and cirrhosis alone were
responsible for approximately 10 deaths per 100,000 people in
all age groups in 2010, with the death rate being almost 30 per
100,000 people in the age group of 50+ years and the total
deaths numbered at 31,903, making them the most common
cause of death among all liver diseases [1]. CLD and cirrhosis
are indeed the 12th leading cause of death in all ages, but
among people 45 years and older, CLD and cirrhosis are the
fifth leading causes of death in the USA [2]. In the past
decade, the death rate due to CLD and cirrhosis has often seen
yearly increases, and according to government census reports,



the number of Americans aged 65 and older is projected to be
88.5 million by 2050, more than double the projected number
of 40.2 million in 2010 [3]. As a result, it is reasonable to
expect an increase over the coming years in the number of
patients with CLD and cirrhosis. Primary liver cancer is the
second leading cause of death among other liver diseases and
led to the death of approximately 24,550 people in 2015
according to the American Cancer Society. More than 90% of
the people diagnosed with liver cancer are older than 45 years
of age and thus present a bigger threat in the near future with
the increasing percentage of the elderly population worldwide
[4]. At the same time, a variety of early-stage liver diseases
caused by factors ranging from drugs, toxins, and alcohol to
lifestyle and various preexisting diseases, lead to CLD and,
ultimately, end-stage liver failure. This progression pattern
makes it difficult to predict mortality rates for various early-
stage liver diseases.

Many factors are involved in causing different types of
liver diseases. The failure of numerous hepatic metabolic and
synthetic functions is usually the pathophysiological
consequence of liver disease. Etiologic risk factors involved in
some of the major liver diseases will be discussed in this
section.

12.2.1 Hepatocellular Carcinoma
One of the most deadly malignant tumors is hepatocellular
carcinoma (HCC), with 5-year survival rates ranging from 3 to
28% based on the stage of progression [5]. It is the fifth most
common cancer worldwide and fourth most common cause of
cancer-related deaths [6]. HCC is usually accompanied by
cirrhosis and hepatitis B or C viral (HBV or HCV) infection,
which compromise the survival rates of diagnosed patients [7].
Alcoholic liver disease, metabolic liver disease, and damages
caused by toxins and drugs are other risk factors involved in
the progression of HCC [8]. Owing to the coexistence of
various risk factors in patients diagnosed with HCC, several
etiological factors are involved in the development of HCC.
The disease progression of HCC is directly affected by these
factors, making it a complex disorder with poor prognosis [9].



Liver cirrhosis triggered by HBV and HCV infection is
thought to be the primary risk factor in the development of
HCC [7]. Activation of stellate cells, a hallmark of liver
cirrhosis, resulting in increased production of cytokines and
growth factors that affect hepatocyte proliferation, may also
cause tumor formation [10].

12.2.2 Hepatic Fibrosis and Cirrhosis
Several etiological factors contribute to the development of
liver cirrhosis. Following liver injury caused by a variety of
factors discussed earlier, usually quiescent stellate cells
become activated, resulting in the synthesis and secretion of
extracellular matrix (ECM) molecules and cytokines as a step
in the repair process. This “scarring” process promotes hepatic
fibrogenesis, which is enhanced by several liver cell
populations in a diseased liver, leading to increased ECM
synthesis by stellate cells [8]. Liver fibrosis is a result of the
anomalous continuation of fibrogenesis, and it progresses at
variable rates depending on the cause of the liver disease and
environmental and host factors [11]. Cirrhosis, an advanced
stage of liver fibrosis, compromises exchanges between
hepatic sinusoids and adjacent hepatic parenchyma owing to
the formation of scar tissue in the space of Disse. Impaired
liver function, portal hypertension, and development of HCC
are the major pathophysiological consequences of liver
cirrhosis [11]. Alcohol abuse, HBV and HCV infection, and
fatty liver disease are the main causes of the development of
cirrhosis, despite the fact that most other liver diseases, if
untreated, can cause liver damage to an extent that leads to
cirrhosis.

12.2.3 Alcoholic Liver Diseases
Alcohol consumption accounted for 3.8% of all deaths
worldwide in 2004 [12]. Moreover, alcohol-related liver
deaths accounts for up to 48% of the cirrhosis-related deaths in
the USA [13]. Overconsumption of alcohol over a long period
of time generally causes ALD, but other factors, such as diet,
hepatitis infection, and coexisting nonalcoholic fatty liver



disease (NAFLD), play an important role in its progression
[14]. Not all heavy alcohol drinkers develop ALD, as the
extent of liver injury caused by alcohol consumption is
dependent on multiple factors, such as dose, time and type of
alcohol consumption, drinking pattern, age, ethnicity, and
other risk factors such as iron overload, obesity, and genetic
factors [14, 15]. ALD can eventually lead to the development
of the patients advanced liver disease with concomitant
cirrhosis in up to 50% of cases [16]. The toxic effects of
ethanol on the liver include disruption of the lipid portion of
cell, altering the capacity of liver cells to cope with
environmental toxins and acetaldehyde, an oxidative product
of ethanol-mediated toxicity [8]. ALD presents as a broad
spectrum of liver diseases, ranging from alcoholic fatty liver
(steatosis) disease to more severe forms of liver injury,
including alcoholic hepatitis (AH), cirrhosis, and HCC [13].

12.2.4 Nonalcoholic Fatty Liver Disease
NAFLD is characterized histologically by fatty infiltration in
the hepatocytes accompanied by inflammation or hepatocyte
necrosis resembling AH and can progress into cirrhosis [8]. It
represents the spectrum of liver disorders associated with
hepatic steatosis, not being caused by alcohol consumption.
The prevalence of NAFLD is estimated between 16 and 23%
of the adult population, making it the most common liver
disease in the USA [17], and is increasing its incidence in
Western countries. Obesity, type 2 diabetes mellitus, and
hyperlipidemia are the major risk factors leading to the
progression of NAFLD [18]. The severe form of fatty liver
disease, NASH, generally progresses into cirrhosis and liver
cancer. Several mechanisms have been proposed to understand
the pathogenesis of NAFLD explaining the basis of fat
accumulation, liver injury, and fibrosis occurring during its
progression [19–21]. Although there is increased
understanding of pathogenesis of fat accumulation, clear
elucidation of the mediators and mechanism of hepatocyte
injury, mediators of stellate cell activation, and fibrosis is
lacking [22].



12.2.5 Acute Liver Failure
ALF, also called fulminant hepatic failure (FLH), is a
syndrome resulting from the rapid loss of hepatocyte function
usually associated with coagulopathy and encephalopathy in
patients with no preexisting liver diseases [23]. Viral infection,
idiosyncratic drug-induced reactions, toxins, metabolic
abnormalities, and vascular disasters are the principal factors
leading to ALF [8]. Viral hepatitis (A, B, and E) is the major
culprit for ALF in developing nations, while acetaminophen
toxicity is the most common cause of ALF in the USA and UK
[24]. ALF is an unusual syndrome with approximately 2000
cases per year in the USA with high mortality rates ranging
between 40 and 90% [25]. ALF affects the physiologic status
of almost every organ system in the body as a consequence of
the involvement of liver in functions affecting almost all
organs. During the progression of ALF, the most important
liver functions are altered, leading to hyperbilirubinemia,
hyperammonemia, altered drug metabolism, and the metabolic
dysfunction of carbohydrates, lipid, and proteins.

12.2.6 Viral Hepatitis
Viral hepatitis is an inflammatory disease of the liver caused
by various viruses, namely, hepatitis A, B, C, D, and E.
Hepatitis A, B, and C are the more common types of viral
hepatitis found in the USA [26]. These viruses can spread
through food, water, infected blood, and bodily fluids. Viral
hepatitis is usually acute with a short-term infectious stage, but
HAV (hepatitis A virus), HBV, and HCV can also cause
chronic hepatitis, which accounts for approx. 82% of the total
number of liver cancer cases in the world. About 60% of these
cases are associated with cirrhosis, cancer, liver failure, and
HBV, while 22% cases are associated with HCV [27].
Hepatitis C is the major cause of liver transplantation in
Europe and the USA and is responsible for an increase in the
number of deaths due to HCC [28].

12.2.7 Inborn Errors of Metabolism



Defects in an enzyme or transport protein by genetic mutations
can produce alterations in a metabolic pathway and lead to
inborn errors of metabolism [8, 29]. Some of these metabolic
diseases can cause major structural damage to the liver and
ultimately lead to liver failure or cirrhosis. These errors of
metabolism could also damage other organ systems.
Approximately 15–25% of liver transplantation in children
[30] are a result of a group of inborn errors of metabolism. A
shortage of livers for transplantation, combined with the
possibility of long-term graft rejection, has led to hepatocyte
transplantation as an alternative approach to treating these
disorders, although complete correction of the errors of
metabolism has not yet been achieved [29, 30].

12.3 Therapies for Liver Diseases
Various liver diseases require variable methods of
management and care, as the symptoms vary greatly based on
the type and duration of the disease. For example, a patient
with severe ALF may only survive with immediate liver
transplantation, but a patient with a progressive chronic liver
disease may be treated with pharmacological interventions
before the disease progresses to the end stage, where liver
transplantation may be the only alternative for survival. To
date, liver transplantation remains the only option for all
chronic-/end-stage liver diseases. However, other treatment
strategies have been implemented in the therapeutic
management of acute and chronic liver diseases:

1. An antidote can be used to reduce hepatic injury and
reverse ALF in certain cases. N-acetyl-cysteine (NAC) is
a well-known antidote that provides cysteine, which helps
replenish hepatic glutathione stores and protects the liver
from free-radical injury arising from acetaminophen,
carbon tetrachloride, or trichloroethylene [31].

 

2. In hepatic encephalopathy (HE), the first step in
management is to reduce the production and absorption of
ammonia, either by reducing protein intake or
administering nonabsorbable disaccharides or antibiotics

 



administering nonabsorbable disaccharides or antibiotics

[8]. The last option, if these therapies do not produce
satisfactory results, is liver transplantation.

3. Therapeutic agents such as immunomodulatory
compounds, inhibitors of stellate cell activation,
antioxidants, and modulators of collagen synthesis and
degradation are some of the treatments used for
progressive liver fibrosis, when it is reversible. Treatment
of liver cirrhosis varies significantly based on the nature
of the disease. For example, alcoholic cirrhosis is treated
by abstaining from alcohol, while cirrhosis caused by viral
hepatitis is treated by interferon immune therapy and
ribavirin or any of the novel drugs available on the market
for hepatitis C [32].

 

4. Treatment of NAFLD is generally focused on correcting
underlying risk factors such as weight control and diabetes
control [17].

 

5. The etiological factors in HCC have a big impact in
determining treatment strategies. If an HCC patient has a
compromised liver function due to cirrhosis, surgical
resection of the tumor may not be ideal because of the risk
for postoperative decompensation [7]. Most of the patients
that eventually progress to end-stage liver disease
(cirrhosis) are then recommended for orthotopic liver
transplantation.

 

12.4 Liver Transplantation
Liver transplantation is the substitution of a diseased liver with
a healthy donor organ; thus, it serves as a viable treatment
option for patients with acute liver failure, end-stage liver
disease, hepatic malignancies, and metabolic diseases [8].
Except in the case of specific disorders, transplantation is



usually the treatment of choice for liver disease complications,
rather than the underlying illness. The survival rate of liver
transplantation patients has increased owing to improvements
in immunosuppression drug regimens, transplantation
techniques, and preoperative care. The most recent 1-year
survival rate is 88.2% [33]. However, there are still great risks
in liver transplantation, including the inherent risk of surgery,
disease recurrence, and long-term immunosuppression. These
risks must be weighed against the benefits of surgery, which
vary from patient to patient but include improvements in the
quality of life, survival, and prevention of long-term
complications [8].

Patients with advanced chronic liver failure, acute liver
failure, decompensated cirrhosis, and hepatocellular carcinoma
are potential candidates for liver transplantations. The primary
liver diseases in these cases include chronic hepatitis C and B,
alcoholic liver disease, cryptogenic and primary biliary
cirrhosis, sclerosing cholangitis, and hepatitis. More
uncommon indications for liver transplantation include hepatic
tumors, metabolic and genetic disorders, and some vascular
disorders [8]. Differences in the specific disease have
implications for the transplant evaluation process and recovery
post-transplantation. Cardiopulmonary diseases, advanced
pulmonary disease, malignancy outside of the liver, active
alcohol and drug use, and anatomic abnormalities precluding
liver transplantation are reasons for the removal of patients
from the transplant lists [34]. Prior to 2002, organ allocation
was based on a first-come first-served basis. The major issue
with this method was that patients who were at the greatest
risk of dying were not given the highest priority. However, the
organ allocation system is now driven by disease severity,
mostly based on the model for end-stage liver disease (MELD)
score. The MELD score attempts to determine disease severity
and potential for survival post-transplantation and is currently
used by the United Network for Organ Sharing in the USA.
MELD scores are calculated using laboratory values of serum
bilirubin, serum creatinine, and international normalized ratio
for prothrombin time, and a high MELD score is associated
with decreased survival rates [33]. In general, patients



displaying signs of end-stage liver disease or a MELD score of
ten and above should be referred for transplant evaluation.

The most recent data published by the Organ Procurement
and Transplantation Network in 2011 indicated that
approximately 15,000 people were on the waiting list to
receive a donor liver. Only 5805 transplants were performed
that year, with 2456 patients dying while on the waiting list
and another 482 patients removed because they were too sick
for transplantation [33]. These numbers highlight the serious
challenge of organ shortage in liver transplantation. Of the
5805 patients who received liver transplants in 2011, 5617
were from deceased donors, with the remaining small
percentage from living donors. While living donor liver
transplantation (LDLT) provides a means to expand organ
availability, stringent donor and recipient selection criteria and
concerns over donor complications have kept the number of
LDLTs relatively low [35].

Other approaches to expanding the donor organ supply
have included donation after cardiac death [36, 37], the use of
hepatitis C- and hepatitis B-positive donors [38–40], and split-
liver transplantations [41, 42]. Split-liver transplantation
involves splitting adult donor livers into left lateral and
extended right grafts for transplantation into both pediatric and
adult patients [41]. The results of this technique have been
comparable with whole-graft transplantation, and increasing
the use of this technique could amplify the total number of
transplant recipients in the USA by 1000 annually [42].
Nevertheless, almost two-thirds of people waiting for a donor
liver never receive one, even with these recent attempts to
alleviate donor organ shortage.

12.5 Cellular Therapies
There are many potential clinical applications for liver cell
transplantation, such as the treatment of metabolic disorders
and acute liver failure and the management of chronic liver
failure. The intact host liver architecture harbors cells with the
potential to proliferate and repair damaged tissue. The first
successful hepatocyte transplantation was performed in 1992



in a woman with familial hypercholesterolemia. After ex vivo
transduction with a retrovirus encoding for the human low-
density lipoprotein (LDL) receptor, the patient’s own
hepatocytes were infused into the liver through the inferior
mesenteric vein. Improved levels of LDL and high-density
lipoprotein were detected throughout the next 18 months, and
transgene expression was also detected in a liver biopsy [43].
Despite these promising results, other patients were treated
following this first successful transplant without showing clear
benefits [44]. Since then, hepatocyte transplantation has been
used in the treatment of metabolic diseases, with varying
degrees of success, including alpha-1-antitrypsin deficiency
[45, 46], Crigler-Najjar syndrome type 1 [45, 47–49], factor
VII deficiency [50], glycogen storage disease [45, 51],
infantile Refsum’s disease [52], progressive familial
intrahepatic cholestasis [48], ornithine transcarbamylase
deficiency [53–55], and citrullinemia [45]. It has also been
used as a support treatment of acute [46, 53, 56] and chronic
liver diseases [56–58] by bridging severely ill patients to
orthotopic liver transplantation. To minimize the potential
risks of the transplant, only a small number of hepatocytes
were engrafted in the recipient liver in many of these trials.
Some studies showed that hepatocyte engraftments of 1–5% of
the total liver mass led to better clinical outcomes, even if they
were short lived [45].

Because of the shortage of donor livers available for cell
isolation and the inability to expand primary hepatocytes in
vitro, there is a limitation on the numbers of obtainable
primary human hepatocytes. Furthermore, the organs available
for cell isolation are usually rejected after transplantation,
leading to variable cellular viability and variable survival
following cryopreservation. This limitation makes it necessary
to use alternative cell sources in research on novel liver
cellular therapies, such as the use of immortalized hepatocytes
[59], human fetal liver cells [60], which have the particular
advantage of being able to differentiate into adult hepatocytes
and cholangiocytes, the biliary epithelial cells in the liver [61].
Other highly promising sources for cell therapy include
induced pluripotent stem cell (iPSC)- or human embryonic
stem cell (hESC)-derived hepatocytes [62, 63] and adult stem



or progenitor cells [64–66]. Both hESCs and iPSCs were
shown to differentiate into hepatocytes using growth factor
signals that mimic embryonic development [67, 68]. These
cells were able to demonstrate hepatic functions after
transplantation into rodent models [62, 63].

Despite the promising data these therapies have shown in
early-stage clinical applications, many barriers must still be
overcome to make it a viable and reproducible treatment
(Table 12.1). It is necessary to suppress the proliferation of
host hepatocytes in the treatment of metabolic disorders and to
allow donor cells to repopulate the liver in a suitable way. To
enhance the proliferation of transplanted cells, irradiation of
the host liver [72–74] or suppression of host hepatocyte
proliferation through drug treatments [75] has been researched
in preclinical studies. Technological improvements are also
used to measure the amount of donor versus host cells
following transplantation to evaluate the treatment success. In
rats, for example, luciferase imaging is used to see engrafted
cells; nevertheless, this treatment option is not useful in
humans because of the thickness of the abdominal wall. One
strategy to resolve this issue is to use creatinine kinase gene as
a marker for donor hepatocytes: once expressed, it produces
phosphocreatine in the liver and allows for P-31 magnetic
resonance imaging of the engrafted donor cells [76]. Advances
in immunosuppression protocols or the development of cell
transplantation methods lacking immunosuppression would
accelerate the field of liver cellular therapy.
Table 12.1 List of cell therapy procedures performed in clinical trials

Disease/syndrome Cell type Benefits/disadvantages Reference

Familial
hypercholesterolemia

Hepatocytes – Patients improved their
health status

[43, 44]

Crigler-Najjar
syndrome type I

Hepatocytes – Not all patients had a clear
benefit from the procedure

[47, 49]

Severe ornithine
transcarbamylase
deficiency

Hepatocytes – These trials presented low
efficacy and lack of long-term
therapeutic effect

[54]

Glycogen storage
disease type 1a

Hepatocytes – Reduced availability of
human hepatocytes

[51]



Disease/syndrome Cell type Benefits/disadvantages Reference

Peroxisomal
biogenesis disease

Hepatocytes  [52]

Acute liver disease Hepatocytes  [46, 53,
56]

Chronic liver disease Hepatocytes  [53, 58,
69]

Chronic liver disease Bone marrow
mesenchymal
stem cell

– High expansion capabilities
and differentiation into
hepatocytes

[48, 70,
71]

– Great promise for
regenerative medicine
applications

Chronic liver disease Hematopoietic
stem cell

– More extensive safety
evaluation is needed

[54, 65]

Chronic liver disease Fetal liver
progenitor/stem
cells

– Clinical amelioration was
limited in a period of time

[60]

12.6 Gene Therapy Treatments for Liver
Disease
Gene therapy holds great promise for the treatment of inborn
errors of metabolism and other liver diseases. The principle of
gene therapy is the introduction of genetic material into cells
to produce a curative biological effect [77]. This genetic
material can come from native or chimeric genes (which are
artificial genomic constructs that code for therapeutic
molecules). Both genes are used to direct the synthesis of
therapeutic proteins inside transduced cells, and sub genomic
DNA and RNA molecules (which include ribozymes,
antisense molecules, and RNA decoys [78]) are used to
modify the expression of endogenous genes. Despite the fact
that gene therapy is today a powerful tool to regulate
biological function in diseased tissues, much remains to be
investigated to improve its efficacy and minimize toxic side
effects. The field is actually moving, and the combination of
what is already known about vectors used in gene therapy with



stem cell technology seems to be an emerging novel
technology in the treatment of liver disease.

12.6.1 Vectors for Gene Therapy
Genetic material is transferred to target cells using vectors. An
ideal vector for gene therapy should have low antigenic
potential, high capacity, high transduction efficiency, and
controlled and targeted transgene expression [79]. Normally,
viral vectors have better transduction efficiency and longer
duration of transgene expression than nonviral vectors. These
nonviral vectors (like liposomes, DNA-protein complexes, and
naked DNA) have some advantages over viral vectors: they
are easier to handle, they have high capacity for DNA
sequences, they have low toxicity, they can be specifically
targeted to a tissue, and they are not immunogenic, which
allows for repeated vector administration. However, nonviral
vectors have low transduction efficiency [79]. Another
technique is the use of the liposome gene transfer system,
which consists of DNA surrounded by a liposomal coat that
allows the genetic material to be absorbed and taken up by the
cells via endocytosis. DNA-protein complexes can be used as
a gene transfer system that uses membrane molecules as
receptors for mediated endocytosis. The specific expression by
hepatocytes of specific membrane receptors, such as the
asialoglycoprotein or the transferrin receptor, allows for the
targeting of these receptors for the endocytosis of DNA-
protein complexes. Naked DNA or plasmid DNA can be
directly injected into tissues and is often taken up by numerous
cell types, including liver cells, muscle cells, and skin cells
[79].

Because of their natural infectivity, viral vectors are the
most efficient vehicles for gene transfer. These vectors are
produced by deleting some or all viral genes and replacing
them with sequences that encode the therapeutic molecule
[80]. Examples of viral vectors are adenovirus, retrovirus,
adeno-associated virus (AAV), herpes virus, lentivirus,
baculovirus, SV40 virus, and vaccinia virus. Adenovirus
(which consists of a double-stranded DNA virus) has been
found to have a natural tropism to the liver, with a high



efficiency for transducting nondividing cells [81]. They are
also very efficient in the infection, either in vivo or in vitro, of
normal hepatocytes [82], with the disadvantage that they can
produce immune responses. AAVs (which are nonpathogenic
human parvoviruses) are generated by the deletion of all viral
genes except for the inverted terminal repeat genes. They are
successfully used in gene therapy owing to their capacity to
transduce both dividing and nondividing cells and because
they are able to maintain long-term transgene expression either
by integrating into the host genome or by persisting in the cells
as episomal forms [83]. Furthermore, AAVs also demonstrate
excellent liver tropism after systemic injection. It has been
demonstrated that AAV-mediated gene transfer of factor IX in
the liver of mice induces consistent curative levels of active
factor IX [84]. It has also been shown that adjuvant treatment
with genotoxic agents (like gamma irradiation) improves the
expression of the AAV transgene in vivo and in vitro.

12.6.2 Gene Therapy for Patients with
Inborn Errors of Metabolism
Gene therapy using recombinant AAV (rAAV) is applied in the
treatment of various diseases related to metabolic disorders
such as alpha-1-antitrypsin (AAT) deficiency, tyrosinemia, and
lysosomal storage disorders (LSDs). Some clinical trials have
been completed over the last decade for the treatment of
patients with AAT deficiency [85]. This genetic disorder
consists of the accumulation of mutant AAT in hepatocytes
and the decrease of this protein in serum levels. A
reestablishment of AAT plasma levels may be seen in patients
treated with rAAV. Paulk et al. showed in 2010 that AAV
could also be used to correct hereditary tyrosinemia in a
mouse model in which an inborn error of metabolism resulted
in the inability to break down amino acid tyrosine in an
adequate way. This disorder includes symptoms like liver and
kidney disturbances and mental retardation [86]. Patients with
LSDs are also being treated using gene therapy. The
therapeutic targets in the treatment of LSD are the
hematopoietic progenitor cells (HPCs), because genetically
modified hematopoietic-derived cells can provide a source of



secreted enzyme that would have direct access to the
circulation [87]. Hematopoietic-derived cells can repopulate
the fixed tissue macrophage system and deliver the enzyme
directly to multiple organs [87]. Intravenous delivery of early-
generation adenoviral vectors produced high-level expression
of lysosomal enzymes, which resulted in therapeutic levels of
circulating enzyme and a reduction of storage material in
murine disease models of Pompe, Fabry, and Wolman diseases
[88, 89].

Recent studies combined stem cells and gene therapy
technologies in the treatment of liver diseases. One of these
studies was performed using mesenchymal stem cell (MSC)-
based gene delivery for the treatment of AAT deficiency [90].
The advantages of using MSCs are that they can be expanded
in vitro, they retain their multi lineage differentiation potential,
and they can differentiate into hepatocytes both in vivo and in
vitro [91]. The viral vector used in this study was rAAV. The
vector with the corrected AAT was transduced into MSCs, and
when the rAAV-transduced AT-MSCs were transplanted into
mice, there was long-term transgene expression in the
recipient liver and sustained serum levels of the transgene
product human alpha-1 antitrypsin (hAAT). This combinatorial
method using stem cells and gene therapy using viral vectors
could help to move the field forward.

12.6.3 Gene Therapy for Patients Infected
with Hepatitis B and C
Patients who suffer from chronic hepatitis B and hepatitis C
are usually treated with interferon α (IFN-α). However, this
treatment has only a 40% success rate in patients with chronic
hepatitis B and 20–30% success rate in the case of hepatitis C
[80]. To date, many clinical trials have used genetic vaccines
against HBV and HCV. In one of these, scientists studied
patients with chronic hepatitis B treated with lamivudine and
then immunized with DNA vaccine encoding all HBV
antigens and a genetically engineered mutant human IL-2
(hIL-12 N222L), which induced a sustained virological
response (SVR) [92]. After 1 year, they observed that half of



the vaccinated patients had undetectable viremia, while the
other half had no changes in serum viral loads. There are also
gene therapy approaches designed to directly target viral
replication. One of these procedures uses RNA interference
(RNAi), which consists of the silence of genes in a sequence-
dependent manner [93]. It has been shown that siRNA can
alter the course of HBV and HCV infection by mediating viral
RNA degradation and inhibiting viral RNA translation and
replication. However, the strategy has some limitations. On the
one hand, the high mutation rate in the viral genome means it
does not degrade, and in the other, the inhibitory molecule
must reach a high enough percentage of the infected
hepatocyte to produce a therapeutic effect.

12.6.4 Gene Therapy for Patients with
Liver Cirrhosis
Ueki et al. demonstrated in 1999 a remarkable decrease in
fibrosis along with an improvement in hepatocellular function
after transducing cirrhotic livers with vectors expressing
hepatocyte growth factor (HGF) [94]. These same results have
also been reported in rat cirrhotic livers after a long-term
expression of a vector encoding for IGF-1 [95]. Nonetheless,
there is a concern about using IGF-1-based gene therapy for
liver cirrhosis because this deficiency is a premalignant
condition and IGF-1 is an antiapoptotic growth factor, which
may favor tumor development [80, 82].

12.6.5 Gene Therapy for Acute Liver
Failure
Of all the critical conditions, ALF is one of the most
challenging to treat. A potential approach to preventing ALF is
to target key molecules involved in hepatocyte death such as
Fas/FasL, TNFα, TRAIL, or TGFβ [80]. A study performed in
2006 showed that treatment with adenovirus-mediated
dominant negative form of the Fas-associated death domain
(FADDdn), which consists of a downstream signaling
molecule for Fas and TNFRs, inhibited TNF-/galactosamine-



mediated hepatocellular apoptosis, leading to a significant
decrease in serum transaminase levels [96].

12.6.6 Gene Therapy for Patients with
Liver Cancer
HCC is the most common primary liver cancer. Gene therapy
strategies for patients who suffer from HCC include gene
replacement, antisense strategies, drug sensitization, genetic
immunotherapy, and antiangiogenesis. The mechanism of gene
replacement for patients with HCC is to replace the
nonfunctional tumor suppressor genes. Many approaches have
been used to restore p53 function with an adenoviral vector
that expresses the wild-type p53 form, called Gendicine. It has
been used in combination with chemotherapy, showing
optimistic results for the treatment of HCC [82]. However, to
completely inhibit tumor growth using gene transfer of p53,
there needs to be 100% transduction efficiency, which is not
possible with the gene vectors currently available.
Nonetheless, it has been described that the introduction of the
wild-type p53 form to tumor cells represses the transcription
of vascular endothelial growth factor (VEGF), leading to an
antiangiogenesis effect within the tumor [97]. Although
replacing the p53 mutation with the wild-type p53 appears to
be a promising treatment, the responsible genetic defect that
cells suffer during their path toward a malignant state is not
always originated by a p53 mutation or inactivation.

Targeting responsible oncogenes is another option for
HCC. An inhibition of tumor cell growth in vitro, along with
decreased tumorigenicity in nude mice after transduction of
HCC cells with retroviruses that carry antisense RNA directed
against the N-ras oncogene, has been observed [98]. After
transfection of HCC cells with plasmids containing antisense
RNA targeting fibroblast growth factor (FGF-2), mRNA led to
the inhibition of FGF-2 synthesis and to a loss of
tumorigenicity in nude mice. The apoptotic capability of
transformed hepatocytes can be restored by antisense
inhibition of insulin-like growth factor I (IGF-1). However,
some limitations on this approach to treating liver cancer



include the inability to determine exact targeted delivery to the
tumor and half-life of the antisense therapeutics, which only
allow transitory inhibition of gene expression.

Drug sensitization is also an alternative approach to HCC
treatment. The objective of this therapy is to release a suicide
gene encoding for a foreign enzyme that converts a nontoxic
product into a lethal drug metabolite [82]. The best known
suicide gene is HSV-tk, which, once expressed in tumor cells,
causes the conversion of ganciclovir (a nontoxic prodrug) into
a phosphorylated toxic compound that stops DNA synthesis by
inhibition of DNA polymerase [79]. Although this therapy has
promising effects for the treatment of HCC because of the
large number of cancer cells killed, the main limitation is that
HSV-tk/ganciclovir has toxic side effects not only on the
cancerous cells but also on nontumoral tissue.

12.7 Liver Bioengineering
Despite the fact that actual techniques of living donor and
split-liver transplantation have mitigated the donor shortage
problem, there is still a huge need to find an alternative to liver
transplantation. Owing to the shortage of donor livers for
transplantation (common to many other organs), regenerative
medicine approaches have emerged with the main objective of
stimulating the regeneration of the diseased liver itself or
replacing it with a bioengineered liver fabricated ex vivo and
transplanted into the patient. This last approach is still years,
even decades, away from successful clinical application, but
recent advances in the liver regenerative medicine field have
yielded promising results. Organ engineering requires the use
of a supporting scaffold, which can be made of synthetic
materials or by decellularized organs. This scaffold is then
seeded with cells and matured in a bioreactor to create
functional tissue. It has been successful in rodent livers using
decellularized scaffolds seeded with both animal and human
cells [34, 99]. The main obstacle in translating this approach is
the generation and seeding of enough cells into the scaffold to
create a fully functional tissue that can successfully provide
different liver functions. It also needs to be transplanted into a



patient without clotting or rejection problems. Once these
hurdles are resolved, regenerative medicine could probably
solve the the issue of donor organ shortage.

Nowadays, tissue decellularization techniques represent a
succesful tool to obtain matrices and scaffolds for the fields of
tissue engineering and regenerative medicine. The use of
detergents like Triton X-100 or SDS makes whole-organ
bioscaffolds more readily available [34, 100]. To generate
these whole-organ scaffolds, the detergent solution is perfused
through the organ vascular network, keeping it intact and fully
decellularizing the organ (Fig. 12.1). This perfusion
decellularization method has proven very efficient because it
not only preserves the microarchitecture of the organ but also
allows the retention of many bioactive signals (e.g., cell-
adhesion peptides, ECM proteins) that are difficult to replicate
in vitro and that support cell attachment and viability [101].
Another fundamental advantage in the use of organ scaffolds
in bioengineering organs for clinical purposes is the
preservation of ECM components among species. Thus,
decellularization techniques combined with recellularization
with human cells may be a viable approach to alleviating the
shortage of organs for transplantation [102]. Liver
decellularization has been done using a perfusion method and
a bioreactor system to deliver human cells inside organ
scaffolds [34, 103]. The bioreactor provides a continuous flow
of culture media supplied with growth factors and gases,
which allow for proper cell growth in the 3-D liver structure
[34]. Bioengineered livers showed a typical hepatic
architecture with biliary ductular structures (cytokeratin 19
positive) along with clusters of hepatocytes (albumin and
cytochrome P450 isoforms 2A, 3A positive in the
parenchymal space of the liver). Humanized bioengineered
livers also exhibited a vascular network coated with
endothelial cells expressing von Willebrand Factor (vWF) and
endothelial nitric oxide synthase (eNOS). Furthermore, the
confluent endothelium layer prevented platelet adhesion and
aggregation, which is important for blood flow without
coagulation after transplantation [34]. This technology has
been adapted to decellularized porcine liver, maintaining a
patent vascular network and an intact ECM; however,



complete recellularization to obtain a functional liver with a
clinically relevant size has still not yet been accomplished
[104]. Nonetheless, the recellularization of porcine liver
scaffolds with human cells could change the liver
transplantation medical field and lead to a significant increase
in the number of organs available for transplantation.

Fig. 12.1 The process begins with liver isolation and cannulation (a). Then it is
connected to a peristaltic pump (b), which allows water and detergent perfusion
throughout the liver in order to decellularize it (c). Finally, this bioscaffold is
seeded with human cells (d)

12.8 Liver Assist Devices
The number of patients waiting for a liver transplantation
exceeds the number of performed liver surgeries, causing
higher mortality rates for end-stage liver disease. Because of
this problem other alternatives have been investigated to
reduce the number of patients waiting for a suitable donor.
Extracorporeal liver support devices emerged as a solution; its
function is to detoxify the blood or plasma to compensate for
the lack of function of the injured liver. There are two kinds of



liver assist device: artificial liver (AL) devices and bioartificial
liver (BAL) devices, which differ in the system used for
detoxification.

Initially, these kinds of devices tried to compensate for the
loss of liver functions with a detoxification of the blood.
However, with a series of improvements, liver assist devices
can allow patients to recover from an acute liver injury,
preventing in many cases transplantation [105].

12.8.1 Artificial Liver Devices
Through techniques such as hemofiltration, hemodialysis,
hemodiafiltration, plasmapheresis, hemadsorption, plasma
fractionation, and albumin dialysis, AL devices are capable of
removing toxins from blood and plasma [105–107]. In
dialysis-based devices, toxins are adsorbed and removed from
the blood when the patient’s blood crosses a low-to-medium
permeability membrane while a suspension of activated
charcoal and cation exchange is being pumped to the other
sides of the dialyzer [105, 108].

The two principal albumin dialysis systems, the molecular
adsorbent recirculating system (MARS) and fractionated
plasma separation and absorption system (Prometheus), have
been widely assessed in clinical trials. In MARS an albumin-
impermeable membrane (50-kDa cutoff) divides the high-flux
albumin-coated dialyzer from albumin-filled dialysate. Hence,
the toxins transfer to the albumin solution in the dialysate side
after having been dissolved and passed through the membrane
[109, 110]. On the other hand, in Prometheus devices, the
albumin and protein-bound toxins pass across an albumin-
permeable membrane (250-kDa cutoff). Finally, the toxin-free
albumin returns to the patient thanks to special adsorbents that
take away the toxins [107–109].

Various clinical studies in patients with ALF and acute-on-
chronic liver failure have reported that liver dialysis, MARS
and Prometheus, produces improvements in several functions
as well as increased life expectancy [107].



12.8.2 Bioartificial Liver Devices
Because AL devices are not capable of providing essential and
metabolic hepatic functions [111], BAL devices were designed
to provide such functions thanks to the combination of hollow
fibers or porous matrix membrane with primary hepatocytes or
hepatoma cell lines [111, 112]. An ideal method would be to
use primary human hepatocytes, but, as mentioned earlier,
their availability is low and [108, 112] they have a limited
proliferative capacity in vitro. Hence, alternative hepatocyte
sources and hepatoblastoma cell lines have been used, keeping
in mind a possible xenoresponse or retroviral transmission
[113, 114].

Furthermore, cell morphology and metabolism should be
preserved because isolated cells need to be immobilized in an
adequate platform where nutrients and oxygen must be
delivered at physiological levels. In addition, to prevent an
immune rejection, a porous membrane is needed to divide the
cells from the blood or plasma, which should also allow
passage of toxins and proteins [114, 115]. In the near future,
BAL systems should also be able to provide a personal
response according to patient needs [116].

12.8.3 Available BAL Devices
Up to the present moment, the most frequent BAL devices
(Table 12.2) utilized in clinical trials are HepatAssist and
ELAD [110, 122]. Whereas ELAD uses human immortalized
C3A cell line derived from the human hepatoma cell line
HepG2, the other systems employ porcine hepatocytes [123].
In most cases where these devices were used, the majority of
them recovered entirely; therefore, a liver transplantation was
not necessary.
Table 12.2 Summary of developed and published bioartificial devices

Device Reference

Extracorporeal Liver Assist Device (ELAD): Vital Therapies Inc., San
Diego, CA

[117]

HepatAssist: HepaLife, Boston, MA [118]



Device Reference

Bioartificial Liver Support System (BLSS): Excorp Medical Inc., MN [119]

The Academic Medical Center-bioartificial liver (AMC-BAL): Hep-
Art Medical Devices B.V., Amsterdam, The Netherlands

[120]

Modular extracorporeal liver support device (MELS): Charité Virchow
Clinic, Berlin, Germany

[121]

Currently, several studies of BAL devices are carried out
in the USA, Europe, and Asia to evaluate safety and efficacy
in the treatment of various end-stage liver diseases. To date,
none of the BAL devices has been approved by the FDA for
commercial use.

In many cases liver assist devices represent a hopeful
solution for patients waiting for a liver transplant; however, it
is still necessary to resolve many issues for the purpose of
using the devices efficient on all patients. Although AL
systems are easy to use and improve patient survival, they are
not capable of replacing critical synthetic and metabolic
functions of the liver. On the other hand, in various clinical
trials, BALs have been shown to have enough potential.
Nevertheless, it would be required to determine optimum cell
sources, optimize bioreactor technologies, and reduce costs.

12.9 Future Directions
12.9.1 Liver ECM Support
In the field of bioengineering, the ECM is quickly becoming a
central biomaterial in drug development and in bioengineered
tissues for transplants. The ECM provides a large amount of
molecules such as proteins or growth factors, which are crucial
for the maintenance of liver cell phenotypes [124]. Owing to
the development of liver decellularization, the introduction of
ECMs in experimental liver bioengineering approaches has
been steadily growing [34, 99, 124–127]. Hence, a possible
solution to improving the effectiveness of bioartificial liver
systems could be the introduction of a decellularized liver
matrix. It has been very difficult for any devices to be accepted
for clinical trials because of their inability to significantly



improve survival rates [128–131]. This deficiency may be
attributed to the use of synthetic material where the cells are
seeded, thus a native liver ECM would be an attractive choice
[132, 133] to increase cellular functionality and lead to greater
levels of protein secretion and waste metabolism elimination.

12.9.2 Hepatocyte Injection and
Encapsulation
Cell encapsulation increases the therapeutic potential of
hepatocytes because of the inclusion of decellularized matrix
proteins in a semipermeable membrane. The encapsulation
system avoids an immune rejection and the destruction of
implanted allogeneic or xenogeneic donor cells [134, 135]. In
addition, the capsule allows for the passage of several
molecules such as therapeutic products or metabolites.

Alginate-encapsulated hepatocytes support phases I and II
metabolic pathways when seeded in bioreactors. Their activity
has been evaluated by 7-ethoxycoumarin hydroxylation
(ECOD) and uridine diphosphate glucuronosyltransferase
(UGT) activity [136]. Several in vitro and in vivo studies have
been reported on encapsulated hepatocytes and hepatocyte-like
cells, that are capable of synthesizing albumin, metabolizing
drugs, and generating ammonia [132, 133, 137]. Despite
improvements in acute liver failure models [132, 133], the
efficiency and functioning of encapsulated cells must be
increased.

Using ECM in a capsule’s membrane could increase liver
cell function by mimicking the natural liver
microenvironment. Hence, molecules present in the native
liver ECM (such as adhesion molecules, growth factors, and
matrix collagens) have been added to the capsule to maintain
the function of several hepatic cell types [138, 139]. However,
the next step will be to determine the most important
components of the liver matrix that maintain cellular viability
and cell phenotype.

Despite the fact that encapsulated hepatocytes cannot be
injected into the liver because of the risk of clogging the liver



vasculature, they can be implanted in extrahepatic sites from
where they can support liver functions like the peritoneal
cavity, which provides an ideal site for introducing a huge
number of encapsulated hepatocytes that have the capacity to
improve patient health [140, 141]. By means of diffusion
through the semipermeable peritoneal membrane, the blood is
cleared of waste products like ammonia [142]. On the other
hand, products made in a healthy liver can exit the liver and
enter the circulatory system through drainage of the cavity into
lymphatic vessels. Both improvements in several serum
biochemical parameters (alanine aminotransferase, aspartate
aminotransferase, albumin levels, total bilirubin) and an
increase in life expectancy have been demonstrated when
encapsulated cells were transplanted in the peritoneal cavity of
acute liver failure models [138, 143].

Finally, lymph nodes are a well-vascularized structure, so
they have easy access to oxygen and nutrients. For this reason,
they have proven to be an ideal place to inject hepatocytes.
Recently, it was reported that hepatocytes were capable of
engraftment in lymph nodes and could generate small clusters
of functioning hepatocytes, sufficient to rescue a lethal mouse
model of tyrosinemia [144, 145]. Hence, many studies should
focus on investigating whether more injury models might
benefit from cells used at this site.

12.9.3 Growth Factor Therapies
HGF, epidermal growth factor (EGF), and IGF-1 are growth
factors that can be used to treat several liver deficiencies. HGF
is a potent mitogen that is secreted by mesenchymal cells and
that, by binding its receptor, c-met, induces cell proliferation
[146, 147]. This produces morphologic and mitogenic
modifications in tissue organization and liver regeneration
[148–150]. Higher amounts of albumin and urea have been
obtained in vitro when hydrogels were combined with HGF in
liver cultures [139, 151]. Hence, growth factor therapies based
on preventing fibrosis of the tissue may prove vital to
repairing tissue mass following an acute injury or stress [149,
152].



EGF is another growth factor that activates the cell
division of hepatocytes, which operates through the tyrosine
kinase EGF receptor (EGFR), and it is crucial for normal liver
regeneration [153, 154]. IGF-1 is a hormone that activates the
growth of almost all cell types. In combination with EGF, it is
able to induce cell replication and decrease the symptoms of a
steatotic liver [155, 156].

However, the short half-life of growth factors in
circulation reduces the efficacy of these therapies. Thus, new
studies that extend their half-life and devise a better
therapeutic control are needed to allow for their successful
utilization. An alternative for carrying out this goal is to
construct microspheres combining growth factors that can be
delivered or targeted toward liver proteins in patients [157,
158]. Nevertheless, the protein quantities and the number of
microspheres are still limited. Another approach is to activate
transplanted cells to secrete the desired proteins. Several cells
in the liver, such as sinusoidal endothelial cells, Kupffer cells,
and hepatic stellate cells, have the capacity to secrete growth
factors and cytokines upon activation [159]. Hence, the
production of HGF has been stimulated in stellate cells, with
hepatocyte-conditioned medium, IGF-1 [160], or the amino
acid leucine [161]. Transgenic lentiviral vectors may be
another method for inducing a continuous expression of these
growth factors [162, 163]. However, the risks involved in this
form of gene therapy await proper evaluation.

12.10 Concluding Remarks
Currently, liver transplantation is the only therapeutic option
for curing certain liver diseases, although it is still in its youth.
Therefore, other alternatives, such as cellular and genetic
therapies or tissue engineering, have been proposed and
developed to further develop and improve existing techniques.
However, their clinical application is still limited mainly
owing to their long and difficult development process.
Nonetheless, the future is promising, with novel techniques
and therapies underdeveloped, hopefully, soon to be
transferred into the clinic.
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appreciated if we contrast the number of research articles
published in the field of stem cells with the number of
products used in clinical practice. For example, a search for
the keyword “stem cell” found 279,213 publications on
PubMed, whereas only five products, all based on
hematopoietic stem cells, were approved for therapeutic use by
the US Food and Drug Administration [1]. This chapter will
provide an overview of emerging technologies applied to help
overcome such challenges with a highlight on their potential
for clinical applications.

13.1 What Do Stem Cells Need from
Technology?
13.1.1 Stem Cell Tissue Processing
One of the anticipated technologies is a comprehensive
platform capable of (1) safely obtaining the human donor’s
tissue through a minimally invasive biopsy, (2) processing the
tissue sample in an automated and efficient way, and (3)
providing an adequate number of functional stem cells. This
requires the integration of numerous steps of automated tissue
dissociation, cell filtration, centrifugation, and cell sorting, as
well as a biomimetic stem cell culture system for cellular
expansion and differentiation. This futuristic platform can
provide high-quality stem cells ready for transplantation or can
be tailored to test the effect of regulatory biomolecules or
drugs on stem cells of interest (e.g., cancer stem cells).

13.1.2 Stem Cell Identification
There is no single gold standard marker for identification and
isolation of all types of stem cells. Stem cell can be considered
a generic functional term that describes a heterogeneous
population rather than a well-defined cell type. These cells
differ significantly in their sources, hierarchies, and functions.
Therefore, current isolation methods rely on cellular
expression (positive selection) or the absence of expression
(negative selection) of multiple markers (e.g., surface
receptors, stem cell-associated genes, or other intracellular



enzymes and proteins). The application of multiple markers,
however, is technically demanding and is not appropriate for
routine use in moderately or poorly funded clinical settings.
Furthermore, it becomes increasingly challenging to make an
objective comparison of stem cell studies when variable
combinations of markers have been used.

Fluorescence-activated cell sorting (FACS) and magnetic
cell sorting are standard tools for the isolation of stem cells.
The basic cost of the equipment involved is composed of the
operational cost of multiple antibodies, fluorophores, or
labeled magnetic beads. The side population method is another
technique that avoids using multiple markers and depends on
the ability of stem cells to efficiently efflux the Hoechst 33342
dye [2]. Despite the low cost of the dye, its use requires a UV
laser, which is available only in costly multiparameter flow
cytometers and microscopes. Likewise, adherence to plastic is
used traditionally for isolating mesenchymal stem cells;
however, this method produces cells of considerable
heterogeneity and variable stemness capacities [3]. Such
barriers should be viewed as opportunities where technology
can offer novel and economic solutions in stem cell research
and applications.

13.1.3 Controlling Stem Cell Fate and the
Stem Cell Niche
In order for stem cells to be clinically relevant, they must
efficiently expand, differentiate into a specialized cell type,
and precisely engraft into the target tissue to repair a defective
function. Expansion requires that stem cells proliferate in the
undifferentiated state into clinically useful cell numbers
without affecting their multipotency. Differentiation of stem
cells into a specialized cell type of interest is not a challenge
by itself, and most stem cells start to differentiate once
exposed to the appropriate growth factors. Difficulties,
however, arise in the long-term commitment of stem cells to
their the new fate. Frequently, differentiated cells can be short
lived when transferred to an in vivo environment, which is a
much more complex environment than a culture plate [4].



Likewise, inefficient engraftment could mean that stem cells
transferred to a patient to treat a liver disorder, for example,
might never reach the liver and be lost in other tissues.
Accordingly, differentiation of stem cells in vitro is not
equivalent to a successful clinical outcome. Rather, it should
be considered the first step in a series of intricate physiological
events.

Many challenges are related to the dissimilarity between
the over-simplified conditions used for stem cell culture in the
laboratory and the complex native microenvironment of stem
cells in the human body, generally referred to as the stem cell
niche. This niche encompasses all biological, mechanical,
biophysical, and topographical cues that compose the
physiological environment of stem cells. The simulation of
only a single factor, such as oxygen concentration in the
culture system, could enhance the multipotency of stem cells
and recover some of their in vivo properties [5]. A similar
impact can be induced by providing the proper surface
topography, stiffness, and fluid dynamics of the extracellular
fluid or by introducing cells that naturally coexist with stem
cells [6, 7]. Therefore, constructing a niche that can precisely
mimic these factors is crucial to eliminating the discrepancy
between research and real therapeutic outcomes.

In this chapter, lab-on-chip technologies and
nanotechnologies are highlighted as being among the most
promising tools that can contribute to advancing stem cell
research toward applicable therapies. In addition, other
emerging technologies (e.g., quantum dots and
immunosensors) with applications in the stem cell field are
briefly surveyed.

13.2 Microfluidics for Stem Cell
Applications
Microfluidics has attracted prominent attention in cell-based
applications and is playing an increasingly recognized role in
stem cell research. Initially, microchannels with various
shapes, sizes, and internal anatomies were developed,
followed by the introduction of digital microfluidics that



allows the automated mobilization of discrete fluidic droplets
on a microchip surface. Both of these approaches are open for
unrestricted designs and can miniaturize almost any biological
reaction traditionally conducted at the macro scale.

13.2.1 Primary Tissue Dissociation
Tissue dissociation is the first step in human tissue processing
for the purpose of isolating stem cells. Conventional
dissociation involves multiple manual steps such as cutting,
mincing with or without adding tissue dissociation enzymes,
centrifugation, cell sieving and multiple wash steps, and
pipetting. Enzymes such as trypsin, collagenase, accutase, and
others are used to break down the collagen fibers of the
connective tissue and the adhesion molecules that hold cells
together. Stem cells constitute approximately 1–2 % of the cell
population in a given adult tissue [8]; thus, the rarity of these
cells makes initial tissue processing very critical. Since the
isolation of stem cells is largely dependent on identifying
specific surface receptors, it is assumed that enzymatic
dissociation may alter these receptors, so that subsequent
isolation methods may miss such altered cells. Accordingly,
the tissue dissociation process requires further development to
achieve greater efficiency and minimal cell loss. Microfluidic
platforms that could offer efficient and safe dissociation of
human tissue utilizing shear stress and fluid flow forces have
been recently developed [9].

13.2.2 Stem Cell Isolation
The ability to accurately isolate stem cells from a mixed cell
population is imperative for clinical applications, and thus
purity is an essential parameter in cell separation methods.
Even after a stem cell population, there can be different types
of stem and progenitor cells that need to be sorted. Variations
in size [10, 11] and deformability [12] could be used as
indicators for variable differentiation potentials.

13.2.2.1 Miniaturized Flow Cytometry



The working principle is that cells of interest are detected and
sorted while flowing, which has been intensively reviewed by
Bhagat et al. and Tsutsui et al. [13, 14]. There are two
approaches: labeled and label-free detection methods. Briefly,
in a labeled approach, an immunoassay or other methods are
used to label stem cells [15], which are then flushed to pass
through an imaged region, followed by cell sorting and
collection into different gates. When this process is
miniaturized, the possibilities become unlimited [16, 17].
Fluid flow conditions can be modified based on hydrodynamic
fluid flow (Fig. 13.1a) [18], dielectropohoresis (Fig. 13.1b)
[19], electrowetting (Fig. 13.1c) [20], or a magnetic field (Fig.
13.1d) [21] to enable sorting of stem cells.

Fig. 13.1 Modified microfluidic flow cytometry has been proposed to sort stem
cells based on hydrodynamic fluid flow (a) (reprinted with permission from [18]
©RSC), dielectrophoretic forces (b) (reprinted with permission from [22]
©Springer), electrowetting (c) (reprinted with permission from [20] ©ACS), or
magnetic field (d) (reprinted with permission from [21] ©AIP)

Label-free detection relies on the intrinsic properties of
cells of interest that can adequately distinguish and isolate
them from other cells, without the need for attachment to
additional markers. These properties include size, shape, and
deformability and adhesion properties, which will be discussed
in subsequent sections. There are detailed reviews on label-
free cell sorting using microfluidics [22, 23]; we will highlight
several techniques briefly in this chapter.



13.2.2.2 Size-Based Sorting of Stem Cells
In general, label-free methods are attractive not just as simple
and cheap methods, but more importantly, because the yield of
cells is ready to use without any attached biomarkers. It is
believed that some types of stem cell could be of smaller size
compared to differentiated cells, and in these cases, size-based
sorting would be a straightforward label-free method to isolate
stem cells. There is also evidence for a direct correlation
between the size of a stem cell and its differentiation
capability. Very small embryonic-like (VSEL) stem cells were
isolated from bone marrow showing a significantly higher
pluripotency than their larger counterparts from the same
tissue. However, one of the obstacles in applying size only-
based stem cell isolation is the lack of solid data about the
characterization of this subset of small cells. Microfluidic size-
based sorters can be a convenient and effective tool for
precisely isolating a pure population of small and very small
cells for further understanding of their role and behavior.
Figure 13.2 highlights some size-based sorting methods that
have been applied to separate stem cells including weir-type
filters [24, 25], pillar-type filters [22], cross-flow filters [26,
27], and porous membrane filters [28]. The weir-type filter has
been used in several applications where the clogging problem
was alleviated to an extent [29]. Among these four types of
filter, the cross-flow filter has been demonstrated to be
superior to other reported methods since it is less prone to
clogging by cell debris and other tissue components.



Fig. 13.2 (a) Schematic of weir-type filter that allows small particles to pass
through, whereas large particles are trapped. (b) Schematic of pillar-type filter,
allowing particles with diameters smaller than the spacing between particles to pass
through; thus it suffers from the issue of potential channel blockage similar to the
weir-type filter. (c) The cross-flow filter discards large particles during the filtration
procedure, allowing much larger sample volume to be processed. Reprinted with
permission from [22] ©Springer. (d) A porous membrane filter with pore sizes
ranging from 2.5 to 16.6 μm, which can be integrated easily with other channel
components. Reprinted with permission from [28] ©RSC

13.2.2.3 Adhesion-Based Sorting of Stem
Cells
Stem cells contain membrane proteins including adhesion
molecules leading to distinct adhesion properties, which have
been used for the separation and sorting of stem cells. For
instance, Fig. 13.3a shows a microfluidic system that enables
microstem cell high-efficiency, adhesion-based recovery.
Compared to flow cytometry-based cell separation, this
approach uses a simple experimental setup, although the
throughput remains lower than in conventional flow cytometry
[30].



Fig. 13.3 (a) Isolation of stem cells based on differences in adhesion strength to a
particular surface in a microstem cell high-efficiency, adhesion-based recovery
device. Reprinted with permission from [30] ©Nature Publishing Group. (b) A cell
rolling cytometer where the microfluidic channel walls are coated with molecules
that bind with specific cells, regulating their passing velocities and directions.
Reprinted with permission from [31] ©RSC

In addition, a cell rolling cytometer was introduced to
separate stem cells [31–33]. The principle behind this method
is to coat molecules specific to stem cells on microfluidic
channels, which can change the flow velocity and direction of
the stem cells while having no effect on other types of cells
without the specific membrane protein expression (Fig. 13.3b).
Thus, this method can provide a label-free method of stem cell
separation in a continuous manner, producing a much higher
throughput than the aforementioned adhesion-based separation
approach [31].

13.2.2.4 Optical Sorting of Stem Cells
A force can be exerted on small particles using lasers, which
have been combined with microfluidic flow cytometers for
optical sorting of cells of interest [34–36]. As shown in Fig.
13.4a, the optical force is applied on traveling cells to regulate
their flow direction, and the cells can be collected for further
analysis [37]. However, this method works best when there is
a detectable difference in the refractive indices of the trapped
objects and the surrounding medium. Dholakia et al. overcame
this limitation with beads coated with specific cell antigens
that are known to work well with the surrounding medium



[38]. A related but different approach uses a pulsed laser diode
to create bubbles that push cells one way or another toward the
desired flow channels (Fig. 13.4b) [39].

Fig. 13.4 Optofluidic devices for sorting stem cells. (a) In an optical flow
cytometer, a buffer is used as a sheath flow to align cells to the central region, and
the cells are then analyzed by fluorescence detection and directed by laser to
specific collection ports. Reprinted with permission from [40] © Nature Publishing
Group. (b) Detecting a cell of interest triggers a pulsed laser, which induces an air
bubble, deflecting the cell to the collection channel. Reprinted with permission
from [39] ©RSC

In addition, dielectrophoresis-based sorting is an emerging
field [41] whose findings have been successfully applied on
many types of cells, including stem cells. Surface acoustics is
also an emerging method for cell sorting [42–44], which has
not yet been applied in the field of stem cells.

13.2.3 Culture of Stem Cells on Chip
13.2.3.1 Two-Dimensional Culture
Each of the standard methods for the culture of stem cells has
its own advantages and limitations. Multiwell plates are easy
to use, but they only offer basic biological factors in the form
of a static culture medium without providing physical and
mechanical regulatory factors necessary for genuine stem cell
behavior. Meanwhile, cell culture bioreactors can be used in
the perfusion of medium with controlled composition and
biophysical cues for the culture of stem cells. However, the



operating volumes of bioreactors are significantly larger than
those of well plates, leading to high operating cost when
expensive media components are required. Microfluidics can
potentially overcome such limitations thanks to its small
device size, high throughput, local cellular microenvironment
regulation, and automation. Indeed, microfluidics is expected
to be the next-generation platform for stem cell culture [45–
58].

As pioneers in this field, Figallo et al. proposed a
microfluidic perfusion culture platform, made of an array of
12 microbioreactors [47] (Fig. 13.5a). The platform integrates
a bioreactor (represented by each individual culture well) and
a microfluidic device (represented by the independent flow
control for each well). The microbioreactor array has the
advantages of both microwell plates (small volume, high
throughput, independent culture wells) and perfusion
bioreactors (steady-state dynamic flow, enhanced mass
transport, application of physical signals). The microfluidic
system was used to culture human embryonic stem cells,
showing good control over cell seeding densities and a
regulated differentiation into smooth muscle cells as evidenced
by the expression of actin. In addition, Gomez-Sjoberg et al.
built a fully automated cell culture screening system based on
a microfluidic chip with various culture media compositions in
96 culture chambers (Fig. 13.5b) [48]. Based on this platform,
a comprehensive control over culture conditions (e.g., cell
seeding density and rate of media change) was realized,
leading to successful stem cell culture for several weeks.



Fig. 13.5 (a) A microfluidic device includes independent bioreactors connected by
microfluidic channels to enable perfusion culture of stem cells. Reprinted with
permission from [47] ©RSC. (b) A versatile, fully automated, microfluidic stem
cell culture system where each chamber can be individually addressed. Reprinted
with permission from [48] ©ACS

13.2.3.2 Three-Dimensional On-Chip
Culture of Stem Cells
A major limitation of two-dimensional (2D) microfluidic
culture systems is their difference from the in vivo
microenvironment, where stem cells actively interact with the
extracellular matrix (ECM), neighboring cells, and
biochemical and biophysical factors incorporated into a three-
dimensional (3D) spatial orientation. To address this need,
several recent developments have been made in microfluidic
systems to provide three-dimensional on-chip culture of stem
cells [59–66].

As shown in Fig. 13.6a, Toh et al. developed a
microfluidic system to enable continuous perfusion culture of
stem cells in a 3D extracellular matrix and allow an optimal
cell-to-matrix interaction [60]. A solution containing
extracellular matrix ECM and suspension cells was flushed
into the middle channel, which was further converted into the
solid state by cross-linking of the ECM. Culture media and
growth factors were subsequently supplied in the two outer
channels. Using this system, bone marrow mesenchymal stem
cells were perfusion cultured for up to 1 week, well preserving
their 3D architecture and differentiation capabilities. Likewise,
droplet microfluidics was used to form 3D multicellular
spheroids for the culture of stem cells [64]. In a double-
emulsion setup, cells and extracellular matrix aggregated into
spheroids in an initial flow-focusing compartment were further
encapsulated into a hydrogel layer to produce spheroid-
encapsulated microgels (Fig. 13.6b). In this study, the
encapsulation of human mesenchymal stem cell spheroids in
alginate was achieved showing evidence of enhanced
osteogenic differentiation under the effect of such conditions.



Fig. 13.6 (a) Microfluidic device that provides a 3D culture system for stem cells
in its middle channels, while the outer channels provide biophysical and
biochemical factors necessary for stem cell proliferation. Reprinted with permission
from [60] ©RSC. (b) A microfluidic Microfluidic device that enables the formation
of double-emulsion droplets where stem cells are aggregated into single spheroids.
Reprinted with permission from [64] ©RSC

As a powerful tool that gives precise control over fluidic
conditions, microfluidics has been used to provide a well-
regulated biochemical gradient to induce stem cell
differentiation [67–77]. Kawada et al. presented a membrane-
based microfluidic device that allowed spatiotemporally
variable culture conditions to enhance the differentiation of
induced pluripotent stem cells (iPSCs) [67]. As shown in Fig.
13.7a, the membrane-based microfluidic device consists of
upper and lower channels separated by a porous membrane.
Cells placed on the membrane in the upper channel receive
nutritional and growth support media by a dynamic laminar
flow in the lower chamber that is delivered through the
membrane pores. In that setup, stem cells can sustain the
influence of a dynamic concentration gradient without the
effect of excessive mechanical shear stresses, similar to what
occurs in vivo. In a different model, Liu et al. proposed a
microfluidic device that can produce a gradient of extracellular
matrix the ECM to regulate the differentiation of stem cells
and allow a quantitative and comparative estimation of the
conditions that promote an optimal outcome (Fig. 13.7b). As a
demonstration, bone marrow-derived mesenchymal stem cells



showed differential adhesion capacities on the patterned
surface, and the spreading of stem cells was influenced by the
changing gradient of the ECM [68].

Fig. 13.7 (a) Membrane-based microfluidic device capable of forming regulated
pattern of soluble factors to stimulate stem cell differentiation. Reprinted with
permission from [67] ©RSC. (b) The gradient-generating microfluidic device could
precisely control the spatial distribution of biomolecules on a biomaterial surface
for quantitative mesenchymal stem cell studies. Reprinted with permission from
[68] ©AIP

13.2.3.3 On-Chip Formation of Embryoid
Bodies
Embryonic stem cells often form embryoid bodies in
suspension culture, which may contain a variety of
differentiated stem cells. Microfluidic culture systems have
been developed to form homogeneous embryoid body units
that are similar in size and cellular differentiation status [78–
90]. Hwang et al. used microwells of different sizes to
accurately regulate the size of embryoid bodies in an attempt
to control the fate of these stem cells. It was observed that by
confining embryonic stem cell aggregates in smaller
microwells, stem cells differentiated toward endothelial



lineages, whereas embryoid bodies in larger microwells
showed a trend toward cardiogenic differentiation (Fig. 13.8a)
[81]. In addition, Tung et al. presented a method for the
fabrication and operation of a 384-well hanging drop culture
plate. To form hanging drops, the cell suspension solution was
pipetted from the top side through specific access holes; thus,
the culture medium was guided to the bottom surface to form
cellular spheres (Fig. 13.8b). This model provided a regulated
3D culture microenvironment for the high-throughput
formation of embryonic bodies and a novel tool to study
human embryonic stem cells [87].

Fig. 13.8 (a) Arrays of hydrogel microwells to form embryoid bodies of increasing
size. Reprinted with permission from [81] ©PNAS. (b) Schematic illustration of
384-well hanging drop spheroid culture array plate, its cross-sectional view, and a
final humidification chamber which enabled the culture of three-dimensional
spheroids in the hanging drop array plate. Reprinted with permission from [87]
©RSC

13.2.3.4 On-Chip Patterning of Surface
Topography for Stem Cell Niche
In the native in vivo conditions of stem cells, cellular
interactions with the ECM and topographies at the micro- and
nanoscales are believed to be crucial for determining stem cell
fate. Several microfluidic approaches have been developed to
mimic the natural extracellular environment, which will be
briefly described in the following section [91–95]. Derda et al.
generated arrays of self-assembled thiols on patterned gold
surfaces to allow selective surface patterning of the ECM [92].
Through variations in the type and the coating density of the



ECM, the researchers enhanced the proliferation of embryonic
stem cells in the undifferentiated state. Such a model can be
valuable for comparing large number of extracellular matrix
proteins or other compounds for their effect on various cells
simultaneously and under the same conditions. Besides
patterning of the ECM, the surface topography at the micro-
and nanoscale was also engineered to regulate stem cell
behavior. For example, Yim et al. created nanopatterns in the
form of parallel grooves on polydimethylsiloxane (PDMS)
using a nano-imprinted Si master mold. As a result,
mesenchymal stem cells showed obvious cytoskeleton
arrangements and reduced expression of focal adhesion
molecules compared to those cultured on a nonpatterned
surface [93].

13.2.3.5 On-Chip Stem Cell Coculture
Human embryonic stem cells are often cultured on top of a
feeder cell layer of inactivated fibroblasts to maintain their
pluripotency in the undifferentiated state. Microfluidic
approaches have been developed to attain improved
functionality and control over coculture conditions [88, 96–
104]. For instance, a PDMS microfluidic device with
fibronectin-coated microwells was seeded with inactivated
murine embryonic fibroblasts to produce a successful
coculture with human embryonic stem cells (Fig. 13.9a) [97].
This platform allowed a reproducible size control of cultured
cells and demonstrated efficient preservation of the
pluripotency of human embryonic stem cells.



Fig. 13.9 (a) Schematic of microwell-based platform showing a coculture of
embryonic stem cells with feeder cells. Reprinted with permission from [97]
©ELSEVIER. (b) Microfluidic system for coculture of stem cells by encapsulating
two types of cells in microdroplets using the conventional T-junction structure.
Reprinted with permission from [102] ©RSC

In addition, Tumarkin et al. presented a microfluidic
device for high-throughput generation of hydrogel
microdroplets of cocultured stem cells [102]. Encapsulation of
different cell populations in microdroplets was realized by a T-
junction design where two streams of distinct cell suspensions
were mixed together and emulsified to form precursor droplets
(Fig. 13.9b). The co-encapsulation of two types of
hematopoietic progenitor cells was achieved at various cell
ratios, depending on the controlled flow rate of each cell
stream. The resultant in-droplet paracrine factors in between
different cells appeared to modulate the viability of these cells.
Moreover, to show the potential of this design for cell
screening, the same platform was used to investigate the effect
of specific growth factors on defining subpopulations of cells
with a distinct response to such growth factors.

13.2.3.6 On-Chip Culture of Stem Cells:
Impedance Evaluation
Impedance spectroscopy has long been considered an effective
tool for noninvasive monitoring of cellular processes,



including the process of stem cell differentiation [105–109].
As a demonstration, Hildebrandt et al. used micropatterned
electrodes to monitor the 2D cell layers of human
mesenchymal stem cells. The impedance spectra of
osteogenic-treated human mesenchymal stem cells were of
significantly higher amplitude compared to undifferentiated
control cells [105]. In addition, Bagnaninchi et al. cultured
adipose-derived stem cells seeded on multielectrode arrays,
and variations in impedance spectroscopy through induction of
stem cell toward osteoblasts and adipocytes were observed
[106]. Likewise, Stephens et al. applied microelectrode array
technology to monitor the characteristis and activity of neural
stem cells during differentiation into specialized neurons using
a rat hippocampal model [108].

13.2.4 Single-Cell Analysis of Stem Cells
The blossoming of stem cell research has brought with it the
need for platforms that enable high-throughput analysis of an
individual stem cell. Single-stem cell analysis can offer insight
into the molecular mechanisms of stem cell differentiation,
including the intracellular and intracrine factors. Lindstrom et
al. developed a microfluidic device for single-cell culture that
enabled the study of thousands of individual stem/progenitor
cell samples simultaneously [110]. As shown in Fig. 13.10, a
standard size microfluidic device was designed to
accommodate 672 wells of 500 nL capacity each, which
provided a low-cost high-throughput platform without losing
compatibility with standard detection equipment. The platform
was able to maintain the culture of embryonic and neural stem
cells and the clonal analysis of single cells using flow
cytometry.



Fig. 13.10 Microfluidic approach showing cell seeding (a) and (b) culture (c) and
characterization (d) of stem cells at single-cell level. Reprinted with permission
from [110] ©PLOS

Genetic modification of stem cells to perform a specific
required function is a major step for both research and clinical
applications. The current conventional methods for gene
transfer into stem cells, such as bulk electroporation, suffer
from a limited yield of DNA transfection. To address this
obstacle, Valero et al. developed a microfluidic device for
electroporation of single stem cells to transfer the MAPK3
gene with high efficiency [111]. As shown in Fig. 13.11a, the
microfluidic device contains two channels that were connected
by microholes to act as trapping sites for living cells. After
individual cells were positioned, electric fields were generated
by patterned electrode arrays to facilitate parallel DNA
transfection, while each event can be individually regulated.

Fig. 13.11 (a) Schematic of microfluidic device used in electroporation of single
stem cells. Reprinted with permission from [111] ©RSC. (b) Three-step procedure
of microfluidic device to fuse two types of cells. Reprinted with permission from
[112] ©Nature Publishing Group



Besides electroporation, microfluidic devices have been
used to pair thousands of stem cells for cell fusion studies
[112]. As shown in Fig. 13.11b, a microfluidic device is
composed of a large array of cellular trapping sites. By
regulating the flow direction, in each trapping site, two cells
(one cell for one type) can be paired for subsequent cell fusion
using electrical or chemical stimuli. Additionally,
reprogramming of the somatic fibroblast cells was possible in
hybrids with embryonic stem cells.

13.3 Nanotechnology for Stem Cell
Applications
13.3.1 Nanofibers for Stem Cell Niche
The use of nanomaterials to address the mechanical and
topographic aspects of the stem cell niche has made substantial
progress. The nanotopography of the extracellular
surroundings is well sensed by stem cells. It defines important
cytoskeleton effects, adhesion properties, and biological
responses that together determine its eventual fate [113].
Notable efforts have been made to mimic the extracellular
niche using different nanoscale materials to control the surface
topography, including the control of the size of scaffold fibers,
surface pores, and the attachment to growth factors and
surface coatings. The simplest modification in these factors
could have a significant effect on stem cell fate. For example,
changing the density of nanoposts on the surface provided for
cell growth, it was adequate to switch the fate of mesenchymal
stem cells between the adipogenic and osteogenic lineages
[114]. The stiffness of the extracellular matrix ECM is also a
decisive factor that can switch the differentiation of embryonic
stem cells into neural or osteogenic progenitors [115]. These
findings have important implications when we about clinical
scenarios and how surface topography and matrix mechanical
cues should be included in our planning and expectations of
stem cell behavior once the cells are transferred in vivo.
Several models have been developed that could have
application in the near future. An interesting illustration of a
clinically implantable cellular cardiac patch was shown in the



model by Khan et al. Cardiomyocytes were derived from
iPSCs grown on a nanofiber scaffold composed of polylactide-
co-glycolide (PLGA). The nanofibers were aligned to mimic
the fibrous skeleton of the heart muscle. The differentiated
cardiac cells aligned in the correct anatomical distribution over
the nanofiber skeleton, whereas they grew completely in a
random fashion on the flat surface of the regular culture plate
[116].

13.3.2 Nanocarriers for Stem Cell
Targeting
Driven by multiple barriers and inadequacies of delivering
medications systemically, especially those with serious
toxicity such as cancer therapies, nanomedicine has acquired
an intense research focus parallel to what occurred in stem cell
research. Nanoscale molecules, often inactive, can carry other
active molecules into the cell. The ultimate goal of nanoscale-
based drug delivery is to sustain the effectiveness of
medications without causing systemic adverse effects for
patients. This could be realized if these medications are
distributed only to the diseased cells [117]. This goal is
particularly imperative in the stem cell field, where stem cells
can function as vehicles to carry nanomolecules to the target
tissue or, conversely, nanocarriers can be used as vehicles to
carry biomolecules required for stem cell function. Either way,
there have been several promising developments with
preliminary success toward achieving this goal. For example,
cytokines and growth factors necessary for stem cell
proliferation, such as the vascular endothelial growth factor,
were transported by nanocarriers made of natural compounds
(chitosan and heparin) into mesenchymal stem cells [118].
Conversely, the migration properties of mesenchymal stem
cells are considered beneficial from the point of view of drug
delivery. They have been used in transferring cytotoxic agents
to cancer tissue owing to what is believed to be a tumor-tropic
effect; nevertheless, this phenomenon is not yet fully
understood. Examples include lipid nanocapsules (LNCs) and
poly-lactic acid nanoparticles, which were used to carry
coumarin-6 to mesenchymal stem cells with the aim of using



mesenchymal stem cells as vehicles to transfer a cytotoxic
agent to glioma, an aggressive brain tumor [119]. Likewise,
mesenchymal stem cells were loaded with nanoparticles linked
to a porphyrin-based compound to add a photosensitivity
property to the compound. Upon laser activation,
mesenchymal stem cell death and the consequent death of
osteosarcoma cells were initiated [120]. Likewise, human cord
blood mesenchymal stem cells were used as vehicles, which
were first induced to express interleukin-15 (IL-15) through
viral transduction, leading to significant antitumor activity of
pancreatic cancer in mice. The method was successful in
triggering a long-lasting and transferable immune response,
showing a significant potential in cancer prevention studies
[121].

Cancer stem cells are believed to be responsible for cancer
initiation, aggressiveness, recurrence, and multiple drug
resistance. Identification of cancer stem cells remains a
challenge, as with other types of stem cells. Targeting cancer
stem cells is an emerging direction that can benefit from
nanocarrier-based delivery to produce new cancer therapies.
Nanocarriers were investigated for their ability to target
specific markers on these cells. Both passive nonspecific
delivery and active specific delivery were employed with
variable success. For example, LNCs were linked to a
monoclonal antibody against AC133, an epitope on CD133
that was shown to correlate with stemness capacity [122].
Also, gold nanoparticles were linked to the cytotoxic agent
doxorubicin to target breast cancer stem cells. This method
increased the efficacy of the medication compared to
traditional delivery. In a similar model, researchers were able
to successfully target CD44+ cancer stem cells using a
nanocarrier composed of chitosan molecules coating
doxorubicin. The cytotoxicity of the drug increased
significantly without causing noticeable general side effects in
the animal model [123]. Nevertheless, the field is still in its
early stage, thus requires and so extensive evaluation of the
effectiveness and safety profile of the currently used
nanoparticles is required. Note also that not all nanoparticles
result in desirable effects on stem cells. For example, silver



nanoparticles, although known for their biocompatibility and
antimicrobial effects, inhibited stem cell differentiation and in
high doses caused stem cell toxicity [124].

13.3.3 Quantum Dots
Another challenge for stem cell clinical applications is the lack
of a reliable and safe method of tracking transplanted stem
cells to ensure their engraftment by the target tissue and, more
importantly, the long-term persistence of their regenerative
function. Quantum dots (QDs), which are efficient
semiconductor fluorescent nanoparticles, represent a
promising solution for monitoring clinical outcomes of stem
cell therapy. QDs were used to label human mesenchymal
stem cells and efficiently allowed their in vivo tracking using
near-infrared-based imaging [125]. Mesenchymal stem cells
were also tracked by cadmium oxide-selenium QDs, revealing
their differential distribution in the pancreas of normal or
diabetic mice [126]. However, one concern with QDs is their
reported cytotoxicity, especially with the popular cadmium-
based QDs [127]. Graphene QDs were also reported to cause
adverse effects in human neural stem cells, though they seem
to be of a safer profile in terms of their effect on viability,
proliferation, and differentiation [128].

13.4 Biosensors and Immunosensors
Immunosensors and immunoprobes are closely related
technologies that encompass a wide range of methods. The
basic concept includes the use of a modified surface sensitive
to an antigen-antibody reaction. This reaction stimulates a
transducer to generate a characteristic quantifiable signal using
electrochemical, optical, or piezoelectric detection methods.
Such a technology tool is in its early development for stem cell
applications; however, it could be of particular potential for
enabling point-of-care clinical applications. One looked-for
application is to enable the detection and probing of cancer
stem cells. Since these cells are involved in initiation and
recurrence of cancer, their early detection and eradication
could indeed revolutionize cancer screening, prevention, and



cure. For instance, an immunoprobe that used an EpCAM-
based sensor was able to capture 125 prostate cancer cells
accurately, and most importantly cells remained viable for
further analysis. Similarly, melanoma cells were immuno-
sensed with a high sensitivity, being able to detect as few as 20
cells per/mL. The immunosensor relied on the detection of a
melanocortin 1 surface receptor using modified silica
nanoparticles. Extending this to stem cells, gold nanoparticle-
based immunosensors were also used to quantify Nanong, a
popular marker of stem cell pluripotency, with very good
sensitivity [129–131].

13.4.1 Stem Cell-Based Biosensors
Stem cells themselves have been considered as cellular sensors
that can demonstrate the adverse effect of drugs on
physiological functions. Diverse technological tools were
coupled with stem cell-based sensors to quantify the extent of
that cellular effect. For example, human embryonic stem cells
were differentiated into cardiomyocytes that were exposed to
cardiac medications. Using a semiconductor sensor excited by
light called a light-addressable potentiometric sensor (LAPS),
cells could respond with different action potentials that are
translated into a measurable photocurrent. This method shows
several advantages suitable for miniaturized biomedical
applications [132].

13.5 Considerations and Risks
The outburst of micro- and nanotechnology applications in the
stem cell field promises substantial advancement and can offer
definitive solutions to current barriers and the delay in clinical
applicability. Unfortunately, this delay has been impatiently
perceived in poorly regulated clinical settings, leading to
shortcuts of unreliable stem cell therapies without adequate
quality control. Nonetheless, in human-related therapies,
overcaution must always be exercised without rushing the
application of new materials into living systems. Robust
toxicity and adverse outcome studies need to be conducted in
advance. Some of the presented technologies in this chapter



were associated with adverse outcomes on cells such as gold,
silver, and titanium nanoparticles. Reported alteration of gene
expression toward more proliferation and DNA damage could
have a significant effect in the case of stem cells. Normal stem
cells, with their inherent proliferative capacity, may be readily
transformed into cancer stem cells that can initiate and
maintain the whole malignant process [133, 134]. In view of
these risks, biomaterials incorporated into stem cell therapies
would ideally be biocompatible and noninteractive with
cellular elements. This can be achieved if more investment is
directed toward the fabrication of technological tools such as
nanofibers, microfluidic systems, immunosensors, and others
using biological materials, especially those derived from
suitable human sources.
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